WO2019235826A1 - 포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 oct 시스템 - Google Patents

포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 oct 시스템 Download PDF

Info

Publication number
WO2019235826A1
WO2019235826A1 PCT/KR2019/006756 KR2019006756W WO2019235826A1 WO 2019235826 A1 WO2019235826 A1 WO 2019235826A1 KR 2019006756 W KR2019006756 W KR 2019006756W WO 2019235826 A1 WO2019235826 A1 WO 2019235826A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light source
oct
integrated
battery
Prior art date
Application number
PCT/KR2019/006756
Other languages
English (en)
French (fr)
Inventor
정중호
Original Assignee
주식회사 필로포스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 필로포스 filed Critical 주식회사 필로포스
Priority to JP2021517175A priority Critical patent/JP7078305B2/ja
Priority to EP19814719.1A priority patent/EP3791773A4/en
Priority to CN201980037607.8A priority patent/CN112218569A/zh
Publication of WO2019235826A1 publication Critical patent/WO2019235826A1/ko
Priority to US17/110,947 priority patent/US20210085185A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case

Definitions

  • the present invention relates to a technique for implementing an integrated handheld battery powered OCT system for point-of-care (POC) diagnosis.
  • POC point-of-care
  • OCT optical coherence tomography
  • implementation methods include a time domain, a spectral domain, and a swept source method.
  • the spectral-domain OCT system is in the spotlight because it can lower manufacturing costs while securing a certain level of performance.
  • the OCT system consists of a probe stage and a main body.
  • the probe stage transmits the light from the light source to the biological tissue to be observed and transmits the light returned from the tissue to the main body, which includes a beam scanner that can change the direction of light within a certain area.
  • a sample optical system made of optical components such as a lens and a mirror, and an instrument for mounting on a biological tissue.
  • the main body is a light source, a driver of the light source, an optical splitter such as a directional coupler or a beam splitter that divides the light from the light source into two paths, and a reference for creating an optical path corresponding to the light transmitted in the probe direction.
  • a detector for detecting an interference component between lights returned from the optical path reference, the reference optical path and the sample optical path of the probe stage.
  • an optical separator, a reference optical system, and the like may be present at the probe stage.
  • the detected optical signal converted into an electrical signal generates an OCT signal through signal processing, and this part may be made through a signal processing unit such as a microprocessor unit (MCU) included in the main body, and the OCT device is a kind of peripheral device of a PC.
  • MCU microprocessor unit
  • the detected signal is transmitted to a normal PC through a connector, and signal processing may be performed at the PC.
  • 1 is an exemplary view showing the configuration of a conventional OCT system.
  • the OCT system includes a main body, a PC, and a probe end, and may typically have two forms as shown in the drawing.
  • OCT system is implemented in the form of a cart (cart) to be limited to move in a limited space, or to be fixed to the desktop (desktop) to be used.
  • the main body, the PC, etc. access the biological tissue of the test subject through the limited movement of only the probe end in the state fixed to the floor.
  • the diagnosis can be performed only when the test subject or the patient visits a predetermined place where the device is located, thereby greatly limiting the utilization of the OCT.
  • OCT device in the form of a stethoscope, which can be used simply by a doctor while interviewing a patient, and in a mountain or island where the medical access is weak, the utilization will be greatly increased.
  • optical components such as lenses are lower in price as they are smaller in size, and the OCT device can be miniaturized to remove optical components for signal transmission between the main body and the probe stage, and if the whole can be implemented integrally, Lowering the price of the system could increase the diagnostic benefits of OCT.
  • the problem to be solved by the present invention is to propose a single-body OCT device maximizing portability to increase the utility value of the OCT technology.
  • an integrated handheld optical coherence tomography (OCT) device of the built-in battery an optical unit provided in one area inside the integrated case;
  • a circuit unit provided in another area inside the integrated case and configured to perform signal processing and power management of the optical unit;
  • a built-in battery to supply power to the optical unit and the circuit unit, and a power unit mounted inside the integrated case.
  • the integrated case may have a shape capable of accommodating the optical unit, the circuit unit, and the power supply unit, and a handle may be formed on the outside to allow the user to hold the integrated case.
  • the outside of the integrated case may be provided with an operation unit connected to the circuit unit for operating the OCT device.
  • the circuit portion is formed in a plate shape extending in one direction, the optical portion is disposed, the light emitting portion for emitting light passing through the optical portion on one side of the integrated case is disposed, the light source portion for supplying a light source to the optical portion on the other side
  • the light source unit may be connected to the circuit unit through a wire, and the circuit unit may be disposed to overlap the optical unit in the internal space of the integrated case.
  • the light source unit, the detection unit, the reference optical system, the sample optical system, the optical separator is connected to form an interferometer
  • the sample optical system may be provided in the direction of the biological tissue to be diagnosed in the light output unit.
  • the light exit portion may be formed in a shape lengthened by a predetermined length to be used for the endoscope or laparoscope.
  • the reference optical system is lengthened correspondingly.
  • the circuit unit may include a light source controller, a light emission controller, a detection circuit unit, a central processing unit, a power control unit, a communication processor, and a user interface (UI) processor.
  • a light source controller a light emission controller
  • a detection circuit unit a detection circuit unit
  • a central processing unit a power control unit
  • a communication processor a communication processor
  • UI user interface
  • the central processing unit may control the light source controller to perform on / off of the light source and adjust the output level of the light source according to a preset situation.
  • the OCT system is switched to the standby mode to stop the OCT system, and the user uses the OCT system immediately before entering the standby mode so that the OCT system can react to the user's operation.
  • the set value can be backed up.
  • the power control unit may be switched to the mode of terminating the power of the OCT system.
  • the light source is turned on in advance for a preset warm-up time before the measurement signal is input, and the light source is automatically turned off after the measurement signal is terminated, and the warm-up time is within a preset range of the output value of the light source. It can mean the time taken to converge to the value of.
  • the light emission controller may control a signal for focus adjustment and beam scan of the measurement unit to be input.
  • the light source controller may adjust the current supplied to the light source.
  • the light source controller may provide a warning alarm or turn off the power of the light source.
  • optical fiber between the optical separator, the reference optical system, the sample optical system, the light source, and the detector may have a length within a preset value and be connected in a splicing manner without a connector.
  • the light source unit including the light source control unit of the circuit unit and the light source of the optical unit may have a concave-convex surface structure so that the thermal conductivity of the chip constituting the inside is smooth.
  • the battery-integrated handheld OCT device in a method of displaying OCT data photographed through a battery-integrated handheld OCT device in conjunction with a user terminal, (a) the battery-integrated handheld OCT device generates OCT data, and OCT data Transmitting to the user terminal; (b) the user terminal receiving the OCT data, outputting the OCT data through a display module provided in the user terminal, and storing the OCT data and mapping the stored user information;
  • the OCT device includes an optical unit provided in one region of the integrated case; A circuit unit provided in another area inside the integrated case to perform signal processing of the optical unit and management of the device; And a built-in battery to supply power to the optical unit and the circuit unit, and may include a power unit mounted inside the integrated case.
  • an integrated OCT system that can be used in a handheld or mobile environment will lay the foundation for evenly spreading the benefits of this technology by lowering the constraints of such high installation costs and spatial accessibility.
  • the emergence of a new type of device that can be applied to dermatology, gynecology, etc. in addition to ophthalmology, cardiovascular system based on this invention will further expand the utility of this technology.
  • 1 is an exemplary view showing the configuration of a conventional OCT system.
  • FIG. 2 is a view showing the configuration of a handheld OCT device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration of an optical unit according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of a circuit portion of a handheld OCT device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an operation of entering a standby mode of a handheld OCT device according to an embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of a handheld OCT device 1 according to an embodiment of the present invention.
  • the handheld OCT device 1 may include a circuit unit 110, an optical unit 120, and a power supply unit 130.
  • the OCT device 1 is housed in an integrated case so that the circuit unit 110, the optical unit 120, and the power supply unit 130 are integrally formed so that a handheld form can be realized, and the user has a handheld OCT on the outer surface of the case.
  • the shape of the handle is provided to hold the device 1. The shape is similar to the shape and size of the TV remote control, so that the portability can be maximized.
  • an operation part for operating the handheld OCT device 1 is provided near the handle is formed in the integrated case, which may be implemented as a push type or toggle type button, or implemented in the form of a small touch screen. .
  • a small liquid crystal display for displaying the operation state or acquisition information of the handheld OCT device 1 may be included, which may be connected to the UI control unit constituting the circuit unit 110.
  • the handheld OCT device 1 includes an optical unit 120 in one region of an integrated case, and a circuit unit 110 for managing signal processing and power of the optical unit 120 in another region.
  • the power supply unit 130 for supplying power to the circuit unit 110 and the optical unit 120 is mounted in the remaining areas.
  • the circuit unit 110 is formed in a plate shape extending in one direction except for a portion that is closely connected to the optical unit 120, and the optical unit 120 is implemented in a case where the geometry unit is mainly based on a geometric optical system. It is formed with a length shorter than the length of 110, is formed in a rectangular parallelepiped shape than the circuit portion (110).
  • a light output unit for emitting light passing through the optical unit 120 may be disposed on one side of the integrated case, and a light source unit for supplying a light source to the optical unit 120 may be disposed on the other side. That is, when the optical unit 120 is disposed at one inner side of the integrated case, the circuit unit 110 occupies the internal space of the integrated case on a plane, and the circuit unit 110 is disposed in the internal space of the integrated case. 120 may be disposed to overlap with each other, and the remaining space may include the power supply unit 130. In this case, the light source unit may be connected to the circuit unit 110 through a wire.
  • the inside of the light source unit may be provided with a heat sink having a concave-convex shape in order to lower the temperature rising due to the application of the light source power, and in addition, the convex and convex so as to smoothly conduct thermal conductivity to each module constituting the circuit unit 110 or the optical unit 120. It may have a shaped surface structure.
  • the circuit unit 110 is configured as a circuit board to control the overall handheld OCT device 1, and a detailed description thereof will be described with reference to FIG. 4 to be described later.
  • the optical unit 120 is composed of optical components such as a light source unit, an interferometer, a detector, and a beam scanner, some of which serve as a probe stage of a conventional OCT apparatus. In addition, the detailed description of the optical unit 120 to proceed through Figure 3 to be described later.
