WO2019238035A1 - 一种自动售货机及其货道高度检测方法 - Google Patents

一种自动售货机及其货道高度检测方法 Download PDF

Info

Publication number
WO2019238035A1
WO2019238035A1 PCT/CN2019/090675 CN2019090675W WO2019238035A1 WO 2019238035 A1 WO2019238035 A1 WO 2019238035A1 CN 2019090675 W CN2019090675 W CN 2019090675W WO 2019238035 A1 WO2019238035 A1 WO 2019238035A1
Authority
WO
WIPO (PCT)
Prior art keywords
cargo lane
lane
target
bucket
height
Prior art date
Application number
PCT/CN2019/090675
Other languages
English (en)
French (fr)
Inventor
周冲
张春光
许加波
姜天信
王春涛
Original Assignee
威海新北洋数码科技有限公司
山东新北洋信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海新北洋数码科技有限公司, 山东新北洋信息技术股份有限公司 filed Critical 威海新北洋数码科技有限公司
Publication of WO2019238035A1 publication Critical patent/WO2019238035A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F11/00Coin-freed apparatus for dispensing, or the like, discrete articles
    • G07F11/004Restocking arrangements therefor
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F11/00Coin-freed apparatus for dispensing, or the like, discrete articles
    • G07F11/007Coin-freed apparatus for dispensing, or the like, discrete articles wherein the storage and dispensing mechanism are configurable in relation to the physical or geometrical properties of the articles to be stored or dispensed

