WO2019239665A1 - 計算装置、演算方法 - Google Patents

計算装置、演算方法 Download PDF

Info

Publication number
WO2019239665A1
WO2019239665A1 PCT/JP2019/011179 JP2019011179W WO2019239665A1 WO 2019239665 A1 WO2019239665 A1 WO 2019239665A1 JP 2019011179 W JP2019011179 W JP 2019011179W WO 2019239665 A1 WO2019239665 A1 WO 2019239665A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
lane
vehicle
route
change
Prior art date
Application number
PCT/JP2019/011179
Other languages
English (en)
French (fr)
Inventor
三徳 丸
天谷 真一
勇 織田
武史 工藤
隆旭 椎名
Original Assignee
クラリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリオン株式会社 filed Critical クラリオン株式会社
Priority to US17/251,772 priority Critical patent/US11529958B2/en
Priority to EP19819487.0A priority patent/EP3809391A4/en
Publication of WO2019239665A1 publication Critical patent/WO2019239665A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed

Definitions

  • the present invention relates to a calculation device and a calculation method.
  • car navigation system that estimates the current position of the host vehicle, displays a map of a road, a route to a destination, etc. on a screen and guides the driver.
  • map data digital map data
  • map data maps roads as links and intersections as nodes
  • a route calculation that minimizes the sum of link costs such as consumption is performed.
  • Such a function is called a route search function, and the Dijkstra method or an algorithm equivalent thereto is widely used for its realization. It is assumed that the route information searched by the car navigation system is used not only for the driver's guidance using screen display and voice, but also for the automatic driving vehicle to automatically travel to the destination.
  • a conventional car navigation system sometimes searches for a route including a section that is difficult to change lanes. For example, a route that includes a section where a main road composed of a plurality of lanes merges from the left side, then travels a short distance to the nearest intersection, moves to the right multiple times, and turns right at the intersection. . Such a route is not preferable because it may interfere with safety in guiding the driver and controlling the autonomous driving vehicle.
  • lane detection means for detecting the number of lanes that can pass in the traveling direction of the host vehicle and the lane in which the host vehicle is located, and the degree of congestion of the lanes that can pass in the traveling direction of the host vehicle are detected.
  • a determination means for determining a right / left difficulty level at a front intersection based on the detected number of lanes, the lane in which the vehicle is located and the congestion level, and the determined right / left turn difficulty
  • a navigation device including guidance means for guiding a travel route according to the degree.
  • the calculation device waits for a necessary distance, which is a distance necessary for the vehicle to change the lane from the first travel lane to the second travel lane, until the vehicle can start the lane change. Control calculated by adding together the first distance that the vehicle travels, the second distance that the vehicle travels while adjusting the speed of the vehicle, and the third distance that the vehicle travels while executing a lane change A part.
  • the calculation method according to the second aspect of the present invention is a calculation method in which a computer calculates a necessary distance, which is a distance necessary for the vehicle to change the lane from the first travel lane to the second travel lane, wherein the vehicle changes the lane. A first distance that the vehicle travels while waiting until it can start, a second distance that the vehicle travels while adjusting the speed of the vehicle, and a third distance that the vehicle travels while performing a lane change The required distance is calculated by adding together.
  • the distance required for the lane change can be calculated appropriately.
  • FIG. 1 is an overall configuration diagram of a route search system 1 according to a first embodiment.
  • the figure which shows an example of the search table 244 A flowchart showing the operation of the route search unit 232
  • the flowchart which shows the detail of S1306 in FIG. Diagram showing the outline of distance calculation required for lane change The figure which shows an example of the calculation method of the start waiting distance L1 in a 1st step.
  • the figure which shows the calculation summary of distance D2 which can be used for lane change The flowchart which shows the detail of S1408 in FIG.
  • the figure which shows an example of the candidate route table 245 The figure which shows an example of the presentation of the candidate path
  • the navigation device searches for a route from the departure place to the destination, and guides the driver and controls the vehicle.
  • FIG. 1 is an overall configuration diagram of a route search system 1 according to the first embodiment.
  • the route search system 1 includes a navigation device 200 mounted on the vehicle 100, a vehicle control ECU 300, and a switch 350.
  • the navigation device 200 is also referred to as a “computing device”.
  • a person sitting in the driver's seat of the vehicle 100 is referred to as a “user”.
  • the vehicle 100 has two operation modes, an automatic operation mode and a manual operation mode.
  • the vehicle control ECU 300 controls the vehicle 100 in the automatic operation mode, and the user controls the vehicle 100 in the manual operation mode.
  • the navigation device 200 calculates and presents to the user a route that does not include a section in which a difficult lane change is forced as described later.
  • the navigation device 200 further outputs the calculated route to the vehicle control ECU 300 in the automatic driving mode.
  • the vehicle control ECU 300 operates in the automatic driving mode and causes the vehicle 100 to travel along the route received from the navigation device 200.
  • the switch 350 is a switch for switching between automatic operation and manual operation, and is operated by the user. Switch 350 outputs an operation signal indicating a user operation to vehicle control ECU 300.
  • the in-vehicle control ECU 300 When receiving the operation signal from the switch 350, the in-vehicle control ECU 300 outputs the operation signal to the navigation device 200.
  • the navigation device 200 includes an output unit 210, an operation unit 220, a control unit 230, a storage unit 240, a sensor 250, an external communication unit 260, and a vehicle communication unit 270.
  • the output unit 210 includes a display unit 211 and an audio output unit 212.
  • the display unit 211 is a device that provides visual information to the user, for example, a display.
  • the audio output unit 212 is a device that provides audio information to the user, for example, a speaker.
  • the output unit 210 operates according to an operation command from the control unit 230.
  • the operation unit 220 is a device that receives an operation from a user and transmits the operation to the control unit 230, for example, a plurality of buttons.
  • the operation unit 220 may be configured as a touch panel integrally with the display unit 211. For example, the user uses the operation unit 220 to set a departure point and a destination.
  • the control unit 230 includes a CPU that is a central processing unit, a ROM that is a read-only storage device, and a RAM that is a readable / writable storage device, and the CPU expands and executes a program stored in the ROM on the RAM.
  • the control unit 230 includes, as its functions, a host vehicle position estimation unit 231, a route search unit 232, a route guidance unit 233, a route transmission unit 234, and a traffic information management unit 235. The functions of the control unit 230 will be described later.
  • the storage unit 240 is at least a readable storage device, but may be a nonvolatile rewritable memory such as a flash memory so that stored information can be updated.
  • the storage unit 240 stores map data 241, vehicle parameters 242, driver parameters 243, and a search table 244.
  • the map data 241 includes a map area range divided into areas, for example, mesh information indicating latitude and longitude ranges, link and node identifiers included in each mesh, and detailed link and node information. It is.
  • the detailed information of the link includes the following information for calculating the link cost that is the cost of passing the link. That is, average travel time, which is the average time required for link traffic, statistical traffic information including information on traffic jams and road construction, traffic restrictions indicating no traffic, road types indicating types such as expressways and national roads, automatic driving It includes link attribute information such as whether or not it is possible.
  • high-accuracy information in units of lanes such as the number of lanes constituting the road included in the link, lane connection relations, and lane boundary line type information is also included.
  • the vehicle parameter 242 includes a traveling direction acceleration during speed adjustment, which will be described later, and a lateral direction acceleration when changing lanes.
  • the value of the vehicle parameter 242 is a value determined in advance according to the configuration of the vehicle 100. For example, the same value is input for the same vehicle type, and the value is not updated in the present embodiment.
  • the driver parameters 243 include the acceleration in the traveling direction at the time of speed adjustment and the lateral acceleration at the time of lane change, the depression amount of the accelerator pedal and the brake pedal at the time of speed adjustment, and the steering wheel operation angle at the time of lane change. Is included.
  • the value of the driver parameter 243 is determined by the driving operation of the user who drives the vehicle 100. That is, the value of the driver parameter 243 is different for each navigation device 200.
  • the value of the driver parameter 243 may be updated as appropriate based on the sensor information when the driver changes the lane.
  • Specific examples of the vehicle parameter 242 and the driver parameter 243 include a traveling direction acceleration at the time of speed adjustment, an accelerator / brake depression amount, a lateral acceleration at the time of lane change, a steering wheel operation angle, and the like. These parameters may vary in value for each traffic speed and traffic density. Traffic speed and traffic density are values that change from time to time for each lane.
  • the sensor 250 includes a positioning sensor such as a GPS (Global Positioning System) unit, a gyro sensor, an acceleration sensor, and the like.
  • the external communication unit 260 is a communication module capable of at least one communication of cellular communication, communication corresponding to IEEE 802.11, vehicle-to-vehicle communication, and road-to-vehicle communication, and performs communication with the outside of the vehicle 100.
  • the vehicle communication unit 270 is a communication module corresponding to at least one of the communication standards of Controller Area Network and IEEE 802.3, and performs communication with the inside of the vehicle 100.
  • Vehicle communication unit 270 communicates not only with vehicle control ECU 300 and switch 350 shown in FIG. 1 but also with a sensor (not shown) provided in vehicle 100, such as a speedometer.
  • the own vehicle position estimation unit 231 estimates the position of the vehicle 100 using the information of the sensor 250 and the vehicle speed information acquired from the vehicle communication unit 270. For example, the own vehicle position estimation unit 231 acquires position information from the GPS unit every 1 second or 0.1 second, and adds the speed of the vehicle 100 and an integral value in the traveling direction to the position information, thereby obtaining the latest position information. Is calculated.
  • the route search unit 232 searches for a route from the departure place to the destination. Detailed operation of the route search unit 232 will be described later.
  • the route guidance unit 233 outputs the route information calculated by the route search unit 232 to the output unit 210. In addition, when the driving mode is the manual driving mode, the route guiding unit 233 guides the route to the user using the route information and the position of the vehicle 100 calculated by the own vehicle position estimating unit 231.
  • the route transmission unit 234 operates only when the operation mode is the automatic operation mode, and outputs the route information calculated by the route search unit 232 to the vehicle control ECU 300.
  • the traffic information management unit 235 receives the destination and the latest traffic information from the outside of the vehicle 100 via the external communication unit 260.
  • the traffic information management unit 235 stores the received traffic information in the RAM. However, the traffic information management unit 235 may store the received traffic information after processing it so that the route search unit 232 can easily use it.
  • the traffic information received by the traffic information management unit 235 includes the situation for each lane of the route on which the vehicle 100 travels, for example, the position information of the vehicle that is stuck in the traffic for each lane.
  • FIG. 2 is a diagram illustrating an example of the search table 244.
  • the search table 244 is stored in the storage unit 240 and is created by the route guidance unit 233.
  • the search table 244 has fields of a departure point coordinate 2441, a destination coordinate 2442, link attribute information 2443, the number of nodes 2444, and one or more node information 2445.
  • the field of link attribute information 2443 stores attribute information of all links included in the area set as the search target. For example, when there are 100 links in the area set as the search target, the attribute information for each of the 100 links is stored in the field of the link attribute information 2443.
  • the node information 2445 field stores information on each node.
  • the number of node information 2445 included in the search table 244 is the same as the value stored in the node number 2444 field.
  • the accumulated cost 2446 for a certain node hereinafter referred to as “target node”
  • the incomplete decision 2446A the node ID 2447, the immediately preceding node ID 2448, the number of connected links 2449, 1
  • the connection link information 244A described above is included.
  • the accumulated cost from the departure place to the target node, which is calculated in the route search process is stored. However, until the accumulated cost is calculated, an initial value indicating that the calculation is not performed, for example, a symbol such as a blank or a hyphen, or 0xffff which is a very large value is stored. Whether or not the accumulated cost of the target node has been confirmed is stored in the field of incomplete confirmation 2446A. In the initial state, the incomplete confirmation 2446A of all node information stores an initial value indicating that the node information is not confirmed, for example, “unknown”.
  • the node ID 2447 field stores the identifier of the target node.
  • the field of the immediately preceding node ID 2448 stores the node ID of the node immediately preceding the target node in the searched route.
  • the number of links connected to the target node is stored in the connection link number 2449 field.
  • connection link information 244A exists in the same number as the number stored in the connection link number 2449 field. Each connection link information 244A stores information on any link connected to the target node.
  • the connection link information 244A includes a link ID 244B and an adjacent node ID 244C. In the field of the link ID 244B, an identifier of any link connected to the target node is stored.
  • the field of the adjacent node ID 244C stores the node ID of a node that is connected to the link identified by the link ID 244B and is not the target node. The above is the description of the search table 244.
  • the own vehicle position estimation unit 231 estimates the position of the vehicle 100 using information of the sensor 250, vehicle speed information acquired from the vehicle communication unit 270, and the like every short time period, for example, every second.
  • the route search unit 232 searches for a route from the departure point to the destination while updating the search table 244.
  • the route search unit 232 can use, for example, the Dijkstra method for route search.
  • the route search unit 232 performs a route search with reference to the map data 241, the vehicle parameter 242, and the driver parameter 243.
  • the route search unit 232 may further use the traffic information received by the traffic information management unit 235 from the outside.
  • FIG. 3 is a flowchart showing the operation of the route search unit 232.
  • the route search unit 232 starts an operation described below when the user inputs a departure place and a destination. However, the user may set the position of the vehicle 100 when the user sets the destination without inputting the departure place as the departure place.
  • the route search unit 232 extracts the link closest to the set departure point and destination as the departure point vicinity link and the destination vicinity link (S1201). Subsequently, the route search unit 232 sets an area for route search (S1202). The search area is set, for example, as a rectangular area that includes both the starting point and the destination. Next, the route search unit 232 creates a search table 244 by referring to the map data 241 included in the search area (S1203).
  • the search table 244 in S1203 is as follows. That is, the user's input is reflected in the fields of the departure point coordinates 2441 and the destination coordinates 2442 as they are.
  • the link attribute information 2443 and node number 2444 fields store the attribute information of all links and the number of all nodes included in the area set in S1202.
  • initial values are input in the fields of the accumulated cost 2446, the incomplete decision 2446A, and the immediately preceding node ID 2448, and information obtained from the map data 241 is stored in other fields.
  • the route search unit 232 calculates a route having a minimum accumulated cost from the departure point vicinity link to the destination vicinity link using an algorithm such as the Dijkstra method (S1204). Details of the route calculation will be described later. Finally, the route search unit 232 outputs the route with the minimum accumulated cost, which is the calculation result, to the route guidance unit 233 and the route transmission unit 234, and ends the process illustrated in FIG.
  • FIG. 4 is a flowchart showing the route calculation of the route search unit 232, that is, the details of S1204 in FIG. FIG. 4 shows route calculation using the Dijkstra method.
  • the accumulated cost from the departure place is determined one by one for each node included in the search area.
  • the node where the accumulated cost is determined is the node near the departure point first.
  • the accumulated cost of the node connected to the node where the accumulated cost is determined is sequentially confirmed, and the calculation ends when the accumulated cost of the destination nearby node is confirmed. .
  • a node for which the accumulated cost has not been determined in other words, a node in which the value of the field of the incomplete confirmation 2446A remains the initial value “unconfirmed” is referred to as an “indeterminate node”.
  • a node for which the accumulated cost has been confirmed in other words, information indicating that the value of the field of the incomplete confirmation 2446A is confirmed, for example, a node that is “complete”, is referred to as a “confirmed node”.
  • the route search unit 232 identifies a node with the lowest accumulated cost among the unconfirmed nodes, and sets the node as a confirmed node. In other words, the route search unit 232 rewrites the value of the field of unconfirmed incomplete 2446A of the unconfirmed node with the minimum accumulated cost to information indicating that the cost has been confirmed, for example, “complete”. However, when S1301 is executed for the first time, zero is stored in the accumulated cost 2446 included in the node information 2445 of the departure point neighboring node, and “complete” is stored in the incomplete decision 2446A.
  • each of the nodes adjacent to the node determined as a confirmed node in S1301 (hereinafter referred to as “latest confirmed node”) is set as a processing target node, and the processing of S1303 to S1311 is executed for all of them (S1302). .
  • the route search unit 232 determines whether or not the processing target node has been confirmed. The route search unit 232 returns to S1302 when determining that the node is determined, that is, a determined node, and proceeds to S1304 when determining that the node is an unconfirmed node.
