WO2019235815A1 - 중합성 조성물 및 이로부터 제조된 광학 재료 - Google Patents

중합성 조성물 및 이로부터 제조된 광학 재료 Download PDF

Info

Publication number
WO2019235815A1
WO2019235815A1 PCT/KR2019/006732 KR2019006732W WO2019235815A1 WO 2019235815 A1 WO2019235815 A1 WO 2019235815A1 KR 2019006732 W KR2019006732 W KR 2019006732W WO 2019235815 A1 WO2019235815 A1 WO 2019235815A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
optical material
ultraviolet
polymerizable composition
absorption wavelength
Prior art date
Application number
PCT/KR2019/006732
Other languages
English (en)
French (fr)
Inventor
홍승모
명정환
한혁희
김정무
신정환
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to US15/734,513 priority Critical patent/US11958937B2/en
Priority to EP19815458.5A priority patent/EP3805286A4/en
Priority to CN201980052154.6A priority patent/CN112543776B/zh
Publication of WO2019235815A1 publication Critical patent/WO2019235815A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/2875Monohydroxy compounds containing tertiary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3842Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring
    • C08G18/3851Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring containing three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • Embodiments relate to polymerizable compositions comprising two or more ultraviolet absorbers each having a different main absorption wavelength and to an optical material having excellent light resistance and minimal color defects prepared therefrom.
  • Optical materials using plastics are widely used in optical materials such as spectacle lenses and camera lenses, because they are lighter and more easily broken than other optical materials made of inorganic materials such as glass, and have excellent dyeing properties.
  • optical materials prepared from polythiourethane-based polymers polymerized with polythiol compounds and polyisocyanate compounds are widely used because they exhibit excellent physical properties such as high refractive index, high Abbe's number, and high strength.
  • the optical material using the plastic as described above has a problem in that yellowing occurs easily when exposed to sunlight due to lack of light resistance.
  • the ultraviolet absorbent is added to the polymerizable composition to improve the light resistance.
  • the plastic optical material becomes yellow, resulting in aesthetic problems, and it is difficult to secure the light resistance to all ultraviolet regions. There was a problem.
  • Japanese Patent No. 3538332 discloses a plastic lens formed using a composition for plastic lenses containing an ultraviolet absorber having a maximum absorption wavelength of 345 nm or more.
  • Japanese Patent No. 4334633 discloses a polymer composition for plastic lenses containing a benzotriazole ultraviolet absorber having a molecular weight of 360 or less.
  • embodiments are to provide a polymerizable composition for producing an optical material having excellent light resistance and minimized color defects, an optical material prepared from the polymerizable composition and a method of manufacturing the same.
  • the polymerizable composition may include at least one polythiol compound; At least one polyisocyanate compound; At least one first ultraviolet absorbent having a main absorption wavelength ⁇ 1 in the wavelength region of 320 nm to 350 nm; And at least one second ultraviolet absorber having a main absorption wavelength ⁇ 1 ′ in the wavelength region of 250 nm to 300 nm.
  • Optical material according to one embodiment is prepared from the polymerizable composition.
  • a method of manufacturing an optical material includes injecting the polymerizable composition into a mold and heat curing the same.
  • the polymerizable composition according to the embodiment includes both an ultraviolet absorber having a long wavelength region as a main absorption wavelength and an ultraviolet absorber having a short wavelength region as a main absorption wavelength, and the ultraviolet absorbent does not absorb the visible light region.
  • the polymerizable composition it is possible to provide an optical material having excellent light resistance and minimizing color defects.
  • minimizing color defects means minimizing color defects caused by yellowing of the optical material when exposed to sunlight, and color defects caused by the optical material becoming yellow when the ultraviolet absorbent is added to the polymerizable composition. It is meant to minimize the phenomenon, or both.
  • the "main absorption wavelength” is defined as the inflection point at which the derivative value is changed from (+) to (-) in the graph of the ultraviolet absorber measured in Absorption mode using the UV spectrum.
  • there may be more than one main absorption wavelength specifically, one or two.
  • the wavelength whose absorption intensity is the largest among the “main absorption wavelengths” is defined as “maximum absorption wavelength (lambda max )".
  • Each ultraviolet absorbent has the best UV blocking effect at the maximum absorption wavelength.
  • transmitted light transmittance refers to a sample of an optical material manufactured to have a predetermined thickness and diameter, and then obtains a UV spectrum at a predetermined interval in the thickness direction using a UV-visible spectrophotometer, and then transmits the transmittance in the visible light region. Means the value calculated by arithmetic mean. The thickness, diameter and spacing of obtaining the UV-spectrum of the sample can be properly adjusted.
  • Embodiments provide a polymerizable composition for producing an optical material having excellent light resistance and minimizing color defects, an optical material prepared from the polymerizable composition, and a method of manufacturing the same.
  • At least one polythiol compound At least one polythiol compound
  • At least one polyisocyanate compound At least one polyisocyanate compound
  • At least one first ultraviolet absorbent having a main absorption wavelength ⁇ 1 in the wavelength region of 320 nm to 350 nm;
  • At least one second ultraviolet absorber having a main absorption wavelength ⁇ 1 ′ in the wavelength region of 250 nm to 300 nm.
  • the polymerizable composition in the wavelength range of one or more in a wavelength range of 320 nm to 350 nm having a main absorption wavelength ( ⁇ 1) a first UV absorber and 250 nm to 300 nm main absorption wavelength ( ⁇ 1 At least one second ultraviolet absorber having ' )
  • the first ultraviolet absorber may include one or more ultraviolet absorbers having a main absorption wavelength ⁇ 1 in the wavelength region of 320 nm to 350 nm.
  • the first ultraviolet absorber may further have a main absorption wavelength ⁇ 2 in a wavelength region of 290 nm to less than 320 nm.
  • the first ultraviolet absorber may have the main absorption wavelength ⁇ 1 as the maximum absorption wavelength ⁇ max .
  • the main absorption wavelength ⁇ 1 of the first ultraviolet absorber may be in the wavelength region of 320 nm to 350 nm, 320 nm to 345 nm, or 340 nm to 350 nm.
  • the main absorption wavelength ⁇ 1 may be 320 nm to 345 nm, or 340 nm to 345 nm, but is not limited thereto.
  • the primary absorption wavelength ( ⁇ 2 ) of the first ultraviolet absorber may be at 290 nm to less than 320 nm, or 290 nm to 310 nm.
  • the main absorption wavelength ⁇ 2 may be between 295 nm and 305 nm, but is not limited thereto.
  • the second ultraviolet absorber may include one or more ultraviolet absorbers having a main absorption wavelength ⁇ 1 ′ in a wavelength region of 250 nm to 300 nm.
  • the second ultraviolet absorber may further have a main absorption wavelength ⁇ 2 ' in the wavelength region of 320 nm to 350 nm.
  • the second ultraviolet absorber may have the main absorption wavelength ⁇ 1 ′ as the maximum absorption wavelength ⁇ max .
  • the main absorption wavelength ⁇ 1 ′ of the second ultraviolet absorber may be in a wavelength region of 250 nm to 300 nm.
  • the main absorption wavelength ⁇ 1 ′ may be in a wavelength region of 280 nm to 300 nm. More specifically, the main absorption wavelength ⁇ 1 ′ may be in a wavelength region of 280 nm to 290 nm, but is not limited thereto.
  • the main absorption wavelength ( ⁇ 2 ' ) of the second ultraviolet absorber may be in the wavelength range of 320 nm to 350 nm.
  • the main absorption wavelength ⁇ 2 ' may be in the wavelength region of 320 nm to 335 nm. More specifically, the main absorption wavelength ⁇ 2 ' may be in the wavelength region of 330 nm to 335 nm, but is not limited thereto.
  • the first ultraviolet absorber further has a main absorption wavelength ⁇ 2 in a wavelength region of 290 nm to less than 320 nm
  • the second ultraviolet absorber has a main absorption wavelength (320) in a wavelength region of 320 nm to 350 nm. ⁇ 2 ' ).
  • the first ultraviolet light absorber and the second ultraviolet light absorber may each have an absorption rate of 0.01% or less in a wavelength range of 380 nm to 780 nm, which is a visible wavelength range. Specifically, the first ultraviolet absorber and the second ultraviolet absorber may have an absorption rate of 0.001% or less in the wavelength region of 380 nm to 780 nm, respectively. More specifically, the first ultraviolet light absorber and the second ultraviolet light absorber may not absorb the wavelength region of 380 nm to 780 nm.
  • the first ultraviolet absorber may be a benzotriazole-based ultraviolet absorber.
  • the mixture may be one or two or more selected from the group containing a compound represented by the following formula, but is not limited thereto.
  • the second ultraviolet absorber may be a benzophenone-based ultraviolet absorber. Specifically, it may be one or more or a mixture of two or more selected from the group containing a compound represented by the following formula, but is not limited thereto.
  • the polymerizable composition may include 0.001 to 10 parts by weight of the first and second ultraviolet absorbers based on 100 parts by weight of the polythiol compound. Specifically, the polymerizable composition may include 0.01 to 5 parts by weight of the first and second ultraviolet absorbers based on 100 parts by weight of the polythiol compound. More specifically, the polymerizable composition may include 0.01 to 2 parts by weight of the first and second ultraviolet absorbers based on 100 parts by weight of the polythiol compound, but is not limited thereto.
  • the polymerizable composition may include 10 to 1,000 parts by weight of the second ultraviolet absorber based on 100 parts by weight of the first ultraviolet absorbent. Specifically, the polymerizable composition may include 10 to 500 parts by weight of the second ultraviolet absorber based on 100 parts by weight of the first ultraviolet absorbent. More specifically, the polymerizable composition may include 10 to 100 parts by weight of the second ultraviolet absorber based on 100 parts by weight of the first ultraviolet absorbent. More specifically, the polymerizable composition may include 10 to 80 parts by weight of the second ultraviolet absorber based on 100 parts by weight of the first ultraviolet absorbent. More specifically, the polymerizable composition may include 20 to 60 parts by weight of the second ultraviolet absorber based on 100 parts by weight of the first ultraviolet absorbent, but is not limited thereto.
  • the polymerizable composition may comprise at least one polyisocyanate compound and at least one polythiol compound. Specifically, it may include 1 to 5 polyisocyanate compounds and 1 to 5 polythiol compounds. More specifically, it may include one to three polyisocyanate compounds and one to four polythiol compounds. Even more specifically, it may include 1 to 3 polyisocyanate compounds and 1 to 4 polythiol compounds. Even more specifically, it may include one or two polyisocyanate compounds, and one or two polythiol compounds. In addition, the polymerizable composition may include a catalyst.
  • the polyisocyanate compound may be a conventional one used in the synthesis of polythiourethane, for example, isophorone diisocyanate, dicyclohexyl methane-4,4-diisocyanate, hexamethylene diisocyanate, 2,2- Dimethylpentane diisocyanate, 2,2,4-trimethylhexanediisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11 -Undecyletriisocyanate, 1,3,6-hexamethylenetriisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) Aliphatic isocyanate compounds such as ether; Isophorone diisocyanate, 1,2-bis (is
  • the polyisocyanate compound may be one to five selected from the group consisting of isophorone diisocyanate, norbornene diisocyanate, m-xylene diisocyanate, toluene diisocyanate, hexamethylene diisocyanate and cyclohexane diisocyanate.
  • the NCO content of the polyisocyanate compound can be obtained by the method specified in ISO 14896 "Plastics-Polyurethane raw materials-Determination of isocyanate content".
  • the functional group number of the polyisocyanate compound may be 2 to 3.
  • the weight average molecular weight of the polyisocyanate compound may be 100 g / mol to 900 g / mol, or 150 g / mol to 800 g / mol.