  • the power supply unit 130 serves to provide power to each part of the handheld OCT device 1 and may be implemented in a battery type so that the power supply unit 130 may be driven using a built-in power source without using an external power source. . Through this, it is possible to implement an OCT device for handheld or mobile rather than a separate external device and wired connection.
  • the built-in battery may be charged from an external power source through a battery replacement or a charging slot (or a cradle).
  • an additional instrument such as an OCT holder may be further included and configured, and an additional accessory configuration for the handheld OCT device 1 does not limit the scope of the present invention.
  • the OCT holder may not be easy to measure due to the shaking of the user, or may be used when the test subject directly uses the measurement without a measurer.
  • the OCT cradle may be connected to the handheld OCT 1 wirelessly or by wire, like a selfie stick of a conventional smart terminal, to issue a command for operating the handheld OCT 1 through the OCT cradle. For example, you can not only manipulate the start and end of the shooting, but also move the position of the handheld OCT 1 combined with the OCT stand to precisely align the light emitted from the OCT to the measurement area. have.
  • the OCT cradle may be provided with a joint that can be charged to the battery of the handheld OCT (1), or accurately positioned in the measurement site of the subject.
  • the handheld OCT device 1 should be designed so as not to be susceptible to falling or impact, and to facilitate heat dissipation.
  • the heat dissipation opening is formed on one side of the integrated case so that the heat dissipation inside the device can be smoothly realized, or the air inside the device can be circulated with the outside, or a cooling fan is installed to operate the fan at the internal temperature. It can also lower the internal temperature.
  • the handheld OCT 1 may cause contamination at the light exit due to frequent measurements. Therefore, the cover may be replaced to have a structure that can replace the contaminated cover after use for a predetermined time.
  • an external display panel of the handheld OCT 1 may be provided with its own display panel connected to the circuit unit 110. In this way, the user can be guided when using the handheld OCT 1, the basic operation status can be displayed, and a simple OCT image can be played.
  • the display panel when the display panel is provided as an input / output touch screen, the display panel may be connected to the UI controller 370 to serve as an input device corresponding to the manipulation unit.
  • FIG. 3 is a diagram illustrating a configuration of an optical unit according to an exemplary embodiment of the present invention.
  • the optical unit 120 includes a light source unit 210, a detector 220 that detects a signal generated from a sample (biological tissue) from the optical interference signal of the interferometer 230, and an interferometer causing the optical interference effect. And 230.
  • the interferometer 230 divides the light irradiated from the light source unit 210 into two, and reflects one of the light separated by the optical separator 260 and the optical separator 260 that emits the returned light toward the detection unit to the reference mirror.
  • a sample which injects another of the reference optical system 240 and the light separated by the optical separator 260 to the optical separator 260 into the sample (biological tissue), and then transfers the returned light to the optical separator 260.
  • An optical path system 250 is included, and an end of the sample optical path system 250 is located toward the biological tissue to be diagnosed based on the optical unit 120.
  • the sample optical system 250 is included in the probe end and connected to the optical separator 260 through an optical fiber, and the optical fiber is wrapped with a cable (or a wire) together with a wire connecting the circuit unit.
  • the reference optical system 240 and the sample optical system 250 are included in the probe stage and connected to the optical separator 260 through a cable, or the reference optical system 240, the sample optical system 250, the optical separator ( All of the 260 is included in the probe terminal, and the light source 210 and the detector 220 are connected to each other through a cable.
  • modules such as an optical separator, a reference optical system, a sample optical system, a light source, and a detection unit may be approached to a predetermined area (for example, an area within 10 cm). It should be dense. Therefore, the optical cables connecting each module should be spliced without using a separate connector, and the minimum length (within 10 cm) required for splicing unless there is a special need such as light output or polarization control. It should be removed only.
  • the phase of the light signal applied is a very important factor for imaging the vessel.
  • the phase of the light signal is changed to reduce the accuracy of blood vessels photographed.
  • the length of the optical fiber connecting each component of the optical unit 120 is short and fixed to the inside of the device, when the blood vessel tissue is photographed, the accuracy can be increased.
  • the sample optical system 250 of the light exit portion long through the optical fiber to approach the sample as much as possible (for example, the laparoscope or endoscope To have a predetermined length, as in the form).
  • the optical fiber may be removed by directly contacting each component, and the miniaturization and low cost of the OCT device 1 may be realized by introducing a small optical component or a direct optical system.
  • FIG. 4 is a diagram showing the configuration of a circuit portion of the handheld OCT device 1 according to an embodiment of the present invention.
  • the circuit unit 110 is composed of an electronic circuit board, and is provided inside the handheld OCT device 1, and includes a central processing unit 310, a light emission control unit 320, a detection circuit unit 330, and a light source.
  • the controller 340, the power controller 350, the communication processor 360, and the user interface (UI) controller 370 may be configured.
  • the light source controller 340 turns on / off the light source mounted in the light source unit 210 to control or adjust the output level. You can also monitor the temperature and output level around the light source and check the stability of the device.
  • thermoelectric cooler TEC
  • simple air cooling method that can be generally used
  • the part where the light source is mounted is brought into close contact with the chip that generates the most heat so that the thermal conductivity is smooth (a thermal grease, etc. may be used if necessary).
  • a thermal grease, etc. may be used if necessary.
  • the light source unit 210 should be formed to have a smooth flow of air so that heat inside the device can be discharged out of the device, and the light source control unit 340 should monitor whether the process is smooth.
  • the light output controller 320 controls a beam scanner module for changing the direction of light in the light output unit, or controls an additional drive even when an additional drive unit such as a motor is provided.
  • the circuit for controlling the driving is driven at low power in consideration of being a battery-operated handheld device.
  • the detection circuit unit 330 converts an optical signal into an electrical signal according to the instructions of the central processing unit 310 and transmits the optical signal to the central processing unit 310.
  • a low output operation of the light source unit 210 is essential to reduce the power consumption of the battery. Therefore, it is important to configure the detection circuit unit 330 having high sensitivity.
  • the handheld OCT device 1 of the present invention should also be miniaturized in its own size of the detection circuit unit 330 to be combined with the detection unit 220 while minimizing the size of the optical system.
  • a circuit must be configured to operate by receiving power from a battery built in the power supply unit 130.
  • the central processing unit 310 may operate the power control unit 350 so as not to receive an additional command of the user for a predetermined time (for example, 1 minute) or operate the device. If this is not done, it will switch to standby mode to stop the device. In this case, when the operation is resumed, the current setting values are backed up before entering the standby mode so that the operation immediately before the standby mode is continued. To achieve this, power must be maintained on essential components so that the setpoint values are maintained even when entering standby mode.
  • a predetermined time for example, 1 minute
  • the central processing unit 310 determines that the user has stopped using the handheld OCT device 1, and ends the power supply.
  • the light source unit 210 may be controlled in advance for a preset warm-up time before the signal detection is started by inputting a signal indicating the start of measurement through a button or the like by controlling the light source controller 340. To turn on and lower the power consumption through the construction of a processor that automatically turns off the light source of the light source unit 210 immediately after the measurement is completed.
  • the preheating time means a time required for the output value of the light source to converge to a value within a preset range immediately after the light source is turned on.
  • the central processing unit 310 controls the light output control unit 320 so that a signal for adjusting the focus of the measurement site and scanning the light is generated. It is controlled to be input.
  • the central processing unit 310 monitors the overall state of the handheld OCT device 1 and determines whether or not the device abnormality. For example, by monitoring the temperature inside the appliance during use, the cooling fan or thermoelectric cooler (TEC) is adjusted to maintain an appropriate range. At this time, when the light output level is lowered due to the temperature rise because the use time exceeds a certain level, a procedure of additionally applying a current may be performed to increase the output level to a certain level within an allowable range.
  • TEC thermoelectric cooler
  • the central processing unit 310 performs signal processing for generating an OCT image with respect to the signal transmitted from the detection circuit unit 330 and simultaneously exchanges signals with other devices through the communication processing unit 360, or the UI control unit 370. ) Can receive the input signal from the button or touch screen. In addition, it manages the whole system, such as displaying the operation process through the speaker or LED indicator or communicating with the user through the display.
  • the power control unit 350 is a feature that exists only in the handheld or mobile OCT device 1 implemented in the present invention. Since the entire system is driven by a battery, the power control unit 350 turns off the power of a module that is not used in the standby mode and uses it for a long time. If not, the system manages power management by putting the system into hibernation mode or automatically shutting down.
  • the communication processor 360 establishes a communication channel with a predetermined external device, and transmits a control or OCT-related signal to the outside by an instruction of the central processing unit 310, or transmits a signal transmitted from the outside to the central processing unit 310. It serves to convey.
  • the OCT data generated by the handheld OCT device 1 is transmitted to the user terminal through the communication processor 360.
  • the user terminal receiving the OCT data may output the OCT data in real time or afterwards through a display module provided in the user terminal and provide the same to the user, or store the OCT data by mapping the user information previously input from the user.
  • the user terminal may additionally include an image processing and replay function of the OCT data, and may manage information and history of the test subject.
  • the UI controller 370 is responsible for signal input and output with the UI modules including a button or a touch screen, a speaker, an LED indicator, a display, and the like.
  • the handheld OCT device 1 may be provided with a camera having an illumination function. This is to have a light incidence path sharing the light exit unit to obtain a surface image of the area to be measured in real time, and to transfer to the central processing unit 310 to help in finding the measurement site. In addition, by performing co-registration with the OCT signal measured by the detection circuit unit 330, it is possible to perform a precise analysis of the measurement site.
  • FIG. 5 is a flowchart illustrating an operation of entering a standby mode of the handheld OCT device 1 according to an embodiment of the present invention.
  • the handheld OCT device 1 in order to enter the standby mode, should not receive a separate operation command for a preset time (S510).
  • the central processing unit 310 recognizes this and switches to the standby mode.
  • the user may adjust the waiting time until entering the standby mode.
  • the handheld OCT device 1 stores the current state (S520).
  • the power of some modules of the optical unit 120 or the circuit unit 110 is cut off.
  • some modules such as the central processing unit 310, the UI control unit 370, and the power control unit 350 are continuously supplied with power so that the user can respond to the user's operation command at any time. You must keep it.
  • the circuit unit 110 may determine that the user has completed the work, thereby completely shutting down the power of the handheld OCT device 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