Definitions

  • the present application relates to the technical field of vending, for example, to a vending machine and a method for detecting a height of a cargo lane thereof.
  • a vending machine is a commercial automation device used to sell goods automatically. Vending machines are widely used because they are not restricted by time and place, can save manpower, and facilitate transactions.
  • the related art discloses a vending machine including a cabinet body and a control device.
  • a surface of the cabinet body is provided with a pick-up port.
  • a cabinet is provided with a cargo lane for accommodating goods, and a cargo lane for receiving goods in the cargo lane.
  • a delivery device for transporting goods between mouths wherein the cargo lane includes a support plate configured to carry goods, and the delivery device includes a bucket and a driving mechanism for driving the bucket to move within the cabinet.
  • the control device determines the target cargo lane containing the product according to the product to be purchased, and obtains the position of the target cargo lane stored in advance, and then controls the driving mechanism to drive the bucket to the front of the target cargo lane to receive the target cargo. After the goods are output from the lane, after the bucket receives the goods output from the target lane, the control device controls the driving mechanism to drive the bucket to the picking port for the user to remove the goods.
  • the present application provides a vending machine and a method for detecting a height of a cargo lane thereof, so as to avoid a situation in which an abnormal situation occurs in a vending machine of the related technology due to an uncertain height of the cargo lane.
  • a method for detecting the height of a cargo lane provided in an embodiment of the present application is applied to a vending machine.
  • the vending machine includes a cabinet, and a cargo bucket is provided in the cabinet, a driving mechanism for driving the movement of the bucket, and goods for storing goods.
  • the vending machine further includes a detection device provided in the cargo hopper. The detection device is configured to detect the positional relationship between the hopper and the target cargo path.
  • the detection method of the height of the cargo path includes: obtaining the initial position of the target cargo path; Obtain the corrected position of the target cargo lane from the initial position of the lane; control the bucket to move to the corrected position of the target lane; control the bucket to move from the corrected position of the target lane to the initial position of the target lane, during the movement of the bucket
  • the height of the target cargo lane is determined by the signal output from the detection device.
  • the correction position of the target cargo lane is lower than the initial position of the target cargo lane.
  • a plurality of cargo lanes are arranged in at least two layers, and each cargo lane includes a support plate for supporting goods.
  • the correction position of the target cargo lane is directly below the initial position of the target cargo lane.
  • the height difference between the corrected position and the initial position of the target cargo lane is the first preset value DH 1 ; wherein, when the target cargo lane is the cargo lane located at the lowest level, the first preset value DH 1 satisfies: And DH 1 ⁇ H 1 , H 1 is the distance from the support plate of the target cargo lane to the floor of the cabinet.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ H 2 , H 2 is the height of the receiving space of the cargo lane below the target cargo lane.
  • the step of determining the height of the target cargo path by using a signal output by the detection device includes: determining a height position of the bucket when the first signal output by the detection device is received; The positional relationship between the bucket and the target cargo lane determines the height of the target cargo lane when the first signal is received; wherein, when the height difference between the bucket and the target cargo lane is a second preset value, the detection device outputs the first A signal.
  • the hopper has a carrier plate for carrying goods.
  • the carrier plate is lower than the support plate of the target cargo lane.
  • the height difference between the upper surface and the upper surface of the support plate of the target cargo lane is a second preset value, and the second preset value is smaller than the first preset value.
  • the initial position of the target cargo lane is updated according to the height of the target cargo lane.
  • the method for detecting the height of the cargo lane further includes: determining the target cargo lane according to a product purchase instruction.
  • An embodiment of the present application provides a vending machine, which includes a cabinet and a control device.
  • the cabinet is provided with a bucket, a driving mechanism for driving the movement of the bucket, and a plurality of cargo lanes for storing goods.
  • the vending machine It also includes a detection device provided in the cargo hopper, and the detection device is configured to detect the positional relationship between the cargo hopper and the target cargo lane; wherein the control device is configured to acquire the initial position of the target cargo lane and acquire the target according to the initial position of the target cargo lane
  • the correction position of the cargo lane controls the movement of the hopper to the correction position of the target cargo lane, and controls the movement of the hopper from the correction position of the target cargo lane to the initial position of the target cargo lane.
  • the The signal determines the height of the target cargo lane.
  • the correction position of the target cargo lane is lower than the initial position of the target cargo lane.
  • a plurality of cargo lanes are arranged in at least two layers, and each cargo lane includes a support plate for supporting goods.
  • the correction position of the target cargo lane is directly below the initial position of the target cargo lane.
  • the height difference between the corrected position and the initial position of the target cargo lane is the first preset value DH 1 ; wherein, when the target cargo lane is the cargo lane located at the lowest level, the first preset value DH 1 satisfies: And DH 1 ⁇ H 1 , H 1 is the distance from the support plate of the target cargo lane to the floor of the cabinet.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ H 2 , H 2 is the height of the receiving space of the cargo lane below the target cargo lane.
  • control device is configured to determine the height position of the bucket when receiving the first signal output from the detection device, and according to the height position of the bucket and the position of the bucket and the target cargo lane when the first signal is received The relationship determines the height of the target cargo lane; where the detection device outputs a first signal if the height difference between the bucket and the target cargo lane is a second preset value.
  • control device is further configured to update the initial position of the target cargo lane according to the height of the target cargo lane after determining the height of the target cargo lane.
  • control device is further configured to determine the target cargo lane according to the commodity purchase instruction before acquiring the initial position of the target cargo lane.
  • FIG. 1 is a schematic diagram of an external structure of a vending machine according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an internal structure of a vending machine according to an embodiment of the present application.
  • FIG. 3 is a block diagram of a vending machine provided according to an embodiment of the present application.
  • FIG. 4 is a partial enlarged view of a cargo path of a vending machine provided according to an embodiment of the present application
  • FIG. 5 is a partial enlarged view of a bucket of a vending machine provided according to an embodiment of the present application.
  • FIG. 6 is a schematic coordinate diagram of a cross section of a storage device of a vending machine according to an embodiment of the present application
  • FIG. 7 is a flowchart of a method for detecting a height of a cargo lane of a vending machine according to an embodiment of the present application
  • step S500 is a flowchart of step S500 in the embodiment of FIG. 7;
  • FIG. 9 is a flowchart of another cargo lane height detection method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control device for a vending machine according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a computing module in the embodiment of FIG. 10.
  • Icon 010-Vending machine; 100-cabinet; 110-cabinet; 112-coordinate origin; 120-cabinet door; 121-pickup port; 200-storage device; 210-cargo lane; 2101-target cargo lane; 2102-first cargo lane; 211-commodity conveying mechanism; 212-support plate; 213-partition; 214-testing piece; 215-center point of the front side of the front surface of the support plate of the cargo lane; 216-of the target cargo lane Corrected position; 220-base frame; 300-delivery device; 310-cargo hopper; 311-carrying plate; 312-center point of the upper end of the rear end surface of the car-carrying plate of the hopper; 320-cargo drive mechanism; Mechanism; 322-vertical drive mechanism; 400-detection device; 410-sensor; 500-storage device; 600-control device; 700-moving path of the bucket.
  • horizontal and vertical do not mean that the component is required to be absolutely horizontal or drooping, but may be slightly inclined.
  • horizontal simply means that its direction is more horizontal than “vertical”, which does not mean that the structure must be completely horizontal, but it can be slightly tilted.
  • the vending machine of the related technology may have a height of the goods lane.
  • the problem identified is that when the height of the cargo lane is uncertain, the bucket is driven to the front of the target cargo lane and then shipped based on the pre-stored location of the target cargo lane, which may cause abnormal shipments.
  • FIG. 1 and 2 are schematic structural diagrams of a vending machine provided according to an embodiment of the present application
  • FIG. 3 is a block diagram of a vending machine provided according to an embodiment of the present application. The vending machine will be described.
  • the vending machine 010 of this embodiment includes a cabinet 100, a storage device 200, a delivery device 300, a detection device 400, a storage device 500, and a control device 600.
  • the cabinet 100 includes a cabinet body 110 and a cabinet door 120.
  • the cabinet body 110 is movably connected to the cabinet door 120.
  • the cabinet body 110 includes an opening (not shown in the figure).
  • the cabinet door 120 may be opposite to the cabinet body 110. The opening moves to open or close the cabinet 110.
  • the cabinet door 120 is provided with a pick-up port 121 for a user to take out a commodity.
  • the storage device 200 is configured to accommodate goods for sale. As shown in FIG. 2, the storage device 200 is disposed inside the cabinet 110, and the storage device 200 is spaced apart from the cabinet door 120.
  • the storage device 200 includes a plurality of cargo lanes 210 and a plurality of cargo lanes 210 for accommodating goods.
  • M layers are shown along the up and down direction (that is, the direction shown by the arrow cd) (in this embodiment, M is greater than 2, in other embodiments, M may be equal to 1 or 2), along the left and right directions (that is, shown by the arrow ab
  • the direction is arranged in N rows, and the length direction of the cargo lane 210 extends in the front-rear direction (that is, a direction indicated by an arrow ef).
  • the storage device 200 includes sixty-six cargo lanes 210.
  • the sixty-six cargo lanes 210 are arranged in six layers in the up-down direction and eleven rows in the left-right direction.
  • the storage device 200 further includes a base frame 220, which is located between the lowermost layer of the cargo lane 210 and a bottom plate (not shown) of the cabinet 110. The base frame 220 is used to support the cargo lane 210.
  • the cargo lane 210 includes a support plate 212 and partitions disposed above the support plate 212 at intervals in the left-right direction. 213. Between the support plate 212 and two adjacent partitions 213, a goods channel 210 for accommodating goods is formed. In this embodiment, a plurality of cargo lanes 210 located on the same floor share one support plate 212.
  • the delivery device 300 is configured to carry goods between the storage device 200 and the pickup port 121. As shown in FIG. 2, the delivery device 300 is located between the cabinet door 120 and the storage device 200.
  • the delivery device 300 includes a bucket 310 and a bucket driving mechanism 320. An end of the bucket 310 near the cabinet door 120 is provided with an exit, and an end of the bucket 310 near the cargo lane 210 is provided with an inlet.
  • the bucket drive mechanism 320 includes a horizontal drive mechanism 321 and a vertical drive mechanism 322.
  • the horizontal drive mechanism 321 includes a horizontal bracket (not shown) and a first power assembly (not shown).
  • the vertical drive mechanism 322 includes A vertical bracket (not shown in the figure) and a second power assembly (not shown in the figure).
  • the bucket 310 is drivingly connected to the vertical bracket.
  • the second power component is disposed between the shelf 310 and the vertical bracket to drive the bucket 310 to move up and down on the vertical bracket.
  • the vertical bracket is drivingly connected to the horizontal bracket.
  • a power assembly is disposed between the vertical support and the horizontal support to drive the vertical support to carry the bucket 310 on the horizontal support to move in the left-right direction.
  • the bucket driving mechanism 320 can drive the bucket 310 to move in the up-down direction and / or the left-right direction, so that the entrance of the bucket 310 is opposite to the exit of any one of the cargo lanes 210, or the exit of the bucket 310 and the pickup port 121 relative.
  • the goods in the cargo lane 210 can be sent into the bucket 310; when the exit of the bucket 310 is opposite the pickup port 121, The user can pick up the goods in the bucket 310 through the pick-up port 121.
  • FIG. 5 is a partial enlarged view of the bucket 310 of the vending machine according to the embodiment of the present application.
  • a carrying plate 311 for carrying goods is provided in the bucket 310.
  • the height of the carrying plate 311 of the hopper 310 and the height of the support plate 212 of the cargo lane 210 are required. Only by meeting the preset requirements, can the goods in the cargo lane 210 be smoothly entered into the bucket 310.
  • the upper surface of the carrier plate 311 of the cargo hopper 310 and the upper surface of the support plate 212 of the cargo lane 210 are required to be on the same plane, so that the goods output from the cargo lane 210 can be horizontally moved into the cargo hopper 310, or the cargo is required.
  • the upper surface of the carrying plate 311 of the bucket 310 is lower than the upper surface of the supporting plate 212 of the cargo lane 210 by a set height, so that the products output from the cargo lane 210 can fall into the cargo bucket 310.
  • the front end of the support plate 212 is depressed, and the degree to which the support plate 212 is depressed is also affected by the weight of the goods.
  • the height of the front end of the support plate 212 of the cargo lane 210 is uncertain, that is, the actual height of the cargo lane 210 is uncertain. Since the actual height of the support plate 212 of the cargo lane 210 may be inconsistent with the theoretical height, and the actual height of the support plate 212 of the cargo lane 210 is affected by the weight of the goods in the cargo lane 210, there is uncertainty, which results in that the cargo lane 210 faces the cargo.
  • the height of the carrier plate 311 of the hopper 310 and the height of the support plate 212 of the haul lane 210 may not meet the preset requirements, which in turn hinders the entry of goods in the haul lane 210 into the hopper 310 and causes shipment. abnormal.