  • the polythiol compound may be a conventional one used in the synthesis of polythiourethane, for example, bis (2- (2-mercaptoethylthio) -3-mercaptopropyl) sulfide, 4-mercaptomethyl -1,8-dimercapto-3,6-dithiaoctane, 2,3-bis (2-mercaptoethylthio) propane-1-thiol, 2,2-bis (mercaptomethyl) -1,3 Propanedithiol, bis (2-mercaptoethyl) sulfide, tetrakis (mercaptomethyl) methane, 2- (2-mercaptoethylthio) propane-1,3-dithiol, 2- (2,3- Bis (2-mercaptoethylthio) propylthio) ethanethiol, bis (2,3-dimercaptopropanyl) sulfide, bis (2,3-dimercaptopropanyl
  • the polythiol compound is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6 , 9-trithiaundane, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate) and 1,4-dithiane-2,5-dimethane It may be one to five selected from the group consisting of thiols.
  • Equivalent weight (g / eq) per unit molecular weight of the polythiol compound may be measured by a dose titration method using a redox reaction of thiol and iodine.
  • the functional group number of the polythiol compound may be an integer of 2 to 6, or an integer of 2 to 4.
  • the weight average molecular weight of the polythiol compound may be 100 g / mol to 1,000 g / mol, or 200 g / mol to 800 g / mol.
  • the polymerizable composition may include a polythiol compound and an isocyanate compound in a molar ratio of 0.5 to 1.5: 1.
  • the polymerizable composition may include a polythiol compound and an isocyanate compound in a molar ratio of 0.8 to 1.2: 1.
  • the catalyst may be a compound containing tin.
  • the catalyst is one selected from the group consisting of dibutyltin dichloride, dimethyltin dichloride, diethyltin dichloride, dipropyltin dichloride, diisopropyltin dichloride, and di-tertbutyltin dichloride. It may be abnormal.
  • the polymerizable composition may further include additives such as an internal mold release agent, a polymerization initiator, a heat stabilizer, a bluing agent, a chain extender, a crosslinking agent, a light stabilizer, an antioxidant, and a filler.
  • additives such as an internal mold release agent, a polymerization initiator, a heat stabilizer, a bluing agent, a chain extender, a crosslinking agent, a light stabilizer, an antioxidant, and a filler.
  • the internal mold release agent may be, for example, a fluorine-based nonionic surfactant having a perfluoroalkyl group, a hydroxyalkyl group or a phosphate ester group; Silicone nonionic surfactants having a dimethylpolysiloxane group, a hydroxyalkyl group or a phosphate ester group; Quaternary alkylammonium salts such as trimethylcetyl ammonium salt, trimethylstearyl ammonium salt, dimethylethylcetyl ammonium salt, triethyldodecyl ammonium salt, trioctylmethyl ammonium salt and diethylcyclohexadodecyl ammonium salt; And it may include one or more selected from the group consisting of acidic phosphate ester.
  • polymerization initiator examples include amines, phosphorus, organotin, organocopper, organal gallium, organozirconium, organo iron, organozinc, organoaluminum, and the like.
  • thermal stabilizer examples include metal fatty acid salts, phosphorus salts, lead salts, and organic tin salts.
  • the bluing agent has an absorption band in the wavelength range of orange to yellow in the visible light region, and has a function of adjusting the color of the optical material made of a resin.
  • the bluing agent may specifically include a material representing blue to purple, but is not particularly limited.
  • the bluing agent may include dyes, fluorescent brighteners, fluorescent pigments, inorganic pigments, and the like, but may be appropriately selected according to physical properties or resin colors required for the optical parts to be manufactured.
  • the said bluing agent can be used individually or in combination of 2 or more types, respectively.
  • the bluing agent is preferably a dye.
  • the dye may be a dye having a maximum absorption wavelength of 520 nm to 600 nm, and more specifically, a dye having a maximum absorption wavelength of 540 nm to 580 nm.
  • the dye is preferably an anthraquinone dye.
  • the addition method of a bluing agent is not specifically limited, It can add to a monomer system previously.
  • the method of adding the bluing agent may be prepared by dissolving in a monomer, or preparing a master solution containing a high concentration of bluing agent, and diluting the monomer with another monomer or another additive using the master solution. There are three ways to do this.
  • a polymerizable composition comprising the polythiol compound and the polyisocyanate compound is polymerized (and cured) to prepare a polythiourethane-based polymer.
  • the reaction molar ratio of the SH group / NCO group may be 0.5 to 3.0, specifically, 0.6 to 2.0, or 0.8 to 1.3.
  • the characteristic and balance such as refractive index and heat resistance which are calculated
  • the polymerizable composition may have a viscosity of 1,000 cps (centipoise) or more after being left at 10 ° C. for 24 hours. Specifically, the polymerizable composition may have a viscosity of 1,000 to 10,000 cps, or 1,500 to 10,000 cps after standing at 10 ° C. for 24 hours. When the viscosity after leaving the polymerizable composition at 10 ° C. for 24 hours is within the above range, it is possible to prevent a problem that the reactivity of the composition is too large, resulting in poor workability, or the reactivity of the composition being too small, leading to a low production yield.
  • the bubble generation rate may be 0% to 10%, and the stratification rate may be 0% to 8%.
  • the bubble generation rate is 0% to 8%, or 0% to 5%, and the stratification rate is 0% to 7%, or 0% to May be 5%.
  • the polymerizable composition may simultaneously have all the above-described properties.
  • the polymerizable composition can be used to prepare the optical material.
  • the specific form and physical property of the optical material manufactured from the said polymeric composition are as follows.
  • an optical material prepared from the polymerizable composition is provided.
  • the optical material may be formed of a molded body obtained by curing the polymerizable composition.
  • the optical material may be prepared by polymerizing and molding the polymerizable composition.
  • Optical material according to one embodiment may have a total light transmittance of 88% or more. Specifically, the total light transmittance may be 89% or more. More specifically, the total light transmittance may be 90% or more.
  • the total light transmittance is a value calculated by arithmetic average of the visible light region after obtaining a UV spectrum at a predetermined interval in the thickness direction using a UV-Vis spectrophotometer for a sample manufactured to have a predetermined thickness and diameter it means. The thickness and diameter of the sample, the interval for obtaining the UV-spectrum can be appropriately adjusted.
  • the optical material according to one embodiment may have a change value Y.I. of yellowness greater than 0 and less than or equal to 1.5.
  • the change value Y.I. of the yellowness may be greater than 0 to 1.0 or less. More specifically, the change value Y.I. of the yellowness may be greater than 0 and less than or equal to 0.6. More specifically, the change value Y.I. of the yellowness may be greater than 0 and less than or equal to 0.5. More specifically, the change value Y.I. of the yellowness may be 0.1 to 0.6. More specifically, the change value ⁇ Y.I. of the yellowness may be 0.2 to 0.5.
  • the change value Y.I. of yellowness may be calculated according to Equation 1 below.
  • ⁇ YI ⁇ (234 ⁇ x + 106 ⁇ y + 106) / y ⁇ - ⁇ (234 ⁇ x o + 106 ⁇ y o + 106) / y o ⁇
  • x o And y o is a chromaticity coordinate measured before leaving the circular plate of the optical material having a thickness of 5 mm and ⁇ 75 mm in ultraviolet light
  • x and y are chromaticity coordinates measured after leaving the circular plate of the optical material in ultraviolet light for 24 hours. to be.
  • the optical material may have a total light transmittance of 89% or more, and a change value (Y.I.) of yellowness calculated according to Equation 1 may be greater than 0 to 1.5 or less.
  • the optical material may have a refractive index of 1.55 to 1.75 for light of 546 nm.
  • the refractive index may be 1.55 to 1.70. More specifically, it may be 1.65 to 1.75, but is not limited thereto.
  • the optical material may have an Abbe number of 30 to 50. Specifically, the optical material may have an Abbe number of 35 to 48. More specifically. The optical material may have an Abbe number of 40 to 45, but is not limited thereto.
  • the optical material may have all of the above-described characteristics at the same time.
  • the optical material may be an optical lens. More specifically, the optical material may be a plastic optical lens. In addition, the optical material may be manufactured in various shapes by changing the mold of the mold used in manufacturing. Specifically, the optical material may be in the form of an eyeglass lens, a camera lens, a light emitting diode (LED), or the like.
  • the optical material may be in the form of an eyeglass lens, a camera lens, a light emitting diode (LED), or the like.
  • a method of manufacturing an optical material from the polymerizable composition may include the step of heat curing after injecting the polymerizable composition into a mold.
  • the optical material may be formed of a molded body obtained by heat curing the polymerizable composition.
  • the optical material may be prepared by polymerizing and molding a polymerizable composition (polythiol compound + polyisocyanate compound + catalyst).
  • the polymerizable composition is degassed under reduced pressure, and then injected into a mold for molding an optical material.
  • Such degassing and mold injection may be performed, for example, at a temperature range of 5 ° C. to 40 ° C., specifically, at a temperature range of 5 ° C. to 20 ° C.
  • polymerization is usually carried out by gradually heating from a low temperature to a high temperature.
  • the temperature of the polymerization reaction may be, for example, 5 ° C to 200 ° C, specifically 10 ° C to 150 ° C.
  • a reaction catalyst commonly used in the preparation of polythiourethane may be added, and specific types thereof are as described above.
  • the polythiourethane-based optical material is then separated from the mold.
  • the optical material may have various shapes by changing a mold of a mold used in manufacturing.
  • optical material produced from the method The specific form and physical properties of the optical material produced from the method are as exemplified above.
  • the first and second ultraviolet absorbers used in the following Examples and Comparative Examples are shown in Tables 1 and 2, respectively.
  • the following compounds can be prepared by known methods or are commercially available.
  • the main absorption wavelength was defined as the inflection point at which the derivative is changed from (+) to (-) in the graph of UV absorbers dissolved in chloroform measured in absorption mode using the UV spectrum.
  • the wavelength with the largest absorption intensity among the "main absorption wavelengths” was defined as "maximum absorption wavelength (lambda max )”.
  • UV spectra of the compounds represented by Formulas 1 to 6 and the compounds represented by Formulas 7 to 13 are shown in FIGS. 1 and 2, respectively.
  • the polymerizable composition prepared above was degassed at 10 ° C. and 2 torr for 1 hour and filtered through a 3 ⁇ m Teflon filter.
  • the filtered polymerizable composition was injected into a glass mold assembled by tape with a size of 65 cm to 85 cm below.
  • the mold was left at 10 ° C. for 5 hours, and then heated up at a rate of 5 ° C./min from 10 ° C. to 120 ° C., and polymerized at 120 ° C. for 18 hours. Then, the resin cured in the glass mold was further cured at 130 ° C. for 4 hours, and then the molded body was released from the glass mold to prepare an optical lens.
  • the yellowness (YI) of the optical lens was measured using the color difference meter (Shinko Co., Color Mate).
  • a circular plate of an optical lens with a thickness of 5 mm and ⁇ 75 mm was fabricated and measured, and the chromaticity coordinate x o And y o were measured.
  • the circular flat plate of the optical lens was mounted on a UV-UV lamp 340 in a QUV device manufactured by Q-Lab, and left for 24 hours to measure chromaticity coordinates x and y.
  • the change value YI of yellowness was calculated by the following Equation 1. The results are shown in Table 4 below.
  • UV spectra were obtained at 1 nm intervals using a UV-visible spectrophotometer (Perkin Elmer, Lamda 365 model) in the thickness direction of a sample (optical lens) manufactured at a thickness of 5 mm and ⁇ 75 mm.
  • the value calculated by the arithmetic mean of the transmittance from 380 nm to 780 nm is expressed as total light transmittance.
  • the optical lens manufactured according to Examples 1 to 4 has a high total light transmittance, and Y.I.
  • the change value (Y.I.) was small. From these results, it was confirmed that the light resistance of the optical lens manufactured according to the example was excellent and there was no color defect. However, the optical lenses produced according to Comparative Examples 1 to 8 had low total light transmittance, and had Y.I. It was confirmed from the results with a high change value (Y.I.) that the light resistance was poor and that there was a color defect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