본 발명의 일 실시예에 따른, 배터리 내장 방식의 일체형 핸드헬드(handheld) OCT(optical coherence tomography) 장치에 있어서, 핸드헬드 케이스 내부의 일 영역에 구비되는 광학부; 핸드헬드 케이스 내부의 타 영역에 구비되어, 광학부의 신호 처리 및 전원을 관리를 수행하는 회로부; 및 광학부와 회로부에 전원을 공급하며, 헨드헬드 케이스 내부에 실장되는 전원부;를 포함한다.

Description

[규칙 제26조에 의한 보정 17.06.2019] 포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 OCT 시스템
본 발명은 Point-of-care(POC) 진단을 위한 일체형 핸드헬드(handheld) 배터리 구동 OCT 시스템을 구현하기 위한 기술에 관한 것이다.
광결맞음단면영상(OCT: optical coherence tomography)은 생체 조직의 내부를 관찰할 수 있는 기술로서 안과, 심혈관 등 분야에서 사용되는 첨단 의료진단기술이다. 구현 방식으로는 시간영역(time domain), 분광영역(spectral domain) 및 스웹소스(swept source)방식 등이 있다. 이 중 분광영역 방식의 OCT 시스템은 일정 수준 이상의 성능을 확보하면서도 제조원가를 낮출 수 있어 각광받는 방식이다.
일반적으로 OCT 시스템은 프로브(probe)단과 본체로 구성된다. 프로브단은 광원에서 나온 빛을 관찰하고자 하는 생체조직에 전달하고, 조직에서 되돌아오는 빛을 본체로 전달하는 역할을 하는데, 여기에는 일정 영역 내에서 빛의 방향을 바꿀 수 있는 빔 스캐너(beam scanner) 및 렌즈, 거울 등의 광부품들로 이루어진 샘플광로계 및 생체조직에 거치시키기 위한 기구물 등이 포함되어 있다. 본체는 광원과 광원의 드라이버, 광원에서 나온 빛을 두 경로로 나누는 방향성 결합기(directional coupler)나 빔 스플리터(beam splitter)같은 광분리기, 프로브 방향으로 전달되는 빛과 대응되는 광경로를 만들어내기 위한 기준광로계, 기준광로계와 프로브단의 샘플광로계에서 되돌아오는 빛들 간의 간섭 성분을 검출하는 검출부 등으로 구성된다. 여기서 광분리기, 기준광로계 등이 프로브단에 존재하는 경우도 있다.
전기신호로 변환된 검출된 광신호는 신호처리를 통하여 OCT신호를 생성시키는데, 이 부분은 본체 내부에 포함된 MCU(microprocessor unit) 등의 신호처리부를 통해서 이루어질 수도 있고, OCT 기기가 일종의 PC의 주변기기 역할을 하여, 검출된 신호가 커넥터를 통하여 보통의 PC등에 전달하여 PC등에서 신호처리가 이루어지기도 한다.
도 1은 종래의 OCT시스템의 구성을 나타낸 예시 도면이다.
도 1을 참조하면, OCT시스템은 본체, PC, 프로브단을 포함하고 있고 도면에 도시된 바와 같이 대표적으로 2가지 형태를 가질 수 있다.
종래의 OCT 시스템은 카트(cart)형태로 구현되어 한정된 공간 내에서 제한된 이동만 가능하거나, 데스크탑(desktop) 형태로 고정되어 사용되게 된다. 다시 말해, 본체와 PC 등은 바닥에 고정된 상태에서 프로브단만 제한된 이동을 통해 피시험자의 생체조직에 접근하게 된다.
이러한 사용환경에서는 필연적으로 피시험자 또는 환자들이 기기가 위치한 정해진 장소에 방문하여만 진단이 수행될 수 있어서, OCT의 활용도를 크게 제한한다.
청진기와 같이 의사가 환자와 면담을 하면서도 간단히 사용할 수 있고, 의료 접근성이 취약한, 산간이나 섬 같은 곳에서도 사용이 가능한 형태의 OCT기기가 있다면, 그 활용도는 크게 증가할 것이다.
한편으로 OCT의 보급률을 제한하는 또 다른 요소로는 설치비가 높다는 데에 있다. 앞서 서술한 바와 같이 카트 형태나 데스크톱 형태의 OCT기기는 약 1억원대의 가격 대를 형성하고 있기에 대형병원을 제외한, 소규모 의원급 의료시설에서는 도입하기가 쉽지 않다.
일반적으로 렌즈 같은 광학부품은 크기가 작아질수록 가격도 낮아지고, 본체와 프로브단 사이의 신호전달을 위한 광부품 등을 제거할 수 있도록 OCT 기기가 소형화되고, 일체형로 구현될 수 있다면, 전체 OCT 시스템의 가격을 낮추어 OCT의 진단혜택을 늘릴 수 있을 것이다.
본 발명이 해결하고자 하는 과제는 휴대성을 극대화한 일체형(single-body) OCT 기기를 제안하여 OCT 기술의 효용 가치를 높이는 것을 목적으로 한다.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른, 배터리 내장 방식의 일체형 핸드헬드(handheld) OCT(optical coherence tomography) 장치에 있어서, 일체형 케이스 내부의 일 영역에 구비되는 광학부; 일체형 케이스 내부의 타 영역에 구비되어, 광학부의 신호 처리 및 전원의 관리를 수행하는 회로부; 및 배터리가 내장되어 광학부와 회로부에 전원을 공급하며, 일체형 케이스 내부에 실장되는 전원부;를 포함할 수 있다.
또한, 일체형 케이스는 광학부, 회로부 및 전원부를 수납할 수 있는 형상을 가지고, 외부에는 사용자가 일체형 케이스를 쥘 수 있는 손잡이의 형상이 형성될 수 있다.
또한, 일체형 케이스의 외부에는 회로부와 연결되어 OCT 장치를 조작하기 위한 조작부가 구비될 수 있다.
또한, 회로부는 일 방향으로 연장된 판형으로 형성되고, 광학부가 배치되되, 일체형 케이스의 일 측에 광학부를 통과한 광을 출사하는 광출사부가 배치되고, 타 측에 광학부에 광원을 공급하는 광원부가 배치되며, 광원부는 회로부와 전선을 통해 연결되며, 회로부는 일체형 케이스의 내부 공간에 광학부와 중첩되어 배치될 수 있다.
또한, 광원부, 검출부, 기준광로계, 샘플광로계, 광분리기가 간섭계를 형성하며 연결되되, 샘플광로계는 광출사부에서 진단하고자 하는 생체조직의 방향으로 구비될 수 있다.
또한, 광출사부는 내시경 또는 복강경용으로 사용되기 위해 소정의 길이만큼 길어진 형태로 형성될 수 있다. 물론, 이 경우 기준광로계는 그에 대응하여 길어진다.
또한, 회로부는 광원 제어부, 광출사 제어부, 검출 회로부, 중앙 처리부, 전원 제어부, 통신 처리부, UI(user interface)처리부를 포함할 수 있다.
또한, 중앙 처리부는 광원 제어부를 제어하여 기 설정된 상황에 따라 광원의 on/off를 수행 및 광원의 출력 레벨을 조정할 수 있다.
또한, 기 설정된 시간 동안 OCT 시스템이 동작하지 않으면, OCT 시스템을 정지하는 대기 모드로 전환되고, 사용자의 조작에 OCT 시스템이 반응할 수 있도록, 대기 모드에 진입하기 직전에 사용자가 OCT 시스템을 사용하며 설정된 값을 백업할 수 있다.
또한, 전원 제어부는 OCT 시스템이 기 설정된 시간 동안 대기 모드가 유지되면, OCT 시스템의 전원을 종료하는 모드로 전환될 수 있다.
또한, 광원은 측정 신호가 입력되기 전, 기 설정된 예열 시간(warm-up time)동안 미리 on되고, 측정 신호가 종료된 후 광원이 자동으로 off하며, 예열 시간은 광원의 출력값이 기설정된 범위 이내의 값으로 수렴하는 데까지 소요되는 시간을 의미할 수 있다.
