WO2019239586A1 - 電動機及び空気調和装置 - Google Patents

電動機及び空気調和装置 Download PDF

Info

Publication number
WO2019239586A1
WO2019239586A1 PCT/JP2018/022938 JP2018022938W WO2019239586A1 WO 2019239586 A1 WO2019239586 A1 WO 2019239586A1 JP 2018022938 W JP2018022938 W JP 2018022938W WO 2019239586 A1 WO2019239586 A1 WO 2019239586A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
heat
electric motor
mold
heat sink
Prior art date
Application number
PCT/JP2018/022938
Other languages
English (en)
French (fr)
Inventor
寛 平川
洋樹 麻生
諒伍 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020525063A priority Critical patent/JP6961083B2/ja
Priority to CN201890000367.5U priority patent/CN210806998U/zh
Priority to PCT/JP2018/022938 priority patent/WO2019239586A1/ja
Publication of WO2019239586A1 publication Critical patent/WO2019239586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to an electric motor and an air conditioner including a rotor, a mold stator, and a heat sink.
  • Patent Document 1 As a technique for improving the heat dissipation from the substrate of a blower motor (hereinafter abbreviated as “motor”) mounted on a conventional air conditioner, there is a technique disclosed in Patent Document 1, for example.
  • the technique of Patent Document 1 has a structure in which the surface of the drive element is exposed from the mold and the screw contacts the heat radiating portion of the drive element. And the heat sink is attached to the mold with screws.
  • the present invention is for solving the above-described problems, and can prevent damage to the drive element and water from entering the substrate and causing failure, and a highly reliable electric motor that increases heat dissipation from the electric motor substrate and
  • An object is to provide an air conditioner.
  • An electric motor includes a rotor, a heat sink, a mold stator configured by sealing a stator assembly including a substrate with a mold resin, and interposed between the mold stator and the heat sink.
  • a heat-conducting member, and a screw used to fix the mold stator and the heat sink, and an insertion tip of the screw is in the mold stator with respect to the rotation axis direction of the rotor. And located between the substrate and the heat conducting member and buried in the mold resin.
  • An air conditioner according to the present invention includes the above-described electric motor.
  • the insertion tip of the screw fixing the heat sink is located between the substrate and the heat conducting member with respect to the rotation axis direction of the rotor in the mold stator. Buried in mold resin. Therefore, it is possible to provide a highly reliable electric motor and air conditioner that can prevent the drive element from being damaged and water from entering the substrate and failing, and the heat dissipation from the electric motor substrate to be improved.
  • FIG. 3 is a top view showing the electric motor according to Embodiment 1 of the present invention as viewed from the arrow A in FIG. 2. It is an enlarged view which shows the screw which concerns on Embodiment 1 of this invention in the B section of FIG. It is a perspective view which shows the modification of the resin for screw fixation which concerns on Embodiment 1 of this invention.
  • FIG. 1 is an explanatory diagram showing an electric motor 1 according to Embodiment 1 of the present invention in a left half appearance and a right half longitudinal section.
  • the electric motor 1 includes a mold stator 2, a heat sink 3, a rotor assembly 6, a heat conducting member 7, a bracket 5, and a screw 4.
  • the rotor assembly 6 includes a rotor 18 having a permanent magnet, a shaft 16, and a bearing 17.
  • FIG. 2 is an explanatory diagram of the structure of the mold stator 2 and the heat sink 3 showing a part of the electric motor 1 according to Embodiment 1 of the present invention.
  • FIG. 3 is a top view showing the electric motor 1 according to Embodiment 1 of the present invention as viewed from the arrow A in FIG.
  • FIG. 4 is an enlarged view showing the screw 4 according to the first embodiment of the present invention at a portion B in FIG.
  • the mold stator 2 is configured in a state where the stator assembly 15 is sealed with a mold resin 8 and integrally molded.
  • the stator assembly 15 includes a stator 19 and a substrate 9.
  • BMC bulk molding compound
  • the stator 19 is configured by laminating electromagnetic steel plates, and the insulating member 12 is attached to the stator core 10 having a plurality of slots.
  • the stator 19 is provided with windings 11 in each slot by a concentrated winding method.
  • the substrate 9 is attached to one axial end face of the insulating member 12 of the stator 19.
  • a driving element 13, which is an electronic component for driving the electric motor 1, is mounted on the substrate 9. The substrate 9 is pressed against the insulating member 12 by the substrate presser 14.
  • the heat sink 3 is arranged in series along the rotational axis direction of the rotor 18 with respect to the mold stator 2.
  • Aluminum die cast is used for the heat sink 3.
  • heat dissipation is improved.
  • the screw 4 is inserted into the mold stator 2 from the heat sink 3 side along the rotation axis direction of the rotor 18.
  • the screw 4 is made of a heat conductor whose heat conductivity is higher than that of the mold resin 8.
  • a resin screw or a metal screw whose heat conductivity is higher than that of the mold resin 8 is used as the screw 4 made of a heat conductor whose thermal conductivity is higher than that of the mold resin 8. It is done.
  • the heat sink 3 is fixed to the mold stator 2 through a heat conducting member 7 using fixing screws 4.
  • a concave portion 2 a formed in the mold stator 2 is used for an attachment portion of the screw 4 that fixes the heat sink 3 to the mold stator 2. Since the recess 2a is integrally formed when the mold stator 2 is molded with the mold resin 8, the recess 2a is a cylindrical space having no thread groove at the time of molding.
  • the recess 2 a is filled with a screw fixing resin 25 that is fluid when the screws 4 are fastened to the mold stator 2.
  • the screw fixing resin 25 is solidified after the screw 4 is screwed into the recess 2a.
  • the recess 2 a into which the screw 4 is inserted has a depth between the substrate 9 and the heat conducting member 7 with respect to the rotation axis direction of the rotor 18.
  • the shaft portion inserted into the recess 2a of the screw 4 has a length within the depth of the recess 2a.
  • the recess 2a is filled with a screw fixing resin 25 that is fluid when fastened to the mold stator 2.
  • the heat sink 3 has a through hole 3a at the same position in the rotation axis direction of the rotor 18 with respect to the recess 2a.
  • the screw 4 is inserted while the insertion tip is inserted into the recess 2a of the mold stator 2 through the through-hole 3a of the heat sink 3 and the recess 2a is cut.
  • the screw fixing resin 25 fills the gap between the screw 4 and the recess 2a, and an unnecessary portion flows out from the through hole 3a. Thereby, in the recessed part 2a, the high voltage
  • FIG. 5 is a perspective view showing a modification of the screw fixing resin 25 according to the first embodiment of the present invention.
  • FIG. 6 is a side view showing a modification of the screw fixing resin 25 according to the first embodiment of the present invention.
  • the screw fixing resin 25 may be a solid material made of a thermoplastic resin.
  • the screw fixing resin 25 has a bottomed cylindrical shape with one end face opened.