  • the detection device 400 is arranged to detect the height of the cargo path 210.
  • the detection device 400 is disposed on the bucket 310 and can move with the bucket 310.
  • the detection device 400 includes a sensor 410.
  • a detection piece 214 is provided at the front end of each cargo lane 210 of the vending machine 010.
  • the sensor 410 can be connected to the detection piece 214 at the front end of the cargo lane 210. Mate or separate. In the two cases where the sensor 410 cooperates with the detection member 214 and the sensor 410 is separated from the detection member 214, the sensor 410 outputs different signals.
  • the detecting member 214 is connected to the front end of the partition plate 213. In other embodiments provided in the present application, the detecting member 214 may also be disposed at the front end of the support plate 212.
  • the position relationship between the bucket 310 and the cargo lane 210 meets a preset requirement.
  • the height difference between the bucket 310 and the cargo path 210 is a second preset value, wherein the second preset value is greater than or equal to zero.
  • the height of the cargo hopper 310 is expressed by the height of the upper surface of the carrier plate 311, and the height of the cargo channel 210 is expressed by the height of the upper surface of the support plate 212 of the cargo channel 210.
  • the positional relationship between the upper surface of the carrier plate 311 of the bucket 310 and the upper surface of the support plate 212 of the cargo path 210 meets a preset requirement.
  • the upper surface of the carrying plate 311 of the bucket 310 and the upper surface of the supporting plate 212 of the cargo lane 210 are located on the same plane, that is, the second preset value is equal to zero, or the upper surface of the carrying plate 311 of the bucket 310 is low
  • the height difference between the upper surface of the support plate 212 of the cargo lane 210 is a set value, that is, the second preset value is greater than zero.
  • the actual height of the cargo lane 210 can be obtained through the position relationship between the cargo hopper 310 and the cargo lane 210 and the height of the cargo hopper 310.
  • the actual height of the cargo lane 210 That is, the height of the carrier plate 311 of the hopper 310 and the height of the support plate 212 of the cargo path 210 can satisfy preset requirements during shipment, thereby ensuring normal shipment. In this way, it is possible to avoid the abnormal shipping situation caused by the uncertainty of the actual height of the cargo lane 210.
  • the storage device 500 is configured to store a control program of the vending machine 010 and data and variables generated during the program operation.
  • the storage device 500 is configured to store an initial position parameter of the bucket 310 and a parameter of an initial position of each cargo lane 210, and store a height difference between the initial position of each cargo lane 210 and a corrected position of the cargo lane 210.
  • the initial position of the bucket 310 is the position where the bucket 310 stops after the initialization of the automatic vending machine 010 is completed and the user removes the goods in the bucket 310; the position parameters of each lane 210 include the cargo The horizontal and vertical parameters of the track 210.
  • each cargo lane 210 is below the initial position of the cargo lane 210, and the height difference between the correction position of each cargo lane 210 and the initial position of the cargo lane 210 is a first preset Value DH 1 .
  • the first preset value DH 1 is set to ensure that even when the front end of the supporting goods channel 212 of plate 210 is depressed, the front end of the support plate 212 is still located above the correct position of the goods channel 210.
  • each cargo lane 210 corresponds to a first preset value DH 1.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ H 1 , where H 1 is the distance between the support plate 212 of the cargo lane 210 and the bottom plate of the cabinet 110.
  • H 1 is the distance between the support plate 212 of the cargo lane 210 and the bottom plate of the cabinet 110.
  • the correction position of the cargo lane 210 in the up-down direction can be located on the base frame 220 Location.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ H 2 , where H 2 is the height of the accommodating space of the cargo lane 210 below the cargo lane 210.
  • the correction position of the cargo lane 210 in the up-down direction can be located below the cargo lane 210. Accommodating space.
  • the correction position of each cargo lane 210 may also be located above the initial position of the cargo lane 210.
  • the cross-section of the storage device of the vending machine 010 is represented using an XY rectangular coordinate system, and the position of each cargo lane 210 uses the upper center point 215 of the front end surface of the support plate 212 of the cargo lane 210 at an XY right angle.
  • the coordinates in the coordinate system are used to represent, that is, the position parameter of each cargo lane 210 includes the X coordinate value and the Y coordinate value of the center point 215 corresponding to the cargo lane 210.
  • FIG. 6 is a schematic coordinate diagram of a cross section of a storage device of a vending machine according to an embodiment of the present application.
  • the section of the storage device 200 is the plane on which the exits of the multiple cargo lanes 210 are located. As shown in FIG.
  • the positive direction of the X axis extends to the right in the left-right direction, and the positive direction of the Y axis extends upward in the up-down direction.
  • the sixty-six cargo lanes 210 included in the vending machine 010 are arranged in six layers in the Y direction and eleven columns in the X direction.
  • the initial position of each cargo lane 210 uses the front end of the support plate 212 of the cargo lane 210
  • the coordinates of the center point 215 of the upper side of the surface are used to indicate that the storage device 500 has previously stored parameters of the initial position of the cargo lane 210, that is, the X coordinate value and Y coordinate value of the center point 215 corresponding to the cargo lane 210. .
  • the coordinate origin of the XY rectangular coordinate system may also be selected and set according to actual needs, for example, the endpoint of the lower left corner of the base frame 220 is used as the coordinate origin.
  • the position of the cargo lane 210 can also be expressed in other ways according to actual needs.
  • the position of each cargo lane 210 is represented by the upper left end of the front end surface of the support plate 212 of the cargo lane 210, or each cargo lane.
  • the position of 210 is indicated using the right end point of the upper side of the front end surface of the support plate 212 of the cargo lane 210.
  • the control device 600 is electrically connected to the storage device 200, the delivery device 300, the detection device 400, and the storage device 500, and the control device 600 is configured to control the storage device 200, the delivery device 300, the detection device 400, and the storage device 500 of the vending machine 010 jobs.
  • the control device 600 is configured to obtain a product purchase instruction input by a user, determine a target cargo lane that accommodates the product according to the product to be purchased by the user, acquire parameters of the initial position of the target cargo lane stored in the storage device 500, and according to the target cargo.
  • the parameters of the initial position of the lane control the bucket drive mechanism 320 of the delivery device 300 to drive the bucket 310 to the initial position of the target lane, and the goods transport mechanism 211 that controls the target lane to send the goods to be purchased by the user from the target lane. It is transported to the hopper 310 and controls the hopper driving mechanism 320 to drive the hopper 310 to the pick-up port 121 so that the user can remove the goods in the hopper 310 through the pick-up port 121.
  • the control device 600 is further configured to obtain the initial position of the target cargo lane, obtain the corrected position of the target cargo lane according to the initial position of the target cargo lane, and control the bucket driving mechanism 320 of the delivery device 300 to drive the bucket 310 to the target cargo lane.
  • the correction position, and the control of the bucket drive mechanism 320 to drive the bucket 310 from the correction position of the target lane to the initial position of the target lane is output by the detection device 400 provided in the bucket 310.
  • the signal determines the height of the target lane.
  • FIG. 7 is a flowchart of a method for detecting a height of a cargo lane of a vending machine according to an embodiment of the present application.
  • the method may be executed by the control device 600 of the vending machine 010 shown in FIG. 3. As shown in the figure, the method includes steps S200 to S500.
  • step S200 an initial position of the target cargo lane is obtained.
  • the parameters of the initial position of each cargo lane are stored in the storage device 500. After the control device 600 determines the target cargo lane, the target cargo lane is read from the storage device 500. Parameters for the initial position.
  • step S300 the corrected position of the target cargo lane is acquired according to the initial position of the target cargo lane.
  • the correction position of the target cargo lane is obtained according to the initial position of the target cargo lane.
  • the correction position of the target cargo lane is lower than the initial position of the target cargo lane.
  • the correction position of the target cargo lane is directly below the initial position of the target cargo lane, and the height difference between the correction position of the target cargo lane and the initial position of the target cargo lane is a first preset value DH 1 .
  • the correction position of the target cargo lane may also be higher than the initial position of the target cargo lane.
  • the correction position of the target cargo lane is directly above the initial position of the target cargo lane.
  • the control device 600 acquires the parameters of the initial position of the target cargo lane, it determines the parameters of the corrected position of the target cargo lane according to the parameters of the initial position of the target cargo lane.
  • the position parameters of the target cargo lane include horizontal parameters and vertical parameters.
  • the correction position of the target cargo lane is lower than the initial position of the target cargo lane, and the vertical position of the correction position of the target cargo lane is vertical.
  • the straight parameter is equal to the vertical parameter of the initial position of the target cargo lane minus the first preset value DH 1.
  • the first preset value DH 1 is set to ensure that even when the front end of the support plate 212 of the target cargo lane is depressed, the support The front end of the plate 212 is still above the correction position of the target cargo lane.
  • the horizontal parameter of the corrected position of the target cargo lane is the same as the horizontal parameter of the initial position of the target cargo lane. Because the front end of the support plate 212 of the target cargo lane is depressed by the goods accommodated in the target cargo lane, the vertical position of the support plate 212 changes, and the horizontal position of the support plate 212 does not change. Therefore, by setting the target cargo The horizontal parameter of the correction position of the lane is the same as the horizontal parameter of the initial position of the target cargo lane. The correction position of the target cargo lane can be located directly below the target cargo lane. Then, the bucket 310 can be moved upwards by driving the bucket 310 upwards. Accurately reach the position corresponding to the target cargo lane.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ H 1 , where H 1 is the distance between the support plate 212 of the target cargo lane and the bottom plate of the cabinet 110.
  • H 2 is the height of the accommodating space of the cargo lane 210 (hereinafter referred to as the first cargo lane) below the target cargo lane.
  • the cross section of the storage device of the vending machine 010 is expressed using an XY rectangular coordinate system, and the position of each cargo lane 210 uses the center of the upper side of the front end surface of the support plate 212 of the cargo lane 210.
  • the coordinate value of the point 215 in the XY rectangular coordinate system is expressed.
  • the positive direction of the X axis extends rightward in the left-right direction
  • the positive direction of the Y axis extends upward in the vertical direction.
  • the sixty-six cargo lanes 210 included in the vending machine 010 are arranged in six layers and eleven rows, and the target cargo lane 2101 is a cargo lane 210 located on the first floor from top to bottom and in the fourth column from left to right.
  • the coordinate value of the initial position of the target cargo lane stored by the storage device 500 is (X1, Y1), that is, the horizontal parameter of the target cargo lane 2101 is X1 and the vertical parameter is Y1, where the target cargo lane is located using the target cargo
  • the coordinate value of the center point 215 on the front side of the front surface of the support plate 212 of the lane is expressed in the XY rectangular coordinate system.
  • the first preset value DH 1 satisfies: And DH 1 ⁇ S, where S is the height of the accommodation space of the first cargo lane 2102 located below the target cargo lane 2101. By setting this, the calibration position of the target cargo lane can be located in the accommodation space of the first cargo lane 2102. The lower part.
  • the coordinate origin of the XY rectangular coordinate system may also be selected and set according to actual needs.
  • the end point of the lower left corner of the base frame 220 of the storage device 200 is used as coordinates. origin.
  • the position of the cargo lane 210 can also be expressed in other ways according to actual needs.
  • the position of each cargo lane 210 is represented by the upper left end of the front end surface of the support plate 212 of the cargo lane 210, or each cargo lane.
  • the position of 210 is indicated using the right end point of the upper side of the front end surface of the support plate 212 of the cargo lane 210.
  • step S400 the bucket is controlled to move to the correction position of the target goods lane.
  • the control device 600 controls the bucket driving mechanism 320 to drive the bucket 310 to the correction position of the target cargo lane.
  • the position parameter of the bucket 310 includes the horizontal parameter and the vertical parameter of the bucket 310.
  • the horizontal parameter of the bucket 310 and the correction position of the target cargo lane The horizontal parameters are the same, and the vertical parameters of the bucket 310 are the same as the vertical parameters of the correction position of the target cargo lane. As shown in FIG.
  • the position of the bucket 310 is represented by the coordinate value of the center point 312 of the upper end of the rear end surface of the load plate 311 of the bucket 310 in the XY rectangular coordinate system, and arrives at the bucket 310
  • the position coordinate value of the bucket 310 is (X1, Y2), that is, the coordinate value of the center point 312 of the upper end of the rear end surface of the load plate 311 of the bucket 310 is (X1 , Y2).
  • the control device 600 controls the bucket driving mechanism 320 to drive the bucket 310 to move in the horizontal direction and the vertical direction at the same time, so that the bucket 310 can quickly reach the target cargo lane. Calibration position.
  • the control device 600 controls the bucket driving mechanism 320 to drive the bucket 310 when the vending machine 010 is powered on and initialized, and each time it detects that the goods in the bucket 310 are removed by the user.