  • the route search unit 232 determines whether or not the traffic restriction is included in the attribute of the link between the latest confirmed node and the processing target node. The route search unit 232 returns to S1302 if affirmative determination is made in S1304, and proceeds to S1305 if negative determination is made.
  • the route search unit 232 calculates the link cost of the link connecting the latest confirmed node and the processing target node, and temporarily adds the sum of the calculated link cost and the accumulated cost 2446 of the latest confirmed node to the RAM. save. In calculating the link cost, the average travel time and link attribute information of the link, the traffic information of the link received from the outside, and the like are considered. In S1306, the route search unit 232 determines the difficulty of changing the lane as will be described later. In subsequent S1307, the route search unit 232 determines whether or not the result of the difficulty determination in S1306 is “lane change not possible”. The route search unit 232 returns to S1302 when it is determined that the result of the difficulty determination is “lane change not possible”, and proceeds to S1308 when it is determined that the result of the difficulty determination is not “lane change not possible”.
  • the route search unit 232 determines whether or not the difficulty determination result in S1306 is “lane change difficult”. When the route search unit 232 determines that the result of the difficulty determination is “lane change difficult”, a predetermined penalty cost is added to the accumulated cost recorded in the RAM in S1305 so that the link is less likely to be included in the route. Add (S1309) and go to S1310. If the route search unit 232 determines that the result of the difficulty determination is not “lane change difficult”, the process proceeds to step S1310.
  • the route search unit 232 determines whether or not the accumulated cost recorded in the RAM in S1305 is smaller than the value of the accumulated cost 2446 of the processing target node. When the route search unit 232 determines that the accumulated cost recorded in the RAM is smaller, the value of the accumulated cost 2446 in the search table 244 is updated to the value recorded in the RAM (S1331), and the process proceeds to S1312. If the route search unit 232 determines that the accumulated cost recorded in the RAM is equal to or greater than the value of the accumulated cost 2446, the route search unit 232 returns to S1302 without updating the value of the accumulated cost 2446.
  • the route search unit 232 proceeds to S1313 if it determines that all of the nodes adjacent to the latest confirmed node have been processed and has executed all of S1303 to S1311, and otherwise proceeds to S1313.
  • the node is changed to S1302, and the process returns to S1302.
  • the route search unit 232 has reached the destination neighborhood link, that is, information indicating that the value of the destination neighborhood link finalization incomplete 2446A is final, for example, “complete”, or there is no node that can be finalized. Is determined (S1312).
  • the route search unit 232 terminates the processing shown in FIG. 4 when either of them corresponds, and proceeds to S1205, and returns to S1301 to continue the route calculation when neither of them applies.
  • FIG. 5 is a flowchart showing details of the difficulty determination of lane change, that is, the details of S1306 in FIG.
  • the route search unit 232 refers to the map data 241 to determine whether the lane change is necessary, whether the lane change is possible, and whether the lane change is difficult.
  • a link connecting the latest confirmed node and the processing target node is referred to as an “entry link”.
  • the route search unit 232 first determines whether or not there is a junction point to the main road on the approach link (S1401).
  • the node is traced from the processing target node in the direction of the latest confirmed node, and it is determined whether there is a junction point to the main road within a certain distance, for example, 1 km. For example, in the case of an expressway, a point where a ramp or a crossover is connected to the main road is determined as a junction, and in the case of a general road, a point where a right-left turn is connected to the main road at an intersection without a traffic light is determined to be a merge. If there is no meeting point (S1401: NO), the route search unit 232 proceeds to S1413.
  • the route search unit 232 determines whether or not the approach link is composed of a plurality of lanes (S1402). The route search unit 232 makes the determination with reference to the number of lanes of the incoming link included in the map data 241. If the route search unit 232 determines that the approach link is not configured by a plurality of lanes, the process proceeds to S1413.
  • the route search unit 232 determines whether the road from the approach link to the processing target node includes a branch (S1403). For example, the route search unit 232 determines whether the route includes a branch or a road based on an angle formed by an incoming link and other links connected to the processing target node. When determining that the branch is not included, the route search unit 232 determines that “lane change is not necessary” (S1413), and ends the process illustrated in FIG. When determining that the branch is a branch, the route search unit 232 calculates the number of lane changes required from the merge to the branch (S1404).
  • the route search unit 232 calculates the number of lane changes from the correspondence relationship between the lanes that can be entered at the time of merging and the lanes that can be exited at the time of branching using the connection relationship information for each lane included in the map data 241. Note that the lane change count information corresponding to the section may be stored in the map data 241 in advance, and the route search unit 232 may read it.
  • the route search unit 232 determines that the number of lane changes is zero (S1405: NO), the process proceeds to S1413.
  • the route search unit 232 determines whether or not lane changes are prohibited due to traffic restrictions or the like (S1406). The route search unit 232 makes the determination with reference to the type information of the lane boundary line included in the map data 241. If the route search unit 232 determines that the lane change is prohibited, the process proceeds to S1410.
  • the route search unit 232 calculates a required distance D1 (S1407) that is a distance necessary for the lane change and a travelable distance D2 (S1408) that is a distance that can be used for the lane change. .
  • the processing of S1407 and S1408 will be described later.
  • the route search unit 232 compares the required distance D1 with the travelable distance D2 and determines that the required distance D1 is greater than the travelable distance D2, the process proceeds to S1411; otherwise, the process proceeds to S1412 (S1409).
  • the route search unit 232 determines that “lane change is not possible” in S1410, and ends the process illustrated in FIG.
  • the route search unit 232 determines that “lane change is difficult” in S1411, and ends the processing illustrated in FIG. In S1412, the route search unit 232 determines that “lane change is easy” and ends the processing illustrated in FIG. In S1413, the route search unit 232 determines that “lane change is not necessary” and ends the processing illustrated in FIG. In other words, the processing target node is classified into one of lane change impossible, lane change difficult, lane change easy, and lane change unnecessary by the processing shown in FIG.
  • FIG. 6 is a diagram showing an outline of calculation of the distance D1 necessary for lane change.
  • the lane change operation is considered in three stages as shown in FIG.
  • the distance traveled in the first stage is L1
  • the distance traveled in the second stage is L2
  • the distance traveled in the third stage is L3.
  • the host vehicle 100 travels in the first travel lane TL 1
  • the other vehicle 701 travels in the adjacent second travel lane TL 2 at a slightly slower speed than the host vehicle 100.
  • the travel lane before the change in the lane change is also referred to as “change source lane”, and the travel lane after the lane change is also referred to as “change destination lane”.
  • the vehicle 100 on which the navigation device 200 is mounted is also referred to as “own vehicle” 100 in order to distinguish it from other vehicles.
  • the host vehicle 100 stands by in the change source lane until there is sufficient space in the change destination second travel lane TL2.
  • the distance traveled in the first stage is the “start waiting distance L1”.
  • the start waiting distance L1 becomes long particularly when the traffic density of the change destination lane is large.
  • the speed of the host vehicle 100 is adjusted to the traffic speed of the second travel lane TL2, which is the change destination lane.
  • the traffic speed of the second travel lane TL2 is larger than that of the host vehicle 100, the vehicle accelerates.
  • the traffic speed of the first travel lane TL1 is greater, the vehicle decelerates.
  • L2 is also affected by the traffic speed of the change source lane and the change destination lane, and the magnitude of acceleration at the time of acceleration and deceleration that are different for each driver.
  • L3 is considered to be influenced mainly by the way of turning the steering wheel that is different for each driver (in the case of an automatic driving system, steering control parameters, etc.).
  • the distance required for the lane change is calculated by adding the start waiting distance L1, the speed adjustment distance L2, and the lane change distance L3 in the first to third stages by the required number of lane changes.
  • FIG. 7 is a diagram illustrating an example of a method of calculating the start waiting distance L1 in the first stage.
  • the vehicle closest to the host vehicle 100 that travels in the second travel lane TL ⁇ b> 2 to be changed is the other vehicle 701.
  • the host vehicle 100 travels at a constant speed until a space of a distance d from the center position of the other vehicle 701 becomes front and rear.
  • the distance M which needs to be different from the other vehicle 701 in order to make a space of the distance d, is the difference between the own vehicle 100 and the other vehicle 701 at the start of the first stage when the lane change attempt is started. Depends on the positional relationship.
  • the average value of the start waiting distance L1 is estimated in consideration of the traffic speed V11 in the first stage of the host vehicle 100, the traffic speed V2 of the second travel lane TL2, and the traffic density K2 of the second travel lane TL2.
  • the traffic speed V11 and the traffic speed V2 values calculated from the average speeds of the first travel lane TL1 and the second travel lane TL2 acquired from the map data 241 are used.
  • the host vehicle 100 is faster than the other vehicle 701, that is, has a relationship of V11> V2.
  • the traffic density is the number of vehicles existing per unit distance.
  • a space of the distance d is obtained if there is a difference by the distance M thereafter. it can.
  • the value of the distance d may be a fixed value held by the route search unit 232, for example, an average value of the vehicle length, or set in consideration of the stop distance of the vehicle according to the traffic speed of the change destination lane. Also good.
  • Formula 1 is demonstrated with reference to FIG.7 (b). If there is no other vehicle 701 along the distance d before and after the host vehicle 100, the distance M that needs to be different from the other vehicle 701 to make a space of the distance d is zero. On the other hand, when the own vehicle 100 is faster than the other vehicle 701 and the other vehicle 701 is ahead of the own vehicle 100 by a distance slightly shorter than the distance d, the distance M is 2d. That is, as shown by the triangle shown on the left in FIG. 7B, the distance M is determined by the relative position of the host vehicle 100 and the other vehicle 701 depending on the relative position of the host vehicle 100 and the other vehicle 701.
  • the distance M is an average of the triangular area based on the existence probability of the other vehicle 701. Since the area of one triangle is 2d 2 and the existence probability of the other vehicle 701, that is, the traffic density is K2, the distance M is expressed by the above equation 1.
  • T1 M /
  • the value included in the traffic situation acquired by the route search unit 232 from the traffic information management unit 235 is used as the traffic speed V2.
  • the traffic speed V2 may be included in the statistical traffic information stored in the map data 241. If the acquired traffic situation or statistical traffic information is information on a lane basis, it can be used as it is, and if it is road basis information, the traffic speed for each lane is obtained using the number of lanes on the road. Furthermore, in consideration of the difference in speed between the driving lane and the overtaking lane, a difference in traffic speed may be provided for each lane when interpreting road unit information.
  • L1 V11 ⁇ T (Formula 3)
  • the time C for turning on the direction indicator may be taken into consideration in advance as in Expression 4.
  • the time C is set to “3 seconds” in consideration of the fact that in Japan, for example, a signal must be given 3 seconds before the course is changed by law.
  • L1 V11 ⁇ (C + T) (Formula 4)
  • the start waiting distance L1 can be calculated in consideration of the traffic speed of the change source lane and the change destination lane and the traffic density of the change destination lane.
  • FIG. 8 is a diagram illustrating an example of a method of calculating the speed adjustment distance L2 in the second stage.
  • the speed is adjusted at a constant traveling direction acceleration b that does not cause rapid acceleration until the traffic speed of the host vehicle 100 matches the traffic speed V2 of the change destination lane.
  • the initial speed of the host vehicle 100 is set to V210.
  • the initial speed V210 and the traffic speed V2 of the change destination lane are included in the traffic conditions acquired from the traffic information management unit 235 or the statistical traffic information stored in the map data 241 as in the first stage of the lane change. use.
  • the traveling direction acceleration b is a parameter that varies depending on the driving subject of the vehicle.
  • the traveling direction acceleration b is read from the vehicle parameter 242 in the automatic operation mode, and is read from the driver parameter 243 in the manual operation mode.
  • T2
  • the speed adjustment distance L2 can be expressed by the following formula 6 using T2.
  • L2 V210 ⁇ T2 + (1/2) ⁇ b ⁇ T2 2 (Expression 6)
  • the speed adjustment distance L2 can be calculated in consideration of the traffic speeds of the change source lane and the change destination lane, and the traveling direction acceleration that is different for each driving subject.
  • FIG. 9 is a diagram illustrating an example of a method of calculating the lane change distance L3 in the third stage.
  • the host vehicle 100 travels on the circumference of two circles having the same virtual radius from the first travel lane TL1 to the second travel lane TL2.
  • the host vehicle 100 keeps the speed on the circumference constant, that is, the acceleration a in the radial direction is constant in order to avoid a sudden change in the traveling direction.
  • the acceleration a in the radial direction is a parameter that varies depending on the driving subject of the vehicle. For example, when the driver is a driver, individual differences occur, and when the driver is an automatic driving system, differences occur depending on the vehicle type and grade. That is, the acceleration a in the radial direction is read from the vehicle parameter 242 in the automatic operation mode, and is read from the driver parameter 243 in the manual operation mode.
  • the radial acceleration a can also be referred to as “lateral acceleration a”.
  • N R ⁇ sin ⁇ (Expression 7)
  • the minimum radius of curvature R in which the lateral acceleration does not exceed a can be expressed by the following equation 8 using the vehicle speed V31 of the host vehicle 100.
  • the vehicle speed V31 uses the traffic conditions acquired from the traffic information management unit 235 or those included in the statistical traffic information stored in the map data 241.
  • R V31 2 / a (Formula 8)
  • the angle ⁇ corresponding to the arc traveled until the host vehicle 100 crosses the lane boundary line can be expressed by the following formula 9 using the lane width w.
  • the value stored in the map data 241 may be used as the lane width w.
  • w cos ⁇ 1 (1- (w / 2 ⁇ R)) (Equation 9)
  • the start waiting distance L1 is considered that if the direction indicator is lit to cause the own vehicle 100 to change the lane, the other vehicle traveling in the change destination lane notices the own vehicle and adjusts the speed.
  • the distance corresponding to the lighting time of the direction indicator that is considered to depend on the traffic density may be set as the distance traveled at a constant speed.
  • the lane change distance L3 may be calculated on the assumption that the track on which the host vehicle 100 travels is not a circular arc but a clothoid curve.
  • FIG. 10 is a flowchart showing the details of the process for calculating the distance required for the lane change, that is, S1407 in FIG.
  • the start waiting distance L1 the speed adjustment distance L2
  • the lane change distance L3 described with reference to FIG. 7 to FIG. calculate. Details will be described below.
  • the route search unit 232 acquires the traffic status of each lane included in the approach link from the traffic information management unit 235 (S1501). However, the route search unit 232 may use statistical traffic information stored in the map data 241 instead of acquiring the traffic situation from the traffic information management unit 235. If the acquired traffic situation is information on a lane basis, it can be used as it is. If the traffic situation is on a road basis, the traffic situation for each lane can be considered using the number of lanes on the road. Furthermore, the route search unit 232 may provide a difference in traffic speed for each lane when interpreting road unit information in consideration of the speed difference between the driving lane and the overtaking lane.
  • the route search unit 232 determines whether or not the search condition for executing the route search is automatic driving priority (S1502). For example, when the driving mode of the host vehicle 100 is the automatic driving mode, the route search unit 232 determines that automatic driving has priority, and when the driving mode is the manual driving mode, determines that manual driving has priority. If the route search unit 232 determines that automatic driving is prioritized, the process proceeds to S1503, and if it is determined that automatic driving is not prioritized, the process proceeds to S1505.
  • the route search unit 232 determines whether or not the main road from the merge to the branch can be automatically driven (S1503). For example, when the flag indicating whether or not automatic driving is possible is set in the link attribute stored in the map data 241, the determination in S ⁇ b> 1503 uses the attribute information. Alternatively, the route search unit 232 may determine that automatic driving is possible if the road type of the link is a highway, a national highway or other main road. If the route search unit 232 determines that automatic driving is possible, the process proceeds to S1504, and if it is determined that automatic driving is not possible, the process proceeds to S1505.
  • the route search unit 232 acquires the vehicle parameter 242 as a parameter for calculating the distance D1 necessary for the lane change.
  • the route search unit 232 acquires the driver parameter 243 as a parameter for calculating the distance D1 necessary for the lane change.
  • the route search unit 232 repeatedly calculates the distance necessary for the lane change by the necessary number of lane changes (S1506). Specifically, the start waiting distance L1 (S1507), the speed adjustment distance L2 (S1508), and the lane change distance L3 (S1509) are calculated using the traffic conditions of each lane and the vehicle parameters or driver parameters.
  • route search unit 232 repeats the processing of S1507 to S1509 as many times as necessary, the process proceeds to S1511 (S1510). Finally, the route search unit 232 calculates the sum of all L1 to L3 calculated in S1507 to S1509 and sets it as the necessary distance D1 (S1511). Then, the route search unit 232 ends the process shown in FIG.
  • FIG. 11 is a diagram showing an outline of calculation of the travelable distance D2.
  • the route search unit 232 not only calculates the distance as described below, but also corrects the distance that cannot be used due to traffic jams.
  • the host vehicle 100 changes lanes from the leftmost 0th travel lane TL0 to the rightmost fourth travel lane TL4.