  • the screw fixing resin 25 is fixed to the recess 2a by adhesion or the like, and the screw 4 is screwed into the central cavity 25a of the screw fixing resin 25. According to this, even when the screw 4 is screwed in, the stress is absorbed by the screw fixing resin 25 and the mold stator 2 is not adversely affected by the stress.
  • FIG. 7 is a cross-sectional view showing an interface between the mold resin 8, the heat conducting member 7, and the heat sink 3 according to Embodiment 1 of the present invention. As shown in FIG. 7, the unevenness of the surface of the mold resin 8 and the heat sink at the interface between the mold resin 8 and the heat conducting member 7 constituting the mold stator 2 and at the interface between the heat conducting member 7 and the heat sink 3. The heat conductive member 7 enters the unevenness of the surface 3.
  • heat dissipating grease is used for the heat conducting member 7.
  • the heat dissipating grease is filled with an inorganic filler, and the heat conductivity is improved so as to be higher than the heat conductivity of the mold resin 8.
  • the inorganic filler By using the inorganic filler, the thermal conductivity of the heat dissipating grease is enhanced, and the heat dissipating property from the substrate 9 or the driving element 13 is enhanced.
  • the inorganic filler to be filled is, for example, at least one ceramic type of boron nitride, aluminum oxide, aluminum carbide, magnesium oxide, silicon carbide, silicon nitride, boron nitride, aluminum nitride, silica such as hexagonal or cubic Including material.
  • the thermal conductivity of the heat dissipating grease is higher than the thermal conductivity of the mold resin 8. For this reason, in the electric motor 1, higher heat dissipation is obtained than when the gap between the heat sink 3 and the mold resin 8 is filled with the mold resin.
  • the heat dissipating grease is liquid. For this reason, thermal resistance can be reduced by applying thinly.
  • a heat dissipating adhesive may be used for the heat conducting member 7.
  • the heat dissipating adhesive is filled with an inorganic filler, and the heat conductivity is improved so as to be higher than the heat conductivity of the mold resin 8.
  • the inorganic material filler to be filled is, for example, at least one ceramic selected from hexagonal or cubic boron nitride, aluminum oxide, aluminum carbide, magnesium oxide, silicon carbide, silicon nitride, boron nitride, aluminum nitride, and silica. Including system materials.
  • the heat conductivity of the heat dissipating adhesive is higher than the heat conductivity of the mold resin 8.
  • the heat dissipating adhesive is in a liquid state until it is fixed. For this reason, thermal resistance can be reduced by thinly applying the heat-dissipating adhesive. Moreover, the heat sink 3 is firmly attached to the mold stator 2 by fixing the heat dissipating adhesive.
  • the electric motor 1 is used as a rotational drive device for a fan.
  • a magnetic field is generated by supplying a current to the winding 11 wound around the stator core 10.
  • the rotor 18 is rotated by the interaction between the magnetic field and the rotor 18.
  • the drive element 13 generates heat.
  • the heat conduction member 7 enters the unevenness of the heat sink 3 and the unevenness of the surface of the heat sink 3. For this reason, the heat dissipation of the electric motor 1 is improved.
  • the substrate 9 on which the drive element 13 is mounted is molded by the mold resin 8 and is entirely covered. For this reason, when the heat sink 3 is assembled
  • the substrate 9 on which the drive element 13 is mounted is molded by the mold resin 8 and is entirely covered. For this reason, the water immersion path from the outside of the electric motor 1 to the substrate 9 including the drive element 13 is blocked. Thereby, failure of the electric motor 1 due to water intrusion is prevented.
  • the electric motor 1 has a structure in which the stator 19 and the substrate 9 each having the winding 11 wound around the stator core 10 are embedded and covered with the mold resin 8, and the heat is applied between the mold resin 8 and the heat sink 3.
  • the conductive member 7 is provided. That is, the substrate 9, the mold resin 8, the heat conducting member 7, and the heat sink 3 are thermally connected in this order. For this reason, the heat generated by the drive element 13 mounted on the substrate 9 can be efficiently radiated through the mold resin 8, the heat conducting member 7 and the heat sink 3.
  • the substrate 9 on which the drive element 13 is mounted is molded by the mold resin 8 and is entirely covered. For this reason, the heat sink 3 provided on the mold stator 2 does not damage the drive element 13.
  • the insertion tip of the screw 4 exists in the mold stator 2 and does not reach the surface of the substrate 9. For this reason, even if water enters from the gap between the screw 4 and the mold resin 8, the entered water does not reach the substrate 9. Thereby, it is possible to prevent a failure due to water intrusion into the drive element 13 mounted on the surface of the substrate 9.
  • the cost of the air conditioner can be reduced by using the low-cost and high-quality motor 1 as the blower motor, which is the main component of the air conditioner.
  • the electric motor 1 includes the rotor 18, the mold stator 2, and the heat sink 3.
  • the mold stator 2 is configured by sealing a stator assembly 15 including a substrate 9 with a mold resin 8.
  • the electric motor 1 includes a heat conducting member 7 interposed between the mold stator 2 and the heat sink 3.
  • the electric motor 1 includes a screw 4 used for fixing the mold stator 2 and the heat sink 3 with screws. The insertion tip of the screw 4 is located between the substrate 9 and the heat conducting member 7 in the mold stator 2 with respect to the rotational axis direction of the rotor 18 and is buried in the mold resin 8.
  • the surface of the drive element 13 or the substrate 9 is not exposed from the mold stator 2, and the drive element 13 and the substrate 9 are embedded in the mold resin 8.
  • the surface of the drive element 13 is not exposed and the drive element 13 is not in direct contact with the heat sink 3, so that the drive element 13 is prevented from being damaged.
  • the insertion tip of the screw 4 exists in the mold stator 2 and does not reach the surface of the substrate 9, even if water enters from the gap between the screw 4 and the mold resin 8, the water can reach the substrate 9. The failure of the electric motor 1 due to the ingress of water is prevented.
  • the heat sink 3 is fixed to the mold stator 2 by the screws 4, the heat sink 3 is firmly fixed, and the heat sink 3 is prevented from falling.
  • the heat conducting member 7 is disposed between the mold resin 8 and the heat sink 3, heat dissipation from the substrate 9 is enhanced. Therefore, it is possible to prevent the drive element 13 from being damaged and water from entering the substrate 9 and failing, and to provide a highly reliable electric motor 1 with improved heat dissipation from the substrate 9 of the electric motor 1.
  • the screw 4 is made of a thermal conductor whose thermal conductivity is higher than that of the mold resin 8.
  • the screw 4 having the insertion tip closer to the substrate 9 than the heat conducting member 7 in the mold stator 2 constitutes a heat transfer path for transferring heat from the substrate 9 to the heat sink 3. Therefore, heat from the substrate 9 can be dissipated from the screw 4 in addition to the heat conducting member 7, and heat dissipation from the substrate 9 is further enhanced.