  • the initial position of the bucket 310 when the bucket 310 is located at the initial position, the lower right corner of the bucket 310 is located at the lower right corner of the base frame 220 of the storage device 200, that is, at the coordinate origin 112 shown in FIG.
  • the control device 600 controls the horizontal drive mechanism 321 to drive the vertical drive mechanism 322 to move the bucket 310 to the left, and at the same time controls the vertical drive mechanism 322 to drive the bucket 310 to move upward, thereby causing the bucket 310 Move to the left in the horizontal direction and move up in the vertical direction at the same time, so that the bucket 310 can quickly reach the correction position of the target cargo lane.
  • the bucket driving mechanism 320 drives the bucket 310 to move from the lower right corner of the base frame 220 of the storage device 200 to the correction position of the target cargo lane along the path shown by the diagonal line 700.
  • the initial position of the bucket 310 may also be selected and set according to actual needs. For example, when the bucket 310 is located at the initial position, the lower left corner of the bucket 310 is located at the lower left corner of the base frame 220 of the storage device 200. In this case, the bucket 310 is moved from the initial position toward the target cargo lane. When the correction position is moved, it is necessary to control the bucket 310 to move to the right in the horizontal direction and to move upward in the vertical direction.
  • step S500 the bucket 310 is controlled to move from the corrected position of the target lane to the initial position of the target lane.
  • the height of the target lane is determined by a signal output from the detection device.
  • the bucket 310 is driven to move upward.
  • the position relationship between the bucket 310 and the target cargo lane is determined by a signal output from the detection device 400 provided in the bucket 310, and the cargo
  • the height position of the bucket 310 and the positional relationship between the bucket 310 and the target cargo lane determine the height of the target cargo lane.
  • FIG. 8 is a flowchart of step S500 in the embodiment of FIG. 7.
  • step S500 may include steps S501 and S502.
  • step S501 when the control device receives the first signal output from the detection device, the height position of the bucket is determined.
  • the detection device when the height difference between the bucket and the target cargo lane is a second preset value, the detection device outputs a first signal.
  • the control device 600 can obtain the position parameters of the bucket 310 in real time. For example, the control device 600 controls the bucket drive when the vending machine 010 is powered on and initialized, and each time the goods in the bucket 310 are detected by the user.
  • the mechanism 320 drives the bucket 310 to an initial position of the bucket 310.
  • the control device 600 can obtain the position parameter of the bucket 310 according to the initial position of the bucket 310 and the displacement amount of the movement of the bucket 310 during each movement of the bucket 310. For example, the coordinate value of the initial position of the bucket 310 is (X0, Y0).
  • the control device 600 controls the horizontal driving mechanism 321 to drive the displacement of the bucket 310 to the left in the horizontal direction to DX, and controls the vertical driving mechanism 322 to drive the cargo.
  • the displacement amount of the bucket 310 moving upward in the vertical direction is DY, and the position coordinate value of the bucket 310 after the movement is (X0-DX, Y0 + DY).
  • step S502 the height of the target cargo lane is determined according to the height position of the cargo bay and the positional relationship between the cargo bay and the target cargo lane when the control device receives the first signal.
  • the control device 600 controls the vertical drive mechanism 322 of the hopper drive mechanism 320 to drive the hopper 310 from the correction position of the target lane to the initial position of the target lane. Location moved. In this embodiment, the control device 600 controls the upward movement of the bucket 310. During the movement of the bucket 310, the control device 600 detects the signal output from the sensor 410 provided on the bucket 310 to determine whether the sensor 410 is in contact with the The detection member 214 cooperates. As described above, when the sensor 410 cooperates with the detection member 214 and the sensor 410 is separated from the detection member 214, the sensor 410 outputs different signals.
  • the sensor 410 when the sensor 410 cooperates with the detecting member 214, the sensor 410 outputs a first signal. In an embodiment, when the sensor 410 is separated from the detecting element 214, the sensor 410 outputs a second signal.
  • the control device 600 can determine whether the sensor 410 cooperates with the detection element 214 according to the signal output from the sensor 410. For example, when the signal output by the sensor 410 changes from the second signal to the first signal, the control device 600 determines that the sensor 410 is connected with the detection Piece 214 cooperates.
  • the height difference between the bucket 310 and the target cargo lane is a second preset value, and the positional relationship between the bucket 310 and the target cargo lane meets the preset Claim.
  • Meeting the preset requirements may mean that the upper surface of the carrier plate 311 of the bucket 310 and the upper surface of the support plate 212 of the target cargo lane are located on the same plane.
  • meeting the preset requirements may also mean that the upper surface of the load plate 311 of the bucket 310 is lower than the second preset value of the upper surface of the support plate 212 of the target cargo lane. It should be understood that when the upper surface of the carrier plate 311 of the bucket 310 and the upper surface of the support plate 212 of the target cargo lane are located on the same plane, the second preset value may be regarded as zero.
  • the control device 600 determines that the sensor 410 cooperates with the detection member 214, the control device 600 obtains the position parameters of the bucket 310, and determines the target cargo according to the height relationship between the bucket 310 and the target cargo lane when the sensor 410 cooperates with the detection member 214.
  • the height of the road As described above, the position of the bucket 310 is expressed using the coordinates of the center point 312 of the upper end of the rear end surface of the carrying plate 311 of the bucket 310 in the XY rectangular coordinate system.
  • the height relationship between the load plate 311 of the bucket 310 and the support plate 211 of the target cargo lane determines the height of the target cargo lane.
  • the height of the target cargo lane is equal to the cargo at this time.
  • the height of the bucket 310 if the upper surface of the carrier plate 311 of the hopper 310 is lower than the second preset value of the upper surface of the support plate 212 of the target cargo lane with the cooperation of the sensor 410 and the detection member 214, the height of the target cargo lane It is equal to the sum of the height of the bucket 310 and the second preset value at this time.
  • the first preset value DH 1 satisfy: And DH 1 ⁇ H 1 , where H 1 is the distance between the support plate 212 of the target cargo lane and the bottom plate of the cabinet 110.
  • H 1 is the distance between the support plate 212 of the target cargo lane and the bottom plate of the cabinet 110.
  • the target track is not the goods storage device 200 satisfies a first preset value DH 1: And DH 1 ⁇ H 2 , where H2 is the height of the receiving space of the first cargo lane below the target cargo lane.
  • the first preset value DH 1 can satisfy the condition that the front end of the support plate 212 is still positioned above the correction position of the target cargo lane even when the front end of the support plate 212 of the target cargo lane is depressed.
  • the correction position of the lane is as close as possible to the actual position of the target cargo lane, and the correction position of the target cargo lane is as far as possible from the initial position of the bucket 310. Since the bucket 310 is moved from the initial position to the correction position of the target cargo lane, You can control the bucket 310 to move in the horizontal direction and move in the vertical direction at the same time.
  • the correction position of the target cargo lane is obtained according to the initial position of the target cargo lane, the bucket is controlled to move to the correction position of the target cargo lane, and the bucket is controlled from the correction position of the target cargo lane to the target.
  • the initial position of the cargo lane moves.
  • the height of the target cargo lane is determined by the signal output by the detection device.
  • the signal output from the detection device on the cargo bucket determines the height of the target cargo lane. Therefore, with the method for detecting the height of the cargo lane in this embodiment, the actual height of the cargo lane can be accurately known when the actual height of the cargo lane changes, so that based on the actual height of the cargo lane, the height of the bucket and the height of the cargo lane can be satisfied. Preset requirements (such as aligning the carrier plate of the bucket with the support plate of the cargo lane) to ensure that the shipment is normal. In this way, abnormal shipping conditions caused by the height of the cargo lane can be avoided.
  • the bucket in the method for detecting the height of the cargo lane in this embodiment, after determining the correction position of the target cargo lane, the bucket is controlled to move in the horizontal direction and the vertical direction at the same time, so that the cargo bucket can quickly reach the target cargo lane. At the correct position, the detection efficiency of the detection device is improved.
  • the vending machine in the embodiment of the present application determines the relative position relationship between the bucket and the target cargo lane by using a detection device, and can implement the above-mentioned method for detecting the height of the cargo lane by combining a plurality of modules, and therefore also has the effect of the above method.
  • FIG. 9 is a flowchart of another method for detecting a cargo lane height of a vending machine according to an embodiment of the present application.
  • This embodiment can be used as an example implementation of the embodiment shown in FIG. 7.
  • the difference between this embodiment and the embodiment shown in FIG. 7 is that the method for detecting the height of the cargo lane further includes steps S100 and steps before step S200. Step S600 after S500.
  • step S100 the target goods lane is determined according to the product purchase instruction.
  • the control device 600 After receiving the product purchase instruction input by the user, the control device 600 determines a cargo lane 210 containing the product according to the product to be purchased by the user, and uses the cargo lane 210 as a target cargo lane.
  • step S600 after determining the height of the target cargo lane, the initial position of the target cargo lane is updated according to the height of the target cargo lane.
  • the control device 600 controls the storage device 500 to store the height position of the target cargo lane.
  • the control device 600 updates the parameters of the initial position of the target cargo lane stored in the storage device 500 according to the height of the target cargo lane determined in step S500, so that when the flow of the method for detecting the height of the cargo lane is executed again, control is performed.
  • the device 600 may determine the correction position of the target cargo lane according to the parameters of the initial position of the target cargo lane recorded this time, or so that the control device 600 may use the parameters of the initial position of the target cargo lane during the sales process of the product.
  • the hopper 310 is driven to a position corresponding to the target lane to receive the products output by the target lane.
  • the control device 600 drives the bucket 310 to a position corresponding to the target cargo lane according to the determined height of the target cargo lane, so that the The upper surface and the upper surface of the support plate 211 of the target cargo lane meet the preset requirements, and the commodity transport mechanism 211 of the target cargo lane is controlled to transport the products to be purchased by the user to the bucket 310.
  • the control device 600 drives the bucket 310 to a position corresponding to the target cargo lane according to the determined height of the target cargo lane, so that the The upper surface and the upper surface of the support plate 211 of the target cargo lane meet the preset requirements, and the commodity transport mechanism 211 of the target cargo lane is controlled to transport the products to be purchased by the user to the bucket 310.
  • a target cargo lane is determined and a height of the target cargo lane is detected according to a product purchase instruction. Therefore, by using the method for detecting the height of the goods lane of the vending machine of this embodiment, the height of the goods lane can be detected during the process of selling goods, and the working efficiency of the vending machine is improved.
  • the height of the target cargo lane is recorded after the height of the target cargo lane is determined, so that in the subsequent sales process, the bucket can be controlled according to the updated height of the cargo lane. Goods, avoiding abnormal shipments due to the height of the cargo lane.
  • FIG. 10 is a schematic diagram of a control device for a vending machine according to an embodiment of the present application.
  • the control device 600 includes a calling module 610, a calibration module 620, a first execution module 630, a second execution module 640, a calculation module 650, and a recording module 660.
  • the calling module 610 is set to obtain the initial position of the target cargo lane.
  • the correction module 620 is configured to obtain the correction position of the target cargo lane according to the initial position of the target cargo lane.
  • the first execution module 630 is configured to control the bucket to move to the correction position of the target goods lane.
  • the second execution module 640 is configured to control the bucket to move from the correction position of the target cargo lane to the initial position of the target cargo lane.
  • the calculation module 650 is configured to determine the height of the target cargo lane by a signal output from the detection device 600 during the movement of the bucket from the corrected position of the target cargo lane to the initial position of the target cargo lane.
  • the recording module 660 is configured to update the initial position of the target cargo lane according to the height of the target cargo lane after determining the height of the target cargo lane.
  • FIG. 11 is a schematic diagram of a computing module in the embodiment of FIG. 10.
  • the calculation module 650 may include a receiving unit 651, a positioning unit 652, and a calculation unit 653.
  • the receiving unit 651 is configured to receive a first signal output by the detection device.
  • the positioning unit 652 is configured to determine a height position of the bucket when the receiving unit 651 receives the first signal.
  • the calculating unit 653 determines the height of the target cargo lane according to the height position of the cargo bay and the position relationship between the cargo bay and the target cargo lane when the control device receives the first signal.
  • the detection device 400 sends a first signal to the control device 600.
  • the sensor 410 on the bucket 310 cooperates with the detection member 214 on the target cargo lane
  • the height difference between the bucket 310 and the target cargo lane is a second preset value.
  • the sensor 410 sends a second signal to the control device 600.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vending Machines For Individual Products (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