또한, 광원 제어부가 광원이 on되어 예열 동작을 수행하는 동안, 광출사 제어부는 측정부위의 초점 조정 및 빔 스캔을 위한 신호가 입력되도록 제어할 수 있다.
또한, 광원의 온도가 기 설정된 온도보다 상승하거나, 광원의 출력 레벨이 기 설정된 값 이하로 저하되는 것을 감지하는 경우, 광원 제어부는 광원으로 공급되는 전류를 조절할 수 있다.
또한, 광원 온도가 기 설정된 온도보다 상승하는 경우, 광원 제어부는 경고 알람을 제공하거나, 광원의 전원을 off할 수 있다.
또한, 광분리기, 기준광로계, 샘플광로계, 광원 및 검출부 사이의 광섬유는 길이를 기 설정된 값 이내로 형성되며, 커넥터가 배제된 융접착(splicing) 방식으로 연결될 수 있다.
또한, 회로부의 광원제어부와 광학부의 광원을 포함하는 광원부는 내부를 구성하는 칩의 열전도가 원활하도록 요철 형상의 표면 구조를 가질 수 있다.
또한, 사용자 단말과 연동되어 배터리 내장 방식의 일체형 핸드헬드 OCT장치를 통해 촬영된 OCT 데이터를 표시하는 방법에 있어서, (a) 배터리 내장 방식의 일체형 핸드헬드 OCT장치가 OCT데이터를 생성하고, OCT데이터를 사용자 단말로 전달하는 단계; (b) OCT데이터를 수신한 사용자 단말은 사용자 단말에 구비된 디스플레이 모듈을 통해 OCT데이터를 출력하고 사용자로부터 기 입력받은 피사용자 정보과 매핑하여 저장하는 단계;를 포함하고, 배터리 내장 방식의 일체형 핸드헬드 OCT장치는 일체형 케이스 내부의 일 영역에 구비되는 광학부; 일체형 케이스 내부의 타 영역에 구비되어, 광학부의 신호 처리 및 장치의 관리를 수행하는 회로부; 및 배터리가 내장되어 광학부와 회로부에 전원을 공급하며, 일체형 케이스 내부에 실장되는 전원부를 포함할 수 있다.
본 발명의 일 실시예에 따른, 휴대성을 극대화한 일체형 (single-body) OCT 기기를 제안하여 OCT 기술의 효용 가치를 높일 수 있다.
본 발명을 통해 핸드헬드 또는 모바일 환경에서 사용이 가능한 일체형 OCT 시스템은 이러한 높은 설치비와 공간적 접근성의 제약을 낮추어 이 기술의 혜택이 골고루 퍼질 수 있는 토대를 마련할 것이다. 더불어, 이 발명을 바탕으로 안과, 심혈관 이외에 피부과, 부인과 등에서 적용 가능한 새로운 형태의 기기도 출현하게 되면 이 기술의 효용성이 더욱 확장될 것이다.
도 1은 종래의 OCT시스템의 구성을 나타낸 예시 도면이다.
도 2는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치의 구성을 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른, 광학부의 구성을 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치의 회로부의 구성을 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치의 대기 모드 진입 과정을 나타낸 동작 흐름도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하의 실시예는 본 발명의 이해를 돕기 위한 상세한 설명이며, 본 발명의 권리 범위를 제한하는 것이 아니다. 따라서 본 발명과 동일한 기능을 수행하는 동일 범위의 발명 역시 본 발명의 권리 범위에 속할 것이다.
도 2는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치(1)의 구성을 나타낸 도면이다.
도 2를 참조하면, 핸드헬드 OCT 장치(1)는 회로부(110), 광학부(120), 전원부(130)를 포함할 수 있다.
OCT 장치(1)는 회로부(110), 광학부(120) 및 전원부(130)가 일체형으로 구성되어 핸드헬드 형태가 구현될 수 있도록 일체형 케이스 안에 수납되어 있으며, 케이스의 외면에는 사용자가 핸드헬드 OCT 장치(1)를 쥘 수 있도록 손잡이의 형상이 구비되어 있다. 그 형상은 마치, TV리모컨의 형태와 크기와 유사하게 구현하게 되어 휴대성을 극대화 할 수 있다.
또한, 일체형 케이스에서 손잡이가 형성되는 부근에는 핸드헬드 OCT 장치(1)를 조작하기 위한 조작부가 구비되며, 이는 푸시형식 또는 토글형식의 버튼으로 구현되거나, 소형 터치스크린 형태로 구현되어 제공될 수 있다.
이때, 추가 실시예로 핸드헬드 OCT 장치(1)의 동작상태나 획득 정보를 표시하기 위한 소형 액정화면이 포함될 수 있고, 이는 회로부(110)를 구성하는 UI제어부와 연결될 수 있다.
핸드헬드 OCT 장치(1)는 일체형 케이스의 내부 일 영역에 광학부(120)가 구비되고, 타 영역에는 광학부(120)의 신호 처리 및 전원을 관리하는 회로부(110)가 구비된다. 또한, 나머지 영역에는 회로부(110)와 광학부(120)에 전원을 공급하는 전원부(130)가 실장되어 있다.
이를 자세하게 설명하면, 회로부(110)는, 광학부(120)와 밀접히 연결되는 부위를 제외하고는, 일 방향으로 연장된 판형으로 형성되고, 광학부(120)는 기하광학계 위주로 구현될 경우 회로부(110)의 길이보다 짧은 길이로 형성되되, 회로부(110)보다 두꺼운 직육면체 형상으로 형성된다.
따라서, 일체형 케이스의 일 측에 광학부(120)를 통과한 광을 출사하는 광출사부가 배치되고, 타 측에는 광학부(120)에 광원을 공급하는 광원부가 배치될 수 있다. 즉, 일체형 케이스의 내부 일 측에 광학부(120)가 배치되면, 회로부(110)는 일체형 케이스의 내부공간을 평면상으로 점유하게 되고, 회로부(110)는 일체형 케이스의 내부 공간에 광학부(120)와 중첩되어 배치될 수 있으며, 남은 공간은 전원부(130)가 배치될 수 있는 것이다. 이때, 광원부는 회로부(110)와 전선을 통해 연결될 수 있다.
이때, 광원부의 내부에는 광원 전력 인가로 인해 상승하는 온도를 낮추기 위해 요철 형상의 방열판이 구비될 수 있고, 그 외에 회로부(110)나 광학부(120)를 구성하는 각 모듈에도 열전도가 원활하도록 요철 형상의 표면 구조를 가질 수 있다.
회로부(110)는 회로보드로 구성되어 핸드헬드 OCT 장치(1)를 전반적으로 제어하는 역할을 수행하고, 그에 대한 상세한 설명은 후술할 도 4를 통해 진행하도록 한다.
광학부(120)는 광원부, 간섭계, 검출부, 빔 스캐너와 같은 광학부품으로 구성되는데, 이들 일부는 종래의 OCT 장치가 가지는 프로브단의 역할을 수행한다. 또한, 광학부(120)의 상세한 설명은 후술할 도 3을 통해 진행하도록 한다.
전원부(130)는 핸드헬드 OCT 장치(1)의 각 부분에 전원을 제공하는 역할을 수행하며, 외부의 전원을 이용하지 않고 기 내장된 전원을 이용하여 구동될 수 있도록 배터리 형식으로 구현될 수 있다. 이를 통해, 별도의 외부 기기와 유선 연결이 아닌 핸드핼드 혹은 모바일을 위한 OCT 장치의 구현이 가능해 지는 것이다.
따라서, 전원이 소진되면 배터리를 교체하거나 별도로 구비된 충전 슬롯(또는 크래들(cradle)을 장착하는 구조)을 통해 외부 전원으로부터 내장된 배터리를 충전할 수 있게 된다.
또한, OCT 거치대와 같은 추가적인 기구물 등이 더 포함되어 구성될 수 있으며, 핸드헬드 OCT 장치(1)를 위한 추가적인 액세서리 구성이 본 발명의 범위를 제한하지는 않는다.