  • the heat sink 3 is arranged in series along the rotational axis direction of the rotor 18 with respect to the mold stator 2.
  • the screw 4 is inserted into the mold stator 2 from the heat sink 3 side along the rotation axis direction of the rotor 18.
  • the heat sink 3 has the through hole 3a through which the screw 4 is inserted.
  • the mold stator 2 has a recess 2a in which a screw 4 is inserted.
  • the screw 4 is inserted into the recess 2 a of the mold stator 2 through the through hole 3 a of the heat sink 3. Accordingly, the screw 4 fixes the heat sink 3 to the mold stator 2, and the tip of the screw 4 inserted into the mold stator 2 is positioned between the substrate 9 and the heat conducting member 7 with respect to the rotation axis direction of the rotor 18. Can be located between.
  • the screw fixing resin 25 interposed between the recess 2a and the screw 4 is provided.
  • the screw fixing resin 25 may be a bottomed cylindrical thermoplastic resin.
  • the recess 2a is filled with the screw fixing resin 25 in a fluid state, and then the screw 4 is screwed into the recess 2a.
  • the screw fixing resin 25 is solidified after screwing.
  • the screw fixing resin 25 is a solid material and is formed of a bottomed cylindrical thermoplastic resin.
  • the screw fixing resin 25 is fixed to the recess 2a by adhesion or the like, and the screw 4 is screwed into the central cavity 25a of the screw fixing resin 25. According to this, even when the screw 4 is screwed in, the stress is absorbed by the screw fixing resin 25 and the mold stator 2 is not adversely affected by the stress.
  • the heat sink 3 is made of aluminum die cast.
  • the heat sink 3 is excellent in heat dissipation, and heat dissipation from the substrate 9 is enhanced.
  • the heat conducting member 7 is made of heat dissipating grease having a heat conductivity higher than that of the mold resin 8.
  • a heat dissipating adhesive having a thermal conductivity higher than that of the mold resin 8 is used for the heat conductive member 7.
  • BMC bulk molding compound
  • the mold stator 2 can be molded by sealing the stator assembly 15 and the substrate 9 with the mold resin 8.
  • FIG. FIG. 8 is an explanatory diagram of the structure of the mold stator 2 and the heat sink 3 showing a part of the electric motor 1 according to Embodiment 2 of the present invention.
  • FIG. 9 is a top view showing the electric motor 1 according to Embodiment 2 of the present invention as seen from the arrow C in FIG.
  • FIG. 10 is an enlarged view showing the screw 4 according to the second embodiment of the present invention at a portion D in FIG.
  • description of matters similar to those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the heat radiation from the driving element 13 is enhanced through the substrate 9, the mold resin 8, the heat conducting member 7 and the heat sink 3.
  • the screw 4 also has thermal conductivity, and a heat dissipation path is configured. Therefore, in the present embodiment, the screw 4 used for fixing the heat sink 3 is more effectively utilized as a heat dissipation path, and the heat dissipation from the driving element 13 is further improved through the screw 4. .
  • the fixing screw 4 is installed in the vicinity of the drive element 13 mounted on the substrate 9 as a heat source.
  • the screw 4 and the drive element 13 are located in series along at least the mold resin 8 along the rotation axis direction of the rotor 18.
  • the drive element 13 is mounted on the surface of the substrate 9 opposite to the heat sink 3 with respect to the rotation axis direction of the rotor 18.
  • the screw 4 is disposed in a projection region along the rotation axis direction of the rotor 18 with respect to the drive element 13 on the back surface side opposite to the surface of the substrate 9 on which the drive element 13 is mounted. That is, the drive element 13 is mounted on the surface of the substrate 9 opposite to the surface of the substrate 9 on the side where the screws 4 are present.
  • the drive element 13 may be mounted on the surface of the substrate 9 on the same side as the surface of the substrate 9 on the side where the screw 4 exists.
  • the screw 4 approaches the drive element 13 of the heat source, and the effect of the screw 4 as a heat transfer path from the drive element 13 to the heat sink 3 is enhanced. Further, since the driving element 13 is mounted on the surface of the substrate 9 opposite to the surface of the substrate 9 on the side where the screw 4 exists, the screw 4 is being used as a heat transfer path from the driving element 13 to the heat sink 3. Damage due to contact between the drive element 13 and the screw 4 can be completely prevented.
  • the effects of preventing damage to the drive element 13, preventing water from entering, and preventing fall due to the firm fixation of the heat sink 3 can be obtained in the same manner as in the above embodiment.
  • the fixing screw 4 since the fixing screw 4 reaches the vicinity of the drive element 13 and is arranged, the screw 4 can be used more effectively as a heat dissipation path, and a higher heat dissipation effect from the drive element 13 is obtained.
  • the electric motor 1 includes the drive element 13 mounted on the surface of the substrate 9 and surrounded by the mold resin 8.
  • the screw 4 and the drive element 13 are positioned in series along the rotation axis direction of the rotor 18 with at least the mold resin 8 interposed therebetween.
  • the screw 4 and the driving element 13 approach each other, and the effect of the screw 4 as a heat transfer path for transferring heat from the driving element 13 to the heat sink 3 is enhanced. Thereby, the heat dissipation from the board
  • the driving element 13 is mounted on the surface of the substrate 9 opposite to the heat sink 3 with respect to the rotation axis direction of the rotor 18.
  • the screw 4 is disposed in a projection region along the rotation axis direction of the rotor 18 with respect to the drive element 13 on the back surface side opposite to the surface of the substrate 9 on which the drive element 13 is mounted.
  • FIG. 11 is a configuration diagram illustrating an air-conditioning apparatus 20 according to Embodiment 3 of the present invention.
  • the air conditioner 20 includes an indoor unit 21 and an outdoor unit 23 connected to the indoor unit 21 via two pipes 20a and 20b.
  • the indoor unit 21 is provided with a blower 22.
  • the outdoor unit 23 is provided with a blower 24.
  • the blower 22 and the blower 24 are equipped with the electric motor 1 according to the first and second embodiments as a fan rotation driving device.
  • the electric motor 1 is mounted on the blower 22 and the blower 24. For this reason, the heat generated in the drive element 13 can be efficiently dissipated, and damage to the drive element 13 can be suppressed. Therefore, the reliability of the air conditioner 20 is improved.
  • the electric motor 1 may be mounted on only one of the blower 22 and the blower 24.
  • the air conditioner 20 includes the electric motor 1 described above.
  • the air conditioning apparatus 20 including the electric motor 1 according to the first and second embodiments it is possible to prevent the drive element 13 from being damaged and water from entering the substrate 9 and failing. The heat dissipation from is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