一种自动售货机(010)及其货道(210)高度检测方法,货道(210)高度检测方法包括获取目标货道(2101)的初始位置(S200);根据目标货道(2101)的初始位置获取目标货道(2101)的校正位置(S300);控制货斗(310)移动至目标货道(2101)的校正位置(S400);控制货斗(310)由目标货道(2101)的校正位置向目标货道(2101)的初始位置移动,在货斗(310)移动的过程中,通过检测装置(400)输出的信号确定目标货道(2101)的高度(S500),通过货道(210)高度检测方法可以有效避免自动售货机(010)由于货道(210)高度不确定所导致的出货异常。

Description

一种自动售货机及其货道高度检测方法
本申请要求在2018年06月11日提交中国专利局、申请号为201810596228.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动售货技术领域,例如涉及一种自动售货机及其货道高度检测方法。
背景技术
自动售货机是一种商业自动化设备,用于自动出售商品。自动售货机由于具有不受时间地点限制、能节省人力、方便交易等特点,应用越来越广泛。
相关技术公开了一种自动售货机,该自动售货机包括柜体和控制装置,柜体表面设置有取货口,柜体内部设置有用于容纳商品的货道和用于在货道与取货口之间运送商品的递送装置,其中,货道包括设置为承载商品的支撑板,递送装置包括货斗和用于驱动货斗在柜体内运动的驱动机构,在接收到用户的商品购买指令的情况下,控制装置根据要购买的商品确定容纳有该商品的目标货道,并获取预先存储的目标货道的位置,然后控制驱动机构将货斗驱动至目标货道的前端,以接收目标货道输出的商品,货斗接收目标货道输出的商品后,控制装置控制驱动机构将货斗驱动至取货口处,以供用户取走商品。
相关技术的自动售货机根据预先存储的目标货道的位置将货斗驱动至目标货道的前端然后进行出货时,可能会有出货异常的情况发生。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种自动售货机及其货道高度检测方法,以避免相关技术的自动售货机由于货道高度不确定所导致的出货异常的情况。
本申请实施例提供的一种货道高度检测方法,应用于自动售货机,自动售货机包括柜体,柜体内设置有货斗、用于驱动货斗移动的驱动机构和用于储存商品的货道,自动售货机还包括设置于货斗的检测装置,检测装置设置为检测货斗与目标货道之间的位置关系,货道高度检测方法包括:获取目标货道的初始位置;根据目标货道的初始位置获取目标货道的校正位置;控制货斗移动至目标货道的校正位置;控制货斗从目标货道的校正位置向目标货道的初始位置 移动,在货斗移动的过程中,通过检测装置输出的信号确定目标货道的高度。
在一实施例中,目标货道的校正位置低于目标货道的初始位置。
在一实施例中,多个货道呈至少两层排布,每个货道包括用于支撑商品的支撑板;目标货道的校正位置位于目标货道的初始位置的正下方,目标货道的校正位置与目标货道的初始位置的高度差为第一预设值DH 1;其中,在目标货道为位于最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000001
且DH 1<H 1,H 1为目标货道的支撑板到柜体的底板的距离,在目标货道并非位于最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000002
且DH 1<H 2,H 2为目标货道下方货道的容纳空间的高度。
在一实施例中,通过检测装置输出的信号确定目标货道的高度的步骤包括:在接收到检测装置输出的第一信号的情况下,确定货斗的高度位置;根据货斗的高度位置与接收到第一信号时货斗与目标货道的位置关系确定目标货道的高度;其中,在货斗与目标货道之间的高度差为第二预设值的情况下,检测装置输出第一信号。
在一实施例中,货斗具有用于承载商品的承载板,货斗与目标货道之间的高度差为第二预设值时,承载板低于目标货道的支撑板,承载板的上表面与目标货道的支撑板的上表面的高度差为第二预设值,第二预设值小于第一预设值。
在一实施例中,确定目标货道的高度后,根据目标货道的高度更新目标货道的初始位置。
在一实施例中,获取目标货道的初始位置之前,货道高度检测方法包括还包括:根据商品购买指令确定目标货道。
本申请实施例提供的一种自动售货机,其包括柜体和控制装置,柜体内设置有货斗、用于驱动货斗移动的驱动机构和用于储存商品的多个货道,自动售货机还包括设置于货斗的检测装置,检测装置设置为检测货斗与目标货道之间的位置关系;其中,控制装置设置为获取目标货道的初始位置,根据目标货道的初始位置获取目标货道的校正位置,控制货斗移动至目标货道的校正位置,控制货斗从目标货道的校正位置向目标货道的初始位置移动,在货斗移动的过程中,通过检测装置输出的信号确定目标货道的高度。
在一实施例中,目标货道的校正位置低于目标货道的初始位置。
在一实施例中,多个货道呈至少两层排布,每个货道包括用于支撑商品的支撑板;目标货道的校正位置位于目标货道的初始位置的正下方,目标货道的校正位置与目标货道的初始位置的高度差为第一预设值DH 1;其中,在目标货道为位于最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000003
且DH 1<H 1, H 1为目标货道的支撑板到柜体的底板的距离,在目标货道并非位于最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000004
且DH 1<H 2,H 2为目标货道下方货道的容纳空间的高度。
在一实施例中,控制装置设置为在接收到检测装置输出的第一信号时,确定货斗的高度位置,根据货斗的高度位置与接收到第一信号时货斗与目标货道的位置关系确定目标货道的高度;其中,在货斗与目标货道之间的高度差为第二预设值的情况下,检测装置输出第一信号。
在一实施例中,控制装置还设置为在确定目标货道的高度后,根据目标货道的高度更新目标货道的初始位置。
在一实施例中,控制装置还设置为在获取目标货道的初始位置之前根据商品购买指令确定目标货道。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是根据本申请实施例提供的自动售货机的外部结构示意图;
图2是根据本申请实施例提供的自动售货机的内部结构示意图;
图3是根据本申请实施例提供的自动售货机的组成框图;
图4是根据本申请实施例提供的自动售货机的货道的局部放大图;
图5是根据本申请实施例提供的自动售货机的货斗的局部放大图;
图6是根据本申请实施例提供的自动售货机的储物装置的截面的坐标示意图;
图7是根据本申请实施例提供的一种自动售货机的货道高度检测方法的流程图;
图8是图7实施例中步骤S500的流程图;
图9是根据本申请实施例提供的另一种货道高度检测方法的流程图;
图10是根据本申请实施例提供的一种自动售货机的控制装置的示意图;
图11是图10实施例中计算模块的示意图。
图标:010-自动售货机;100-机柜;110-柜体;112-坐标原点;120-柜门;121-取货口;200-储物装置;210-货道;2101-目标货道;2102-第一货道;211-商品输送机构;212-支撑板;213-隔板;214-检测件;215-货道的支撑板的前端 面的上边的中心点;216-目标货道的校正位置;220-基架;300-递送装置;310-货斗;311-承载板;312-货斗的承载板的后端面的上边的中心点;320-货斗驱动机构;321-水平驱动机构;322-竖直驱动机构;400-检测装置;410-传感器;500-存储装置;600-控制装置;700-货斗的移动路径。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以多种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
申请人发现,当货道中的商品重量过大时,会使得支撑板前端的高度被压低,且支撑板被压低的程度受商品重量的影响,因此相关技术的自动售货机可能存在货道高度不确定的问题,当货道高度不确定时,根据预先存储的目标货道的位置将货斗驱动至目标货道的前端然后进行出货时,可能导致出货异常,对此申请人提出了以下技术方案。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
图1和图2是根据本申请实施例提供的自动售货机的结构示意图,图3是根据本申请实施例提供的自动售货机的组成框图,下面结合图1至图3,对本申 请实施例的自动售货机进行说明。
如图1至图3所示,本实施例的自动售货机010包括机柜100、储物装置200、递送装置300、检测装置400、存储装置500和控制装置600。
如图1所示,机柜100包括柜体110和柜门120,柜体110与柜门120活动连接,柜体110包括开口(图中未示出),柜门120可以相对于柜体110的开口运动,以打开或封闭柜体110。柜门120上设置有用于用户取出商品的取货口121。
储物装置200设置为容纳待售商品。如图2所示,储物装置200设置于柜体110内部,储物装置200与柜门120相对间隔设置,储物装置200包括用于容纳商品的多个货道210,多个货道210沿上下方向(即箭头cd所示的方向)呈M层(本实施例中,M大于2,在其他实施例中,M可以等于1或等于2)、沿左右方向(即箭头ab所示的方向)呈N列排布,货道210的长度方向沿前后方向(即箭头ef所示的方向)延伸。货道210靠近柜门120的一端设置有出口,货道210的出口正对柜门120,货道210中设置有商品输送机构211,容纳在货道210中的商品可在商品输送机构211的驱动下从货道210的出口输出。如图2所示,在本实施例中,储物装置200包括六十六个货道210,六十六个货道210呈沿上下方向的六层以及沿左右方向的十一列排布,储物装置200还包括基架220,基架220位于最下面的一层货道210与柜体110的底板(图中未示出)之间,基架220用于支撑货道210。图4是根据本申请实施例提供的自动售货机的货道210的局部放大图,如图4所示,货道210包括支撑板212,以及沿左右方向间隔设置在支撑板212上方的隔板213。支撑板212和相邻的两个隔板213之间形成容纳商品的一个货道210。在本实施例中,位于同一层的多个货道210共用一个支撑板212。
递送装置300设置为在储物装置200和取货口121之间运送商品。如图2所示,递送装置300位于柜门120与储物装置200之间。递送装置300包括货斗310和货斗驱动机构320,货斗310的靠近柜门120的一端设置有出口,货斗310的靠近货道210的一端设置有入口。货斗驱动机构320包括水平驱动机构321和竖直驱动机构322,水平驱动机构321包括水平支架(图中未示出)和第一动力组件(图中未示出),竖直驱动机构322包括竖直支架(图中未示出)和第二动力组件(图中未示出)。货斗310与竖直支架传动连接,第二动力组件设置于货架310与竖直支架之间,以驱动货斗310在竖直支架上沿上下方向移动;竖直支架与水平支架传动连接,第一动力组件设置于竖直支架与水平支架之间,以驱动竖直支架携带货斗310在水平支架上沿左右方向移动。如此,货斗驱动机构320能够驱动货斗310沿上下方向和/或左右方向移动,以使货斗310的入口与任意一个货道210的出口相对,或使货斗310的出口与取货口121 相对。在货斗310的入口与任意一个货道210的出口相对的情况下,该货道210中的商品能够被送入货斗310;在货斗310的出口与取货口121相对的情况下,用户能够经由取货口121取走货斗310内的商品。