실시예는 중합성 조성물 및 이로부터 제조된 내광성이 우수하고 색상 불량이 최소화된 광학 재료에 관한 것으로서, 실시예에 따른 중합성 조성물은 자외선 영역 중 장파장 영역을 주 흡수 파장으로 갖는 자외선 흡수제 및 단파장 영역을 주 흡수 파장으로 갖는 자외선 흡수제를 모두 포함하고, 상기 자외선 흡수제는 가시광선 영역을 흡수하지 않는다. 따라서, 상기 중합성 조성물을 사용함으로써 내광성이 우수하고 색상 불량이 최소화된 광학 재료를 제공할 수 있다.

Description

중합성 조성물 및 이로부터 제조된 광학 재료
구현예는 각각 상이한 주(main) 흡수 파장을 갖는 2종 이상의 자외선 흡수제를 포함하는 중합성 조성물 및 이로부터 제조된 내광성이 우수하고 색상 불량이 최소화된 광학 재료에 관한 것이다.
플라스틱을 이용한 광학 재료는 유리와 같은 무기 재료로 이루어지는 광학 재료에 비해 경량이면서 쉽게 깨지지 않고 염색성이 우수하기 때문에, 안경 렌즈, 카메라 렌즈 등의 광학 재료로 널리 이용되고 있다. 그 중에서도 폴리티올 화합물과 폴리이소시아네이트 화합물을 중합시킨 폴리티오우레탄계 중합체로부터 제조되는 광학 재료는 고굴절률, 고 아베수(Abbe's number) 및 고강도 등 우수한 물성을 나타내기 때문에 널리 사용되고 있다.
그러나 상기와 같은 플라스틱을 이용한 광학 재료는 내광성이 부족하여 태양광선에 장시간 노출되면 쉽게 황변되는 현상이 일어나는 문제점이 있었다. 이러한 문제점을 개선하기 위하여, 자외선 흡수제를 중합성 조성물에 첨가하여 내광성을 향상시키고 있으나, 자외선 흡수제를 첨가하면 플라스틱 광학 재료가 노란색을 띄게 되어 미관상 문제점이 있고, 자외선 영역 전부에 대해 내광성을 확보하기 어려운 문제점이 있었다.
예를 들어, 일본 등록특허 제3538332호는, 극대 흡수 파장이 345nm 이상인 자외선 흡수제를 함유하는 플라스틱 렌즈용 조성물을 이용하여 형성되는 플라스틱 렌즈를 개시하고 있다.
또한, 일본 등록특허 제4334633호는, 분자량이 360 이하인 벤조트리아졸계 자외선 흡수제를 포함하는 플라스틱 렌즈용 중합 조성물을 개시하고 있다.
그러나, 상기 일본 등록특허 제3538332호 및 제4334633호에 개시된 렌즈는 여전히 색상이 불량하고, 내광성이 떨어진다는 문제점이 있다.
상기 문제점을 해결하기 위하여, 구현예는 내광성이 우수하고 색상 불량이 최소화된 광학 재료를 제조하기 위한 중합성 조성물, 상기 중합성 조성물로부터 제조된 광학 재료 및 이의 제조 방법을 제공하고자 한다.
일 구현예에 따른 중합성 조성물은 1종 이상의 폴리티올 화합물; 1종 이상의 폴리이소시아네이트 화합물; 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는 1종 이상의 제1 자외선 흡수제; 및 250 nm 내지 300 nm의 파장 영역에서 주 흡수 파장(λ1')을 갖는 1종 이상의 제2 자외선 흡수제를 포함한다.
일 구현예에 따른 광학 재료는 상기 중합성 조성물로부터 제조된다.
일 구현예에 따른 광학 재료를 제조하는 방법은, 상기 중합성 조성물을 금형에 주입 후 가열 경화시키는 단계를 포함한다.
구현예에 따른 중합성 조성물은 자외선 영역 중 장파장 영역을 주 흡수 파장으로 갖는 자외선 흡수제 및 단파장 영역을 주 흡수 파장으로 갖는 자외선 흡수제를 모두 포함하고, 상기 자외선 흡수제는 가시광선 영역을 흡수하지 않는다.
따라서, 상기 중합성 조성물을 사용함으로써 내광성이 우수하고 색상 불량이 최소화된 광학 재료를 제공할 수 있다.
도 1은 화학식 1 내지 6으로 표시되는 화합물의 UV 스펙트럼이다.
도 2는 화학식 7 내지 13으로 표시되는 화합물의 UV 스펙트럼이다.
용어 설명
달리 언급되거나 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속한 기술 분야의 숙련자에 의해 통상적으로 이해되는 의미를 갖는다.
달리 기술되지 않는다면, 모든 백분율, 부, 비 등은 중량 기준이다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 성분, 분자량과 같은 특성, 반응 조건 등의 양을 표현하는 모든 수는 모든 사례에서 용어 "약"으로 수식되는 것으로 이해하여야 한다.
본 명세서에서 제1, 제2 등의 용어는 다양한 구성 요소를 설명하기 위해 사용되는 것이고, 상기 구성 요소들은 상기 용어에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로 구별하는 목적으로만 사용된다.
본 명세서에서 "색상 불량이 최소화"된다는 것은 광학 재료가 태양광선에 노출 시 황변됨으로써 나타나는 색상 불량 현상을 최소화한다는 의미, 자외선 흡수제를 중합성 조성물에 첨가하였을 때 광학 재료가 노란색을 띄게 됨으로써 나타나는 색상 불량 현상을 최소화한다는 의미, 또는 둘 다의 의미로 사용된다.
본 명세서에서 "주(main) 흡수 파장"은 자외선 흡수제를 UV 스펙트럼을 이용하여 흡수(Absorbance) 모드로 측정한 그래프에서 미분값이 (+)에서 (-)로 변하는 변곡점으로 정의되고, 자외선 흡수제의 종류에 따라 주 흡수 파장이 1개 이상, 구체적으로, 1개 또는 2개 존재할 수 있다. 상기 "주 흡수 파장" 중 흡수 강도가 최대인 파장을 "최대 흡수 파장(λmax)"으로 정의한다. 각각의 자외선 흡수제는 최대 흡수 파장에서 자외선 차단 효과가 가장 우수하다.
본 명세서에서 "전광선 투과도"는 일정 두께 및 지름을 갖도록 제작된 광학 재료의 시료에 대해, UV-가시광선 분광광도계를 이용하여 두께 방향으로 일정 간격으로 UV 스펙트럼을 얻은 후, 가시광선 영역의 투과도를 산술 평균하여 계산한 값을 의미한다. 상기 시료의 두께, 지름 및 UV-스펙트럼을 얻는 간격은 적절히 조절될 수 있다.
이하, 구현예를 통해 본 발명을 상세하게 설명한다. 구현예는 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
구현예는 내광성이 우수하고 색상 불량이 최소화된 광학 재료를 제조하기 위한 중합성 조성물, 상기 중합성 조성물로부터 제조된 광학 재료 및 이의 제조 방법을 제공한다.
일 구현예에 따른 중합성 조성물은,
1종 이상의 폴리티올 화합물;
1종 이상의 폴리이소시아네이트 화합물;
320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는 1종 이상의 제1 자외선 흡수제; 및
250 nm 내지 300 nm의 파장 영역에서 주 흡수 파장(λ1 ')을 갖는 1종 이상의 제2 자외선 흡수제를 포함한다.
자외선 흡수제
일 구현예에 따른 중합성 조성물은 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는 1종 이상의 제1 자외선 흡수제 및 250 nm 내지 300 nm의 파장 영역에서 주 흡수 파장(λ1')을 갖는 1종 이상의 제2 자외선 흡수제를 포함한다
상기 제1 자외선 흡수제는 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는 1종 이상의 자외선 흡수제를 포함할 수 있다. 또한, 상기 제1 자외선 흡수제는 290 nm 내지 320 nm 미만의 파장 영역에서 주 흡수 파장(λ2)을 추가로 가질 수 있다. 상기 제1 자외선 흡수제는, 상기 주 흡수 파장(λ1)이 최대 흡수 파장(λmax)일 수 있다.
구체적으로, 상기 제1 자외선 흡수제의 주 흡수 파장(λ1)은 320 nm 내지 350 nm, 320 nm 내지 345 nm, 또는 340 nm 내지 350 nm의 파장 영역에 있을 수 있다. 구체적으로, 상기 주 흡수 파장(λ1)은 320 nm 내지 345 nm, 또는 340 nm 내지 345 nm에 있을 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 제1 자외선 흡수제의 주 흡수 파장(λ2)은 290 nm 내지 320 nm 미만, 또는 290 nm 내지 310 nm에 있을 수 있다. 구체적으로, 상기 주 흡수 파장(λ2)은 295 nm 내지 305 nm에 있을 수 있으나, 이에 한정되는 것은 아니다.
상기 제2 자외선 흡수제는 250 nm 내지 300 nm의 파장 영역에서 주 흡수 파장(λ1')을 갖는 1종 이상의 자외선 흡수제를 포함할 수 있다. 상기 제2 자외선 흡수제는 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ2 ')을 추가로 가질 수 있다. 상기 제2 자외선 흡수제는, 상기 주 흡수 파장(λ1 ')이 최대 흡수 파장(λmax)일 수 있다.
구체적으로, 상기 제2 자외선 흡수제의 주 흡수 파장(λ1 ')은 250 nm 내지 300 nm의 파장 영역에 있을 수 있다. 구체적으로, 상기 주 흡수 파장(λ1 ')은 280 nm 내지 300 nm의 파장 영역에 있을 수 있다. 더 구체적으로, 상기 주 흡수 파장(λ1')은 280 nm 내지 290 nm의 파장 영역에 있을 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 제2 자외선 흡수제의 주 흡수 파장(λ2 ')은 320 nm 내지 350 nm;의 파장 영역에 있을 수 있다. 구체적으로, 상기 주 흡수 파장(λ2 ')은 320 nm 내지 335 nm의 파장 영역에 있을 수 있다. 더 구체적으로, 상기 주 흡수 파장(λ2 ')은 330 nm 내지 335 nm의 파장 영역에 있을 수 있으나, 이에 한정되는 것은 아니다.