  • the fourth travel lane TL4 exists only in the upper part of the figure, and is branched from the branch portion B of the third travel lane TL3.
  • entry from the middle of the fourth travel lane TL4 is prohibited, and it is necessary to enter from the branch part B in order to travel the fourth travel lane TL4.
  • a traffic jam has occurred in the fourth travel lane TL4 and extends beyond the branch B to the third travel lane TL3.
  • the host vehicle 100 needs to travel so as to line up at the tail end of the traffic jam like the track Rb.
  • the travelable distance D2 is a distance obtained by subtracting the traffic jam length Dj from the distance D from the merge to the branch.
  • the travelable distance D2 is the same. More specifically, the lower end of the distance Da from the merge to the branch is the same as D, and the upper end is the upper end in the figure.
  • the traffic jam length Daj is from the upper end in the figure, and the travelable distance D2 that is the length excluding Daj from Da is the same as the previous example.
  • FIG. 12 is a flowchart showing the details of the calculation process of the travelable distance D2, that is, the details of S1408 in FIG.
  • FIG. 12 illustrates a process in which the route search unit 232 calculates the travelable distance D2 in consideration of the congestion length of the change destination lane.
  • the route search unit 232 acquires the traffic situation of each lane (S2101).
  • the traffic condition acquisition method is the same as that in S1501.
  • the route search unit 232 calculates the distance from the merge to the branch (S2102). This distance can be calculated by adding the link length stored in the map data 241 for the links from the merge to the branch. Alternatively, the distance from the merge to the branch may be stored in the map data 241 in advance, and the route search unit 232 may use this.
  • the distance calculated here corresponds to a distance that can be used for lane change before correction, for example, distance D in the example of FIG. Note that there may be an area where lane changes are prohibited immediately before the intersection, especially on general roads. Therefore, instead of simply calculating the distance from merging to branching, the length of the lane change prohibited area immediately before the intersection is calculated. You may also take into account.
  • the route search unit 232 acquires the congestion length of the change destination lane (S2103).
  • the traffic jam length acquired here is not limited to the lane directly connected to the branch, for example, the third travel lane TL3 in the example of FIG. 11, but is preferably acquired for all travel lanes from the change source lane to the change destination lane.
  • the lane change is made before the branch due to the traffic jam in the second travel lane TL2. This is because it is considered not to be completed.
  • the route search unit 232 corrects the distance that can be used for the lane change by subtracting the congestion length of the change destination lane acquired in S2103 from the distance that can be used for the lane change before correction calculated in S2102, and the travelable distance D2 Is obtained (S2104).
  • the route search unit 232 can calculate the travelable distance D2 in consideration of the congestion length of the change destination lane.
  • the navigation device 200 which is also a computing device, waits for the vehicle 100 to start a lane change at a required distance D1, which is a distance required for the lane change from the first travel lane TL1 to the second travel lane TL2.
  • a required distance D1 which is a distance required for the lane change from the first travel lane TL1 to the second travel lane TL2.
  • the route search part 232 to be provided. Therefore, since the navigation apparatus 200 calculates the required distance D1 by dividing it into three, the distance necessary for the lane change can be calculated appropriately.
  • the route search unit 232 calculates the route from the departure point to the destination, calculates the necessary distance D1 for the lane movement link that is a link that needs to be changed, and the vehicle 100 changes the lane.
  • a travelable distance D2 that is a travelable distance in the lane movement link is calculated, and when the necessary distance D1 is longer than the travelable distance D2, a route that is difficult to pass through the lane movement link is calculated (S1308: FIG. 4 YES) , S1309). Therefore, the route search unit 232 can calculate a route that does not easily include a link that is difficult to change. In other words, it can be excluded from the route for calculating the link that is forced to change the lane.
  • the route search unit 232 considers the traffic density in the second travel lane in calculating the start waiting distance L1 (S1507 in FIG. 10, equations 1 to 3). Therefore, the start waiting distance L1 can be accurately calculated in consideration of the probability that another vehicle 701 exists.
  • the route search unit 232 uses different parameters for each control subject of the vehicle 100 for calculating the speed adjustment distance L2 (S1508 in FIG. 10, equations 5 to 6).
  • the traveling direction acceleration b is considered to differ depending on the driving subject, that is, whether the vehicle 100 is controlled by the vehicle control ECU 300 or the user. Therefore, the speed adjustment distance L2 can be calculated with high accuracy by using different parameters.
  • the route search unit 232 uses different parameters for each control subject of the vehicle 100 to calculate the lane change distance L3 (S1509 in FIG. 10, equations 7 to 10). It is considered that the acceleration a in the radial direction varies depending on the driving subject, that is, whether the vehicle 100 is controlled by the vehicle control ECU 300 or the user. Therefore, the lane change distance L3 can be accurately calculated by using different parameters.
  • the route search unit 232 considers the length of the traffic jam in the change destination lane in calculating the travelable distance (S2104 in FIG. 12). Therefore, as shown in FIG. 11, the travelable distance D2 can be calculated by subtracting the congestion length Dj from the distance D from the merge to the branch.
  • the route search unit 232 may change the calculation of the necessary distance D1 depending on the situation. For example, when the traffic density of the change destination lane is extremely large, the calculation of the necessary distance D1 may be changed as follows.
  • FIG. 13 is a diagram showing the lane change operation when the traffic density of the change destination lane is extremely high.
  • the route search unit 232 changes the calculation as follows. That is, the route search unit 232 first adjusts the speed of the host vehicle 100 to the traffic speed of the second travel lane TL2, and then waits for the start of the lane change. This is because even if waiting for the start of the lane change first, there is a high possibility that another vehicle will enter the second travel lane TL2 during the speed adjustment. That is, in this case, the speed adjustment is first performed, then the start of the lane change is waited, and finally the lane change is executed.
  • the route search unit 232 may change the calculation method. That is, only the traffic density of the destination travel lane may be evaluated. That is, the calculation method may be changed as described above when the traffic density of the travel lane to be changed is larger than a predetermined value.
  • the route search unit 232 may change the calculation of the necessary distance D1 depending on the situation. For example, when the traffic density of the change source lane, that is, the travel lane in which the host vehicle 100 is currently traveling is extremely high, the calculation of the necessary distance D1 may be changed as follows.
  • FIG. 14 is a diagram showing a lane change operation when the traffic density of the change source lane is extremely large.
  • the route The search unit 232 changes the calculation as follows. That is, the route search unit 232 first waits for the start of the lane change, then executes the lane change at the same speed, and finally adjusts the speed in the change destination lane to the traffic speed of the second travel lane TL2.
  • the route search unit 232 may change the calculation method. That is, only the traffic density of the current traveling lane may be evaluated. That is, the calculation method may be changed as described above when the traffic density of the current travel lane is greater than a predetermined value.
  • a notification device that performs notification without performing route search may execute the processing illustrated in FIG. 10.
  • S1502 of FIG. 10 the main road is changed so as to determine whether or not the vehicle is scheduled to run by automatic driving.
  • Other processing is the same.
  • the route information obtained by any method is read regardless of the calculation method, and the travelable distance D1 is calculated by the method shown in FIG. 10 in which S1502 is changed.
  • the notification device notifies the user or the vehicle control ECU 300 that the lane change should be started when the travel distance D1 is reached from the branch at the latest.
  • the notification device switches the notification destination according to the operation mode of the vehicle 100. For example, the notification device notifies the user that “please start changing lanes before driving further xx meters”.
  • a useful function can be exhibited using the necessary distance D1 by having the function of calculating the necessary distance D1 for lane change. That is, even if the navigation device 200 does not have a route search function, the necessary distance D1 can be calculated to notify the timing of the lane change and the time limit of the lane change.
  • the notification device may further calculate a travelable distance D2 and compare the required distance D1 and the travelable distance D2 to determine whether the lane can be changed.
  • FIGS. A second embodiment of the navigation apparatus according to the present invention will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and differences will mainly be described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment is different from the first embodiment mainly in that a plurality of routes are presented to the user.
  • the hardware configuration of the navigation device 200 in the second embodiment is the same as that in the first embodiment. However, some of the programs stored in the ROM are different, and a candidate route table 245 described later is further stored in the storage unit 240.
  • the candidate route table 245 stores information on a plurality of routes to be presented to the user.
  • the candidate route table 245 is created by the route search unit 232.
  • the route search unit 232 calculates a plurality of routes. For example, when calculating up to 10 routes, S1313 in the flowchart shown in FIG. 4 may be changed as follows. That is, the route search unit 232 makes an affirmative determination when the tenth route reaching the destination is included or there is no node that can be determined, and makes a negative determination otherwise.
  • FIG. 15 is a diagram illustrating an example of the candidate route table 245.
  • the candidate route table 245 stores information on different routes for each row, and each row includes a candidate route ID 901, a cumulative cost 902, a lane change difficulty flag 903, a lane change difficulty reason 904, a route length 905, A link number 906 and an in-path link ID column 907 are included.
  • the candidate route ID 901 is an identifier for identifying a plurality of candidate routes.
  • the accumulated cost 902 is the sum of the link costs of candidate routes.
  • a value obtained by adding a penalty cost is set for a candidate route that is determined to include a section in which lane change is difficult.
  • the lane change difficulty flag 903 indicates whether or not the candidate route includes a section in which lane change is difficult. For example, “1” is set when the candidate route is included, and “0” is set when the candidate route is not included.
  • the lane change difficulty reason 904 is the largest factor for which it is determined that the lane change is difficult in the candidate route whose lane change difficulty flag 903 is “1”. For example, if there is a branch waiting traffic and the distance that can be used to change the lane is short, the traffic waiting for branching is high.If the traffic density is high and the distance required for the lane change is long, the traffic density is high. If automatic driving is scheduled to be used and the distance required for changing the lane is long, “automatic driving” is stored.
  • the route length 905 is the sum of the link lengths from the starting point to the destination of the candidate route.
  • the number of links 906 in the route is the number of links constituting the candidate route.
  • the in-path link ID column 907 is an ID column for identifying the links constituting the candidate path.
  • the candidate route table 245 has been described with reference to FIG. 15 above, but the configuration of the candidate route table 245 is not limited to this.
  • a mesh in which a link in the route exists that is, information for specifying a management unit of map data may be included, and the direction and attribute information of each link may be added.
  • FIG. 16 is a diagram illustrating an example of presenting a candidate route to the user using the display unit 211 by the route search unit 232.
  • a plurality of candidate routes are displayed on the left side of the display unit 211 in the drawing, and for example, the travel distance and the required time are displayed for each candidate.
  • details of the candidate route are displayed on the right side of the figure.
  • the details of the displayed candidate route are, for example, information described in the candidate route table 245.
  • the necessary distance D1 includes a link longer than the travelable distance D2
  • the reason for the difficulty in changing the lane in the candidate route table 245 The content of 904, that is, the factor that the required distance D1 is longer than the travelable distance D2 is included.
  • the user determines any candidate route as a route to be traveled from now on information on the determined route is transmitted from the route search unit 232 to the route guidance unit 233.
  • the route search unit 232 uses the output unit 210 to determine a factor that the required distance D1 is longer than the travelable distance D2 when the calculated route includes a lane movement link whose required distance D1 is longer than the travelable distance D2. To the user. As described above, the route search unit 232 outputs the reason why the lane change is determined to be difficult for the route that is determined to be difficult to change, so that the user can be satisfied when selecting one of a plurality of routes. it can.
  • the second embodiment described above may be modified as follows.
  • the route search unit 232 may display on the display unit 211 whether or not each candidate route includes a section in which lane change is difficult.
  • (3) The route search unit 232 may display the display unit 211 only when the accumulated cost difference of the candidate routes satisfies a predetermined condition, for example, when the cost difference is less than 10% or the cost difference is less than 100. Good.
  • the audio output unit 212 may be used in combination. For example, for the candidate route whose details are displayed on the display unit 211, the reason why it is difficult to change the lane may be spoken. (5) Only the audio output unit 212 may be used without using the display unit 211.
  • a third embodiment of the route search server according to the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and differences will mainly be described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment is different from the first embodiment mainly in that the route search server performs route search.
  • FIG. 17 is a configuration diagram of a route search system 1A according to the third embodiment.
  • the route search server 400 includes a control unit 410, a communication unit 420, and a storage unit 430.
  • the route search server 400 is also referred to as a “computing device”.
  • the control unit 410 includes a CPU that is a central processing unit, a ROM that is a read-only storage device, and a RAM that is a readable / writable storage device, and the CPU expands and executes a program stored in the ROM on the RAM.
  • the functions described later are realized.
  • the communication unit 420 is a communication module that communicates with the navigation device 200 via the communication network 500.
  • the communication network 500 may be the Internet, a closed network, or a combination of the Internet and the closed network.
  • the navigation device 200 includes a communication module corresponding to the communication network 500, and the route search server 400 and the navigation device 200 communicate via the communication network 500.
  • the storage unit 430 is a nonvolatile storage device such as a hard disk drive.
  • the storage unit 430 stores map data 431, vehicle parameters 432, driver parameters 433, and a search table 434.
  • the map data 431, the vehicle parameter 432, the driver parameter 433, and the search table 434 correspond to the map data 241, the vehicle parameter 242, the driver parameter 243, and the search table 244 in the first embodiment.
  • the vehicle parameter DB 432 and the driver parameter 433 parameters are stored for each identifier of the navigation device 200 so as to correspond to the plurality of navigation devices 200.
  • the control unit 410 includes a route search unit 411, a route transmission unit 412, and a traffic information management unit 413 as its functions.
  • the operations of the route search unit 411, the route transmission unit 412, and the traffic information management unit 413 correspond to the route search unit 232, the route transmission unit 234, and the traffic information management unit 235 of the navigation device 200 in the first embodiment.
  • the route search unit 411 performs a search in response to a command from the navigation device 200.
  • the route transmission unit 412 transmits the search result of the route search unit 411 to the navigation device 200 via the communication network 500.
  • the navigation device 200 transmits search request information 601 to the route search server 400 via the communication network 500.
  • the search request information 601 includes the vehicle position, destination, search conditions, navigation device identifier, and the like.
  • the route search unit 411 performs route search using the map data 431 and the like. Since the route calculation process and the lane change difficulty determination process are the same as those in the first embodiment, description thereof will be omitted.
  • the route transmission unit 412 transmits the route information 602 to the navigation device 200.
  • the data format of the route information 602 may be the same as that of the candidate route table 245 shown in FIG.
  • the navigation device 200 performs guidance using the received route information 602 as a guidance route. Further, when the driving mode is the automatic driving mode, the navigation device 200 transmits the route to the vehicle control ECU 300 and uses it for vehicle control.
  • the route search server 400 which is also a calculation device, includes a communication unit 420 that is mounted on the vehicle 100 and transmits a departure point and a destination and communicates with the navigation device 200 that receives the route calculated by the route search unit 411. For this reason, the route search server 400 that has abundant computing resources and can obtain a wide range of the latest traffic information performs route search, so that a more appropriate route can be calculated. Moreover, the calculation load of the navigation apparatus 200 is reduced.
  • the route search server 400 includes the vehicle parameter DB 432 and the driver parameter DB 433. However, even if the route search server 400 does not include these, even if the navigation device 200 transmits the vehicle parameter 242 and the driver parameter 243 used for calculating the distance necessary for the lane change to the route search server 400 together with the departure point and the destination, Good.
  • the program is stored in a ROM (not shown), but the program may be stored in the storage unit 240.
  • the navigation device 200 may include an input / output interface (not shown), and when necessary, the program may be read from another device via a medium that can be used by the input / output interface and the navigation device 200.
  • the medium refers to, for example, a storage medium that can be attached to and detached from the input / output interface, or a communication medium, that is, a wired, wireless, or optical network, or a carrier wave or a digital signal that propagates through the network.
  • part or all of the functions realized by the program may be realized by a hardware circuit or FPGA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Abstract