图5是根据本申请实施例提供的自动售货机的货斗310的局部放大图。如图5所示,货斗310内设置有用于承载商品的承载板311。在货斗310的入口与任意一个货道210的出口相对,并接收来自该货道210中的商品的情况下,需要货斗310的承载板311的高度与货道210的支撑板212的高度满足预设要求,才能够确保货道210中的商品顺利进入货斗310中。比如,需要货斗310的承载板311的上表面与货道210的支撑板212的上表面位于同一平面,以使货道210中输出的商品能够水平移动至货斗310内,或者,需要货斗310的承载板311的上表面低于货道210的支撑板212的上表面设定高度,以使货道210中输出的商品可以落入货斗310中。在货道210中的商品重量过大的情况下,会使得支撑板212的前端被压低,且支撑板212被压低的程度还受商品重量的影响。因此,货道210的支撑板212前端的高度不确定,也即,货道210的实际高度不确定。由于货道210的支撑板212的实际高度与理论高度可能不一致,且货道210的支撑板212的实际高度受货道210中商品的重量影响具有不确定性,这导致在货道210向货斗310输出商品时,货斗310的承载板311的高度与货道210的支撑板212的高度可能不能满足预设要求,进而对货道210中的商品进入货斗310造成阻碍,导致出货异常。
为了改善这一情况,检测装置400设置为检测货道210的高度。检测装置400设置在货斗310上且可以随货斗310移动。检测装置400包括传感器410,自动售货机010的每个货道210的前端均设置有检测件214,在检测装置400随货斗310移动的情况下传感器410可与货道210前端的检测件214配合或分离。在传感器410与检测件214配合和传感器410与检测件214分离两种情况下,传感器410输出不同的信号。比如,在传感器410与检测件214配合的情况下,输出第一信号,在传感器410与检测件214分离的情况下,输出第二信号。如此,根据传感器410输出的信号即可判断传感器410与检测件214配合或分离。如图4所示,在本实施例中,检测件214连接在隔板213的前端。在本申请提供的其他实施例中,检测件214还可以设置在支撑板212的前端。
需要说明的是,在传感器410与设置在一个货道210前端的检测件214配合、传感器410输出第一信号的情况下,货斗310与该货道210的位置关系满足预设要求。在一实施例中,货斗310与该货道210之间的高度差为第二预设值,其中,第二预设值大于或等于零。设货斗310的高度使用承载板311的上表面的高度表示,货道210的高度使用该货道210的支撑板212的上表面的高度表示,在传感器410与设置在一个货道210前端的检测件214配合的情况下, 货斗310的承载板311的上表面与货道210的支撑板212的上表面的位置关系满足预设要求。比如,货斗310的承载板311的上表面与货道210的支撑板212的上表面位于同一平面,也即,第二预设值等于零,或者,货斗310的承载板311的上表面低于货道210的支撑板212的上表面且二者的高度差为设定值,也即,第二预设值大于零。如此,在传感器410与检测件214配合的情况下,通过货斗310与货道210的位置关系以及货斗310的高度,即可获知货道210的实际高度,根据货道210的实际高度,即可使出货时货斗310的承载板311的高度与货道210的支撑板212的高度满足预设要求,从而保证出货正常。如此,即可避免由于货道210的实际高度不确定所导致的出货异常的情况。
存储装置500设置为存储自动售货机010的控制程序以及程序运行过程中生成的数据和变量。比如,存储装置500设置为存储货斗310的初始位置参数和每个货道210的初始位置的参数,以及存储每个货道210的初始位置与该货道210的校正位置的高度差。其中,货斗310的初始位置为自动售货机010上电初始化完成后以及用户将货斗310内的商品取走后,货斗310停驻的位置;每个货道210的位置参数包括该货道210的水平参数和竖直参数。在一实施例中,每个货道210的校正位置位于该货道210的初始位置的下方,且每个货道210的校正位置与该货道210的初始位置的高度差为第一预设值DH 1。其中,第一预设值DH 1设置为能够保证即使货道210的支撑板212的前端被压低时,支撑板212的前端仍然位于该货道210的校正位置的上方。在一实施例中,每个货道210对应一个第一预设值DH 1,在货道210为位于最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000005
且DH 1<H 1,其中,H 1为货道210的支撑板212与柜体110的底板之间的距离,通过如此设置,可以使得沿上下方向该货道210的校正位置位于基架220所在的位置。在货道210并非位于最下层的货道时,也即,货道210下方还存在其他货道210的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000006
且DH 1<H 2,其中,H 2为该货道210下方的货道210的容纳空间的高度,通过如此设置,可以使得沿上下方向该货道210的校正位置位于其下方货道210的容纳空间内。当然,在本申请提供的其他实施例中,每个货道210的校正位置也可以位于该货道210的初始位置的上方。
本实施例中,使用XY直角坐标系表示自动售货机010的储物装置的截面,每个货道210的位置使用该货道210的支撑板212的前端面的上边的中心点215在XY直角坐标系中的坐标来表示,也即,每个货道210的位置参数包括该货道210对应的中心点215的X坐标值和Y坐标值。图6是根据本申请实施例提供的自动售货机的储物装置的截面的坐标示意图。其中储物装置200的该截面为多个货道210的出口所在的平面,如图6所示,本实施例中,以储物装置200 的基架220的右下角的端点112为坐标原点,X轴的正方向沿左右方向向右延伸,Y轴的正方向沿上下方向向上延伸。自动售货机010包括的六十六个货道210呈沿Y方向的六层以及沿X方向的十一列排布,每个货道210的初始位置使用该货道210的支撑板212的前端面的上边的中心点215的坐标值来表示,存储装置500中预先存储有该货道210的初始位置的参数,也即,该货道210对应的中心点215的X坐标值和Y坐标值。需要说明的是,在本申请提供的其他实施例中,XY直角坐标系的坐标原点也可以根据实际需要进行选择设定,比如,以基架220的左下角的端点为坐标原点。货道210的位置也可以根据实际需要采用其他表示方式,比如,每个货道210的位置使用该货道210的支撑板212的前端面的上边的左端点来表示,或者,每个货道210的位置使用该货道210的支撑板212的前端面的上边的右端点来表示。
控制装置600与储物装置200、递送装置300、检测装置400和存储装置500电连接,控制装置600设置为控制自动售货机010的储物装置200、递送装置300、检测装置400和存储装置500工作。比如,控制装置600设置为获取用户输入的商品购买指令,根据用户要购买的商品确定容纳该商品的目标货道,获取存储装置500中存储的目标货道的初始位置的参数,并根据目标货道的初始位置的参数控制递送装置300的货斗驱动机构320将货斗310驱动至目标货道的初始位置处,以及控制目标货道的商品输送机构211将用户要购买的商品由目标货道输送至货斗310,并控制货斗驱动机构320将货斗310驱动至取货口121处,以使用户能够经由取货口121取走货斗310内的商品。控制装置600还设置为获取目标货道的初始位置,根据目标货道的初始位置获取目标货道的校正位置,并控制递送装置300的货斗驱动机构320将货斗310驱动至目标货道的校正位置,以及控制货斗驱动机构320驱动货斗310从目标货道的校正位置向目标货道的初始位置移动,在货斗310移动的过程中,通过设置于货斗310的检测装置400输出的信号确定目标货道的高度。
图7是根据本申请实施例提供的一种自动售货机的货道高度检测方法的流程图,该方法可以由图3所示的自动售货机010的控制装置600执行。如图所示,该方法包括步骤S200至步骤S500。
在步骤S200中,获取所述目标货道的初始位置。
以本实施例的自动售货机010为例,每个货道的初始位置的参数均被存储于存储装置中500,控制装置600确定目标货道后,从存储装置500中读取目标货道的初始位置的参数。
在步骤S300中,根据目标货道的初始位置获取目标货道的校正位置。
根据目标货道的初始位置获取目标货道的校正位置,在一实施例中,目标货道的校正位置低于目标货道的初始位置。在一实施例中,目标货道的校正位 置位于目标货道的初始位置的正下方,且目标货道的校正位置与目标货道的初始位置的高度差为第一预设值DH 1。当然,在本申请提供的其他实施例中,目标货道的校正位置也可以高于目标货道的初始位置,比如,目标货道的校正位置位于目标货道的初始位置的正上方。
以本申请实施例的自动售货机010为例,控制装置600获取目标货道的初始位置的参数后,根据目标货道的初始位置的参数确定目标货道的校正位置的参数。其中,目标货道的位置参数包括水平参数和竖直参数,本申请实施例的自动售货机010中,目标货道的校正位置低于目标货道的初始位置,目标货道的校正位置的竖直参数等于目标货道的初始位置的竖直参数减去第一预设值DH 1,第一预设值DH 1设置为能够保证即使目标货道的支撑板212的前端被压低时,该支撑板212的前端仍然位于目标货道的校正位置的上方。
在一实施例中,目标货道的校正位置的水平参数与目标货道的初始位置的水平参数相同。由于目标货道的支撑板212的前端被目标货道容纳的商品压低时,会导致支撑板212的竖直位置发生变化,而支撑板212的水平位置不会发生变化,因此,通过设置目标货道的校正位置的水平参数与目标货道的初始位置的水平参数相同,可以使得目标货道的校正位置位于目标货道的正下方,从而后续通过驱动货斗310向上移动即可使得货斗310准确到达目标货道对应的位置。
在一实施例中,在目标货道为储物装置200的最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000007
且DH 1<H 1,其中,H 1为目标货道的支撑板212与柜体110的底板之间的距离,通过如此设置,可以使得该情况下沿上下方向目标货道的校正位置位于基架220所在的位置;在目标货道并非储物装置200的最下层的货道的情况下,也即,目标货道下方还存在其他货道210的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000008
且DH 1<H 2,其中,H 2为位于目标货道下方的货道210(以下简称为第一货道)的容纳空间的高度,通过如此设置,可以使得该情况下沿上下方向目标货道的校正位置位于第一货道的容纳空间内。
如上所述,本申请实施例中,使用XY直角坐标系表示自动售货机010的储物装置的截面,每个货道210的位置使用该货道210的支撑板212的前端面的上边的中心点215在XY直角坐标系中的坐标值来表示。如图6所示,以储物装置200的基架220的右下角的端点112为坐标原点,X轴的正方向沿左右方向向右延伸,Y轴的正方向沿上下方向向上延伸。自动售货机010包括的六十六个货道210呈六层十一列排布,设目标货道2101为自上而下位于第一层,自左而右位于第四列的货道210,存储装置500存储的目标货道的初始位置的坐标值为(X1,Y1),也即,目标货道2101的水平参数为X1,竖直参数为Y1, 其中,目标货道的位置使用目标货道的支撑板212的前端面的上边的中心点215在XY直角坐标系中的坐标值来表示,则根据上述原则,容易得知,目标货道的校正位置216的竖直参数为Y2=Y1-DH 1。在一实施例中,目标货道的校正位置216的水平参数为X2=X1,也即,目标货道的校正位置位于目标货道2101的正下方。在一实施例中,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000009
且DH 1<S,其中,S为位于目标货道2101下方的第一货道2102的容纳空间的高度,通过如此设置,可以使得目标货道的校正位置位于第一货道2102的容纳空间的下部。
需要说明的是,在本申请提供的其他实施例中,XY直角坐标系的坐标原点也可以根据实际需要进行选择设定,比如,以储物装置200的基架220的左下角的端点为坐标原点。货道210的位置也可以根据实际需要采用其他表示方式,比如,每个货道210的位置使用该货道210的支撑板212的前端面的上边的左端点来表示,或者,每个货道210的位置使用该货道210的支撑板212的前端面的上边的右端点来表示。
在步骤S400中,控制货斗移动至目标货道的校正位置。