電動機は、回転子と、ヒートシンクと、基板を含む固定子組立体をモールド樹脂で封止して構成されたモールド固定子と、モールド固定子とヒートシンクとの間に介在した熱伝導部材と、モールド固定子とヒートシンクとのネジ止め固定に用いられたネジと、を備え、ネジの挿入先端は、モールド固定子内にて回転子の回転軸方向に対して基板と熱伝導部材との間に位置してモールド樹脂に埋没する。

Description

電動機及び空気調和装置
 本発明は、回転子とモールド固定子とヒートシンクとを備える電動機及び空気調和装置に関する。
 従来の空気調和装置に搭載される送風機用電動機(以下、「電動機」と略記する)の基板からの放熱性を高める手法としては、たとえば特許文献1の技術がある。特許文献1の技術では、駆動素子の表面がモールドから露出し、駆動素子の放熱部にビスが接触する構造である。そして、放熱板がビスによってモールドに取り付けられている。また、駆動素子の表面がモールドから露出し、駆動素子の放熱部が熱伝導部材を介してヒートシンクに接着する構造もある。
特開2002-223553号公報
 しかしながら、上記特許文献1の技術では、駆動素子とビスが接触する際、又は、駆動素子の放熱部とヒートシンクとが少量の放熱シリコンのみを介して接触固定する際に、駆動素子に衝撃を与えることによる駆動素子の損傷が問題であった。また、ビスの挿入先端がプリント基板の表面に接するので、ビスの周囲の隙間から駆動素子を含む基板に水が浸入して基板が故障する問題があった。
 本発明は、上記課題を解決するためのものであり、駆動素子の損傷及び基板へ水が浸入して故障することが防止できるとともに、電動機の基板からの放熱性が高まる信頼性の高い電動機及び空気調和装置を提供することを目的とする。
 本発明に係る電動機は、回転子と、ヒートシンクと、基板を含む固定子組立体をモールド樹脂で封止して構成されたモールド固定子と、前記モールド固定子と前記ヒートシンクとの間に介在した熱伝導部材と、前記モールド固定子と前記ヒートシンクとのネジ止め固定に用いられたネジと、を備え、前記ネジの挿入先端は、前記モールド固定子内にて前記回転子の回転軸方向に対して前記基板と前記熱伝導部材との間に位置して前記モールド樹脂に埋没するものである。
 本発明に係る空気調和装置は、上記の電動機を備えるものである。
 本発明に係る電動機及び空気調和装置によれば、ヒートシンクを固定したネジの挿入先端は、モールド固定子内にて回転子の回転軸方向に対して基板と熱伝導部材との間に位置してモールド樹脂に埋没する。したがって、駆動素子の損傷及び基板へ水が浸入して故障することが防止できるとともに、電動機の基板からの放熱性が高まる信頼性の高い電動機及び空気調和装置を提供できる。
本発明の実施の形態1に係る電動機を左半分の外観及び右半分の縦断面にて示す説明図である。 本発明の実施の形態1に係る電動機の一部を示すモールド固定子とヒートシンクとの部分の構造説明図である。 本発明の実施の形態1に係る電動機を図2のA矢印から見て示す上視図である。 本発明の実施の形態1に係るネジを図2のB部にて示す拡大図である。 本発明の実施の形態1に係るネジ固定用樹脂の変形例を示す斜視図である。 本発明の実施の形態1に係るネジ固定用樹脂の変形例を示す側面図である。 本発明の実施の形態1に係るモールド樹脂と熱伝導部材とヒートシンクとの界面を示す断面図である。 本発明の実施の形態2に係る電動機の一部を示すモールド固定子とヒートシンクとの部分の構造説明図である。 本発明の実施の形態2に係る電動機を図8のC矢印から見て示す上視図である。 本発明の実施の形態2に係るネジを図8のD部にて示す拡大図である。 本発明の実施の形態3に係る空気調和装置を示す構成図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<電動機1の構成>
 図1は、本発明の実施の形態1に係る電動機1を左半分の外観及び右半分の縦断面にて示す説明図である。図1に示すように、電動機1は、モールド固定子2と、ヒートシンク3と、回転子組立体6と、熱伝導部材7と、ブラケット5と、ネジ4と、を備える。
 回転子組立体6は、永久磁石を有する回転子18と、シャフト16と、軸受17と、を含む。
 図2は、本発明の実施の形態1に係る電動機1の一部を示すモールド固定子2とヒートシンク3との部分の構造説明図である。図3は、本発明の実施の形態1に係る電動機1を図2のA矢印から見て示す上視図である。図4は、本発明の実施の形態1に係るネジ4を図2のB部にて示す拡大図である。
 図2に示すように、モールド固定子2は、固定子組立体15をモールド樹脂8で封止して一体成形された状態に構成されている。固定子組立体15は、固定子19と基板9とを含む。
 モールド樹脂8には、BMC(バルクモールディングコンパウンド)が用いられている。モールド樹脂8には、無機材料フィラーが充填されている。これにより、モールド樹脂8の強度が向上し、モールド樹脂8がより安価な材料で提供できる。
 固定子19は、電磁鋼板を積層して構成され、複数のスロットを有する固定子鉄心10に絶縁部材12が取り付けられている。固定子19は、各スロットに集中巻方式により巻線11が施されている。
 基板9は、固定子19の絶縁部材12の一方の軸方向端面に取り付けられている。基板9には、電動機1を駆動するための電子部品である駆動素子13が実装されている。基板9は、絶縁部材12に基板押え14によって押さえ付けられている。
 ヒートシンク3は、モールド固定子2に対して回転子18の回転軸方向に沿って直列に配置されている。ヒートシンク3には、アルミダイキャストが用いられている。ヒートシンク3に熱伝導性に優れるアルミニウムを用いることにより、放熱性が向上する。