計算装置は、車両が第1走行レーンから第2走行レーンへのレーン変更に必要な距離である必要距離を、車両がレーン変更を開始できるまで待機する間に車両が走行する第1距離と、車両の速度を調整する間に車両が走行する第2距離と、車両がレーン変更を実行中に走行する第3距離との合算により算出する制御部を備える。

Description

計算装置、演算方法
 本発明は、計算装置、および演算方法に関する。
 自車両の現在位置を推定し、道路の地図や目的地に至る経路などを画面に表示してドライバに案内を行うカーナビゲーションシステム(以降、カーナビ)が知られている。カーナビにおいて案内用経路を設定する際は、道路をリンクとして、交差点をノードとして扱ったデジタル地図データ(以降、地図データ)を使い、出発地から目的地に至るまでの旅行時間、距離、および燃料消費量などのリンクコストの総和を最小化する経路計算がなされるのが一般的である。このような機能は経路探索機能と呼ばれ、その実現にはダイクストラ法やそれに準ずるアルゴリズムが広く利用されている。カーナビが探索した経路の情報は、画面表示や音声を使ったドライバの誘導だけでなく、自動運転車両が目的地まで自動走行するためにも使われることが想定される。
 一方で従来のカーナビは、レーン変更するのが困難な区間を含む経路を探索することがある。たとえば、複数のレーンで構成される本線道路に左側から合流した後、直近交差点までの短い距離を走行する間に複数回右側にレーン移動して、交差点で右折する、といった区間を含む経路である。このような経路は、ドライバを案内する上でも、自動運転車両を制御する上でも、安全性に支障をきたす恐れがあり好ましくない。特許文献1には、自車の進行方向に通行可能なレーン数と前記自車が位置するレーンとを検出するレーン検出手段と、前記自車の進行方向に通行可能なレーンの渋滞度を検出する渋滞度検出手段と、検出された前記レーン数、前記自車が位置するレーンおよび前記渋滞度に基づいて前方交差点での右左折困難度を判定する判定手段と、判定された前記右左折困難度に応じた走行経路を案内する案内手段と、を備えるナビゲーション装置が開示されている。
日本国特開2007-017396号公報
 特許文献1に記載されている発明では、レーン変更に必要な距離の算出に改善の余地がある。
 本発明の第1の態様による計算装置は、車両が第1走行レーンから第2走行レーンへのレーン変更に必要な距離である必要距離を、前記車両がレーン変更を開始できるまで待機する間に前記車両が走行する第1距離と、前記車両の速度を調整する間に前記車両が走行する第2距離と、前記車両がレーン変更を実行中に走行する第3距離との合算により算出する制御部を備える。
 本発明の第2の態様による演算方法は、車両が第1走行レーンから第2走行レーンへのレーン変更に必要な距離である必要距離をコンピュータが算出する演算方法において、前記車両がレーン変更を開始できるまで待機する間に前記車両が走行する第1距離と、前記車両の速度を調整する間に前記車両が走行する第2距離と、前記車両がレーン変更を実行中に走行する第3距離との合算により前記必要距離を算出する。
 本発明によれば、レーン変更に必要な距離を適切に算出できる。
第1の実施の形態における経路探索システム1の全体構成図 探索テーブル244の一例を示す図 経路探索部232の動作を示すフローチャート 図3におけるS1204の詳細を示すフローチャート 図4におけるS1306の詳細を示すフローチャート レーン変更に必要な距離算出の概要を示す図 第1段階における開始待ち距離L1の算出方法の一例を示す図 第2段階における速度調整距離L2の算出方法の一例を示す図 第3段階におけるレーン変更距離L3の算出方法の一例を示す図 図5におけるS1407の詳細を示すフローチャート レーン変更に使える距離D2の算出概要を示す図 図5におけるS1408の詳細を示すフローチャート 変形例1における変更先レーンの交通密度が極端に大きい場合のレーン変更の動作を示す図 変形例2における変更元レーンの交通密度が極端に大きい場合のレーン変更の動作を示す図 候補経路テーブル245の一例を示す図 経路探索部232による表示部211を用いたユーザへの候補経路の提示の一例を示す図 第3の実施の形態における経路探索システム1Aの構成図
―第1の実施の形態―
 以下、図1~図12を参照して、本発明に係るナビゲーション装置の第1の実施の形態を説明する。ナビゲーション装置は、出発地から目的地までの経路を探索し、ドライバへの案内や車両の制御を行う。
 図1は、第1の実施の形態における経路探索システム1の全体構成図である。経路探索システム1は、車両100に搭載されるナビゲーション装置200、車両制御ECU300、およびスイッチ350とを備える。なお本実施の形態では、ナビゲーション装置200を「計算装置」とも呼ぶ。以下では車両100の運転席に座っている人を「ユーザ」と呼ぶ。車両100は自動運転モードと手動運転モードとの2つの運転モードを有し、自動運転モードでは車両制御ECU300が車両100を制御し、手動運転モードではユーザが車両100を制御する。
 ナビゲーション装置200は、後述するように困難なレーン変更を強いられる区間が含まれにくい経路を算出してユーザへ提示する。またナビゲーション装置200は、自動運転モードではさらに車両制御ECU300へ算出した経路を出力する。車両制御ECU300は、自動運転モードにおいて動作し、ナビゲーション装置200から受信した経路に沿って車両100を走行させる。スイッチ350は、自動運転と手動運転を切り替えるスイッチでありユーザにより操作される。スイッチ350は、ユーザの操作を示す操作信号を車両制御ECU300に出力する。車載制御ECU300は、スイッチ350から操作信号を受信すると、ナビゲーション装置200にその操作信号を出力する。
 ナビゲーション装置200は、出力部210、操作部220、制御部230、記憶部240、センサ250、外部通信部260、および車両通信部270を備える。出力部210は、表示部211と音声出力部212とを備える。表示部211は、視覚情報をユーザに提供する装置、たとえばディスプレイである。音声出力部212は、音声情報をユーザに提供する装置、たとえばスピーカである。出力部210は、制御部230の動作指令により動作する。操作部220は、ユーザからの操作を受け付けて制御部230に伝達する装置、たとえば複数のボタンである。ただし操作部220は、表示部211と一体にタッチパネルとして構成されてもよい。ユーザはたとえば、操作部220を用いて出発地や目的地の設定を行う。
 制御部230は、中央演算装置であるCPU、読み出し専用の記憶装置であるROM、および読み書き可能な記憶装置であるRAMを備え、CPUがROMに格納されるプログラムをRAMに展開して実行することで次の機能を実現する。制御部230はその機能として、自車位置推定部231と、経路探索部232と、経路誘導部233と、経路送信部234と、交通情報管理部235とを有する。制御部230が有する機能については後述する。
 記憶部240は、少なくとも読み出しが可能な記憶装置であるが、格納された情報を更新可能なように不揮発性の書き換え可能なメモリ、たとえばフラッシュメモリであってもよい。記憶部240には、地図データ241と、車両用パラメータ242と、ドライバ用パラメータ243と、探索テーブル244とが格納される。
 地図データ241には、エリアごとに分割された地図のエリアの範囲、たとえば緯度や経度の範囲を示すメッシュ情報、それぞれのメッシュに含まれるリンクとノードの識別子、およびリンクとノードの詳細情報が含まれる。リンクの詳細情報には、リンクを通行するコストであるリンクコストを算出するための次の情報が含まれる。すなわち、リンクの通行に要する平均的な時間である平均旅行時間、渋滞や道路工事の情報を含む統計交通情報、通行不可を示す通行規制、高速道路や国道などの種別を示す道路種別、自動運転の可否などのリンク属性情報などを含んでいる。また、リンクに含まれる道路を構成するレーン数やレーンの接続関係、レーン境界線の種別情報など、レーン単位の高精度な情報も含まれる。
 車両用パラメータ242には、後述する速度調整時の進行方向加速度、およびレーン変更時の横方向加速度が含まれる。車両用パラメータ242の値は車両100の構成によりあらかじめ定められる値であり、たとえば同一車種であれば同一の値が入力され、本実施の形態ではその値は更新されない。ドライバ用パラメータ243には、前述の速度調整時の進行方向加速度、およびレーン変更時の横方向加速度に加えて、速度調整時のアクセルペダルとブレーキペダルの踏み込み量、およびレーン変更時のハンドル操作角が含まれる。ドライバ用パラメータ243の値は、車両100を運転するユーザの運転操作により決定される。すなわちドライバ用パラメータ243の値はナビゲーション装置200ごとに異なる。
 ドライバ用パラメータ243の値は、ドライバがレーン変更を行った際のセンサ情報を基に適宜更新してもよい。車両用パラメータ242やドライバ用パラメータ243の具体例として、速度調整時の進行方向加速度やアクセル/ブレーキ踏み込み量、レーン変更時の横方向加速度やハンドル操作角などがある。これらのパラメータは、交通速度や交通密度ごとに値を変えてもよい。交通速度および交通密度は走行レーンごとに随時変化する値である。
 センサ250は、GPS(Global Positioning System)ユニットなどの測位センサや、ジャイロセンサ、加速度センサなどを含む。外部通信部260は、セルラー通信、IEEE802.11に対応する通信、車車間通信、および路車間通信の少なくとも1つの通信が可能な通信モジュールであり、車両100の外部との通信を行う。
 車両通信部270は、Controller Area Network、およびIEEE802.3の少なくとも一方の通信規格に対応する通信モジュールであり、車両100の内部との通信を行う。車両通信部270は、図1に示す車両制御ECU300およびスイッチ350だけでなく、車両100に備えられる不図示のセンサ、たとえば速度計などとも通信を行う。
 自車位置推定部231は、センサ250の情報と、車両通信部270から取得した車速情報を用いて、車両100の位置を推定する。たとえば自車位置推定部231は、GPSユニットから1秒や0.1秒ごとに位置情報を取得し、その位置情報に車両100の速度と進行方向の積分値を加えることで、最新の位置情報を算出する。経路探索部232は、出発地から目的地までの経路を探索する。経路探索部232の詳細な動作は後述する。経路誘導部233は、経路探索部232が算出した経路の情報を出力部210に出力する。また経路誘導部233は、運転モードが手動運転モードの場合は、経路の情報と自車位置推定部231が算出する車両100の位置とを用いて、ユーザに経路の誘導を行う。
 経路送信部234は、運転モードが自動運転モードの場合にのみ動作し、経路探索部232が算出した経路の情報を車両制御ECU300に出力する。交通情報管理部235は、外部通信部260を介して車両100の外部から目的地や最新の交通情報を受信する。交通情報管理部235は、受信した交通情報をRAMに保存する。ただし交通情報管理部235は、受信した交通情報をそのまま保存するのではなく、経路探索部232が利用しやすいように加工した上で保存してもよい。交通情報管理部235が受信する交通情報には、車両100が走行する経路のレーンごとの状況、たとえばレーンごとに渋滞で停滞している車両の位置情報も含まれる。
(探索テーブル244)
 図2は探索テーブル244の一例を示す図である。探索テーブル244は、記憶部240に格納され、経路誘導部233により作成される。探索テーブル244は、出発地座標2441と、目的地座標2442と、リンク属性情報2443と、ノード数2444と、1以上のノード情報2445のフィールドを有する。
 出発地座標2441および目的地座標2442のフィールドには、ユーザが操作部220から入力した出発地と目的地の座標が格納される。ただしユーザが目的地を設定した際の車両100の位置を出発地座標2441のフィールドに格納してもよい。リンク属性情報2443のフィールドには、探索対象に設定されたエリアに含まれる全てのリンクの属性情報が格納される。たとえば探索対象に設定されたエリアにリンクが100個ある場合は、リンク属性情報2443のフィールドには100個のリンクのそれぞれについての属性情報が格納される。
 ノード数2444のフィールドには、探索対象に設定されたエリアに含まれるノードの総数が格納される。ノード情報2445のフィールドには、それぞれのノードの情報が格納される。探索テーブル244に含まれるノード情報2445の数は、ノード数2444のフィールドに格納される値と同一である。それぞれのノード情報2445のフィールドには、あるノード(以下、「対象ノード」と呼ぶ)についての累計コスト2446と、確定未完2446Aと、ノードID2447と、直前ノードID2448と、接続リンク数2449と、1以上の接続リンク情報244Aとが含まれる。
 累計コスト2446のフィールドには、経路探索の過程で算出される、出発地から対象ノードまでの累計コストが格納される。ただし累計コストの算出が行われるまでは、計算が行われていないことを示す初期値、たとえば空白やハイフンなどの記号、または非常に大きな値である0xffffなどが格納される。確定未完2446Aのフィールドには、対象ノードの累計コストが確定しているか否かが格納される。初期状態では全てのノード情報の確定未完2446Aには確定していないことを示す初期値、たとえば「未」が格納される。ノードID2447のフィールドには、対象ノードの識別子が格納される。直前ノードID2448のフィールドには、探索した経路における対象ノードの直前のノードのノードIDが格納される。接続リンク数2449のフィールドには、対象ノードに接続するリンクの数が格納される。
 接続リンク情報244Aは、接続リンク数2449のフィールドに格納された数と同数存在する。それぞれの接続リンク情報244Aには、対象ノードに接続されるいずれかのリンクの情報が格納される。接続リンク情報244Aには、リンクID244Bと、隣接ノードID244Cとが含まれる。リンクID244Bのフィールドには、対象ノードに接続するいずれかのリンクの識別子が格納される。隣接ノードID244Cのフィールドには、リンクID244Bにより識別されるリンクが接続するノードであって、対象ノードではないノードのノードIDが格納される。以上が探索テーブル244の説明である。
(ナビゲーション装置200の動作概要)
 ナビゲーション装置200が経路を探索する一連の流れの概要を説明する。自車位置推定部231は短い時間周期、たとえば1秒ごとに、センサ250の情報や車両通信部270から取得した車速情報などを用いて車両100の位置を推定する。ユーザが操作部220から目的地設定操作を行うと、経路探索部232は探索テーブル244を更新しながら出発地から目的地までの経路探索を行う。経路探索部232は経路探索にたとえばダイクストラ法を利用できる。経路探索部232は、地図データ241、車両用パラメータ242、およびドライバ用パラメータ243を参照して経路探索を行う。また経路探索部232は、交通情報管理部235が外部から受信した交通情報をさらに利用してもよい。