이때, OCT 거치대는 사용자의 손떨림 등으로 측정이 용이하지 않거나, 측정자 없이 피시험자가 직접 측정을 사용할 시 이용될 수 있다. 이때 OCT거치대는 종래의 스마트단말의 셀카봉과 같이 무선 또는 유선으로 핸드헬드 OCT(1)와 연결되어 핸드헬드 OCT(1)를 동작하기 위한 명령을 OCT거치대를 통해 하달할 수 있다. 예를 들어, 촬영의 시작과 끝을 조작할 뿐만 아니라 측정부위에 OCT의 빛이 출사되는 부분을 정확히 정렬시키기 위해 OCT거치대와 결합한 핸드헬드 OCT(1)의 위치를 움직이는 등의 조작을 수행할 수 있다. 그 밖에도 OCT거치대와 결합하는 것으로 핸드헬드 OCT(1)의 배터리를 충전시키거나, 피시험자의 측정부위에 정확히 위치시킬 수 있는 관절부가 구비될 수 있다.
또한, 사용자가 손으로 쥐고 사용하는 장치인 만큼, 핸드헬드 OCT 장치(1)는 낙하나 충격 등에 취약하지 않게 설계되고, 열 방출이 원활하도록 구현되어야 한다. 이때, 기기 내부의 열 방출이 원활하게 구현되도록 일체형 케이스의 한 쪽면에 열방출구를 형성하여 기기 내부의 공기가 외부와 순환될 수 있도록하거나, 냉각팬이 설치되어 내부의 온도에 팬을 작동시켜 기기 내부의 온도를 낮추게 할 수도 있다.
추가적인 실시예로 핸드헬드 OCT(1)는 잦은 측정으로 인해 광출사부에서 오염이 발생할 수 있다. 따라서, 교체가 가능한 커버가 구비되어 기 설정된 시간동안 사용 후 오염된 커버를 교체할 수 있는 구조를 가질 수도 있다.
또 다른 실시예로, 핸드헬드 OCT(1)의 일체형 케이스의 외부에는 회로부(110)와 연결된 자체 디스플레이 패널(display panel)이 구비될 수 있다. 이를 통해, 사용자에게 핸드헬드 OCT(1) 사용 시 지시사항을 안내하거나, 기본적인 동작상황에 대한 표시가 가능하게 되고, 그밖에도 간단한 OCT 영상을 재생할 수도 있다. 또한, 디스플레이 패널이 입출력 터치 스크린으로 구비되는 경우 UI 제어부(370)와 연결되어 조작부에 해당하는 입력장치의 역할도 수행할 수 있다.
도 3은 본 발명의 일 실시예에 따른, 광학부의 구성을 나타낸 도면이다.
도 3을 참조하면, 광학부(120)는, 광원부(210), 간섭계(230)의 광간섭 신호로부터 샘플(생체조직)으로부터 발생된 신호를 검출하는 검출부(220), 광간섭 효과를 일으키는 간섭계(230)를 포함하고 있다. 여기서 간섭계(230)는, 광원부(210)으로부터 조사된 광을 둘로 나누고, 되돌아오는 빛을 검출부 방향으로 내보내는 광분리기(260), 광분리기(260)에서 분리된 광 중 하나를 기준거울에 반사시켜 광분리기(260)로 재전달하는 기준광로계(240), 광분리기(260)에서 분리된 광 중 다른 하나를 샘플(생체조직)에 입사시킨 다음 되돌아온 광을 광분리기(260)로 전달하는 샘플광로계(250)를 포함하고 있으며, 샘플광로계(250)의 말단이 상기 광학부(120)를 기준으로 진단하고자 하는 생체조직 방향을 향해 위치한다.
종래의 OCT는 샘플광로계(250)가 프로브단에 포함되어 광분리기(260)와 광섬유를 통하여 연결되고, 이 광섬유는 회로부와 연결하는 전선과 함께 케이블(혹은, 와이어)로 감싸져 있다. 또한, 기준광로계(240)와 샘플광로계(250)가 프로브단에 포함되어 광분리기(260)와 케이블을 통해 연결되거나, 기준광로계(240), 샘플광로계(250), 광분리기(260) 모두가 프로브단에 포함되어 광원부(210) 및 검출부(220)와 케이블을 통해 연결되는 형태 등으로 구현되어 있다.
하지만, 본 발명에서는 핸드헬드에 적합한 크기로 구현되어야 하기에, 광분리기, 기준광로계, 샘플광로계, 광원 및 검출부 등의 모듈들이 기 설정된 면적(예를 들어, 10cm 이내의 면적)으로 근접하여 밀집되어야 한다. 따라서, 각 모듈을 연결하는 광케이블도 별도의 커넥터의 사용은 배제한 채 융접착(splicing)되어야 하고, 광출력이나 편광 조절 등의 특별한 필요성이 없는 한 융접착(splicing)에 필요한 최소(10cm 이내) 길이만 남겨두고 제거되어야 하는 것이다.
한편, OCT 기술은 도플러 효과를 이용하여, 조영제 없이도 혈관조영이 가능한데, 이때 인가되는 빛 신호의 위상이 혈관 촬영을 위해서 아주 중요한 요소로 작용하게 된다. 종래의 OCT는 케이블(광섬유)을 통해 연결된 부위가 흔들리는 경우 빛 신호의 위상이 변화하여 촬영되는 혈관의 정확도를 저하시키게 된다. 하지만, 본 발명에서는 광학부(120)의 각 구성을 연결하는 광섬유의 길이가 짧고, 기기의 내부에 고정되기 때문에 혈관 조직 촬영 시, 정확도를 높일 수 있게 된다. 물론, 측정하고자 하는 샘플(생체조직)의 형태에 따라 광출사부의 샘플광로계(250)의 말단을 광섬유를 통하여 길게 만들어서 최대한 샘플에 접근시키는 구조도 있을 수 있다 (예를 들어, 복강경이나 내시경의 형태와 같이 소정의 길이를 가질 수 있도록).
또한, 선택적 실시예로 각 구성을 직접 접촉시켜 광섬유를 제거할 수 있고, 소형 광학부품이나 직접광학계를 도입하여 OCT 장치(1)의 소형화 및 저가화를 구현할 수 있게 된다.
도 4는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치(1)의 회로부의 구성을 나타낸 도면이다.
도 4를 참조하면, 회로부(110)는 전자회로기판으로 구성되어, 핸드헬드 OCT 장치(1) 내부에 구비되며, 중앙 처리부(310), 광출사 제어부(320), 검출 회로부(330), 광원 제어부(340), 전원 제어부(350), 통신 처리부(360), UI(user interface) 제어부(370)로 구성될 수 있다.
먼저 광원 제어부(340)는 중앙 처리부(310)의 제어에 따라, 광원부(210) 내 거치된 광원을 on/off 하여 제어하거나 출력 레벨을 조정하게 된다. 또한, 광원 주변부의 온도나 출력 레벨을 모니터하며 기기의 안정성 등을 체크할 수 있다.
이때, 앞서 간단하게 서술한 광원부(210)의 온도제어에 대해 상세하게 설명하면, 일반적으로 사용될 수 있는 TEC(thermoelectric cooler)나 단순한 공냉(air cooling)방식이 사용될 수 있다.
또한, 광원이 거치되는 부분은 열이 가장 많이 발생하는 칩(chip) 부근과 열전도가 원활하도록 접촉 시킨다(필요에 따라, thermal grease 등을 사용하게 된다.). 또한, 공기와의 접촉면을 최대한 늘리기 위해 방열판과 같은 요철이 많은 표면 구조를 갖도록 구현한다.
결국, 광원부(210)는 공기의 흐름이 원활한 구조로 형성되어 기기 내부의 열이 기기 밖으로 배출될 수 있도록 해야 하고, 광원 제어부(340)는 이러한 과정이 원활한지를 모니터 해야 한다.
광출사 제어부(320)는 광출사부에 빛의 방향을 바꾸기 위한 빔 스캐너(beam scanner) 모듈을 제어하거나, 그 외 모터와 같은 추가적인 구동부가 구비되는 경우에도 추가적인 구동부에 대한 제어하게 된다. 이때, 구동을 제어하는 회로는 배터리로 동작하는 핸드헬드 기기임을 감안하여 저전력으로 구동하게 된다.