 図2~図4に示すように、ネジ4は、回転子18の回転軸方向に沿ってヒートシンク3側からモールド固定子2内に挿入されている。ネジ4は、熱伝導率がモールド樹脂8の熱伝導率よりも高い熱伝導体製である。熱伝導率がモールド樹脂8の熱伝導率よりも高い熱伝導体製のネジ4としては、熱伝導率がモールド樹脂8の熱伝導率よりも高い樹脂製のネジ又は金属製のネジなどが用いられる。
 ヒートシンク3は、モールド固定子2に熱伝導部材7を介して固定用のネジ4を用いて固定されている。モールド固定子2にヒートシンク3を固定するネジ4の取り付け部には、モールド固定子2に形成された凹部2aが用いられる。凹部2aは、モールド固定子2のモールド樹脂8による成形時に一体的に形成されるため、成形時にネジ溝がない円筒空間である。凹部2aには、モールド固定子2にネジ4を締結する際に流体状であるネジ固定用樹脂25が充填されている。ネジ固定用樹脂25は、ネジ4の凹部2aへのねじ込み後に固化する。
 具体的には、ネジ4の挿入される凹部2aが回転子18の回転軸方向に対して基板9と熱伝導部材7との間までの深さを有する。ネジ4の凹部2aに挿入される軸部は、凹部2aの深さ以内の長さを有する。凹部2aには、モールド固定子2に締結する際に流体状であるネジ固定用樹脂25が充填されている。また、ヒートシンク3には、凹部2aに対して回転子18の回転軸方向において同じ位置に貫通孔3aが形成されている。そして、ネジ4は、挿入先端をヒートシンク3の貫通孔3aを挿通させてモールド固定子2の凹部2aにねじ込んで凹部2aを切り込みながら挿入される。ネジ4が凹部2aにねじ込まれると、ネジ固定用樹脂25がネジ4と凹部2aとの隙間を埋めつつ不必要な分が貫通孔3aから外部に流出する。これにより、凹部2a内には、モールド固定子2を破損又は変形させる高圧の空間ができない。また、貫通孔3a内には、ヒートシンク3を位置ずれさせないようにネジ固定用樹脂25が充満する。そして、ネジ4がヒートシンク3を固定する状態まで凹部2aに挿入された後に、ネジ固定用樹脂25が固化する。
<ネジ固定用樹脂25の変形例>
 図5は、本発明の実施の形態1に係るネジ固定用樹脂25の変形例を示す斜視図である。図6は、本発明の実施の形態1に係るネジ固定用樹脂25の変形例を示す側面図である。図5、図6に示すように、ネジ固定用樹脂25は、熱可塑性樹脂で構成された固形物でもよい。ネジ固定用樹脂25は、一方の端面が開口した有底円筒形状である。この場合には、凹部2aにネジ固定用樹脂25が接着などによって固定され、ネジ4がネジ固定用樹脂25の中央の空洞部25aにねじ込まれる。これによれば、ネジ4のねじ込みについても、応力がネジ固定用樹脂25で吸収され、モールド固定子2に応力の悪影響が及ばない。
<電動機1のその他の構成>
 なお、ネジ4の締結時、ネジ4のモールド固定子2内への挿入先端は、回転子18の回転軸方向に対して基板9と熱伝導部材7との間に位置している。
 図7は、本発明の実施の形態1に係るモールド樹脂8と熱伝導部材7とヒートシンク3との界面を示す断面図である。図7に示すように、モールド固定子2を構成するモールド樹脂8と熱伝導部材7との界面、及び、熱伝導部材7とヒートシンク3との界面にて、モールド樹脂8の表面の凹凸及びヒートシンク3の表面の凹凸に、熱伝導部材7が入り込んでいる。
 熱伝導部材7には、放熱性グリースが用いられる。放熱性グリースには、無機フィラーが充填され、熱伝導率がモールド樹脂8の熱伝導率よりも高くなるように向上されている。無機フィラーが用いられることにより、放熱グリースの熱伝導性を高め、基板9又は駆動素子13からの放熱性が高められる。充填される無機フィラーは、たとえば、六方晶系又は立方晶系などの窒化ホウ素、酸化アルミニウム、炭化アルミ、酸化マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、窒化アルミ、シリカのうち少なくとも1つのセラミック系の材料を含む。これにより、放熱性グリースの熱伝導率はモールド樹脂8の熱伝導率よりも高い。このため、電動機1では、ヒートシンク3とモールド樹脂8の間の隙間がモールド樹脂を用いて埋め合わせるよりも高い放熱性が得られる。放熱性グリースは、液状である。このため、薄く塗ることによって熱抵抗が低減できる。
 また、熱伝導部材7には、放熱性接着剤が用いられても良い。放熱性接着剤には、無機フィラーが充填され、熱伝導率がモールド樹脂8の熱伝導率よりも高くなるように向上されている。充填される無機材料フィラーは、たとえば、六方晶系又は立方晶系などの窒化ホウ素、酸化アルミニウム、炭化アルミ、酸化マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、窒化アルミ、シリカのうち少なくとも1つのセラミック系の材料を含む。放熱性接着剤の熱伝導率は、モールド樹脂8の熱伝導率よりも高い。放熱性グリースと同様に放熱性接着剤は、固着するまで液状である。このため、放熱性接着剤が薄く塗られることにより、熱抵抗が低減できる。また、放熱性接着剤が固着することにより、ヒートシンク3がモールド固定子2に強固に取り付けられる。
<電動機1の作用>
 電動機1は、ファンの回転駆動装置として用いられる。電動機1では、固定子鉄心10に巻回された巻線11に電流が供給されることによって磁界が発生する。そして、この磁界と回転子18との相互作用により、回転子18が回転する。この回転駆動の制御を行う際に、駆動素子13が発熱する。このように構成された電動機1においては、モールド固定子2を構成するモールド樹脂8と熱伝導部材7との界面、及び、熱伝導部材7とヒートシンク3との界面にて、モールド樹脂8の表面の凹凸及びヒートシンク3の表面の凹凸に、熱伝導部材7が入り込む。このため、電動機1の放熱性が向上する。
 また、駆動素子13の実装された基板9がモールド樹脂8によってモールドして全体を覆われている。このため、ヒートシンク3がモールド固定子2に組み付けられる際に、駆動素子13へ与える衝撃が抑制される。それにより、駆動素子13の損傷が防止される。