구체적으로, 상기 제1 자외선 흡수제는 290 nm 내지 320 nm 미만의 파장 영역에서 주 흡수 파장(λ2)을 추가로 갖고, 상기 제2 자외선 흡수제는 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ2')을 추가로 가질 수 있다.
상기 제1 자외선 흡수제 및 제2 자외선 흡수제는 각각 가시광선 파장 영역인 380 nm 내지 780 nm 파장 영역에서 0.01 % 이하의 흡수율을 가질 수 있다. 구체적으로, 상기 제1 자외선 흡수제 및 제2 자외선 흡수제는 380 nm 내지 780 nm 파장 영역에서 각각 0.001 % 이하의 흡수율을 가질 수 있다. 더 구체적으로, 상기 제1 자외선 흡수제 및 제2 자외선 흡수제는 380 nm 내지 780 nm 파장 영역을 흡수하지 않을 수 있다. 상기 가시광선 흡수율은 자외선-가시광선 분광광도계를 이용하여 380 nm 내지 780 nm 범위에서 측정한 반사율로부터 구하였다(흡수율(%) = 100 - 반사율(%)).
상기 제1 자외선 흡수제는 벤조트리아졸계 자외선 흡수제일 수 있다. 구체적으로, 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물일 수 있으나 이에 한정되는 것은 아니다.
[화학식 1]
Figure PCTKR2019006732-appb-I000001
[화학식 4]
Figure PCTKR2019006732-appb-I000002
[화학식 5]
Figure PCTKR2019006732-appb-I000003
[화학식 6]
Figure PCTKR2019006732-appb-I000004
상기 제2 자외선 흡수제는 벤조페논계 자외선 흡수제일 수 있다. 구체적으로, 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 이상 또는 2종 이상의 혼합물일 수 있으나, 이에 한정되는 것은 아니다.
[화학식 7]
Figure PCTKR2019006732-appb-I000005
[화학식 8]
Figure PCTKR2019006732-appb-I000006
[화학식 9]
Figure PCTKR2019006732-appb-I000007
[화학식 10]
Figure PCTKR2019006732-appb-I000008
[화학식 13]
Figure PCTKR2019006732-appb-I000009
이하에서 상기 제1 자외선 흡수제 및 제2 자외선 흡수제의 함량에 대해 예시한다.
또한 상기 중합성 조성물은, 상기 폴리티올 화합물 100 중량부를 기준으로, 상기 제1 자외선 흡수제 및 제2 자외선 흡수제를 0.001 내지 10 중량부로 포함할 수 있다. 구체적으로, 상기 중합성 조성물은, 상기 폴리티올 화합물 100 중량부를 기준으로, 상기 제1 자외선 흡수제 및 제2 자외선 흡수제를 0.01 내지 5 중량부로 포함할 수 있다. 더 구체적으로, 상기 중합성 조성물은, 상기 폴리티올 화합물 100 중량부를 기준으로, 상기 제1 자외선 흡수제 및 제2 자외선 흡수제를 0.01 내지 2 중량부로 포함할 수 있으나, 이에 한정되지 않는다.
또한 상기 중합성 조성물은, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 상기 제2 자외선 흡수제를 10 내지 1,000 중량부로 포함할 수 있다. 구체적으로, 상기 중합성 조성물은, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 상기 제2 자외선 흡수제를 10 내지 500 중량부로 포함할 수 있다. 더 구체적으로, 상기 중합성 조성물은, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 상기 제2 자외선 흡수제를 10 내지 100 중량부로 포함할 수 있다. 보다 더 구체적으로, 상기 중합성 조성물은, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 상기 제2 자외선 흡수제를 10 내지 80 중량부로 포함할 수 있다. 보다 더 구체적으로, 상기 중합성 조성물은, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 상기 제2 자외선 흡수제를 20 내지 60 중량부로 포함할 수 있으나 이에 한정되지 않는다.
상기 중합성 조성물은 1종 이상의 폴리이소시아네이트 화합물 및 1종 이상의 폴리티올 화합물을 포함할 수 있다. 구체적으로 1종 내지 5종의 폴리이소시아네이트 화합물 및 1종 내지 5종의 폴리티올 화합물을 포함할 수 있다. 더 구체적으로, 1종 내지 3종의 폴리이소시아네이트 화합물 및 1종 내지 4종의 폴리티올 화합물을 포함할 수 있다. 보다 더 구체적으로, 1종 내지 3종의 폴리이소시아네이트 화합물 및 1종 내지 4종의 폴리티올 화합물을 포함할 수 있다. 보다 더 구체적으로, 1종 또는 2종의 폴리이소시아네이트 화합물, 및 1종 또는 2종의 폴리티올 화합물을 포함할 수 있다. 또한, 상기 중합성 조성물은 촉매를 포함할 수 있다.
폴리이소시아네이트 화합물
상기 폴리이소시아네이트 화합물은 폴리티오우레탄의 합성에 사용되는 통상적인 것을 사용할 수 있으며, 예를 들어, 이소포론디이소시아네이트, 디시클로헥실메탄-4,4-디이소시아네이트, 헥사메틸렌디이소시아네이트, 2,2-디메틸펜탄디이소시아네이트, 2,2,4-트리메틸헥산디이소시아네이트, 부텐디이소시아네이트, 1,3-부타디엔-1,4-디이소시아네이트, 2,4,4-트리메틸헥사메틸렌디이소시아네이트, 1,6,11-운데카트리이소시아네이트, 1,3,6-헥사메틸렌트리이소시아네이트, 1,8-디이소시아네이트-4-이소시아네이토메틸옥탄, 비스(이소시아네이토에틸)카보네이트, 비스(이소시아네이토에틸)에테르 등의 지방족 이소시아네이트 화합물; 이소포론디이소시아네이트, 1,2-비스(이소시아네이토메틸)시클로헥산, 1,3-비스(이소시아네이토메틸)시클로헥산, 1,4-비스(이소시아네이토메틸)시클로헥산, 디시클로헥실메탄디이소시아네이트, 시클로헥산디이소시아네이트, 메틸시클로헥산디이소시아네이트, 디시클로헥실디메틸메탄이소시아네이트, 2,2-디메틸디시클로헥실메탄이소시아네이트, 노보네인디이소시아네이트(norbornane diisocyanate) 등의 지환족 이소시아네이트 화합물; 비스(이소시아네이토메틸)벤젠, 비스(이소시아네이토에틸)벤젠, 비스(이소시아네이토프로필)벤젠, 비스(이소시아네이토부틸)벤젠, 비스(이소시아네이토메틸)나프탈렌, 비스(이소시아네이토메틸)디페닐에테르, 페닐렌디이소시아네이트, 에틸페닐렌디이소시아네이트, 이소프로필페닐렌디이소시아네이트, 디메틸페닐렌디이소시아네이트, 디에틸페닐렌디이소시아네이트, 디이소프로필페닐렌디이소시아네이트, 트리메틸벤젠트리이소시아네이트, 벤젠트리이소시아네이트, 비페닐디이소시아네이트, 톨루이딘디이소시아네이트, 4,4-디페닐메탄디이소시아네이트, 3,3-디메틸디페닐메탄-4,4-디이소시아네이트, 비벤질-4,4-디이소시아네이트, 비스(이소시아네이토페닐)에틸렌, 3,3-디메톡시비페닐-4,4-디이소시아네이트, 헥사히드로벤젠디이소시아네이트, 헥사히드로디페닐메탄-4,4-디이소시아네이트, o-크실렌디이소시아네이트, m-크실렌디이소시아네이트, p-크실렌디이소시아네이트, 톨루엔디이소시아네이트 등의 방향족 이소시아네이트 화합물; 비스(이소시아네이토에틸)설피드, 비스(이소시아네이토프로필)설피드, 비스(이소시아네이토헥실)설피드, 비스(이소시아네이토메틸)설폰, 비스(이소시아네이토메틸)디설피드, 비스(이소시아네이토프로필)디설피드, 비스(이소시아네이토메틸티오)메탄, 비스(이소시아네이토에틸티오)메탄, 비스(이소시아네이토에틸티오)에탄, 비스(이소시아네이토메틸티오)에탄, 1,5-디이소시아네이토-2-이소시아네이토메틸-3-티아펜탄 등의 함황 지방족 이소시아네이트 화합물; 디페닐설피드-2,4-디이소시아네이트, 디페닐설피드-4,4-디이소시아네이트, 3,3-디메톡시-4,4-디이소시아네이토디벤질티오에테르, 비스(4-이소시아네이토메틸벤젠)설피드, 4,4-메톡시벤젠티오에틸렌글리콜-3,3-디이소시아네이트, 디페닐디설피드-4,4-디이소시아네이트, 2,2-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메틸디페닐디설피드-6,6-디이소시아네이트, 4,4-디메틸디페닐디설피드-5,5-디이소시아네이트, 3,3-디메톡시디페닐디설피드-4,4-디이소시아네이트, 4,4-디메톡시디페닐디설피드-3,3-디이소시아네이트 등의 함황 방향족 이소시아네이트 화합물; 및 2,5-디이소시아네이토티오펜, 2,5-비스(이소시아네이토메틸)티오펜, 2,5-디이소시아네이토테트라히드로티오펜, 2,5-비스(이소시아네이토메틸)테트라히드로티오펜, 3,4-비스(이소시아네이토메틸)테트라히드로티오펜, 2,5-디이소시아네이토-1,4-디티안, 2,5-비스(이소시아네이토메틸)-1,4-디티안, 4,5-디이소시아네이토-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-2-메틸-1,3-디티오란 등의 함황 복소환 이소시아네이트 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 폴리이소시아네이트 화합물은 이소포론디이소시아네이트, 노보네인디이소시아네이트, m-크실렌디이소시아네이트, 톨루엔디이소시아네이트, 헥사메틸렌디이소시아네이트 및 시클로헥산디이소시아네이트로 이루어진 군으로부터 선택된 1종 내지 5종일 수 있다.