검출 회로부(330)는 중앙 처리부(310)의 지시에 따라 광신호를 전기신호로 변환하여 중앙 처리부(310)로 전달하는 역할을 한다.
핸드헬드 또는 모바일 환경에서는 배터리의 전원 소비를 줄이기 위해 광원부(210)의 저출력 동작이 필수적인데, 그 때문에 감도가 높은 검출 회로부(330)를 구성하는 것이 중요하다.
따라서, 본 발명의 핸드헬드 OCT 장치(1)는 광학계의 크기를 최소화 하면서 검출부(220)와 결합하게 되는 검출 회로부(330)의 자체적인 크기도 소형화 되어야 한다. 또한, 전원부(130)에 내장되는 배터리로부터 전원을 공급받아 작동할 수 있도록 회로가 구성되어야 한다.
먼저, 불필요하게 소모 될 수 있는 전력을 감소시키기 위해, 중앙 처리부(310)는 전원 제어부(350)를 조작하여, 기 설정된 시간(예컨대, 1분) 이상 사용자의 추가적인 명령을 수신하지 못 하거나 기기 동작이 수행되지 않으면 기기를 정지시키는 대기 모드(standby mode)로 전환하게 된다. 이때, 조작이 재개되는 경우 곧장 대기 모드 직전의 동작을 이어갈 수 있도록, 대기 모드 진입 전 현재 설정값들을 백업하게 된다. 이를 구현하기 위해 대기 모드에 진입하여도 설정값이 유지될 수 있도록 필수적인 부품에는 전원이 유지되어야 한다.
이때, 대기 모드가 기 설정된 시간 동안 지속된다면, 중앙 처리부(310)는 사용자가 핸드헬드 OCT 장치(1)의 사용을 중단한 것으로 판단하여, 전원을 종료하게 된다.
또한, 광원 제어부(340)를 제어하여 UI 제어부(370)로부터 버튼 등을 통하여 측정 시작을 알리는 신호가 입력되어 신호 검출이 시작되기 전, 기 설정된 예열 시간(warm-up) 동안 미리 광원부(210)를 on되게 하고, 측정이 종료되면 즉시 광원부(210)의 광원을 자동으로 off시키는 프로세서의 구축을 통해 전력 소모를 낮추게 한다.
이때, 예열 시간이란 광원이 켜진 직후 광원의 출력값이 기 설정된 범위 이내의 값으로 수렴하기까지 소요되는 시간을 의미하게 된다.
또한, 광원 제어부(340)가 광원부(210)의 광원이 on되어 예열 동작을 수행하면, 중앙 처리부(310)는 광출사 제어부(320)를 제어하여 측정부위의 초점 조정 및 광 스캔을 위한 신호가 입력되도록 제어하게 된다.
이때, 중앙 처리부(310)는 핸드헬드 OCT 장치(1)의 전반적인 상태를 모니터하면서 기기 이상여부를 판단한다. 예를 들어, 사용 중 기기 내부의 온도를 모니터하여 적정 범위 내에서 유지되도록 냉각팬 또는 열전기냉각기(thermoelectric cooler: TEC)를 조정한다. 이때, 사용 시간이 일정 수준을 초과하여 온도 상승으로 인한 광출력 레벨이 저하되는 경우, 허용 범위 이내에서 출력 레벨을 어느 수준으로 증가시킬 수 있도록 전류를 추가 인가하는 절차를 수행할 수 있다.
반대로 출력 레벨이 조절 범위를 벗어날 정도로 온도가 상승하였을 경우, 경고 메시지를 사용자에게 내보내거나 강제적으로 광원부(210)를 off하는 절차가 포함될 수 있다.
또한, 중앙 처리부(310)는, 검출 회로부(330)로부터 전달된 신호에 대해 OCT 영상을 생성하기 위한 신호처리를 수행함과 동시에 통신 처리부(360)를 통하여 타기기와 신호를 주고 받거나, UI 제어부(370)를 통하여 버튼이나 터치스크린에서 수행된 입력 신호를 수신할 수 있다. 또한, 스피커나 LED표시기를 통한 동작과정 표시 또는 디스플레이를 통한 사용자와의 의사소통 등 전체 시스템을 관장한다.
전원 제어부(350)는 본 발명에서 구현하는 핸드헬드 또는 모바일 OCT 장치(1)에서만 존재하는 특징으로, 시스템 전체가 배터리를 통해 구동되기에, 대기모드에서는 사용되지 않는 모듈의 전원을 끄고, 장시간 사용하지 않을 시 시스템을 동면모드로 바꾸거나 자동 종료하는 등 전원관리 역할을 수행한다.
통신 처리부(360)는 사전에 정해진 외부기기와 통신채널을 설정하고, 중앙 처리부(310)의 지시에 의해 제어 또는 OCT 관련 신호를 외부에 전달하거나, 외부에서 전달된 신호를 중앙 처리부(310)에 전달하는 역할을 한다.
예컨대, 사용자 단말과 연동되어 핸드헬드 OCT 장치(1)가 OCT 데이터를 표시하는 과정에서는 먼저, 핸드헬드 OCT 장치(1)가 생성한 OCT 데이터를 통신 처리부(360)를 통해 사용자 단말로 전달하고, OCT 데이터를 수신한 사용자 단말은 사용자 단말에 구비된 디스플레이 모듈을 통해 OCT데이터를 실시간 또는 사후에 출력하여 사용자에게 제공하거나 사용자로부터 기 입력받은 피사용자 정보와 매핑하여 OCT 데이터를 저장 할 수 있다. 이때, 사용자 단말은 부가적으로 OCT 데이터의 영상처리 및 리플레이(replay) 기능이 포함될 수 있고, 피시험자의 정보 및 이력을 관리할 수도 있다.
UI 제어부(370)는 버튼 또는 터치스크린, 스피커, LED표시기, 디스플레이 등을 포함한 UI 모듈들과의 신호 입출력을 담당한다.
추가적인 실시예로, 핸드헬드 OCT 장치(1)의 내부에는 조명 기능이 있는 카메라가 구비될 수 있다. 이는 광출사부를 공유하는 광입사 경로를 가지게 되어 측정하고자 하는 부위의 표면영상을 실시간으로 취득하고, 중앙 처리부(310)로 전달하여 측정부위를 찾기에 쉽도록 돕게 된다. 또한, 검출 회로부(330)를 통하여 측정되는 OCT 신호와 함께 위치정합(co-registration)을 수행하여, 측정부위에 대한 정밀분석을 수행할 수 있게 된다.
도 5는 본 발명의 일 실시예에 따른, 핸드헬드 OCT 장치(1)의 대기 모드 진입 과정을 나타낸 동작 흐름도이다.
도 5를 참조하면, 핸드헬드 OCT 장치(1)가 대기 모드에 진입하기 위해선 기 설정된 시간 동안 별도의 조작 명령을 수신하지 않아야 한다(S510).
핸드헬드 OCT 장치(1)가 동작 중이지만, 사용자가 조작부를 기 설정된 시간 동안 조작하지 않는다면, 중앙 처리부(310)는 이를 인지하고 대기 모드로 전환을 수행하게 된다.
이때, 추가 실시예로, 사용자는 대기 모드 진입까지 걸리는 대기 시간을 조절할 수도 있다.
단계(S510)를 거치면, 핸드헬드 OCT 장치(1)는 현재 상태를 저장하게 된다(S520).
이는, 사용자가 자리비움과 같이 이유로 대기 모드로 진입한 핸드헬드 OCT 장치(1)를 재조작하는 경우, 빠르게 원상태로 복구하여 이전의 작업을 이어갈 수 있도록 하기 위함이다.
현 상태에 대한 저장이 완료되면, 일부 모듈을 제외한 전원을 차단 후 대기 모드로 진입하게 된다(S530).
이때, 광학부(120)나 회로부(110)의 일부 모듈의 전원을 차단하게 된다. 하지만, 완전하게 장치를 종료하는 것은 아니기에, 중앙 처리부(310)나 UI 제어부(370), 전원 제어부(350) 등의 일부 모듈에는 지속적으로 전원을 제공하여, 언제든 사용자의 조작 명령에 반응할 수 있도록 상태를 유지해야만 한다.
또한, 추가 실시예로, 대기 모드가 기 설정된 시간 동안 지속되는 경우, 회로부(110)는 사용자가 작업을 완료하였다고 판단하여, 핸드헬드 OCT 장치(1)의 전원을 완전하게 종료할 수도 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (17)