 また、駆動素子13の実装された基板9がモールド樹脂8によってモールドして全体を覆われている。このため、電動機1の外部から駆動素子13を含む基板9への浸水経路が遮断されている。それにより、水浸入による電動機1の故障が防止される。
 以上のように、電動機1は、固定子鉄心10に巻線11が巻回された固定子19及び基板9をモールド樹脂8で埋め込んで覆った構造とし、モールド樹脂8とヒートシンク3の間に熱伝導部材7を設けた構造である。すなわち、基板9、モールド樹脂8、熱伝導部材7及びヒートシンク3がこの順で熱的に接続される。このため、基板9に実装された駆動素子13にて発熱した熱がモールド樹脂8、熱伝導部材7及びヒートシンク3を介して効率的に放熱できる。
 また、駆動素子13の実装された基板9がモールド樹脂8によってモールドして全体を覆われている。このため、モールド固定子2上に設けられたヒートシンク3が駆動素子13を損傷させない。
 また、ネジ4の挿入先端がモールド固定子2内に存在して基板9の表面に達していない。このため、仮にネジ4とモールド樹脂8との隙間から水が浸入したとしても、浸入した水が基板9まで到達しない。それにより、基板9の表面に実装された駆動素子13への水の浸入による故障が防止できる。
 このように低コストで品質の良い電動機1が空気調和装置の主要部品である送風機用電動機として用いられることにより、空気調和装置の低コスト化が図れる。
<実施の形態1の効果>
 実施の形態1によれば、電動機1は、回転子18と、モールド固定子2と、ヒートシンク3と、を備える。モールド固定子2は、基板9を含む固定子組立体15をモールド樹脂8で封止して構成されている。電動機1は、モールド固定子2とヒートシンク3との間に介在した熱伝導部材7を備える。電動機1は、モールド固定子2とヒートシンク3とのネジ止め固定に用いられたネジ4を備える。ネジ4の挿入先端は、モールド固定子2内にて回転子18の回転軸方向に対して基板9と熱伝導部材7との間に位置してモールド樹脂8に埋没している。
 この構成によれば、駆動素子13又は基板9の表面がモールド固定子2から露出せず、駆動素子13及び基板9がモールド樹脂8内に埋め込まれている。これにより、駆動素子13の表面が露出せず、駆動素子13がヒートシンク3と直接接触しないので、駆動素子13の損傷が防止される。また、ネジ4の挿入先端がモールド固定子2内に存在して基板9の表面に達していないので、仮にネジ4とモールド樹脂8との隙間から水が浸入しても、水が基板9まで到達せず、水の浸入による電動機1の故障が防止される。さらに、ネジ4によってヒートシンク3がモールド固定子2に固定されるので、ヒートシンク3が強固に固定され、ヒートシンク3の落下が防止される。加えて、モールド樹脂8とヒートシンク3との間に熱伝導部材7が配置されているので、基板9からの放熱性が高まる。したがって、駆動素子13の損傷及び基板9へ水が浸入して故障することが防止できるとともに、電動機1の基板9からの放熱性が高まる信頼性の高い電動機1を提供できる。
 実施の形態1によれば、ネジ4は、熱伝導率がモールド樹脂8の熱伝導率よりも高い熱伝導体製である。
 この構成によれば、モールド固定子2内にて熱伝導部材7よりも挿入先端を基板9に近づけたネジ4が基板9からの熱をヒートシンク3に伝熱する伝熱経路を構成する。したがって、熱伝導部材7に加えてネジ4からも基板9からの熱が放熱でき、基板9からの放熱性が更に高まる。
 実施の形態1によれば、ヒートシンク3は、モールド固定子2に対して回転子18の回転軸方向に沿って直列に配置されている。ネジ4は、回転子18の回転軸方向に沿ってヒートシンク3側からモールド固定子2内に挿入されている。
 この構成によれば、ネジ4によってヒートシンク3がモールド固定子2に固定されるので、ヒートシンク3が強固に固定され、ヒートシンク3の落下が防止される。
 実施の形態1によれば、ヒートシンク3は、ネジ4が挿通された貫通孔3aを有する。モールド固定子2は、ネジ4が挿入された凹部2aを有する。
 この構成によれば、ネジ4は、ヒートシンク3の貫通孔3aを挿通してモールド固定子2の凹部2aに挿入される。これにより、ネジ4がヒートシンク3をモールド固定子2に固定しつつ、ネジ4のモールド固定子2内への挿入先端が回転子18の回転軸方向に対して基板9と熱伝導部材7との間に位置できる。
 実施の形態1によれば、凹部2aとネジ4との間に介在したネジ固定用樹脂25を備える。ネジ固定用樹脂25は、有底円筒形状の熱可塑性樹脂でもよい。
 この構成によれば、凹部2a内にネジ固定用樹脂25が流体状で充填され、その後、ネジ4が凹部2aにねじ込まれる。このとき、ネジ4が挿入されると、凹部2a内のネジ固定用樹脂25の不必要な分が外部に流出する。そして、ネジ止め後にネジ固定用樹脂25が固化する。これにより、凹部2a内は、ネジ4の周りに隙間が存在せず、水の浸入が防止できる。または、ネジ固定用樹脂25は、固形物であり、有底円筒形状の熱可塑性樹脂で構成されている。この場合には、凹部2aにネジ固定用樹脂25が接着などによって固定され、ネジ4がネジ固定用樹脂25の中央の空洞部25aにねじ込まれる。これによれば、ネジ4のねじ込みについても、応力がネジ固定用樹脂25で吸収され、モールド固定子2に応力の悪影響が及ばない。
 実施の形態1によれば、ヒートシンク3は、アルミダイキャスト製である。
 この構成によれば、ヒートシンク3が放熱性に優れ、基板9からの放熱性が高まる。
 実施の形態1によれば、熱伝導部材7には、熱伝導率がモールド樹脂8の熱伝導率よりも高い放熱性グリースが用いられる。
 この構成によれば、基板9からの熱が熱伝導部材7に伝熱され易く、基板9からの放熱性が高まる。