确定目标货道的校正位置后,控制装置600控制货斗驱动机构320将货斗310驱动至目标货道的校正位置。其中,货斗310的位置参数包括货斗310的水平参数和竖直参数,在货斗310到达目标货道的校正位置处的情况下,货斗310的水平参数与目标货道的校正位置的水平参数相同,货斗310的竖直参数与目标货道的校正位置的竖直参数相同。如图6所示,本实施例中,货斗310的位置使用货斗310的承载板311的后端面的上边的中心点312在XY直角坐标系中的坐标值来表示,在货斗310到达目标货道的校正位置处的情况下,货斗310的位置坐标值为(X1,Y2),也即,货斗310的承载板311的后端面的上边的中心点312的坐标值为(X1,Y2)。
在一实施例中,确定目标货道的校正位置后,控制装置600控制货斗驱动机构320驱动货斗310同时沿水平方向移动和沿竖直方向移动,从而使货斗310快速到达目标货道的校正位置处。本申请提供的实施例中,控制装置600在自动售货机010上电初始化,以及每次检测到货斗310中的商品被用户取走的情况下,控制货斗驱动机构320将货斗310驱动至货斗310的初始位置,货斗310位于初始位置时货斗310的右下角位于储物装置200的基架220的右下角处,也即,位于图6所示的坐标原点112处。确定目标货道的校正位置后,控制装置600控制水平驱动机构321驱动竖直驱动机构322携带货斗310向左移动,同时控制竖直驱动机构322驱动货斗310向上移动,从而使货斗310同时沿水平方向向左移动和沿竖直方向向上移动,以使货斗310可以快速到达目标货道的校正位置处。如图6所示,货斗驱动机构320驱动货斗310沿斜线700所示 的路径由储物装置200的基架220的右下角移动到目标货道的校正位置处。
需要说明的是,在本申请提供的其他实施例中,货斗310的初始位置也可以根据实际需要进行选择设定。比如,在货斗310位于初始位置的情况下,货斗310的左下角位于储物装置200的基架220的左下角处,在这种情况下,货斗310由初始位置向目标货道的校正位置移动时需要控制货斗310沿水平方向向右移动和沿竖直方向向上移动。
在步骤S500中,控制货斗310从目标货道的校正位置向目标货道的初始位置移动,在货斗移动的过程中,通过检测装置输出的信号确定目标货道的高度。
在本实施例中,驱动货斗310向上移动,货斗310移动过程中通过设置于货斗310的检测装置400输出的信号来确定货斗310和目标货道之间的位置关系,并通过货斗310的高度位置以及货斗310与目标货道之间的位置关系来确定目标货道的高度。
图8是图7实施例中步骤S500的流程图。在一实施例中,步骤S500可以包括步骤S501和步骤S502。
在步骤S501中,在控制装置接收到检测装置输出的第一信号的情况下,确定货斗的高度位置。
其中,在货斗与目标货道之间高度差为第二预设值的情况下,检测装置输出第一信号。控制装置600可以实时获取货斗310的位置参数,比如,控制装置600在自动售货机010上电初始化,以及每次检测到货斗310中的商品被用户取走的情况下,控制货斗驱动机构320将货斗310驱动至货斗310的初始位置。控制装置600在每次货斗310移动的过程中根据货斗310的初始位置以及货斗310移动的位移量即可获取货斗310的位置参数。比如,货斗310的初始位置的坐标值为(X0,Y0),控制装置600控制水平驱动机构321驱动货斗310沿水平方向向左移动的位移量为DX,控制竖直驱动机构322驱动货斗310沿竖直方向向上移动的位移量为DY,则移动后货斗310的位置坐标值为(X0-DX,Y0+DY)。
在步骤S502中,根据货斗的高度位置与控制装置接收到第一信号时货斗与目标货道的位置关系确定目标货道的高度。
在一实施例中,货斗210到达目标货道的校正位置后,控制装置600控制货斗驱动机构320的竖直驱动机构322驱动货斗310由目标货道的校正位置向目标货道的初始位置移动。本实施例中,控制装置600控制货斗310向上移动,货斗310移动过程中,控制装置600检测设置于货斗310上的传感器410输出的信号以确定传感器410是否与位于目标货道前端的检测件214配合。如上所述,在传感器410与检测件214配合和传感器410与检测件214分离两种情况下,传感器410输出不同的信号。比如,在传感器410与检测件214配合的情 况下,传感器410输出第一信号。在一实施例中,在传感器410与检测件214分离的情况下,传感器410输出第二信号。控制装置600根据传感器410输出的信号即可判断传感器410是否与检测件214配合,比如,在传感器410输出的信号由第二信号变化为第一信号的情况下,控制装置600判定传感器410与检测件214配合。在传感器410与目标货道的检测件214配合的情况下,货斗310与目标货道之间的高度差为第二预设值,货斗310与目标货道之间的位置关系满足预设要求。满足预设要求可以是指货斗310的承载板311的上表面与目标货道的支撑板212的上表面位于同一平面。另外,满足预设要求也可以是指货斗310的承载板311的上表面低于目标货道的支撑板212的上表面第二预设值。应当理解,货斗310的承载板311的上表面与目标货道的支撑板212的上表面位于同一平面时,可看作第二预设值为零。
在控制装置600判定传感器410与检测件214配合的情况下,控制装置600获取货斗310的位置参数,并根据传感器410与检测件214配合时货斗310与目标货道的高度关系确定目标货道的高度。如上所述,货斗310的位置使用货斗310的承载板311的后端面的上边的中心点312在XY直角坐标系中的坐标来表示,控制装置600根据传感器410与检测件214配合时货斗310的承载板311与目标货道的支撑板211的高度关系确定目标货道的高度。比如,如果在传感器410与检测件214配合的情况下,货斗310的承载板311的上表面与目标货道的支撑板212的上表面位于同一平面,则目标货道的高度等于此时货斗310的高度。再比如,如果在传感器410与检测件214配合的情况下,货斗310的承载板311的上表面低于目标货道的支撑板212的上表面第二预设值,则目标货道的高度等于此时货斗310的高度与第二预设值之和。
另外,如步骤S200所述,在目标货道为储物装置200的最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000010
且DH 1<H 1,其中,H 1为目标货道的支撑板212与柜体110的底板之间的距离。在目标货道并非储物装置200的最下层的货道的情况下,第一预设值DH 1满足:
Figure PCTCN2019090675-appb-000011
且DH 1<H 2,其中,H2为位于目标货道下方的第一货道的容纳空间的高度。通过如此设置,可以使第一预设值DH 1在满足即使目标货道的支撑板212的前端被压低时该支撑板212的前端仍然位于目标货道的校正位置的上方的条件下,目标货道的校正位置距离目标货道的实际位置尽可能近,目标货道的校正位置距离货斗310的初始位置尽可能远,由于货斗310由初始位置移动至目标货道的校正位置的过程中,可以控制货斗310同时沿水平方向移动和沿竖直方向移动,因此,通过如此设置,可以使货斗310同时沿水平方向移动和沿竖直方向移动的行程尽可能长,使货斗310沿竖直方向向上移动的行程尽可能短,从而缩短货道高度检测的总时间, 提高自动售货机的工作效率。
本实施例的货道高度检测方法中,根据目标货道的初始位置获取目标货道的校正位置,控制货斗移动至目标货道的校正位置,控制货斗从目标货道的校正位置向目标货道的初始位置移动,货斗移动的过程中,通过检测装置输出的信号确定目标货道的高度。通过本实施例的货道高度检测方法,由于首先将货斗驱动至目标货道的校正位置,并在驱动货斗由目标货道的校正位置向目标货道的初始位置移动的过程中通过设置于货斗上的检测装置输出的信号确定目标货道的高度。因此,通过本实施例的货道高度检测方法,可以在货道的实际高度发生变化时准确获知货道的实际高度,从而基于货道的实际高度,能够使货斗高度与货道的高度满足预设要求(比如使货斗的承载板和货道的支撑板齐平),从而保证出货正常,这样,即可避免由于货道高度不确定所导致的出货异常的情况。在一实施例中,本实施例货道高度检测方法中,在确定目标货道的校正位置后,控制货斗同时沿水平方向移动和沿竖直方向移动,从而使货斗快速到达目标货道的校正位置处,提高检测装置的检测效率。
本申请实施例的自动售货机通过使用检测装置来确定货斗和目标货道之间的相对位置关系,并能够结合多个模块实现上述的货道高度检测方法,因此也具有上述方法的效果。
图9是根据本申请实施例提供的另一种自动售货机的货道高度检测方法的流程图。该实施例可以作为图7所示实施例的示例实施方式,如图所示,本实施例与图7所示实施例的区别在于,货道高度检测方法还包括步骤S200之前的步骤S100和步骤S500之后的步骤S600。
在步骤S100中,根据商品购买指令确定目标货道。
控制装置600在接收到用户输入的商品购买指令后,根据用户要购买的商品确定容纳该商品的货道210,并将该货道210作为目标货道。
在步骤S600中,确定目标货道的高度后,根据目标货道的高度更新目标货道的初始位置。
确定目标货道的高度后,控制装置600控制存储装置500存储目标货道的高度位置。在一实施例中,控制装置600根据步骤S500中确定的目标货道的高度更新存储装置500中存储的目标货道的初始位置的参数,以使再次执行该货道高度检测方法的流程时控制装置600可以根据本次记录的目标货道的初始位置的参数来确定目标货道的校正位置,或者,以使商品售卖过程中控制装置600可以根据本次记录的目标货道的初始位置的参数将货斗310驱动至目标货道对应的位置以接收目标货道输出的商品。
在一实施例中,在确定目标货道的高度后,控制装置600根据所确定的目标货道的高度将货斗310驱动至与目标货道对应的位置,使货斗310的承载板 311的上表面与目标货道的支撑板211的上表面满足预设要求,控制目标货道的商品输送机构211将用户要购买的商品输送至货斗310。通过在货道高度检测之后执行出货,可以实现在商品售卖过程中检测货道的高度。
本实施例的自动售货机的货道高度检测方法中,根据商品购买指令确定目标货道并检测目标货道的高度。因此,通过本实施例的自动售货机的货道高度检测方法,可以实现在商品售卖过程中检测货道的高度,提高了自动售货机的工作效率。另外,本实施例的自动售货机的货道高度检测方法中,在确定目标货道的高度后记录目标货道的高度,使得后续商品售卖过程中可以根据更新后的货道高度控制货斗取货,避免了由于货道高度不确定所导致的出货异常的情况。
图10是根据本申请实施例提供的一种自动售货机的控制装置的示意图。为实现本实施例的货道高度检测方法,控制装置600包括调用模块610,校正模块620,第一执行模块630,第二执行模块640,计算模块650以及记录模块660。
调用模块610,设置为获取目标货道的初始位置。
校正模块620,设置为根据目标货道的初始位置获取目标货道的校正位置。
第一执行模块630,设置为控制货斗移动至目标货道的校正位置。
第二执行模块640,设置为控制货斗从目标货道的校正位置向目标货道的初始位置移动。
计算模块650,设置为在货斗由目标货道的校正位置向目标货道的初始位置移动的过程中,通过检测装置600输出的信号确定目标货道的高度。
记录模块660,设置为在确定目标货道的高度后,根据目标货道的高度更新目标货道的初始位置。
图11是图10实施例中计算模块的示意图。在一实施例中,计算模块650可以包括接收单元651,定位单元652以及计算单元653。
接收单元651,设置为接收检测装置输出的第一信号。
定位单元652,设置为在接收单元651接收到第一信号的情况下,确定货斗的高度位置。
计算单元653,根据货斗的高度位置与控制装置接收到第一信号时货斗与目标货道的位置关系确定目标货道的高度。
其中,在货斗310与目标货道之间的高度差为第二预设值的情况下,检测装置400向控制装置600发送第一信号。在一实施例中,货斗310上的传感器410与目标货道上的检测件214配合时,货斗310与目标货道之间的高度差为第二预设值。在一实施例中,传感器410与目标货道上的检测件214分离时,传感器410向控制装置600发送第二信号。