(経路探索部232の動作)
 図3は、経路探索部232の動作を示すフローチャートである。経路探索部232は、ユーザが出発地および目的地を入力すると以下に説明する動作を開始する。ただしユーザは出発地を入力せずユーザが目的地を設定した際の車両100の位置を出発地としてもよい。
 まず経路探索部232は、設定された出発地および目的地に最も近いリンクを、出発地近傍リンクおよび目的地近傍リンクとして抽出する(S1201)。続いて経路探索部232は、経路探索を行うエリアを設定する(S1202)。探索エリアは、たとえば出発地および目的地の両方を包含する矩形領域として設定される。次に経路探索部232は、探索エリアに含まれる地図データ241を参照して探索テーブル244を作成する(S1203)。S1203における探索テーブル244は次のとおりである。すなわち出発地座標2441および目的地座標2442のフィールドは、ユーザの入力がそのまま反映される。リンク属性情報2443およびノード数2444のフィールドには、S1202において設定したエリアに含まれる全てのリンクの属性情報および全てのノードの数が格納される。それぞれのノード情報2445は、累計コスト2446、確定未完2446A、および直前ノードID2448のフィールドに初期値が入力され、他のフィールドに地図データ241から得られた情報が格納される。
 続いて経路探索部232は、ダイクストラ法などのアルゴリズムを用いて、出発地近傍リンクから目的地近傍リンクに至る累計コストが最小となる経路を計算する(S1204)。経路計算の詳細については後述する。最後に経路探索部232は、計算結果である累計コストが最小となる経路を経路誘導部233や経路送信部234に出力して図3に示す処理を終了する。
(S1204の詳細)
 図4は、経路探索部232の経路計算、すなわち図3におけるS1204の詳細を示すフローチャートである。図4では、ダイクストラ法を用いる経路計算を示している。ダイクストラ法では、探索エリアに含まれるそれぞれのノードについて出発地からの累計コストを1つずつ確定させる。累計コストが確定されるノードは出発地近傍ノードが最初であり、累計コストが確定したノードに接続されるノードの累計コストを順次確定させ、目的地近傍ノードの累計コストが確定すると計算終了となる。以下では、累計コストが確定していないノード、換言すると確定未完2446Aのフィールドの値が初期値の「未」のままであるノードを「未確定ノード」と呼ぶ。また累計コストが確定したノード、換言すると確定未完2446Aのフィールドの値が確定を示す情報、たとえば「完」であるノードを「確定ノード」と呼ぶ。前述のように図4に示す処理を開始する時点では、いずれのノードも確定未完2446Aが初期値なので全てのノードが未確定ノードである。
 経路探索部232はS1301において、未確定ノードのうち、累計コストが最小であるノードを特定し、そのノードを確定ノードとする。換言すると経路探索部232は、累計コストが最小である未確定ノードの確定未完2446Aのフィールドの値を、コストが確定したことを示す情報、たとえば「完」に書き換える。ただしS1301を初回に実行する場合は、出発地近傍ノードのノード情報2445に含まれる累計コスト2446にゼロを格納し、確定未完2446Aに「完」を格納する。
 以下では、S1301において確定ノードとしたノード(以下、「最新の確定ノード」と呼ぶ)に隣接するノードのそれぞれを処理対象ノードとし、そのすべてに対してS1303~S1311の処理を実行する(S1302)。S1303では経路探索部232は、処理対象ノードが確定済みであるか否かを判断する。経路探索部232は、確定済み、すなわち確定ノードであると判断する場合はS1302に戻り、未確定ノードであると判断する場合はS1304に進む。S1304では経路探索部232は、最新の確定ノードと処理対象ノードとの間のリンクの属性に通行規制が含まれるか否かを判断する。経路探索部232はS1304を肯定判断する場合はS1302に戻り、否定判断する場合はS1305に進む。
 S1305では経路探索部232は、最新の確定ノードと処理対象ノードとを接続するリンクのリンクコストを算出し、算出したリンクコストと最新の確定ノードの累計コスト2446との和をRAMに一時的に保存する。リンクコストの算出には、そのリンクの平均旅行時間やリンク属性情報、および外部から受信したそのリンクの交通情報などが考慮される。続くS1306では経路探索部232は、後述するようにレーン変更の難易判定を行う。続くS1307では経路探索部232は、S1306における難易判定の結果が「レーン変更不可」であったか否かを判断する。経路探索部232は、難易判定の結果が「レーン変更不可」であったと判断する場合はS1302に戻り、難易判定の結果が「レーン変更不可」ではなかったと判断する場合はS1308に進む。
 S1308では経路探索部232は、S1306における難易判定の結果が「レーン変更困難」であったか否かを判断する。経路探索部232は、難易判定の結果が「レーン変更困難」であったと判断する場合は、そのリンクが経路に含まれにくくなるように、S1305においてRAMに記録した累計コストに所定のペナルティコストを加算して(S1309)、S1310に進む。経路探索部232は、難易判定の結果が「レーン変更困難」ではないと判断するとS1310に進む。
 S1310では経路探索部232は、S1305においてRAMに記録した累計コストが、処理対象ノードの累計コスト2446の値よりも小さいか否かを判断する。経路探索部232はRAMに記録した累計コストの方が小さいと判断する場合は、探索テーブル244の累計コスト2446の値をRAMに記録した値に更新し(S1331)、S1312に進む。経路探索部232は、RAMに記録した累計コストが累計コスト2446の値以上であると判断する場合は、累計コスト2446の値を更新せずにS1302に戻る。
 S1312では経路探索部232は、最新の確定ノードに隣接する全てのノードを処理対象としてS1303~S1311を全て実行したと判断する場合はS1313に進み、それ以外の場合は処理対象ノードを次の隣接するノードに変更してS1302に戻る。S1313では経路探索部232は、目的地近傍リンクに到達しているか、すなわち目的地近傍リンクの確定未完2446Aの値が確定を示す情報、たとえば「完」であるか、または確定できるノードがないかを判定する(S1312)。経路探索部232は、どちらかに該当する場合は図4に示す処理を終了してS1205に進み、どちらにも当てはまらない場合はS1301に戻り経路計算を続行する。
(S1306の詳細)
 図5は、レーン変更の難易判定、すなわち図4におけるS1306の詳細を示すフローチャートである。レーン変更の難易判定では経路探索部232は、地図データ241を参照して、レーン変更が必要か、レーン変更が可能か、およびレーン変更が困難かを判定する。以下では、最新の確定ノードと処理対象ノードとを接続するリンクを「進入リンク」と呼ぶ。
 経路探索部232はまず、進入リンクに本線道路への合流地点があるかを判定する(S1401)。処理対象ノードから最新の確定ノードの方向にノードを辿り、一定距離、たとえば1km以内に本線道路への合流地点があるかを判定する。たとえば、高速道路の場合はランプまたは渡り線が本線道路に接続している地点、一般道の場合は信号機のない交差点で幹線道路に右左折接続している地点を合流と判定する。経路探索部232は、合流地点がないと場合は(S1401:NO)、S1413に進む。経路探索部232は合流があると判断する場合は、進入リンクが複数のレーンで構成されているか否かを判断(S1402)する。経路探索部232は地図データ241に含まれる、進入リンクのレーン数を参照して判定する。経路探索部232は進入リンクが複数のレーンで構成されていないと判断する場合はS1413に進む。
 経路探索部232は進入リンクが複数のレーンで構成されていると判断する場合は、進入リンクから処理対象ノードに向かう道路が分岐を含むか否かを判定する(S1403)。経路探索部232はたとえば、処理対象ノードに接続される進入リンクおよびその他のリンクのなす角度に基づいて分岐を含むか道なりであるかを判定する。経路探索部232は分岐を含まないと判断する場合は、「レーン変更不要」と判定して(S1413)、図5に示す処理を終了する。経路探索部232は分岐と判定する場合は、合流から分岐までに必要となるレーン変更回数を算出する(S1404)。経路探索部232はレーン変更回数を、地図データ241に含まれるレーンごとの接続関係情報を用いて、合流時に進入可能なレーンと分岐時に退出可能なレーンの対応関係から算出する。なお、当該区間に対応するレーン変更回数情報を予め地図データ241に格納しておき、経路探索部232がこれを読み出してもよい。
 経路探索部232はレーン変更回数をゼロと判断する場合は(S1405:NO)、S1413に進む。経路探索部232は、レーン変更回数が1回以上と判断する場合は(S1405:YES)、レーン変更が通行規制等により禁止されているか否かを判定する(S1406)。経路探索部232は、地図データ241に含まれるレーン境界線の種別情報を参照して判定する。経路探索部232は、レーン変更が禁止されていると判断する場合はS1410に進む。
 経路探索部232はレーン変更が禁止されていないと判断する場合は、レーン変更に必要な距離である必要距離D1(S1407)およびレーン変更に使える距離である走行可能距離D2(S1408)を算出する。S1407およびS1408の処理については後述する。経路探索部232は、必要距離D1と走行可能距離D2を比較して必要距離D1が走行可能距離D2よりも大きいと判断する場合はS1411に進み、これ以外の場合はS1412に進む(S1409)。
 経路探索部232は、S1410では「レーン変更不可」と判断して図5に示す処理を終了する。経路探索部232は、S1411では「レーン変更困難」と判断して図5に示す処理を終了する。経路探索部232は、S1412では「レーン変更容易」と判断して図5に示す処理を終了する。経路探索部232は、S1413では「レーン変更不要」と判断して図5に示す処理を終了する。すなわち図5に示す処理により処理対象ノードを、レーン変更不可、レーン変更困難、レーン変更容易、レーン変更不要、のいずれかに分類する。
(レーン変更に必要な距離D1の算出概要)
 図6は、レーン変更に必要な距離D1の算出概要を示す図である。本実施の形態では、レーン変更の動作を図6に示すように3段階に分けて考える。第1段階で走行する距離がL1、第2段階で走行する距離がL2、第3段階で走行する距離がL3である。図6に示す例では、自車両100が第1走行レーンTL1を走行し、隣接する第2走行レーンTL2を他車両701が自車両100よりも少し遅い速度で走行している。なお以下では、レーン変更における変更前の走行レーンを「変更元レーン」とも呼び、レーン変更後の走行レーンを「変更先レーン」とも呼ぶ。なお以下ではナビゲーション装置200を搭載する車両100を他の車両と区別する意味で「自車両」100とも呼ぶ。
 自車両100が第1走行レーンTL1から第2走行レーンTL2へのレーン変更を想定する場合に、他車両701の存在により即座にはレーン変更ができない場合を考える。自車両100はまず第1段階として、変更先の第2走行レーンTL2に十分なスペースが空くまで変更元レーンで待機する。第1段階において走行する距離が「開始待ち距離L1」である。開始待ち距離L1は、特に変更先レーンの交通密度が大きい場合に長くなる。
 続いて第2段階として、自車両100の速度を変更先レーンである第2走行レーンTL2の交通速度に合わせる。自車両100よりも第2走行レーンTL2の交通速度の方が大きい場合は加速し、第1走行レーンTL1の交通速度の方が大きい場合は減速する。この第2段階において加速や減速により変更先レーンの速度に調整する間に走行する距離が「速度調整距離L2」である。L2は、変更元レーンおよび変更先レーンの交通速度や、運転主体ごとに異なる加速時や減速時の加速度の大きさにも影響を受ける。
 最後に第3段階として、実際にステアリングホイールを操作してレーン変更を実行する。第3段階においてレーン変更中に走行する距離が「レーン変更距離L3」である。L3は、主に運転主体ごとに異なるハンドルの切り方(自動運転システムの場合はステアリング制御パラメータなど)により影響を受けると考えられる。
 レーン変更に必要な距離は、第1段階~第3段階における開始待ち距離L1、速度調整距離L2、レーン変更距離L3を必要なレーン変更回数分足し合わせることにより算出する。以下では第1段階、第2段階、および第3段階のそれぞれを詳述する。
(レーン変更の第1段階)
 図7は、第1段階における開始待ち距離L1の算出方法の一例を示す図である。変更先の第2走行レーンTL2を走行する、自車両100に最も近い車両が他車両701である。自車両100は、他車両701の中心位置から前後に距離dのスペースが空くまで一定の速度で走行する。距離dのスペースを空けるために他車両701に対して差をつける必要がある距離Mは、レーン変更の試みを開始する際、換言すると第1段階の開始時における自車両100と他車両701の位置関係に依存する。
 自車両100の第1段階における交通速度V11、第2走行レーンTL2の交通速度V2、および第2走行レーンTL2の交通密度K2を考慮して、開始待ち距離L1の平均的な値を推定する。ここで、交通速度V11および交通速度V2のそれぞれは地図データ241より取得した第1走行レーンTL1および第2走行レーンTL2のそれぞれの平均速度より算出した値を用いる。ただし自車両100は他車両701よりも速い、すなわちV11>V2の関係にあるとする。また交通密度とは、単位距離当たりに存在する車両の数である。自車両100がレーン変更を試みる際、自車両と他車両が図7(a)の左に示すような位置関係で走行していた場合、この後距離Mだけ差がつけば距離dのスペースができる。なお距離dの値は、経路探索部232が保持する固定値、たとえば車両長の平均値を使ってもよいし、変更先レーンの交通速度に応じて車両の停止距離を考慮して設定してもよい。距離Mの平均値は以下の式1で表せる。
   M=2×K2×d ・・・(式1)
 図7(b)を参照して式1を説明する。仮に自車両100の横およびその前後の距離dにわたって他車両701が存在しなければ、距離dのスペースを空けるために他車両701に対して差をつける必要がある距離Mはゼロである。これとは逆に、自車両100が他車両701よりも速く他車両701が自車両100よりも距離dよりもわずかに短い距離しか先行していない場合は、距離Mは2dである。すなわち、図7(b)の左に示す三角形のように、自車両100と他車両701の相対位置により距離Mは、自車両100と他車両701の相対位置により定まる。そして距離Mはいわば、三角形の面積を他車両701の存在確率で平均化したものである。1つの三角形の面積が2dであり他車両701の存在確率、すなわち交通密度がK2なので、距離Mは上記の式1により表される。