  1. 배터리 내장 방식의 일체형 핸드헬드(handheld) OCT(optical coherence tomography) 장치에 있어서,
    일체형 케이스 내부의 일 영역에 구비되는 광학부;
    상기 일체형 케이스 내부의 타 영역에 구비되어, 상기 광학부의 신호 처리 및 장치의 관리를 수행하는 회로부; 및
    배터리가 내장되어 상기 광학부와 회로부에 전원을 공급하며, 상기 일체형 케이스 내부에 실장되는 전원부;
    를 포함하되, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  2. 제 1 항에 있어서,
    상기 일체형 케이스는
    상기 광학부, 회로부 및 전원부를 수납할 수 있는 형상을 가지고,
    외부에는 사용자가 상기 일체형 케이스를 쥘 수 있는 손잡이의 형상이 형성되어 있는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  3. 제 1항에 있어서,
    상기 일체형 케이스의 외부에는 상기 회로부와 연결되어 OCT 장치를 조작하기 위한 조작부가 구비되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  4. 제 1항에 있어서,
    상기 회로부의 주요부분은 일 방향으로 연장된 판형으로 형성되고,
    상기 광학부가 배치되되 상기 일체형 케이스의 일 측에 상기 광학부를 통과한 광을 출사하는 광출사부가 배치되고, 타 측에 상기 광학부에 광원을 공급하는 광원부가 배치되며, 상기 광원부는 상기 회로부와 전선을 통해 연결되며, 상기 회로부는 상기 일체형 케이스의 내부 공간에 상기 광학부와 중첩되어 배치되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  5. 제 4 항에 있어서,
    상기 광원부, 검출부, 기준광로계, 샘플광로계, 광분리기가 간섭계를 형성하며 연결되되, 상기 샘플광로계는 광출사부에서 진단하고자 하는 생체조직의 방향으로 구비되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  6. 제 4 항에 있어서,
    상기 광출사부는 내시경 또는 복강경용으로 사용되기 위해 소정의 길이만큼 길어진 형태로 형성되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  7. 제 1 항에 있어서,
    상기 회로부는 광원 제어부, 광출사 제어부, 검출 회로부, 중앙 처리부, 전원 제어부, 통신 처리부, UI(user interface)처리부를 포함하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  8. 제 7 항에 있어서,
    상기 중앙 처리부는 상기 광원 제어부를 제어하여 기 설정된 상황에 따라 광원의 on/off를 수행 및 상기 광원의 출력 레벨을 조정하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  9. 제 1항에 있어서,
    기 설정된 시간 동안 OCT 시스템이 동작하지 않으면, 상기 OCT 시스템을 정지하는 대기 모드로 전환되고,
    사용자의 조작에 상기 OCT 시스템이 반응할 수 있도록, 상기 대기 모드에 진입하기 직전에 상기 사용자가 상기 OCT 시스템을 사용하며 설정된 값을 백업하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  10. 제 9항에 있어서,
    상기 전원 제어부는 상기 OCT 시스템이 기 설정된 시간 동안 상기 대기 모드가 유지되면, 상기 OCT 시스템의 전원을 종료하는 모드로 전환되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  11. 제 8 항에 있어서,
    상기 광원은 측정 신호가 입력되기 전, 기 설정된 예열 시간(warm-up time)동안 미리 on되고, 측정 신호가 종료된 후 상기 광원이 자동으로 off하며, 상기 예열 시간은 광원의 출력값이 기설정된 범위 이내의 값으로 수렴하는 데까지 소요되는 시간을 의미하는 것인, 배터리로 구동하는 위한 일체형 핸드헬드 OCT시스템.
  12. 제 7 항에 있어서,
    상기 광원 제어부가 상기 광원이 on되어 예열 동작을 수행하고, 상기 광출사 제어부는 측정부위의 초점 조정 및 빔 스캔을 위한 신호가 입력되도록 제어하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  13. 제 8 항에 있어서,
    상기 광원의 온도가 기 설정된 온도보다 상승하거나, 상기 광원의 출력 레벨이 기 설정된 값 이하로 저하되는 것을 감지하는 경우, 상기 광원 제어부는 상기 광원으로 공급되는 전류를 조절하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  14. 제 13 항에 있어서,
    상기 광원 온도가 기 설정된 온도보다 상승하는 경우, 상기 광원 제어부는 경고 알람을 제공하거나, 상기 광원의 전원을 off하는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  15. 제 2 항에 있어서,
    상기 광분리기, 기준광로계, 샘플광로계, 광원 및 검출부 사이의 광섬유는 길이를 기 설정된 값 이내로 형성되며, 커넥터가 배제된 융접착(splicing) 방식으로 연결되는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  16. 제 7 항에 있어서,
    상기 회로부의 광원제어부와 상기 광학부의 광원을 포함하는 상기 광원부는 내부를 구성하는 칩의 열전도가 원활하도록 요철 형상의 표면 구조를 갖는 것인, 배터리 내장 방식의 일체형 핸드헬드 OCT장치.
  17. 사용자 단말과 연동되어 배터리 내장 방식의 일체형 핸드헬드 OCT장치를 통해 촬영된 OCT 데이터를 표시하는 방법에 있어서,
    (a) 배터리 내장 방식의 일체형 핸드헬드 OCT장치가 OCT데이터를 생성하고, 상기 OCT데이터를 사용자 단말로 전달하는 단계;
    (b) 상기 OCT데이터를 수신한 상기 사용자 단말은 상기 사용자 단말에 구비된 디스플레이 모듈을 통해 상기 OCT데이터를 실시간 또는 사후에 출력하는 단계; 및
    (c) 상기 사용자 단말은 사용자로부터 기 입력받은 피사용자 정보와 매핑하여 상기 OCT 데이터를 저장하는 단계;
    를 포함하고,
    상기 배터리 내장 방식의 일체형 핸드헬드 OCT장치는 일체형 케이스 내부의 일 영역에 구비되는 광학부; 상기 일체형 케이스 내부의 타 영역에 구비되어, 상기 광학부의 신호 처리 및 장치의 관리를 수행하는 회로부; 및 배터리가 내장되어 상기 광학부와 회로부에 전원을 공급하며, 상기 일체형 케이스 내부에 실장되는 전원부를 포함하는 것인, 사용자 단말과 연동되어 배터리 내장 방식의 일체형 핸드헬드 OCT장치를 통해 촬영된 OCT 데이터를 표시하는 방법.
PCT/KR2019/006756 2018-06-05 2019-06-04 포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 oct 시스템 WO2019235826A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021517175A JP7078305B2 (ja) 2018-06-05 2019-06-04 ポイント・オブ・ケア診断のための一体型ハンドヘルドバッテリー駆動octシステム
EP19814719.1A EP3791773A4 (en) 2018-06-05 2019-06-04 INTEGRATED HAND-HELD BATTERY OPERATED OCT SYSTEM FOR CARE PLACE DIAGNOSTICS
CN201980037607.8A CN112218569A (zh) 2018-06-05 2019-06-04 用于及时现场护理诊断的一体型手提电池驱动光学相干层析成像系统
US17/110,947 US20210085185A1 (en) 2018-06-05 2020-12-03 All-in-one battery-powered handheld oct system for point-of-care diagnostics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0064957 2018-06-05
KR20180064957 2018-06-05
KR1020180100659A KR20190138548A (ko) 2018-06-05 2018-08-27 Point of care 진단을 위한 일체형 핸드헬드 배터리 구동 OCT 시스템
KR10-2018-0100659 2018-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,947 Continuation US20210085185A1 (en) 2018-06-05 2020-12-03 All-in-one battery-powered handheld oct system for point-of-care diagnostics