상기 폴리이소시아네이트 화합물의 NCO 함량은 ISO 14896 "Plastics-Polyurethane raw materials-Determination of isocyanate content"에 명시된 방법으로 구할 수 있다.
상기 폴리이소시아네이트 화합물의 관능기수는 2 내지 3일 수 있다.
상기 폴리이소시아네이트 화합물의 중량평균분자량은 100 g/mol 내지 900 g/mol, 또는 150 g/mol 내지 800 g/mol일 수 있다.
폴리티올 화합물
상기 폴리티올 화합물은 폴리티오우레탄의 합성에 사용되는 통상적인 것을 사용할 수 있으며, 예를 들어, 비스(2-(2-메르캅토에틸티오)-3-메르캅토프로필)설파이드, 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄, 2,3-비스(2-메르캅토에틸티오)프로판-1-티올, 2,2-비스(메르캅토메틸)-1,3-프로판디티올, 비스(2-메르캅토에틸)설파이드, 테트라키스(메르캅토메틸)메탄, 2-(2-메르캅토에틸티오)프로판-1,3-디티올, 2-(2,3-비스(2-메르캅토에틸티오)프로필티오)에탄티올, 비스(2,3-디메르캅토프로판닐)설파이드, 비스(2,3-디메르캅토프로판닐)디설파이드, 1,2-비스(2-메르캅토에틸티오)-3-메르캅토프로판, 1,2-비스(2-(2-메르캅토에틸티오)-3-메르캅토프로필티오)에탄, 2-(2-메르캅토에틸티오)-3-2-메르캅토-3-[3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2,2-비스-(3-메르캅토-프로피오닐옥시메틸)-부틸 에스테르, 2-(2-메르캅토에틸티오)-3-(2-(2-[3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오]에틸티오)에틸티오)프로판-1-티올, (4R,11S)-4,11-비스(메르캅토메틸)-3,6,9,12-테트라티아테트라데칸-1,14-디티올, (S)-3-((R-2,3-디메르캅토프로필)티오)프로판-1,2-디티올, (4R,14R)-4,14-비스(메르캅토메틸)-3,6,9,12,15-펜타티아헵탄-1,17-디티올, (S)-3-(R-3-메르캅토-2-((2-메르캅토에틸티오)프로필티오)프로필티오)-2-(2-메르캅토에틸티오)프로판-1-티올, 3,3'-디티오비스(프로판-1,2-디티올), (7R,11S)-7,11-비스(메르캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (7R,12S)-7,12-비스(메르캅토메틸)-3,6,9,10,13,16-헥사티아옥타데칸-1,18-디티올, 5,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 4,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 4,8-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 펜타에리트리톨 테트라키스(3-메르캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트), 펜타에트리톨테트라키스(2-메르캅토아세테이트), 비스펜타에리트리톨-에테르-헥사키스(3-메르캅토프로피오네이트), 1,1,3,3-테트라키스(메르캅토메틸티오)프로판, 1,1,2,2-테트라키스(메르캅토메틸티오)에탄, 4,6-비스(메르캅토메틸티오)-1,3-디티안, 1,4-디티안-2,5-디메탄티올 및 2-(2,2-비스(메르캅토디메틸티오)에틸)-1,3-디티안으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있다. 구체적으로, 상기 폴리티올 화합물은 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄, 4,8-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 펜타에리트리톨 테트라키스(3-메르캅토프로피오네이트), 펜타에트리톨테트라키스(2-메르캅토아세테이트) 및 1,4-디티안-2,5-디메탄티올로 이루어진 군으로부터 선택되는 1종 내지 5종일 수 있다.
상기 폴리티올 화합물의 단위 분자량당 당량 무게(equivalent weight, g/eq)는 티올과 요오드의 산화환원 반응을 이용한 용량 적정법으로 측정할 수 있다.
상기 폴리티올 화합물의 관능기수는 2 내지 6의 정수, 또는 2 내지 4의 정수일 수 있다.
상기 폴리티올 화합물의 중량평균분자량은 100 g/mol 내지 1,000 g/mol, 또는 200 g/mol 내지 800 g/mol일 수 있다.
상기 중합성 조성물은 폴리티올 화합물과 이소시아네이트 화합물을 0.5 내지 1.5 : 1 몰비로 포함할 수 있다. 구체적으로, 상기 중합성 조성물은 폴리티올 화합물과 이소시아네이트 화합물을 0.8 내지 1.2 : 1 몰비로 포함할 수 있다.
촉매
상기 촉매는 주석을 포함하는 화합물일 수 있다. 구체적으로, 상기 촉매는 디부틸주석디클로라이드, 디메틸주석디클로라이드, 디에틸주석디클로라이드, 디프로필주석디클로라이드, 디이소프로필주석디클로라이드 및 디-터트부틸주석디클로라이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
첨가제
상기 중합성 조성물은 필요에 따라, 내부 이형제, 중합개시제, 열안정제, 블루잉제(bluing agent), 사슬연장제, 가교제, 광안정제, 산화방지제, 충전제 등의 첨가제를 더 포함할 수 있다.
상기 내부 이형제는, 예를 들어, 퍼플루오르알킬기, 히드록시알킬기 또는 인산에스테르기를 갖는 불소계 비이온계면활성제; 디메틸폴리실록산기, 히드록시알킬기 또는 인산에스테르기를 갖는 실리콘계 비이온계면활성제; 트리메틸세틸 암모늄염, 트리메틸스테아릴 암모늄염, 디메틸에틸세틸 암모늄염, 트리에틸도데실 암모늄염, 트리옥틸메틸 암모늄염, 디에틸시클로헥사도데실 암모늄염 등의 제4급 알킬암모늄염; 및 산성 인산에스테르로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 중합개시제는, 예를 들어, 아민계, 인계, 유기주석계, 유기구리계, 유기갈륨, 유기지르코늄, 유기철계, 유기아연, 유기알루미늄 등을 들 수 있다.
상기 열안정제는, 예를 들어, 금속 지방산염계, 인계, 납계, 유기주석계 등을 들 수 있다.
상기 블루잉제는 가시광 영역 중 오렌지색으로부터 황색의 파장역에 흡수대를 가지며, 수지로 이루어지는 광학 재료의 색상을 조정하는 기능을 가진다. 상기 블루잉제는, 구체적으로, 청색으로부터 보라색을 나타내는 물질을 포함할 수 있으나, 특별히 한정되는 것은 아니다. 또한, 상기 블루잉제는 염료, 형광증백제, 형광 안료, 무기 안료 등을 들 수 있으나, 제조되는 광학 부품에 요구되는 물성이나 수지 색상 등에 맞추어 적절히 선택될 수 있다. 상기 블루잉제는 각각 단독, 또는 2종 이상의 조합을 사용할 수 있다. 상기 블루잉제는 중합성 조성물에 대한 용해성의 관점 및 얻어지는 광학 재료의 투명성의 관점에서, 염료가 바람직하다. 상기 염료는 흡수 파장의 관점에서, 구체적으로, 극대 흡수 파장이 520 nm 내지 600 nm의 염료일 수 있으며, 더욱 구체적으로, 극대 흡수 파장이 540 nm 내지 580 nm의 염료일 수 있다. 또한, 화합물의 구조의 관점에서, 상기 염료는 안트라퀴논계 염료가 바람직하다. 블루잉제의 첨가 방법은 특별히 한정되지 않으며, 미리 모노머계에 첨가할 수 있다. 구체적으로, 상기 블루잉제의 첨가 방법은 모노머에 용해시켜 두는 방법, 또는 고농도의 블루잉제를 함유하는 마스터 용액을 조제해 두고, 상기 마스터 용액을 사용하는 모노머나 다른 첨가제로 희석하여 첨가하는 방법 등 여러 가지의 방법을 사용할 수 있다.
폴리티오우레탄계 중합체
상기 폴리티올 화합물과 폴리이소시아네이트 화합물을 포함하는 중합성 조성물이 중합(및 경화)되어 폴리티오우레탄계 중합체가 제조된다. 상기 중합 반응에서 SH기/NCO기의 반응 몰비는 0.5 내지 3.0일 수 있고, 구체적으로는 0.6 내지 2.0, 또는 0.8 내지 1.3일 수 있다. 상기 범위 내일 경우, 광학 재료로 요구되는 굴절률, 내열성 등의 특성 및 밸런스를 향상시킬 수 있다.
중합성 조성물의 물성
상기 중합성 조성물은 10℃에서 24 시간 방치 후의 점도가 1,000 cps(centipoise) 이상일 수 있다. 구체적으로, 상기 중합성 조성물은 10℃에서 24 시간 방치 후의 점도가 1,000 내지 10,000 cps, 또는 1,500 내지 10,000 cps일 수 있다. 중합성 조성물의 10℃에서 24 시간 방치 후의 점도가 상기 범위 내일 경우, 상기 조성물의 반응성이 너무 커 작업성이 떨어지거나, 상기 조성물의 반응성이 너무 작아 제조 수율이 낮아지는 문제를 방지할 수 있다.
상기 중합성 조성물이 직경(Φ) 75 mm 및 두께 10 mm의 시편으로 제조될 경우 기포발생률이 0 % 내지 10 %이고, 맥리발생률이 0 % 내지 8 %일 수 있다. 구체적으로, 상기 중합성 조성물이 직경 75 mm 및 두께 10 mm의 시편으로 제조시 기포발생률이 0 % 내지 8 %, 또는 0 % 내지 5 %이고, 맥리발생률이 0 % 내지 7 %, 또는 0 % 내지 5 %일 수 있다.