 実施の形態1によれば、熱伝導部材7には、熱伝導率がモールド樹脂8の熱伝導率よりも高い放熱性接着剤が用いられる。
 この構成によれば、基板9からの熱が熱伝導部材7に伝熱され易く、基板9からの放熱性が高まる。
 実施の形態1によれば、モールド樹脂8には、BMC(バルクモールディングコンパウンド)が用いられる。
 この構成によれば、モールド固定子2が固定子組立体15及び基板9をモールド樹脂8で封止して成形できる。
実施の形態2.
 図8は、本発明の実施の形態2に係る電動機1の一部を示すモールド固定子2とヒートシンク3との部分の構造説明図である。図9は、本発明の実施の形態2に係る電動機1を図8のC矢印から見て示す上視図である。図10は、本発明の実施の形態2に係るネジ4を図8のD部にて示す拡大図である。本実施の形態では、上記実施の形態と同様な事項の説明を省略し、その特徴部分のみを説明する。
 上記実施の形態では、駆動素子13からの放熱が基板9、モールド樹脂8、熱伝導部材7及びヒートシンク3を介して高められたものである。しかし、ネジ4も熱伝導性を有し、放熱経路が構成されている。そこで、本実施の形態では、ヒートシンク3を固定するために使用するネジ4が放熱経路としてより有効に活用され、駆動素子13からの放熱がネジ4を介して放熱性をより高めた構造である。
 図8~図10に示すように、固定用のネジ4は、発熱源である基板9に実装された駆動素子13の近傍に設置されている。特に、ネジ4と駆動素子13とは、回転子18の回転軸方向に沿って少なくともモールド樹脂8を挟んで直列に位置している。
 具体的には、駆動素子13は、回転子18の回転軸方向に対してヒートシンク3と反対側の基板9の表面に実装されている。そして、ネジ4は、駆動素子13の実装された基板9の表面とは反対側の裏面側における駆動素子13に対して回転子18の回転軸方向に沿った投影領域に配置されている。つまり、駆動素子13は、ネジ4の存する側の基板9の表面とは反対側の基板9の表面に実装されている。しかし、これに限らない。駆動素子13は、ネジ4の存する側の基板9の表面と同じ側の基板9の表面に実装されても良い。
 この結果、ネジ4が発熱源の駆動素子13に接近し、ネジ4が駆動素子13からヒートシンク3への伝熱経路としての効果が高まる。また、駆動素子13がネジ4の存する側の基板9の表面とは反対側の基板9の表面に実装されているので、ネジ4が駆動素子13からヒートシンク3への伝熱経路として利用されつつ、駆動素子13とネジ4との接触による損傷が完全に防止できる。
 このように、駆動素子13への損傷防止、水の浸入の防止及びヒートシンク3の強固な固着による落下防止の効果が上記実施の形態と同様に得られる。併せて、固定用のネジ4が駆動素子13の近傍まで到達して配置されているので、ネジ4が放熱経路としてより有効に活用でき、駆動素子13からのより高い放熱効果が得られる。
<実施の形態2の効果>
 実施の形態2によれば、電動機1は、基板9の表面に実装され、モールド樹脂8によって周りを囲まれた駆動素子13を含む。ネジ4と駆動素子13とは、回転子18の回転軸方向に沿って少なくともモールド樹脂8を挟んで直列に位置する。
 この構成によれば、ネジ4と駆動素子13とが近づき、ネジ4が駆動素子13からの熱をヒートシンク3に伝熱する伝熱経路としての効果が高まる。これにより、基板9からの放熱性が高まる。
 実施の形態2によれば、駆動素子13は、回転子18の回転軸方向に対してヒートシンク3と反対側の基板9の表面に実装されている。ネジ4は、駆動素子13の実装された基板9の表面とは反対側の裏面側における駆動素子13に対して回転子18の回転軸方向に沿った投影領域に配置されている。
 この構成によれば、ネジ4の挿入時のモールド樹脂8を押圧する衝撃が介在する基板9によって駆動素子13に伝わり難く、駆動素子13の損傷が更に防止できる。
実施の形態3.
 図11は、本発明の実施の形態3に係る空気調和装置20を示す構成図である。図11に示すように、空気調和装置20は、室内機21と、室内機21に2つの配管20a、20bを介して接続する室外機23と、を備える。室内機21には、送風機22が設けられている。室外機23には、送風機24が設けられている。送風機22及び送風機24には、ファンの回転駆動装置として、実施の形態1、2の電動機1が搭載されている。
 以上のように、空気調和装置20では、電動機1が送風機22及び送風機24に搭載されている。このため、駆動素子13にて発生した熱が効率的に放熱でき、駆動素子13の破損が抑制できる。したがって、空気調和装置20の信頼性が向上する。
 なお、電動機1は、送風機22又は送風機24のどちらか一方のみに搭載されていても良い。
<その他>
 本実施の形態では、空気調和装置20の送風機22、24に実施の形態1、2の電動機1が搭載される場合を説明した。しかし、これに限られない。空気調和装置20の他の部分又はその他の冷凍サイクル装置に実施の形態1、2の電動機1が搭載されても良い。
<実施の形態3の効果>
 実施の形態3によれば、空気調和装置20は、上記の電動機1を備える。
 この構成によれば、実施の形態1、2の電動機1を備える空気調和装置20では、駆動素子13の損傷及び基板9へ水が浸入して故障することが防止できるとともに、電動機1の基板9からの放熱性が高まる。
 1 電動機、2 モールド固定子、2a 凹部、3 ヒートシンク、3a 貫通孔、4 ネジ、5 ブラケット、6 回転子組立体、7 熱伝導部材、8 モールド樹脂、9 基板、10 固定子鉄心、11 巻線、12 絶縁部材、13 駆動素子、14 基板押え、15 固定子組立体、16 シャフト、17 軸受、18 回転子、19 固定子、20 空気調和装置、20a 配管、20b 配管、21 室内機、22 送風機、23 室外機、24 送風機、25 ネジ固定用樹脂、25a 空洞部。