Publications (1)

Publication Number Publication Date
WO2019235826A1 true WO2019235826A1 (ko) 2019-12-12

Family

ID=68847467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006756 WO2019235826A1 (ko) 2018-06-05 2019-06-04 포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 oct 시스템

Country Status (6)

Country Link
US (1) US20210085185A1 (ko)
EP (1) EP3791773A4 (ko)
JP (1) JP7078305B2 (ko)
KR (2) KR20190138548A (ko)
CN (1) CN112218569A (ko)
WO (1) WO2019235826A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401564B1 (ko) * 2020-03-20 2022-05-24 주식회사 제이엠엘이디 인공지능을 활용한 시력검사 시스템
CN113413139B (zh) * 2021-06-22 2022-09-16 赵雁之 一种基于光学相干弹性成像图像融合装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081565A (ko) * 2007-03-06 2008-09-10 연세대학교 산학협력단 휴대용 피부 검사용 편광 민감 광 간섭 영상 시스템
JP2009510445A (ja) * 2005-09-29 2009-03-12 バイオプティジェン,インコーポレイテッド 携帯光コヒーレンストモグラフィ(oct)装置および関連システム
KR101355671B1 (ko) * 2012-09-26 2014-01-28 경북대학교 산학협력단 모니터 일체형 포터블 스캐닝 프로브, 및 이를 이용한 광 간섭성 단층 촬영장치
KR101765824B1 (ko) * 2016-05-26 2017-08-10 주식회사 오즈텍 휴대용 광단층 검사 장치
KR101853101B1 (ko) * 2017-11-30 2018-04-30 유형근 구강검진·헬스케어클린을 갖는 스마트 oct 장치 및 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635661B2 (ja) * 1988-03-16 1997-07-30 株式会社東芝 内視鏡装置
JP2001046321A (ja) * 1999-08-09 2001-02-20 Asahi Optical Co Ltd 内視鏡装置
JP2004113780A (ja) * 2002-09-06 2004-04-15 Pentax Corp 内視鏡、および光断層内視鏡装置
JP2004333639A (ja) * 2003-05-01 2004-11-25 Pentax Corp 内視鏡光源装置
DE112006003228B4 (de) * 2005-11-22 2019-01-17 Shofu Inc. Zahnmedizinischer optischer Kohärenztomograph
US20070278384A1 (en) * 2006-06-01 2007-12-06 Optiscan Biomedical Corporation Method and apparatus for driving a radiation source
JP2010167029A (ja) * 2009-01-21 2010-08-05 Fujifilm Corp 光断層画像取得装置
JP2010200820A (ja) * 2009-02-27 2010-09-16 Fujifilm Corp 光立体構造像装置及びその光信号処理方法
ES2384795B2 (es) * 2010-12-13 2013-01-29 Medlumics, S.L. Píldora electrónica gastrointestinal.
TW201238550A (en) * 2011-01-21 2012-10-01 Alcon Res Ltd Counter-rotating ophthalmic scanner drive mechanism
US9247869B2 (en) 2012-01-17 2016-02-02 Netra Systems, Inc Compact foldable apparatus for ophthalmology
CN202437057U (zh) * 2012-01-18 2012-09-19 广州宝胆医疗器械科技有限公司 具有双向光学相干层析成像功能的胶囊小肠镜系统
US9572529B2 (en) * 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10206583B2 (en) * 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
JP6310859B2 (ja) * 2012-11-30 2018-04-11 株式会社トプコン 眼底撮影装置
US20140163361A1 (en) * 2012-12-12 2014-06-12 Volcano Corporation Combination Rotational and Phased-Array In Vivo Imaging Devices and Methods
CN203662733U (zh) * 2013-12-25 2014-06-25 天津大学 一种兼容光谱信息分析功能的光学相干层析装置
WO2015102081A1 (ja) * 2014-01-06 2015-07-09 並木精密宝石株式会社 光イメージング用プローブ
US20150216418A1 (en) * 2014-02-06 2015-08-06 Dentsply International Inc. Inspection of dental roots and the endodontic cavity space therein
WO2016019235A1 (en) * 2014-07-31 2016-02-04 The University Of Akron A smartphone endoscope system
US9976844B2 (en) * 2015-02-06 2018-05-22 Medlumics S.L. Miniaturized OCT package and assembly thereof
KR101641268B1 (ko) * 2015-03-20 2016-07-20 엘지전자 주식회사 피부 측정기기 및 그 제어방법
JP2018526161A (ja) * 2015-06-19 2018-09-13 ヴィジュネックス メディカル システムズ カンパニー リミテッドVisunex Medical Systems Co. Ltd. 広視野光干渉断層法イメージングシステム
WO2018031462A1 (en) * 2016-08-12 2018-02-15 Canon U.S.A. Inc. Coherence range imaging using common path interference
EP3558091A4 (en) * 2016-12-21 2020-12-02 Acucela, Inc. MINIATURIZED AFFORDABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM FOR OPHTHALMIC APPLICATIONS IN THE HOME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510445A (ja) * 2005-09-29 2009-03-12 バイオプティジェン,インコーポレイテッド 携帯光コヒーレンストモグラフィ(oct)装置および関連システム
KR20080081565A (ko) * 2007-03-06 2008-09-10 연세대학교 산학협력단 휴대용 피부 검사용 편광 민감 광 간섭 영상 시스템
KR101355671B1 (ko) * 2012-09-26 2014-01-28 경북대학교 산학협력단 모니터 일체형 포터블 스캐닝 프로브, 및 이를 이용한 광 간섭성 단층 촬영장치
KR101765824B1 (ko) * 2016-05-26 2017-08-10 주식회사 오즈텍 휴대용 광단층 검사 장치
KR101853101B1 (ko) * 2017-11-30 2018-04-30 유형근 구강검진·헬스케어클린을 갖는 스마트 oct 장치 및 방법

Also Published As

Publication number Publication date
KR20210008887A (ko) 2021-01-25
KR20190138548A (ko) 2019-12-13
JP2021526066A (ja) 2021-09-30
KR102324177B1 (ko) 2021-11-10
US20210085185A1 (en) 2021-03-25
EP3791773A4 (en) 2022-03-02
JP7078305B2 (ja) 2022-05-31
EP3791773A1 (en) 2021-03-17
CN112218569A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US8125515B2 (en) Endoscope system
WO2019235826A1 (ko) 포인트 오브 캐어 진단을 위한 일체형 핸드헬드 배터리 구동 oct 시스템
WO2013157673A1 (en) Optical coherence tomography and control method for the same
WO2018207517A1 (ja) ワイヤレス内視鏡
JPWO2012033029A1 (ja) X線画像診断装置
JP5751869B2 (ja) 電子内視鏡装置、電子内視鏡用プロセッサ及び電子内視鏡システム
JPH09234184A (ja) 眼科装置
CN106725352B (zh) 复合式检测装置和检测装置的功能电路
US8562514B2 (en) Medical apparatus and endoscope system with memory function
KR101788818B1 (ko) 의료용 무선 영상 진단 장치 및 시스템
US20220190524A1 (en) Cable and notification method
JPH055844A (ja) 内視鏡装置
JP2004089296A (ja) システムトロリー
JP2003164424A (ja) 電子機器
JP4372915B2 (ja) 内視鏡装置
CN104216105B (zh) 内窥镜装置
CN218297551U (zh) 激光多合一测试装置
CN219374586U (zh) 用于内窥镜图像处理系统的检测设备
CN214426948U (zh) 一种用于检测内窥镜的装置
JPH03111023A (ja) 内視鏡用検査台
CN220275563U (zh) 一种检查装置
WO2016143164A1 (ja) 冷却装置
JP2000171729A (ja) 内視鏡装置
WO2023063458A1 (ko) 피부 진단 시스템
JP2003290144A (ja) 眼科撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019814719

Country of ref document: EP

Effective date: 20201209