상기 중합성 조성물은 상술한 모든 특성을 동시에 가질 수 있다.
상기 중합성 조성물은 광학 재료를 제조하기 위해 사용될 수 있다. 상기 중합성 조성물로부터 제조되는 광학 재료의 구체적인 형태 및 물성은 하기 서술하는 바와 같다.
광학 재료
일 구현예에 따르면, 상기 중합성 조성물로부터 제조되는 광학 재료를 제공한다. 구체적으로, 상기 광학 재료는 상기 중합성 조성물을 경화시켜 얻은 성형체로 이루어질 수 있다. 또한, 상기 광학 재료는 상기 중합성 조성물이 중합 및 성형되어 제조될 수 있다.
일 구현예에 따른 광학 재료는 전광선 투과도가 88% 이상일 수 있다. 구체적으로, 상기 전광선 투과도는 89 % 이상일 수 있다. 더 구체적으로, 상기 전광선 투과도는 90 % 이상일 수 있다. 상기 전광선 투과도는 일정 두께 및 지름을 갖도록 제작된 시료에 대해, UV-가시광선 분광광도계를 이용하여 두께 방향으로 일정 간격으로 UV 스펙트럼을 얻은 후, 가시광선 영역의 투과도를 산술 평균하여 계산한 값을 의미한다. 상기 시료의 두께 및 지름, UV-스펙트럼을 얻는 간격은 적절히 조절될 수 있다.
일 구현예에 따른 광학 재료는 황색도의 변화값(Y.I.)이 0 초과 내지 1.5 이하일 수 있다. 구체적으로, 상기 황색도의 변화값(Y.I.)이 0 초과 내지 1.0 이하일 수 있다. 더 구체적으로, 상기 황색도의 변화값(Y.I.)이 0 초과 내지 0.6 이하일 수 있다. 보다 더 구체적으로, 상기 황색도의 변화값(Y.I.)이 0 초과 내지 0.5 이하일 수 있다. 보다 더 구체적으로, 상기 황색도의 변화값(Y.I.)이 0.1 내지 0.6일 수 있다. 보다 더 구체적으로, 상기 황색도의 변화값(△Y.I.)이 0.2 내지 0.5일 수 있다. 상기 황색도의 변화값(Y.I.)은 하기 식 1에 따라 계산될 수 있다.
[식 1]
△Y.I={(234 × x + 106 × y + 106)/y} - {(234 × xo + 106 × yo + 106)/yo}
상기 식 1에서, xo 및 yo은 두께 5 mm, Φ75 mm의 광학 재료의 원형 평판을 자외선에 방치하기 전 측정한 색도좌표이고, x 및 y는 상기 광학 재료의 원형 평판을 자외선에 24시간 방치한 후 측정한 색도좌표이다.
구체적으로, 상기 광학 재료는 이의 전광선 투과율이 89 % 이상이고, 상기 식 1에 따라 계산된 황색도의 변화값(Y.I.)이 0 초과 내지 1.5 이하일 수 있다.
상기 광학 재료는 546 nm의 광에 대한 굴절률이 1.55 내지 1.75일 수 있다. 구체적으로, 상기 굴절률이 1.55 내지 1.70일 수 있다. 더 구체적으로, 1.65 내지 1.75일 수 있으나, 이에 한정되지 않는다.
상기 광학 재료는 아베수가 30 내지 50일 수 있다. 구체적으로, 상기 광학 재료는 아베수가 35 내지 48일 수 있다. 더 구체적으로. 상기 광학 재료는 아베수가 40 내지 45일 수 있으나, 이에 한정되지 않는다.
상기 광학 재료는 상술한 모든 특성을 동시에 가질 수 있다.
상기 광학 재료는 광학 렌즈일 수 있다. 더 구체적으로, 상기 광학 재료는 플라스틱 광학 렌즈일 수 있다. 또한, 상기 광학 재료는 제조 시 사용하는 주형의 금형을 바꾸는 것으로 여러 가지 형상으로 제조될 수 있다. 구체적으로, 상기 광학 재료는 안경 렌즈, 카메라 렌즈, 발광다이오드(LED) 등의 형태일 수 있다.
일 구현예에 따르면, 상기 중합성 조성물로부터 광학 재료를 제조하는 방법을 제공한다. 구체적으로, 상기 방법은, 상기 중합성 조성물을 금형에 주입 후 가열 경화시키는 단계를 포함할 수 있다.
구체적으로, 상기 광학 재료는 상기 중합성 조성물을 가열 경화시켜 얻은 성형체로 이루어질 수 있다. 또한, 상기 광학 재료는 중합성 조성물(폴리티올 화합물 + 폴리이소시아네이트 화합물 + 촉매)이 중합 및 성형되어 제조될 수 있다.
먼저, 상기 중합성 조성물을 감압하에 탈기(degassing)한 후, 광학 재료 성형용 금형에 주입한다. 이와 같은 탈기 및 금형 주입은, 예를 들어, 5℃ 내지 40℃의 온도 범위에서 수행될 수 있고, 구체적으로, 5℃ 내지 20℃의 온도 범위에서 수행될 수 있다. 금형에 주입한 후에는 통상 저온으로부터 고온으로 서서히 가열하여 중합을 수행한다. 상기 중합 반응의 온도는, 예를 들어, 5℃ 내지 200℃일 수 있고, 구체적으로 10℃ 내지 150℃일 수 있다. 또한, 반응 속도를 조절하기 위해서, 폴리티오우레탄의 제조에 통상적으로 이용되는 반응 촉매가 첨가될 수 있으며, 이의 구체적인 종류는 앞서 예시한 바와 같다.
이후 폴리티오우레탄계 광학 재료를 금형으로부터 분리한다.
상기 광학 재료는 제조 시 사용하는 주형의 금형을 바꾸는 것으로 여러 가지 형상일 수 있다.
상기 방법으로부터 제조되는 광학 재료의 구체적인 형태 및 물성은 앞서 예시한 바와 같다.
[실시예]
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
준비예. 제1 자외선 흡수제 및 제2 자외선 흡수제의 준비
이하의 실시예 및 비교예에서 사용되는 제1 및 제2 자외선 흡수제는 각각 하기 표 1 및 표 2와 같다. 하기 화합물들은 공지의 방법에 의해 제조할 수 있거나, 상업적으로 입수 가능하다.
Figure PCTKR2019006732-appb-T000001
Figure PCTKR2019006732-appb-T000002
상기 표 1 및 표 2에서, 주 흡수 파장은 클로로포름에 녹아 있는 자외선 흡수제를 UV 스펙트럼을 이용하여 흡수 모드로 측정한 그래프에서 미분값이 (+)에서 미분값이 (-)로 변하는 변곡점으로 정의하였다. 한편, 상기 "주 흡수 파장" 중 흡수 강도가 최대인 파장을 "최대 흡수 파장(λmax)"으로 정의하였다. 화학식 1 내지 6으로 표시되는 화합물 및 화학식 7 내지 13으로 표시되는 화합물의 UV 스펙트럼을 각각 도 1 및 도 2에 나타내었다.
실시예 1 내지 4 및 비교예 1 내지 8. 광학 렌즈의 제조
하기 화학식 14로 표시되는 폴리이소시아네이트 화합물 201.4 중량부, 하기 화학식 15로 표시되는 폴리티올 화합물 196.1 중량부, 촉매로서 다이부틸주석 다이클로라이드 0.04 중량부, 이형제로 젤렉(Zelec®, 스테판 사) 1 중량부 및 자외선 흡수제를 혼합하여 중합성 조성물을 제조하였다. 실시예 및 비교예에서 사용된 자외선 흡수제의 종류 및 함량은 하기 표 3에 기재하였다.
[화학식 14]
Figure PCTKR2019006732-appb-I000010
[화학식 15]
Figure PCTKR2019006732-appb-I000011
상기 제조된 중합성 조성물을 10℃, 2 토르(torr)에서 1시간 탈기하고 3 ㎛ 테프론 필터로 여과하였다. 여과된 중합성 조성물을 하기 65 cm 내지 85 cm의 크기로 테이프에 의해 조립된 유리 금형에 주입하였다. 상기 금형을 10℃에서 5시간 방치 후 10℃에서 120℃까지 5℃/분의 속도로 승온시키고, 120℃에서 18시간 중합시켰다. 그 다음, 유리 금형에서 경화된 수지를 130℃에서 4시간 동안 추가 경화한 후 유리 금형으로부터 성형체를 이형시켜 광학 렌즈를 제조하였다.
Figure PCTKR2019006732-appb-T000003
[평가예]
상기 실시예 및 비교예에 따라 제조된 광학 재료에 대하여 다음과 같은 물성을 측정 및 평가하였다. 그 결과를 하기 표 4에 나타내었다.
평가예 1. 광학 렌즈의 내광성 측정
색차계(신코 사, 컬러메이트)를 이용하여, 광학 렌즈의 황색도(Y.I.)을 측정하였다. 두께 5 mm, Φ75 mm의 광학 렌즈의 원형 평판을 제작하여 측정하였으며, 색도좌표 xo 및 yo를 측정하였다. 이후, 상기 광학 렌즈의 원형 평판을 Q-Lab 사의 QUV 장비에 UVA 340램프를 장착하여 24시간 방치한 후 색도좌표 x 및 y를 측정하였다. 측정된 xo, yo , x 및 y값을 바탕으로 하기 식 1에 의해 황색도의 변화값(Y.I.)을 산출하였다. 그 결과를 하기 표 4에 나타내었다.
[식 1]
Y.I={(234 × x + 106 × y + 106)/y} - {(234 × xo + 106 × yo + 106)/yo}
평가예 2. 광학 렌즈의 전광선 투과도 측정
두께 5 mm, Φ75 mm로 제작된 시료(광학 렌즈)를 두께 방향으로 UV-가시광선 분광광도계 (퍼킨 엘머 사, Lamda 365 모델)을 이용하여 1 nm 간격으로 UV 스펙트럼을 얻었으며, 이때 가시광선 영역인 380 nm부터 780 nm까지의 투과도를 산술 평균하여 계산한 값을 전광선 투과도로 표시하였다.
Figure PCTKR2019006732-appb-T000004
상기 표 4에서 볼 수 있듯이, 실시예 1 내지 4에 따라 제조된 광학 렌즈는 전광선 투과도가 높고, 자외선 노출 전후 Y.I. 변화값(Y.I.)이 작았다. 이러한 결과로부터 실시예에 따라 제조된 광학 렌즈의 내광성이 우수하고, 색상 불량이 없음을 확인하였다. 그러나, 비교예 1 내지 8에 따라 제조된 광학 렌즈는 전광선 투과도가 낮고, 자외선 노출 전후 Y.I. 변화값(Y.I.)이 높은 결과로부터 내광성이 불량하고, 색상 불량이 있다는 것을 확인하였다.