Claims (13)

  1.  回転子と、
     ヒートシンクと、
     基板を含む固定子組立体をモールド樹脂で封止して構成されたモールド固定子と、
     前記モールド固定子と前記ヒートシンクとの間に介在した熱伝導部材と、
     前記モールド固定子と前記ヒートシンクとのネジ止め固定に用いられたネジと、
    を備え、
     前記ネジの挿入先端は、前記モールド固定子内にて前記回転子の回転軸方向に対して前記基板と前記熱伝導部材との間に位置して前記モールド樹脂に埋没する電動機。
  2.  前記ネジは、熱伝導率が前記モールド樹脂の熱伝導率よりも高い熱伝導体製である請求項1に記載の電動機。
  3.  前記ヒートシンクは、前記モールド固定子に対して前記回転子の回転軸方向に沿って直列に配置され、
     前記ネジは、前記回転子の回転軸方向に沿って前記ヒートシンク側から前記モールド固定子内に挿入される請求項1又は2に記載の電動機。
  4.  前記ヒートシンクは、前記ネジが挿通された貫通孔を有し、
     前記モールド固定子は、前記ネジが挿入された凹部を有する請求項1~3のいずれか1項に記載の電動機。
  5.  前記凹部と前記ネジとの間に介在したネジ固定用樹脂を備える請求項4に記載の電動機。
  6.  前記ネジ固定用樹脂は、有底円筒形状の熱可塑性樹脂である請求項5に記載の電動機。
  7.  前記ヒートシンクは、アルミダイキャスト製である請求項1~6のいずれか1項に記載の電動機。
  8.  前記熱伝導部材には、熱伝導率が前記モールド樹脂の熱伝導率よりも高い放熱性グリースが用いられる請求項1~7のいずれか1項に記載の電動機。
  9.  前記熱伝導部材には、熱伝導率が前記モールド樹脂の熱伝導率よりも高い放熱性接着剤が用いられる請求項1~7のいずれか1項に記載の電動機。
  10.  前記モールド樹脂には、BMC(バルクモールディングコンパウンド)が用いられる請求項1~9のいずれか1項に記載の電動機。
  11.  前記基板の表面に実装され、前記モールド樹脂によって周りを囲まれた駆動素子を含み、
     前記ネジと前記駆動素子とは、前記回転子の回転軸方向に沿って少なくとも前記モールド樹脂を挟んで直列に位置する請求項1~10のいずれか1項に記載の電動機。
  12.  前記駆動素子は、前記回転子の回転軸方向に対して前記ヒートシンクと反対側の前記基板の表面に実装され、
     前記ネジは、前記駆動素子の実装された前記基板の表面とは反対側の裏面側における前記駆動素子に対して前記回転子の回転軸方向に沿った投影領域に配置される請求項11に記載の電動機。
  13.  請求項1~12のいずれか1項に記載の電動機を備える空気調和装置。
PCT/JP2018/022938 2018-06-15 2018-06-15 電動機及び空気調和装置 WO2019239586A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525063A JP6961083B2 (ja) 2018-06-15 2018-06-15 電動機及び空気調和装置
CN201890000367.5U CN210806998U (zh) 2018-06-15 2018-06-15 电动机以及空调装置
PCT/JP2018/022938 WO2019239586A1 (ja) 2018-06-15 2018-06-15 電動機及び空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022938 WO2019239586A1 (ja) 2018-06-15 2018-06-15 電動機及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2019239586A1 true WO2019239586A1 (ja) 2019-12-19

Family

ID=68842457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022938 WO2019239586A1 (ja) 2018-06-15 2018-06-15 電動機及び空気調和装置

Country Status (3)

Country Link
JP (1) JP6961083B2 (ja)
CN (1) CN210806998U (ja)
WO (1) WO2019239586A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223553A (ja) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd 直流ブラシレスモ−タとその直流ブラシレスモ−タを用いたファンモータ
JP2015149844A (ja) * 2014-02-07 2015-08-20 三菱電機株式会社 制御装置一体型回転電機
JP2016025183A (ja) * 2014-07-18 2016-02-08 パナソニックIpマネジメント株式会社 回路モジュール及びモータ
JP2017055567A (ja) * 2015-09-10 2017-03-16 日立オートモティブシステムズ株式会社 電動駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223553A (ja) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd 直流ブラシレスモ−タとその直流ブラシレスモ−タを用いたファンモータ
JP2015149844A (ja) * 2014-02-07 2015-08-20 三菱電機株式会社 制御装置一体型回転電機
JP2016025183A (ja) * 2014-07-18 2016-02-08 パナソニックIpマネジメント株式会社 回路モジュール及びモータ
JP2017055567A (ja) * 2015-09-10 2017-03-16 日立オートモティブシステムズ株式会社 電動駆動装置

Also Published As

Publication number Publication date
JPWO2019239586A1 (ja) 2021-04-08
JP6961083B2 (ja) 2021-11-05
CN210806998U (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
US20080048535A1 (en) Controller for a direct current brushless motor
JP6183314B2 (ja) 電子装置及びそれを備えた駆動装置
CN106067711B (zh) 车辆用马达驱动控制装置
JP4374909B2 (ja) ブラシレスモータ
US11129271B2 (en) Motor, circuit board, and engine cooling module including the motor
KR102182396B1 (ko) 전동기, 송풍기, 공기 조화기 및 전동기의 제조 방법
JP2009131127A (ja) ブラシレスモータ
JPH10234158A (ja) 電動モータ
JP6505311B2 (ja) 電動機および換気扇
CN110710087A (zh) 电动驱动装置及电动动力转向装置
CN108633216B (zh) 马达组件及其马达电气盒
JP4675268B2 (ja) モールド電動機及び空気調和機
JP2005176451A (ja) ブラシレスモータ
JP6068933B2 (ja) 車両用モータユニット
KR102222961B1 (ko) 전동기 및 공기 조화기 및 전동기의 제조 방법
JP4879772B2 (ja) 電気機器
WO2019239586A1 (ja) 電動機及び空気調和装置
JP6327646B2 (ja) モータ
JP7395924B2 (ja) モータ装置
JP2018170895A (ja) 電子制御装置
CN110915111B (zh) 电动机及换气扇
JP2001186706A (ja) モールドモータ及びモールドモータの製造方法及び空気調和機
JP2021118624A (ja) モータ
WO2020100253A1 (ja) 電動機及び空気調和機
JP6118052B2 (ja) 車両用モータユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922689

Country of ref document: EP

Kind code of ref document: A1