 ここで交通密度K2は、経路探索部232が交通情報管理部235から取得した交通状況に含まれる値を使う。また、交通情報管理部235から取得する代わりに、地図データ241に格納された統計交通情報に含まれるとしてもよい。もし、交通情報管理部235から取得した交通状況または地図データ241に格納された統計交通情報に、交通密度ではなくある地点における単位時間当たりの通過車両台数である交通量の情報が含まれていた場合は、次のように間接的に交通密度を求めることもできる。すなわち、一般に交通量Q=交通密度K×交通速度Vが成り立つことを用いて、交通密度Kを算出する。なお、取得した交通状況または統計交通情報がレーン単位の情報となっていればそのまま用いることができ、道路単位の情報となっていれば道路のレーン数を用いてレーンごとの交通密度を求める。
 自車両100と他車両701が距離Mだけ差がつくまでに要する時間T1は以下の式2で表せる。
   T1=M /|V2-V11| ・・・(式2)
 ここで交通速度V2は、経路探索部232が交通情報管理部235から取得した交通状況に含まれる値を使う。また交通速度V2は、地図データ241に格納された統計交通情報に含まれるとしてもよい。なお、取得した交通状況または統計交通情報がレーン単位の情報となっていればそのまま用いることができ、道路単位の情報となっていれば道路のレーン数を用いてレーンごとの交通速度を求める。さらに、走行車線と追い越し車線で速度が異なることを考慮して、道路単位の情報を解釈する際にレーンごとに交通速度に差を設けてもよい。
 そのため、時間Tの間にわたって、自車両100が交通速度V11で速度を変えず走行すると考えると、L1は以下の式3で表せる。
   L1=V11×T ・・・(式3)
 ここで、自車両100がレーン変更を行う旨を後続車両に報知するため、事前に方向指示器を点灯する時間Cを加味して式4のようにしてもよい。時間Cは、たとえば日本では法令により進路変更3秒前に合図を示さなければならない点を考慮し、「3秒」とする。
   L1=V11×(C+T) ・・・(式4)
 以上のように、開始待ち距離L1を変更元レーンと変更先レーンの交通速度、および変更先レーンの交通密度を考慮して算出することができる。
(レーン変更の第2段階)
 図8は、第2段階における速度調整距離L2の算出方法の一例を示す図である。第2段階では、自車両100の交通速度が変更先レーンの交通速度V2に一致するまで、急加速とならないような一定の進行方向加速度bで速度を調整する。なお第2段階では自車両100の初期速度をV210とおく。ここで初期速度V210や変更先レーンの交通速度V2は、レーン変更の第1段階と同様に、交通情報管理部235から取得した交通状況または地図データ241に格納された統計交通情報に含まれるものを使う。ここで進行方向加速度bは、車両の運転主体によって異なるパラメータである。たとえば、手動運転モード、すなわち運転主体がドライバである場合は個人差があり、自動運転モード、すなわち運転主体が自動運転システムである場合は車種やグレードなどによって差が生じると考えられる。すなわち進行方向加速度bは、自動運転モードでは車両用パラメータ242から読み込まれ、手動運転モードではドライバ用パラメータ243から読み込まれる。
 速度の調整に要する時間T2は、以下の式5で表せる。
   T2=|V2-V210|/b ・・・(式5)
 速度調整距離L2は、T2を用いて以下の式6で表せる。
   L2=V210×T2+(1/2)×b×T2 ・・・(式6)
 以上のように、速度調整距離L2を変更元レーンおよび変更先レーンの交通速度や、運転主体ごとに異なる進行方向加速度を考慮して算出することができる。
(レーン変更の第3段階)
 図9は、第3段階におけるレーン変更距離L3の算出方法の一例を示す図である。自車両100は、第1走行レーンTL1から第2走行レーンTL2まで、仮想的な同一半径の2つの円の円周上を走行する。また自車両100は、進行方向が急激に変化することを避けるために、円周上の速度を一定、すなわち半径方向の加速度aを一定とする。ここで半径方向の加速度aは、車両の運転主体によって異なるパラメータである。たとえば、運転主体がドライバである場合は個人差が生じ、運転主体が自動運転システムである場合は車種やグレードなどによって差が生じる。すなわち半径方向の加速度aは、自動運転モードでは車両用パラメータ242から読み込まれ、手動運転モードではドライバ用パラメータ243から読み込まれる。なお半径方向の加速度aは、「横方向加速度a」とも呼ぶことができる。
 自車両100が第1走行レーンTL1と第2走行レーンTL2の境界線(以下、レーン境界線)を跨ぐまでに走行する進行方向の距離Nは、以下の式7で表せる。
   N=R×sinθ ・・・(式7)
 ここで、横方向加速度がaを超えない最小曲率半径Rは、自車両100の車速V31を用いて以下の式8で表せる。ここで車速V31は、レーン変更の第1段階と同様に、交通情報管理部235から取得した交通状況または地図データ241に格納された統計交通情報に含まれるものを使う。
   R=V31/a ・・・(式8)
 また、自車両100がレーン境界線を跨ぐまでに走行する円弧に対応する角度θは、レーン幅員wを用いて以下の式9で表せる。ここでレーン幅員wは、地図データ241に格納される値を使ってもよいし、たとえば日本の道路構造令を参考にして、都市部の高速道路であれば第2種・第1級として定義される道路のレーン幅員3.5mを使ってもよい。
   θ=cos-1(1-(w/2×R)) ・・・(式9)
 そしてレーン変更距離L3は、Nを用いて以下の式10で表せる。
   L3=2×N ・・・(式10)
 以上のように、レーン変更距離L3を運転主体ごとに異なる横方向加速度を考慮して算出することができる。
 図7~図9を用いて、開始待ち距離L1、速度調整距離L2、およびレーン変更距離L3の具体的な算出方法を示したが、これらの算出方法は以上で述べた方法に限定されない。たとえば、開始待ち距離L1は、自車両100がレーン変更を行うため方向指示器を点灯していれば、変更先レーンを走行する他車両が自車両に気づいて速度を調整してくれると考えて、交通密度に依存すると考える方向指示器の点灯時間に相当する分を一定速度で進む距離としてもよい。また、レーン変更距離L3は、自車両100が走行する軌道を円弧ではなくクロソイド曲線であると仮定して走行距離を算出してもよい。
(S1407の詳細)
 図10は、レーン変更に必要な距離の算出処理、すなわち図5におけるS1407の詳細を示すフローチャートである。図10に示すフローチャートでは、図7~図9を参照して説明した、開始待ち距離L1、速度調整距離L2、およびレーン変更距離L3をレーン変更回数分積算してレーン変更に必要な距離D1を算出する。以下、詳細を説明する。
 まず経路探索部232は、交通情報管理部235から進入リンクに含まれる各レーンの交通状況を取得する(S1501)。ただし経路探索部232は、交通情報管理部235から交通状況を取得する代わりに、地図データ241に格納された統計交通情報を用いてもよい。なお取得した交通状況がレーン単位の情報であればそのまま用いることができ、道路単位の情報であれば道路のレーン数を用いてレーンごとの交通状況として考慮できるようにする。さらに経路探索部232は、走行車線と追い越し車線で速度が異なることを考慮して、道路単位の情報を解釈する際にレーンごとに交通速度に差を設けてもよい。
 次に経路探索部232は、経路探索を実行する際の探索条件が自動運転優先である否か(S1502)を判断する。経路探索部232はたとえば自車両100の運転モードが自動運転モードの場合は自動運転優先と判断し、手動運転モードの場合は手動運転優先と判断する。経路探索部232は自動運転優先であると判断するとS1503に進み、自動運転優先ではないと判断するとS1505に進む。
 S1503では経路探索部232は、合流から分岐までの本線道路が自動運転可能であるか否か(S1503)を判断する。S1503の判定は、たとえば、地図データ241に格納されるリンク属性に、自動運転が可能であるか否かを示すフラグが設定されている場合は、その属性情報を用いる。また経路探索部232は、リンクの道路種別が高速道路や国道等の幹線道路であれば自動運転可能であると判定してもよい。経路探索部232は自動運転可能と判断する場合はS1504に進み、自動運転不可と判断する場合はS1505に進む。
 S1504では経路探索部232は、レーン変更に必要な距離D1を算出するためのパラメータとして車両用パラメータ242を取得する。S1505では経路探索部232は、レーン変更に必要な距離D1を算出するためのパラメータとしてドライバ用パラメータ243を取得する。続いて経路探索部232は、必要なレーン変更回数分、レーン変更に必要な距離を繰り返し算出する(S1506)。具体的には、各レーンの交通状況および車両用パラメータまたはドライバ用パラメータを用いて、開始待ち距離L1(S1507)、速度調整距離L2(S1508)、およびレーン変更距離L3(S1509)を算出する。経路探索部232は、必要なレーン変更の回数分だけS1507~S1509の処理を繰り返すとS1511に進む(S1510)。最後に経路探索部232は、S1507~S1509において算出した全てのL1~L3の和を演算し、必要距離D1とする(S1511)。そして経路探索部232は図10に示す処理を終了する。
(走行可能距離D2の算出概要)
 図11は、走行可能距離D2の算出概要を示す図である。経路探索部232は、以下に説明するように単に距離を算出するだけでなく渋滞などにより使用できない距離を除外する補正も行う。図11に示す例では、自車両100が左端の第0走行レーンTL0から右端の第4走行レーンTL4までレーン変更を行う。ただし第4走行レーンTL4は図示上部のみに存在しており、第3走行レーンTL3の分岐部Bから分岐している。また第4走行レーンTL4は途中からの侵入が禁止されており、第4走行レーンTL4を走行するためには分岐部Bから進入する必要がある。
 図11に示す例では第4走行レーンTL4において渋滞が発生しており、分岐部Bを超えて第3走行レーンTL3まで延びている。この場合に仮に軌道Raのように走行すると、渋滞の最後尾に並べないので第4走行レーンTL4へのレーン変更が不可能になる。そのため自車両100は、軌道Rbのように渋滞最後尾に並ぶように走行する必要がある。このとき、本線道路部分の渋滞長Dj分、レーン変更に使える距離が短くなっており、レーン変更がより困難になっていると言える。走行可能距離D2は、合流から分岐までの距離Dから渋滞長Djを差し引いた距離になる。
 なお図11に示す例において、第0走行レーンTL0から第3走行レーンTL3へのレーン変更を目的とし、図示上端に分岐、たとえば交差点が存在する場合は、走行可能距離D2は同一である。詳述すると、合流から分岐までの距離Daの下端はDと同じであり上端は図示上端となる。しかし渋滞により第3走行レーンTL3にも車両が並んでいるので、先ほどの例と同様に軌道Rbのように渋滞最後尾に並ぶように走行する必要がある。そのため渋滞長Dajは図示上端からとなり、DaからDajを除いた長さである走行可能距離D2は先の例と同一である。
(S1408の詳細)
 図12は、走行可能距離D2の算出処理、すなわち図5におけるS1408の詳細を示すフローチャートである。図12は、経路探索部232が変更先レーンの渋滞長を考慮して、走行可能距離D2を算出する処理を示す。まず経路探索部232は、各レーンの交通状況を取得する(S2101)。交通状況の取得方法は、S1501と同様である。続いて経路探索部232は、合流から分岐までの距離を算出する(S2102)。この距離の算出は、地図データ241に格納されているリンク長を合流から分岐までのリンクについて足し合わせて算出することができる。または、予め地図データ241に合流から分岐までの距離を格納しておき、経路探索部232がこれを利用してもよい。
 ここで算出した距離は、補正前のレーン変更に使える距離、たとえば図11の例における距離Dに相当する。なお、特に一般道において、交差点直前にレーン変更が禁止されている区域が存在することがあるため、単純に合流から分岐までの距離を算出するのではなく、交差点直前のレーン変更禁止区域の長さを加味してもよい。
 次に経路探索部232は、変更先レーンの渋滞長を取得する(S2103)。ここで取得する渋滞長は、分岐に直結するレーン、たとえば図11の例における第3走行レーンTL3に限らず、変更元レーンから変更先レーンに至る全ての走行レーンについて取得することが望ましい。たとえば、図11において、第3走行レーンTL3では渋滞が発生していないが第2走行レーンTL2では渋滞が発生している場合は、第2走行レーンTL2の渋滞の影響で分岐までにレーン変更が完了しないことが考えられるためである。最後に経路探索部232は、S2102で算出した補正前のレーン変更に使える距離から、S2103で取得した変更先レーンの渋滞長を差し引くことにより、レーン変更に使える距離を補正して走行可能距離D2を得る(S2104)。
 以上のように経路探索部232は、変更先レーンの渋滞長を考慮して、走行可能距離D2を算出することができる。
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)計算装置でもあるナビゲーション装置200は、車両100が第1走行レーンTL1から第2走行レーンTL2へのレーン変更に必要な距離である必要距離D1を、車両がレーン変更を開始できるまで待機する間に車両が走行する開始待ち距離L1と、車両の速度を調整する間に車両が走行する速度調整距離L2と、車両がレーン変更を実行中に走行するレーン変更距離L3との合算により算出する経路探索部232を備える。そのためナビゲーション装置200は必要距離D1を3つに区分して算出するので、レーン変更に必要な距離を適切に算出できる。
(2)経路探索部232は、出発地から目的地までの経路を算出し、レーン変更が必要なリンクであるレーン移動リンクを対象として必要距離D1を算出し、車両100がレーン変更のためにレーン移動リンクにおいて走行可能な距離である走行可能距離D2を算出し、必要距離D1が走行可能距離D2よりも長い場合にそのレーン移動リンクを通過しにくい経路を算出する(図4のS1308:YES、S1309)。そのため経路探索部232は、レーン変更が困難なリンクが含まれにくい経路を算出できる。換言すると、困難なレーン変更を強いられるリンクを算出する経路から除くことができる。
(3)経路探索部232は、開始待ち距離L1の算出に、第2走行レーンにおける交通密度を考慮する(図10のS1507、式1~3)。そのため開始待ち距離L1を、他車両701が存在する確率を考慮して精度よく算出できる。
(4)経路探索部232は、速度調整距離L2の算出に、車両100の制御主体ごとに異なるパラメータを用いる(図10のS1508、式5~6)。進行方向加速度bは運転の主体、すなわち車両100を制御するのが車両制御ECU300かユーザ自身かによって異なると考えられる。そのため、パラメータを使い分けることによって速度調整距離L2を精度良く算出できる。
(5)経路探索部232は、レーン変更距離L3の算出に、車両100の制御主体ごとに異なるパラメータを用いる(図10のS1509、式7~10)。半径方向の加速度aは運転の主体、すなわち車両100を制御するのが車両制御ECU300かユーザ自身かによって異なると考えられる。そのため、パラメータを使い分けることによってレーン変更距離L3を精度良く算出できる。