Claims (10)

  1. 一种货道高度检测方法,应用于自动售货机,自动售货机包括柜体,所述柜体内设置有货斗、用于驱动所述货斗移动的驱动机构和用于储存商品的多个货道,所述自动售货机还包括设置于所述货斗的检测装置,所述检测装置设置为检测所述货斗与目标货道之间的位置关系,所述货道高度检测方法包括:
    获取所述目标货道的初始位置;
    根据所述目标货道的初始位置获取所述目标货道的校正位置;
    控制所述货斗移动至所述目标货道的校正位置;
    控制所述货斗从所述目标货道的校正位置向所述目标货道的初始位置移动,在所述货斗移动的过程中,通过所述检测装置输出的信号确定所述目标货道的高度。
  2. 根据权利要求1所述的货道高度检测方法,其中:
    所述目标货道的校正位置低于所述目标货道的初始位置。
  3. 根据权利要求2所述的货道高度检测方法,其中,所述多个货道呈至少两层排布,每个所述货道包括用于支撑商品的支撑板;
    所述目标货道的校正位置位于所述目标货道的初始位置的正下方,所述目标货道的校正位置与所述目标货道的初始位置的高度差为第一预设值DH 1
    其中,在所述目标货道为位于最下层的货道的情况下,所述第一预设值DH 1满足:
    Figure PCTCN2019090675-appb-100001
    且DH 1<H 1,H 1为所述目标货道的支撑板到所述柜体的底板的距离,在所述目标货道并非位于最下层的货道的情况下,所述第一预设值DH 1满足:
    Figure PCTCN2019090675-appb-100002
    且DH 1<H 2,H 2为所述目标货道下方货道的容纳空间的高度。
  4. 根据权利要求1所述的货道高度检测方法,其中,通过所述检测装置输出的信号确定所述目标货道的高度包括:
    在接收到所述检测装置输出的第一信号的情况下,确定所述货斗的高度位置;
    根据所述货斗的高度位置与接收到所述第一信号时所述货斗与所述目标货道的位置关系,确定所述目标货道的高度;
    其中,在所述货斗与所述目标货道之间的高度差为第二预设值的情况下,所述检测装置输出所述第一信号。
  5. 根据权利要求1所述的货道高度检测方法,其中:
    确定所述目标货道的高度后,根据所述目标货道的高度更新所述目标货道的初始位置。
  6. 一种自动售货机,其包括柜体和控制装置,所述柜体内设置有货斗、用于驱动所述货斗移动的驱动机构和用于储存商品的多个货道,所述自动售货机还包括设置于所述货斗的检测装置,所述检测装置设置为检测所述货斗与目标 货道之间的位置关系;
    其中,所述控制装置设置为获取所述目标货道的初始位置,根据所述目标货道的初始位置获取所述目标货道的校正位置,控制所述货斗移动至所述目标货道的校正位置,控制所述货斗从所述目标货道的校正位置向所述目标货道的初始位置移动,在所述货斗移动的过程中,通过所述检测装置输出的信号确定所述目标货道的高度。
  7. 根据权利要求6所述的自动售货机,其中:
    所述目标货道的校正位置低于所述目标货道的初始位置。
  8. 根据权利要求7所述的自动售货机,其中,所述多个货道呈至少两层排布,每个所述货道包括用于支撑商品的支撑板;
    所述目标货道的校正位置位于所述目标货道的初始位置的正下方,所述目标货道的校正位置与所述目标货道的初始位置的高度差为第一预设值DH 1;其中,在所述目标货道为位于最下层的货道的情况下,所述第一预设值DH 1满足:
    Figure PCTCN2019090675-appb-100003
    且DH 1<H 1,H 1为所述目标货道的支撑板到所述柜体的底板的距离,在所述目标货道并非位于最下层的货道的情况下,所述第一预设值DH 1满足:
    Figure PCTCN2019090675-appb-100004
    且DH 1<H 2,H 2为所述目标货道下方货道的容纳空间的高度。
  9. 根据权利要求6所述的自动售货机,其中:
    所述控制装置设置为在接收到所述检测装置输出的第一信号的情况下,确定所述货斗的高度位置,根据所述货斗的高度位置与接收到所述第一信号时所述货斗与所述目标货道的位置关系,确定所述目标货道的高度;
    其中,在所述货斗与所述目标货道之间的高度差为第二预设值的情况下,所述检测装置输出所述第一信号。
  10. 根据权利要求6所述的自动售货机,其中:
    所述控制装置还设置为在确定所述目标货道的高度后,根据所述目标货道的高度更新所述目标货道的初始位置。
PCT/CN2019/090675 2018-06-11 2019-06-11 一种自动售货机及其货道高度检测方法 WO2019238035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810596228.X 2018-06-11
CN201810596228.XA CN110580766A (zh) 2018-06-11 2018-06-11 一种自动售货机及其货道高度检测方法

Publications (1)

Publication Number Publication Date
WO2019238035A1 true WO2019238035A1 (zh) 2019-12-19

Family

ID=68809534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090675 WO2019238035A1 (zh) 2018-06-11 2019-06-11 一种自动售货机及其货道高度检测方法

Country Status (2)

Country Link
CN (1) CN110580766A (zh)
WO (1) WO2019238035A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508144B (zh) * 2020-04-24 2022-02-18 广州磐众智能科技有限公司 一种调节货道宽度的自动扫描重设方法
CN112820034B (zh) * 2020-12-31 2023-02-17 威海新北洋数码科技有限公司 物品存放方法和储物柜
CN112967444B (zh) * 2021-05-10 2023-05-05 佛山市恒灏科技有限公司 一种自动取食品方法及装置
CN113781707A (zh) * 2021-09-10 2021-12-10 威海新北洋技术服务有限公司 自助售卖设备的取货方法及自助售卖设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172931A (ja) * 1998-12-08 2000-06-23 Sanyo Electric Co Ltd 自動販売機の商品搬出装置
CN104268988A (zh) * 2014-09-16 2015-01-07 湖南兴元智能设备有限公司 一种自动售货机
CN105785875A (zh) * 2016-04-06 2016-07-20 广州联业商用机器人科技股份有限公司 售货商用机器人多功能中央控制系统
CN107730732A (zh) * 2017-09-28 2018-02-23 湖南金码智能设备制造有限公司 一种带接货平台的自动售货机智能库存管理方法
CN207123895U (zh) * 2017-08-31 2018-03-20 山东新北洋信息技术股份有限公司 一种自动售货机
CN207182505U (zh) * 2017-08-16 2018-04-03 北京康得新创科技股份有限公司 出货装置和自动售货机
CN108010200A (zh) * 2017-12-25 2018-05-08 湖南金码智能设备制造有限公司 自动售货机货道出货检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227900A (ja) * 2004-02-10 2005-08-25 Fuji Electric Retail Systems Co Ltd 自動販売機
JP4923793B2 (ja) * 2006-07-06 2012-04-25 富士電機リテイルシステムズ株式会社 自動販売機
CN207268888U (zh) * 2017-08-23 2018-04-24 大连富士冰山自动售货机有限公司 盒类包装商品自动售货机的x轴自动校正搬运装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172931A (ja) * 1998-12-08 2000-06-23 Sanyo Electric Co Ltd 自動販売機の商品搬出装置
CN104268988A (zh) * 2014-09-16 2015-01-07 湖南兴元智能设备有限公司 一种自动售货机
CN105785875A (zh) * 2016-04-06 2016-07-20 广州联业商用机器人科技股份有限公司 售货商用机器人多功能中央控制系统
CN207182505U (zh) * 2017-08-16 2018-04-03 北京康得新创科技股份有限公司 出货装置和自动售货机
CN207123895U (zh) * 2017-08-31 2018-03-20 山东新北洋信息技术股份有限公司 一种自动售货机
CN107730732A (zh) * 2017-09-28 2018-02-23 湖南金码智能设备制造有限公司 一种带接货平台的自动售货机智能库存管理方法
CN108010200A (zh) * 2017-12-25 2018-05-08 湖南金码智能设备制造有限公司 自动售货机货道出货检测方法及装置

Also Published As

Publication number Publication date
CN110580766A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2019238035A1 (zh) 一种自动售货机及其货道高度检测方法
JP6874951B2 (ja) 自律的な注文履行及び在庫制御ロボット
JP3703411B2 (ja) ワーク取り出し装置
TWI733965B (zh) 物品裝載設備
CN111861325B (zh) 一种仓储系统和仓储控制方法
JP6885644B2 (ja) 倉庫管理収容・取出システムおよび方法
EP3778444B1 (en) Picking facility
WO2020082991A1 (zh) 智能售货站的售货方法、智能售货站、电子设备和存储介质
WO2020020338A1 (zh) 一种自动售货机
WO2021135582A1 (zh) 仓储系统及应用于仓储系统的仓储控制方法
WO2019128324A1 (zh) 异常出货处理方法及自动售货机
US20210107750A1 (en) Freight identification code, items displaying same, and robot hand used for same
WO2020030086A1 (zh) 自动售货机
JP5235100B2 (ja) 自動書庫
JP2020502006A (ja) 物流システム及びこのシステムで使用される箱の移動コンテナ
CN115806143A (zh) 一种印刷版辊的全自动立体化仓库及高速出入库管理方法
CN210456147U (zh) 智能仓储系统及智能货架系统
WO2021114803A1 (zh) 自动售货机及其出货方法
KR20080046380A (ko) 쉘프 콘트롤 시스템 및 이를 포함하는 스토커
JP7360768B2 (ja) 配置支援システム、配置支援方法、およびプログラム
WO2020134050A1 (zh) 物品包装填充方法、物品装箱方法、装置及控制系统
JP2001088906A (ja) 無人搬送車システム
CN113524176B (zh) 物品出库系统、方法及装置
US11897147B2 (en) Automated storage optimization and stackable pallets
CN112208676B (zh) 置货容器的调整方法、装置和搬运设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820211

Country of ref document: EP

Kind code of ref document: A1