Claims (20)

1종 이상의 폴리티올 화합물;
1종 이상의 폴리이소시아네이트 화합물;
320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는 1종 이상의 제1 자외선 흡수제; 및
250 nm 내지 300 nm의 파장 영역에서 주 흡수 파장(λ1 ')을 갖는 1종 이상의 제2 자외선 흡수제를 포함하는, 중합성 조성물
제1항에 있어서,
상기 제1 자외선 흡수제는 290 nm 내지 320 nm 미만의 파장 영역에서 주 흡수 파장(λ2)을 추가로 갖는, 중합성 조성물.
제1항에 있어서,
상기 제2 자외선 흡수제는 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ2')을 추가로 갖는, 중합성 조성물.
제1항에 있어서,
상기 제1 자외선 흡수제는 290 nm 내지 320 nm 미만의 파장 영역에서 주 흡수 파장(λ2)을 추가로 갖고,
상기 제2 자외선 흡수제는 320 nm 내지 350 nm의 파장 영역에서 주 흡수 파장(λ2')을 추가로 갖는, 중합성 조성물.
제1항에 있어서,
상기 제1 자외선 흡수제는 320 nm 내지 345 nm의 파장 영역에서 주 흡수 파장(λ1)을 갖는, 중합성 조성물.
제1항에 있어서,
상기 제1 자외선 흡수제는, 상기 주 흡수 파장(λ1)이 최대 흡수 파장(λmax)인, 중합성 조성물.
제1항에 있어서,
상기 제2 자외선 흡수제는, 상기 주 흡수 파장(λ1 ')이 최대 흡수 파장(λmax)인, 중합성 조성물.
제1항에 있어서,
상기 제1 자외선 흡수제 및 제2 자외선 흡수제는 각각 380 nm 내지 780 nm 파장 영역에서 0.01 % 이하의 흡수율을 갖는, 중합성 조성물.
제1항에 있어서,
상기 제1 자외선 흡수제는 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인, 중합성 조성물:
[화학식 1]
Figure PCTKR2019006732-appb-I000012
[화학식 4]
Figure PCTKR2019006732-appb-I000013
[화학식 5]
Figure PCTKR2019006732-appb-I000014
[화학식 6]
Figure PCTKR2019006732-appb-I000015
제1항에 있어서,
상기 제2 자외선 흡수제는 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인, 중합성 조성물:
[화학식 7]
Figure PCTKR2019006732-appb-I000016
[화학식 8]
Figure PCTKR2019006732-appb-I000017
[화학식 9]
Figure PCTKR2019006732-appb-I000018
[화학식 10]
Figure PCTKR2019006732-appb-I000019
[화학식 13]
Figure PCTKR2019006732-appb-I000020
제1항에 있어서,
상기 제1 자외선 흡수제는 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물이고,
[화학식 1]
Figure PCTKR2019006732-appb-I000021
[화학식 4]
Figure PCTKR2019006732-appb-I000022
[화학식 5]
Figure PCTKR2019006732-appb-I000023
[화학식 6]
Figure PCTKR2019006732-appb-I000024
상기 제2 자외선 흡수제는 하기 화학식으로 표시되는 화합물을 포함하는 군으로부터 선택되는 1종 또는 2종 이상의 혼합물인, 중합성 조성물:
[화학식 7]
Figure PCTKR2019006732-appb-I000025
[화학식 8]
Figure PCTKR2019006732-appb-I000026
[화학식 9]
Figure PCTKR2019006732-appb-I000027
[화학식 10]
Figure PCTKR2019006732-appb-I000028
[화학식 13]
Figure PCTKR2019006732-appb-I000029
제1항에 있어서,
상기 중합성 조성물은 광학 재료를 제조하기 위해 사용되는, 중합성 조성물.
제1항에 있어서,
상기 중합성 조성물은 상기 제1 자외선 흡수제 및 제2 자외선 흡수제를, 상기 폴리티올 화합물 100 중량부를 기준으로, 0.001 내지 10 중량부로 포함하는, 중합성 조성물.
제1항에 있어서,
상기 중합성 조성물은 상기 제2 자외선 흡수제를, 상기 제1 자외선 흡수제 100 중량부를 기준으로, 10 내지 1000 중량부로 포함하는, 중합성 조성물.
제1항에 기재된 중합성 조성물로부터 제조되는, 광학 재료.
제15항에 있어서,
상기 광학 재료는 이의 전광선 투과도가 89 % 이상인, 광학 재료.
제15항에 있어서,
상기 광학 재료는, 하기 식 1에 따라 계산된 황색도의 변화값(Y.I.)이 0 초과 내지 1.5 이하인, 광학 재료:
[식 1]
Y.I={(234 × x + 106 × y + 106)/y} - {(234 × xo + 106 × yo + 106)/yo}
상기 식 1에서, xo 및 yo은 두께 5 mm, Φ75 mm의 광학 재료의 원형 평판을 자외선에 방치하기 전 측정한 색도좌표이고, x 및 y는 상기 광학 재료의 원형 평판을 자외선에 24시간 방치한 후 측정한 색도좌표이다.
제17항에 있어서,
상기 황색도의 변화값(Y.I.)은 0 초과 내지 1.0 이하인, 광학 재료.
제15항에 있어서,
상기 광학 재료는 이의 전광선 투과도가 89 % 이상이고,
하기 식 1에 따라 계산된 황색도의 변화값(Y.I.)이 0 초과 내지 1.5 이하인, 광학 재료:
[식 1]
Y.I={(234 × x + 106 × y + 106)/y} - {(234 × xo + 106 × yo + 106)/yo}
상기 식 1에서, xo 및 yo은 두께 5 mm, Φ75 mm의 광학 재료의 원형 평판을 자외선에 방치하기 전 측정한 색도좌표이고, x 및 y는 상기 광학 재료의 원형 평판을 자외선에 24시간 방치한 후 측정한 색도좌표이다.
제15항에 있어서,
상기 광학 재료는 플라스틱 광학 렌즈인, 광학 재료.
PCT/KR2019/006732 2018-06-04 2019-06-04 중합성 조성물 및 이로부터 제조된 광학 재료 WO2019235815A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/734,513 US11958937B2 (en) 2018-06-04 2019-06-04 Polymerizable composition and optical material produced therefrom
EP19815458.5A EP3805286A4 (en) 2018-06-04 2019-06-04 POLYMERIZABLE COMPOSITION AND OPTICAL MATERIAL MADE THEREOF
CN201980052154.6A CN112543776B (zh) 2018-06-04 2019-06-04 可聚合组合物及由其制备的光学材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0064307 2018-06-04
KR1020180064307A KR102055835B1 (ko) 2018-06-04 2018-06-04 중합성 조성물 및 이로부터 제조된 광학 재료