(6)経路探索部232は、走行可能距離の算出に、変更先レーンにおける渋滞の長さを考慮する(図12のS2104)。そのため図11に示すように、合流から分岐までの距離Dから渋滞長Djを差し引いて、走行可能距離D2を算出できる。
(変形例1)
 経路探索部232は、必要距離D1の計算を状況に応じて変更してもよい。たとえば変更先のレーンの交通密度が極端に大きい場合に以下のように必要距離D1の計算を変更してもよい。
 図13は、変更先レーンの交通密度が極端に大きい場合のレーン変更の動作を示す図である。自車両100が走行している第1走行レーンTL1の交通密度K1よりも、変更先のレーンである第2走行レーンTL2の交通密度K2の方が所定の値または所定の割合よりも大きい場合に、経路探索部232は以下のように計算を変更する。すなわち経路探索部232は、まず自車両100の速度を第2走行レーンTL2の交通速度に調整してから、レーン変更の開始待ちをする。先にレーン変更の開始待ちをしても、速度調整中に第2走行レーンTL2に他車両が入り込む可能性が高いと考えるためである。すなわちこの場合は、まず速度調整が行われ、次にレーン変更の開始待ちが行われ、最後にレーン変更が実行される。
 ただし経路探索部232が計算方法を変更する条件として、変更先の走行レーンの交通密度のみを評価対象としてもよい。すなわち変更先の走行レーンの交通密度が所定値より大きい場合に上述したように計算方法を変更してもよい。
(変形例2)
 経路探索部232は、必要距離D1の計算を状況に応じて変更してもよい。たとえば変更元のレーン、すなわち自車両100が現在走行している走行レーンの交通密度が極端に大きい場合に、以下のように必要距離D1の計算を変更してもよい。
 図14は、変更元レーンの交通密度が極端に大きい場合のレーン変更の動作を示す図である。自車両100が走行している第1走行レーンTL1の交通密度K1が、変更先のレーンである第2走行レーンTL2の交通密度K2よりも所定の値または所定の割合よりも大きい場合に、経路探索部232は以下のように計算を変更する。すなわち経路探索部232は、まずレーン変更の開始待ちを行い、次にそのままの速度でレーン変更を実行し、最後に変更先のレーンにおいて速度を第2走行レーンTL2の交通速度に調整する。交通密度が大きい変更元のレーンで加速や減速を試みると、先行車両または後続車両と衝突する恐れがあるためである。すなわちこの場合は、まずレーン変更の開始待ちが行われ、次にレーン変更が行われ、最後に速度調整が行われる。
 ただし経路探索部232が計算方法を変更する条件として、現在の走行レーンの交通密度のみを評価対象としてもよい。すなわち現在の走行レーンの交通密度が所定値より大きい場合に上述したように計算方法を変更してもよい。
(変形例3)
 経路探索は行わず報知を行う報知装置が図10に示す処理を実行してもよい。ただし本変形例では図10のS1502において、本線道路は自動運転で走行予定であるか否かを判断するように変更する。その他の処理は同一である。本変形例では、たとえば算出方法を問わずに何らかの手法により得られた経路の情報を読み込み、S1502を変更した図10に示す手法により走行可能距離D1を算出する。そして報知装置は、ユーザまたは車両制御ECU300に対して、遅くとも分岐から走行可能距離D1の位置に到達したらレーン変更を開始すべきである旨を通知する。報知装置は、車両100の動作モードに応じて通知先を切り替える。報知装置はたとえばユーザに対して「あとxxメートル走行するまでにレーン変更を開始してください」と通知する。
 本変形例によれば、レーン変更の必要距離D1の算出機能を有することにより必要距離D1を用いて有用な機能を発揮できるといえる。すなわち、ナビゲーション装置200のように経路探索機能を有していなくても、必要距離D1を算出してレーン変更のタイミングの報知やレーン変更の期限の報知が可能である。また報知装置はさらに走行可能距離D2を算出し、必要距離D1と走行可能距離D2とを比較してレーン変更の可否を判断してもよい。
―第2の実施の形態―
 図15~図16を参照して、本発明に係るナビゲーション装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、複数の経路をユーザに提示する点で、第1の実施の形態と異なる。
(システム構成)
 第2の実施の形態におけるナビゲーション装置200のハードウエア構成は第1の実施の形態と同様である。ただしROMに格納されるプログラムが一部異なり、また記憶部240には後述する候補経路テーブル245がさらに格納される。候補経路テーブル245には、ユーザに提示する複数の経路の情報が格納される。候補経路テーブル245は経路探索部232により作成される。
(動作)
 第2の実施の形態における経路探索部232は、複数の経路を算出する。たとえば最大で10の経路を算出する場合は、図4に示すフローチャートにおいて、S1313を以下のように変更すればよい。すなわち経路探索部232は、目的地に到達する10番目の経路が含まれるか、または確定できるノードがない場合に肯定判断を行い、それ以外の場合に否定判断を行う。
(候補経路テーブル245)
 図15は、候補経路テーブル245の一例を示す図である。候補経路テーブル245には、行ごとに異なる経路の情報が格納され、それぞれの行には、候補経路ID901、累計コスト902、レーン変更困難フラグ903、レーン変更困難理由904、経路長905、経路内リンク数906、および経路内リンクID列907を含む。
 候補経路ID901は、複数ある候補経路を識別するための識別子である。累計コスト902は、候補経路のリンクコストの総和である。なおレーン変更難易判定処理を実行した結果、レーン変更が困難となる区間を含んでいると判定された候補経路については、ペナルティコストを加算した値が設定される。レーン変更困難フラグ903は、候補経路がレーン変更が困難となる区間を含むか否かを示し、たとえば含む場合には「1」が、含まない場合には「0」が設定される。
 レーン変更困難理由904は、レーン変更困難フラグ903が「1」である候補経路における、レーン変更が困難と判定された最大の要因である。たとえば、分岐待ち渋滞が発生しておりレーン変更に使える距離が短くなっていれば「分岐待ち渋滞」、交通密度が大きいためレーン変更に必要な距離が長くなっていれば「交通密度大」、自動運転を利用予定のためレーン変更に必要な距離が長くなっていれば「自動運転利用」が格納される。経路長905は、候補経路の出発地から目的地までのリンクの長さの総和である。経路内リンク数906は、候補経路を構成するリンクの数である。経路内リンクID列907は、候補経路を構成するリンクを識別するためのIDの列である。
 以上、図15を参照して候補経路テーブル245を説明したが、候補経路テーブル245の構成はこれに限定されるものではない。たとえば、経路内のリンクが存在するメッシュ、すなわち地図データの管理単位を特定する情報を含めてもよいし、各リンクの方向や属性情報を追加してもよい。
 図16は、経路探索部232による表示部211を用いたユーザへの候補経路の提示の一例を示す図である。表示部211の図示左側には複数の候補経路が表示され、各候補についてたとえば走行距離と所要時間が表示される。そしてユーザがいずれかの候補経路を選択すると、図示右側に候補経路の詳細が表示される。表示される候補経路の詳細とは、たとえば候補経路テーブル245に記載される情報であり、必要距離D1が走行可能距離D2よりも長いリンクを含む場合には、候補経路テーブル245のレーン変更困難理由904の内容、すなわち必要距離D1が走行可能距離D2よりも長い要因が含まれる。ユーザがいずれかの候補経路をこれから走行する経路として決定すると、決定された経路の情報が経路探索部232から経路誘導部233に送信される。
 上述した第2の実施の形態によれば、次の作用効果が得られる。
(7)経路探索部232は、算出した経路が必要距離D1が走行可能距離D2よりも長いレーン移動リンクを含む場合に、必要距離D1が走行可能距離D2よりも長い要因を出力部210を用いてユーザに出力する。このように経路探索部232は、レーン変更が困難と判断された経路について、困難と判定された理由を出力するので、ユーザが複数の経路からいずれかを選択する際に納得感を得ることができる。
(第2の実施の形態の変形例)
 上述した第2の実施の形態は以下のように変形してもよい。
(1)表示部211に表示される候補経路の詳細は、経路の全体を地図上で表示されてもよいし、レーン変更が困難な区間のみが表示されてもよい。
(2)経路探索部232は、それぞれの候補経路についてレーン変更が困難な区間を含むか否かを表示部211に表示してもよい。
(3)経路探索部232は、候補経路の累計コストの差が所定の条件を満たす場合、たとえばコストの差が1割未満やコストの差が100未満の場合のみ表示部211に表示してもよい。
(4)音声出力部212を併用してもよい。たとえば表示部211に詳細を表示した候補経路について、レーン変更が困難な理由を音声で発話してもよい。
(5)表示部211を使用せずに音声出力部212のみを使用してもよい。
―第3の実施の形態―
 図17を参照して、本発明に係る経路探索サーバの第3の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、経路探索サーバが経路探索を行う点で、第1の実施の形態と異なる。
(システム構成)
 図17は、第3の実施の形態における経路探索システム1Aの構成図である。経路探索サーバ400は、制御部410、通信部420、および記憶部430を備える。なお本実施の形態では、経路探索サーバ400を「計算装置」とも呼ぶ。制御部410は、中央演算装置であるCPU、読み出し専用の記憶装置であるROM、読み書き可能な記憶装置であるRAMを備え、CPUがROMに格納されるプログラムをRAMに展開して実行することで後述する機能を実現する。通信部420は通信網500を介してナビゲーション装置200と通信する通信モジュールである。通信網500はインターネットでもよいし閉鎖網でもよいしインターネットと閉鎖網の組み合わせでもよい。本実施の形態ではナビゲーション装置200は通信網500に対応する通信モジュールを備え、経路探索サーバ400とナビゲーション装置200は通信網500を介して通信する。
 記憶部430は不揮発性の記憶装置、たとえばハードディスクドライブである。記憶部430には、地図データ431と、車両用パラメータ432と、ドライバ用パラメータ433と、探索テーブル434とが格納される。地図データ431、車両用パラメータ432、ドライバ用パラメータ433、および探索テーブル434は、第1の実施の形態における地図データ241、車両用パラメータ242、ドライバ用パラメータ243、および探索テーブル244に相当する。ただし車両用パラメータDB432およびドライバ用パラメータ433には、複数のナビゲーション装置200に対応するように、ナビゲーション装置200の識別子ごとにパラメータが格納される。
 制御部410はその機能として、経路探索部411と、経路送信部412と、交通情報管理部413とを備える。経路探索部411、経路送信部412、および交通情報管理部413の動作は、第1の実施の形態におけるナビゲーション装置200の経路探索部232、経路送信部234、および交通情報管理部235に相当する。ただし経路探索部411は、ナビゲーション装置200からの指令を受けて探索を行う。また経路送信部412は、経路探索部411の探索結果を通信網500を介してナビゲーション装置200に送信する。
(動作概要)
 ナビゲーション装置200は、ユーザが目的地を入力すると、通信網500を介して、探索要求情報601を経路探索サーバ400に送信する。探索要求情報601には、自車位置や目的地、探索条件、ナビゲーション装置の識別子などが含まれる。経路探索サーバ400は、通信部420で探索要求情報601を受信すると、経路探索部411が地図データ431などを用いて経路探索を行う。経路計算処理およびレーン変更難易判定処理は第1の実施の形態と同様なので説明は省略する。経路送信部412は、案内用経路の選択が完了すると、経路情報602をナビゲーション装置200に送信する。経路情報602のデータ形式については、図15に示した候補経路テーブル245と同様でもよいし、経路誘導に必要な情報が含まれていれば他の形式でもよい。ナビゲーション装置200は、受信した経路情報602を案内用経路として案内を行う。またナビゲーション装置200は、運転モードが自動運転モードの場合は、経路を車両制御ECU300に送信して車両制御に用いる。
 上述した第3の実施の形態によれば、次の作用効果が得られる。
(8)計算装置でもある経路探索サーバ400は、車両100に搭載され出発地および目的地を送信し経路探索部411が算出する経路を受信するナビゲーション装置200と通信する通信部420を備える。そのため、演算リソースが豊富であり広範囲の最新の交通情報を入手可能な経路探索サーバ400が経路探索を行うので、より適切な経路を算出可能である。またナビゲーション装置200の演算負荷が低減される。
(第3の実施の形態の変形例)
 上述した第3の実施の形態では、経路探索サーバ400が車両用パラメータDB432およびドライバ用パラメータDB433を備えた。しかし経路探索サーバ400がこれらを備えず、ナビゲーション装置200がレーン変更に必要な距離の計算に用いる車両用パラメータ242やドライバ用パラメータ243を出発地および目的地とともに経路探索サーバ400に送信してもよい。
 上述した各実施の形態および変形例において、プログラムは不図示のROMに格納されるとしたが、プログラムは記憶部240に格納されていてもよい。また、ナビゲーション装置200が不図示の入出力インタフェースを備え、必要なときに入出力インタフェースとナビゲーション装置200が利用可能な媒体を介して、他の装置からプログラムが読み込まれてもよい。ここで媒体とは、たとえば入出力インタフェースに着脱可能な記憶媒体、または通信媒体、すなわち有線、無線、光などのネットワーク、または当該ネットワークを伝搬する搬送波やデジタル信号、を指す。また、プログラムにより実現される機能の一部または全部がハードウエア回路やFPGAにより実現されてもよい。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018-114809(2018年6月15日出願)
1…経路検索システム
100…車両
200…ナビゲーション装置
210…出力部
230…制御部
232…経路探索部
234…経路送信部
240…記憶部
241…地図データ
242…車両用パラメータ
243…ドライバ用パラメータ
244…探索テーブル
245…候補経路テーブル
350…スイッチ
400…経路探索サーバ
410…制御部
411…経路探索部
412…経路送信部
413…交通情報管理部
420…通信部
430…記憶部
431…地図データ
432…車両用パラメータ
433…ドライバ用パラメータ
434…探索テーブル
601…探索要求情報
602…経路情報
701…他車両