Publications (1)

Publication Number Publication Date
WO2019235815A1 true WO2019235815A1 (ko) 2019-12-12

Family

ID=68769359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006732 WO2019235815A1 (ko) 2018-06-04 2019-06-04 중합성 조성물 및 이로부터 제조된 광학 재료

Country Status (5)

Country Link
US (1) US11958937B2 (ko)
EP (1) EP3805286A4 (ko)
KR (1) KR102055835B1 (ko)
CN (1) CN112543776B (ko)
WO (1) WO2019235815A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538332B2 (ko) 1974-02-08 1978-03-28
JPH10186291A (ja) * 1996-12-26 1998-07-14 Toray Ind Inc プラスチックレンズ
JPH11218602A (ja) * 1998-02-03 1999-08-10 Asahi Optical Co Ltd プラスチックレンズ
KR20090068812A (ko) * 2007-12-24 2009-06-29 주식회사 신대특수재료 내충격성 및 멀티막의 내열성이 우수한 광학수지 조성물,이를 이용한 플라스틱 안경 렌즈 및 그 제조 방법
JP4334633B2 (ja) 1998-03-18 2009-09-30 セイコーエプソン株式会社 プラスチックレンズ用重合組成物
JP2013003488A (ja) * 2011-06-21 2013-01-07 Dainippon Printing Co Ltd 光学フィルム、偏光板、及び画像表示装置
KR20160008976A (ko) * 2014-07-14 2016-01-25 케이에스랩(주) 광학수지 조성물 및 이를 이용한 광학용 렌즈

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538332A (en) 1976-07-12 1978-01-25 Teruo Minami Device for descaling steel wire and the like
JPS58122501A (ja) * 1982-01-18 1983-07-21 Hoya Corp 眼鏡用プラスチツクレンズ
JPH06211960A (ja) * 1993-01-14 1994-08-02 Daiso Co Ltd 重合性組成物およびそれより得られる高屈折率プラスチックレンズ
JP3538332B2 (ja) 1998-02-10 2004-06-14 ペンタックス株式会社 プラスチックレンズ
US6244707B1 (en) * 1998-07-21 2001-06-12 Wesley Jessen Corporation UV blocking lenses and material containing benzotriazoles and benzophenones
KR101637541B1 (ko) * 2009-10-16 2016-07-08 주식회사 케이오씨솔루션 맑으면서 투명하고 내열성과 내충격성이 뛰어난 광학수지 조성물, 이를 이용한 플라스틱 안경 렌즈 및 그 제조 방법
JP5620033B1 (ja) * 2013-02-27 2014-11-05 三井化学株式会社 光学材料、光学材料用組成物およびその用途
KR101612940B1 (ko) * 2015-09-15 2016-04-15 (주)케미그라스 자외선 및 청색광 차단 기능성 안경렌즈
KR102074604B1 (ko) * 2015-09-16 2020-03-02 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물의 제조 방법 및 광학 재료의 제조 방법
CN108026277B (zh) * 2015-09-16 2021-07-16 三井化学株式会社 光学材料用聚合性组合物、光学材料、光学材料用聚合性组合物的制造方法及光学材料的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538332B2 (ko) 1974-02-08 1978-03-28
JPH10186291A (ja) * 1996-12-26 1998-07-14 Toray Ind Inc プラスチックレンズ
JPH11218602A (ja) * 1998-02-03 1999-08-10 Asahi Optical Co Ltd プラスチックレンズ
JP4334633B2 (ja) 1998-03-18 2009-09-30 セイコーエプソン株式会社 プラスチックレンズ用重合組成物
KR20090068812A (ko) * 2007-12-24 2009-06-29 주식회사 신대특수재료 내충격성 및 멀티막의 내열성이 우수한 광학수지 조성물,이를 이용한 플라스틱 안경 렌즈 및 그 제조 방법
JP2013003488A (ja) * 2011-06-21 2013-01-07 Dainippon Printing Co Ltd 光学フィルム、偏光板、及び画像表示装置
KR20160008976A (ko) * 2014-07-14 2016-01-25 케이에스랩(주) 광학수지 조성물 및 이를 이용한 광학용 렌즈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805286A4

Also Published As

Publication number Publication date
US11958937B2 (en) 2024-04-16
EP3805286A4 (en) 2022-04-06
EP3805286A1 (en) 2021-04-14
KR20190138131A (ko) 2019-12-12
CN112543776B (zh) 2023-04-04
KR102055835B1 (ko) 2019-12-13
CN112543776A (zh) 2021-03-23
US20210230351A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2012091493A2 (ko) 우레탄계 광학재료용 수지의 제조방법과 이를 위한 수지 조성물 및 제조된 광학재료
WO2013109118A1 (ko) 티오에폭시계 광학재료의 제조방법과 그 중합성 조성물
WO2014035166A1 (ko) 티오우레탄계 광학재료의 제조방법
WO2018043896A1 (ko) 광학 재료용 폴리티올 조성물 및 이의 제조방법
WO2018043901A1 (ko) 광학 재료용 폴리티올 화합물의 제조방법
WO2014046523A1 (ko) 에피설파이드 화합물의 보관방법과 이 에피설파이드 화합물을 이용한 티오에폭시계 광학재료의 제조방법
WO2013069965A1 (ko) 폴리티올 화합물의 제조 방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2013111999A1 (ko) 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 광학재료용 조성물
WO2012112015A2 (ko) 고리개환을 통해 사슬연장된 폴리티올화합물과 그 제조 방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
WO2013103277A1 (ko) 티오에폭시계 광학재료용 중합성 조성물과 티오에폭시계 광학재료의 제조방법
WO2020197156A1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
KR101788168B1 (ko) 광학 재료용 내부 이형제 및 이를 포함하는 중합성 조성물
WO2013089538A1 (ko) 티오에폭시계 광학재료의 주형중합 방법과 그 중합성 조성물
WO2013103276A1 (ko) 티오에폭시 화합물, 폴리이소시아네이트 화합물 및 폴리티올 화합물을 포함하는 고굴절 광학렌즈용 공중합체 조성물과 광학렌즈의 제조방법
WO2013109119A1 (ko) 티오에폭시계 공중합체 조성물과 티오에폭시계 광학재료의 제조방법
US10669367B2 (en) Polythiol composition for plastic lens
WO2016190599A1 (ko) 티오에폭시계 초고굴절 광학수지 조성물과 티오에폭시계 광학재료의 제조방법
WO2019235815A1 (ko) 중합성 조성물 및 이로부터 제조된 광학 재료
WO2013112001A1 (ko) 티오에폭시계 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 티오에폭시계 광학재료용 공중합체 조성물
WO2021172771A1 (ko) 내광성이 향상된 에피설파이드계 고굴절 광학재료용 조성물 및 광학재료의 제조방법
WO2016178522A2 (ko) 티오에폭시계 광학재료의 제조방법과 티오에폭시계 광학재료용 중합성 조성물
WO2021167256A1 (ko) 광학재료용 에피설파이드 화합물, 이를 포함하는 고굴절 광학재료용 조성물 및 광학재료의 제조방법
KR20200026853A (ko) 폴리티올 조성물 및 이의 제조방법
WO2020116821A1 (ko) 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
WO2013069964A1 (ko) 티오우레탄계 광학재료의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815458

Country of ref document: EP

Effective date: 20210111