Claims (11)

  1.  車両が第1走行レーンから第2走行レーンへのレーン変更に必要な距離である必要距離を、
     前記車両がレーン変更を開始できるまで待機する間に前記車両が走行する第1距離と、
     前記車両の速度を調整する間に前記車両が走行する第2距離と、
     前記車両がレーン変更を実行中に走行する第3距離との合算により算出する制御部を備える計算装置。
  2.  請求項1に記載の計算装置において、
     前記制御部は、
     出発地から目的地までの経路を算出し、
     レーン変更が必要なリンクであるレーン移動リンクを対象として前記必要距離を算出し、
     前記車両がレーン変更のために前記レーン移動リンクにおいて走行可能な距離である走行可能距離を算出し、
     前記必要距離が前記走行可能距離よりも長い場合に前記レーン移動リンクを通過しにくい経路を算出する計算装置。
  3.  請求項1に記載の計算装置において、
     前記制御部は、前記第1距離の算出に、前記第2走行レーンにおける交通密度を考慮する計算装置。
  4.  請求項1に記載の計算装置において、
     前記制御部は、前記第2距離の算出に、前記車両の制御主体ごとに異なるパラメータを用いる計算装置。
  5.  請求項1に記載の計算装置において、
     前記制御部は、前記第3距離の算出に、前記車両の制御主体ごとに異なるパラメータを用いる計算装置。
  6.  請求項2に記載の計算装置において、
     前記制御部は、前記走行可能距離の算出に、前記第2走行レーンにおける渋滞の長さを考慮する計算装置。
  7.  請求項2に記載の計算装置において、
     前記制御部は、算出した経路が前記必要距離が前記走行可能距離よりも長い前記レーン移動リンクを含む場合に、前記必要距離が前記走行可能距離よりも長い要因を出力部を用いてユーザに出力する計算装置。
  8.  請求項2に記載の計算装置において、
     前記車両に搭載され前記出発地および前記目的地を送信し前記制御部が算出する前記経路を受信するナビゲーション装置と通信する通信部とをさらに備える計算装置。
  9.  車両が第1走行レーンから第2走行レーンへのレーン変更に必要な距離である必要距離をコンピュータが算出する演算方法において、
     前記車両がレーン変更を開始できるまで待機する間に前記車両が走行する第1距離と、
     前記車両の速度を調整する間に前記車両が走行する第2距離と、
     前記車両がレーン変更を実行中に走行する第3距離との合算により前記必要距離を算出する演算方法。
  10.  請求項9に記載の演算方法において、
     出発地から目的地までの経路を算出することと、
     レーン変更が必要なリンクであるレーン移動リンクを対象として前記必要距離を算出することと、
     前記車両がレーン変更のために前記レーン移動リンクにおいて走行可能な距離である走行可能距離を算出することと、
     前記必要距離が前記走行可能距離よりも長い場合に前記レーン移動リンクを通過しにくい経路を算出することとを含む演算方法。
  11.  請求項10に記載の演算方法において、
     前記コンピュータは、前記車両に搭載されるナビゲーション装置と通信する通信部を備え、
     前記出発地および前記目的地を前記ナビゲーション装置から受信することと、
     算出した経路を前記ナビゲーション装置に送信することとを含む演算方法。
     
PCT/JP2019/011179 2018-06-15 2019-03-18 計算装置、演算方法 WO2019239665A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/251,772 US11529958B2 (en) 2018-06-15 2019-03-18 Calculation apparatus and arithmetic method
EP19819487.0A EP3809391A4 (en) 2018-06-15 2019-03-18 CALCULATION DEVICE AND CALCULATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114809A JP7241475B2 (ja) 2018-06-15 2018-06-15 計算装置、演算方法
JP2018-114809 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239665A1 true WO2019239665A1 (ja) 2019-12-19

Family

ID=68842844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011179 WO2019239665A1 (ja) 2018-06-15 2019-03-18 計算装置、演算方法

Country Status (4)

Country Link
US (1) US11529958B2 (ja)
EP (1) EP3809391A4 (ja)
JP (1) JP7241475B2 (ja)
WO (1) WO2019239665A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879307A (zh) * 2020-07-01 2022-01-04 丰田自动车株式会社 车道变更计划装置、存储介质及方法
JP7508635B2 (ja) 2020-03-31 2024-07-01 本田技研工業株式会社 車両制御装置及び車両制御方法
EP4300044A4 (en) * 2021-02-26 2024-08-07 Aisin Corp DRIVING ASSISTANCE DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102356918B1 (ko) * 2017-09-26 2022-02-08 닛산 지도우샤 가부시키가이샤 운전 지원 방법 및 운전 지원 장치
JP6600889B2 (ja) * 2017-12-13 2019-11-06 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7174645B2 (ja) * 2019-02-21 2022-11-17 本田技研工業株式会社 車両用制御装置及び車両
US20220363254A1 (en) * 2019-08-27 2022-11-17 Lg Electronics Inc. Method for transmitting and receiving signal by vehicle in wireless communication system, and vehicle therefor
JP7061148B2 (ja) * 2020-03-31 2022-04-27 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7381819B2 (ja) * 2020-06-09 2023-11-16 日本システムバンク株式会社 自動リレーバレーパーキング
CN112356834A (zh) * 2020-07-27 2021-02-12 苏州挚途科技有限公司 一种自动驾驶车辆换道控制方法、装置、车辆及存储介质
US11561548B2 (en) 2020-09-11 2023-01-24 Uatc, Llc Systems and methods for generating basis paths for autonomous vehicle motion control
JP7409346B2 (ja) * 2021-03-31 2024-01-09 トヨタ自動車株式会社 制御装置、システム、車両、及び制御方法
KR20220148011A (ko) * 2021-04-28 2022-11-04 주식회사 에이치엘클레무브 차량의 주행을 보조하는 장치 및 그 방법
US20230417565A1 (en) * 2022-06-27 2023-12-28 Waymo Llc Lane changes for autonomous vehicles involving traffic stacks at intersection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017396A (ja) 2005-07-11 2007-01-25 Aisin Aw Co Ltd ナビゲーション装置及びナビゲーション方法
WO2008075496A1 (ja) * 2006-12-18 2008-06-26 Mitsubishi Electric Corporation ナビゲーション装置
JP2011106929A (ja) * 2009-11-16 2011-06-02 Alpine Electronics Inc ナビゲーション装置及びレーン変更案内方法
JP2016018495A (ja) * 2014-07-10 2016-02-01 日産自動車株式会社 走行支援装置及び走行支援方法
JP2016017914A (ja) * 2014-07-10 2016-02-01 日産自動車株式会社 走行支援装置及び走行支援方法
JP2017181392A (ja) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 経路探索装置及びコンピュータプログラム
JP2018114809A (ja) 2017-01-17 2018-07-26 横浜ゴム株式会社 空気入りタイヤ
JP2018136198A (ja) * 2017-02-22 2018-08-30 クラリオン株式会社 ナビゲーション装置、経路探索サーバ、および経路探索方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180024414A (ko) * 2016-08-30 2018-03-08 현대자동차주식회사 차량 및 그 제어방법
JP6589941B2 (ja) * 2017-06-06 2019-10-16 トヨタ自動車株式会社 操舵支援装置
US11427200B2 (en) * 2018-02-28 2022-08-30 Toyota Motor Europe Automated driving system and method of autonomously driving a vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017396A (ja) 2005-07-11 2007-01-25 Aisin Aw Co Ltd ナビゲーション装置及びナビゲーション方法
WO2008075496A1 (ja) * 2006-12-18 2008-06-26 Mitsubishi Electric Corporation ナビゲーション装置
JP2011106929A (ja) * 2009-11-16 2011-06-02 Alpine Electronics Inc ナビゲーション装置及びレーン変更案内方法
JP2016018495A (ja) * 2014-07-10 2016-02-01 日産自動車株式会社 走行支援装置及び走行支援方法
JP2016017914A (ja) * 2014-07-10 2016-02-01 日産自動車株式会社 走行支援装置及び走行支援方法
JP2017181392A (ja) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 経路探索装置及びコンピュータプログラム
JP2018114809A (ja) 2017-01-17 2018-07-26 横浜ゴム株式会社 空気入りタイヤ
JP2018136198A (ja) * 2017-02-22 2018-08-30 クラリオン株式会社 ナビゲーション装置、経路探索サーバ、および経路探索方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809391A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508635B2 (ja) 2020-03-31 2024-07-01 本田技研工業株式会社 車両制御装置及び車両制御方法
US12030500B2 (en) 2020-03-31 2024-07-09 Honda Motor Co., Ltd. Vehicle control apparatus and vehicle control method
CN113879307A (zh) * 2020-07-01 2022-01-04 丰田自动车株式会社 车道变更计划装置、存储介质及方法
CN113879307B (zh) * 2020-07-01 2024-05-24 丰田自动车株式会社 车道变更计划装置、存储介质及方法
EP4300044A4 (en) * 2021-02-26 2024-08-07 Aisin Corp DRIVING ASSISTANCE DEVICE

Also Published As

Publication number Publication date
JP2019219189A (ja) 2019-12-26
US20210163011A1 (en) 2021-06-03
JP7241475B2 (ja) 2023-03-17
EP3809391A4 (en) 2022-02-23
EP3809391A1 (en) 2021-04-21
US11529958B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2019239665A1 (ja) 計算装置、演算方法
CN107430807B (zh) 自动驾驶辅助系统、自动驾驶辅助方法以及计算机程序
CN108369777B (zh) 自动驾驶支援系统、自动驾驶支援方法以及计算机程序
US10126751B2 (en) Lane change support device
US10399571B2 (en) Autonomous driving assistance system, autonomous driving assistance method, and computer program
JP5900454B2 (ja) 車両用車線案内システム及び車両用車線案内方法
US11015948B2 (en) Information provision device, information provision server, and information provision method
JP4650899B2 (ja) 安全支援情報提供車載システム
US20180237018A1 (en) Autonomous driving assistance system, autonomous driving assistance method, and computer program
JP4812908B1 (ja) 交差点停止割合特定装置及びナビゲーション装置、並びに交差点停止割合を特定するためのコンピュータプログラム、ナビゲーションするためのコンピュータプログラム
US20190064827A1 (en) Self-driving assistance device and computer program
US9074909B2 (en) Navigation system, navigation method, and navigation program
US20130096822A1 (en) Navigation device
JPWO2019220717A1 (ja) 車両制御装置
JP6318757B2 (ja) ナビゲーション装置及び車両制御システム
CN111731295B (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
WO2020201801A1 (ja) 車両制御方法及び車両制御装置
JPWO2019088012A1 (ja) 車線案内システムおよび車線案内プログラム
JP2020008681A (ja) データ構造
JP2019219868A (ja) 運転支援方法及び運転支援装置
JP2009025235A (ja) ナビゲーション装置
JP2006017644A (ja) カーナビゲーション装置と自車位置表示方法
JP2008281448A (ja) 車両用運転支援装置
US20070282525A1 (en) Navigation system and program product
JP2020008401A (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019819487

Country of ref document: EP

Effective date: 20210115