WO2020116821A1 - 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법 - Google Patents

신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법 Download PDF

Info

Publication number
WO2020116821A1
WO2020116821A1 PCT/KR2019/015800 KR2019015800W WO2020116821A1 WO 2020116821 A1 WO2020116821 A1 WO 2020116821A1 KR 2019015800 W KR2019015800 W KR 2019015800W WO 2020116821 A1 WO2020116821 A1 WO 2020116821A1
Authority
WO
WIPO (PCT)
Prior art keywords
episulfide
optical material
composition
bis
based optical
Prior art date
Application number
PCT/KR2019/015800
Other languages
English (en)
French (fr)
Inventor
장동규
노수균
Original Assignee
주식회사 케이오씨솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180156348A external-priority patent/KR102669070B1/ko
Application filed by 주식회사 케이오씨솔루션 filed Critical 주식회사 케이오씨솔루션
Publication of WO2020116821A1 publication Critical patent/WO2020116821A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a novel episulfide compound and an episulfide-based optical material containing the same, and in particular, a novel episulfide capable of improving light resistance, heat resistance and transparency of an optical material by including a small amount in the composition for episulfide-based optical materials A compound, a composition for an episulfide-based optical material containing the same, and a method for manufacturing the optical material.
  • Plastic lenses are lightweight, have good impact resistance, and are easy to color. Recently, plastic lenses have been used in most of the spectacle lenses. Plastic spectacle lenses have been developed in the direction of improving light weight, transparency, low yellowness, heat resistance, light resistance and strength.
  • Korean Patent Registration No. 10-0681218 discloses an episulfide plastic lens.
  • Episulfide-based lenses have high refractive index and excellent properties with high Abbe's number, but there are many problems in terms of tensile strength, compressive strength, colorability, hard adhesion, and productivity.
  • a method of copolymerizing two kinds of resins of different properties that is, a method of copolymerizing an episulfide compound and a polythiol compound or a polyisocyanate compound together, Korean Patent Registration No. 10-0417985, Japanese Patent Publication It was proposed in Hei 11-352302.
  • Patent Document 1 Republic of Korea Registered Patent Publication 10-0417985
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-352302
  • Patent Document 3 Japanese Patent Publication No. 2001-2783
  • Patent Document 4 Republic of Korea Patent Publication 10-2014-0122721
  • the present invention seeks to solve this problem by including a new episulfide compound in the composition for episulfide-based optical materials.
  • An object of the present invention is to provide a new episulfide compound that can solve the problems of low light resistance, heat resistance and transparency deterioration in episulfide-based high refractive optical lenses.
  • it is to provide a composition for an episulfide-based optical material excellent in light resistance, heat resistance and transparency using this compound and a method for manufacturing the optical material.
  • An episulfide compound represented by Chemical Formula 1 is provided.
  • composition for an episulfide-based optical material containing a polymerization catalyst It provides a composition for an episulfide-based optical material containing a polymerization catalyst.
  • X, Y are hydrogen, hydroxyl group, alkyl group, aryl group, alicyclic group, amino group, oxime or ester group, X, Y are the same or different from each other.
  • X and Y are O or S, m is an integer from 0 to 4, and n represents an integer from 0 to 2.
  • the episulfide-based optical material composition may further include sulfur.
  • the episulfide-based optical material composition may further include a polyisocyanate compound.
  • the episulfide-based optical material composition may further include a tin-halogen compound as a polymerization regulator.
  • the present invention provides a method for producing an episulfide-based high refractive optical material, comprising polymerizing the composition for the episulfide-based optical material.
  • the episulfide compound of Chemical Formula 1 provided by the present invention is a novel compound, and can solve the problem of low light resistance, heat resistance and deterioration of transparency in episulfide-based optical materials.
  • an episulfide-based optical material excellent in light resistance, heat resistance and transparency can be obtained in a relatively simple method of incorporating a small amount of the compound in a composition for episulfide-based optical material in an amount of 10% by weight or less and polymerizing.
  • high refraction is meant to include everything from 1.67 or higher to 1.71 or higher, commonly referred to as ultra high refraction, unless otherwise specified. Without being limited, the refractive index ranges from 1.67 to 1.77.
  • the present invention provides a novel episulfide compound represented by Chemical Formula 1 below.
  • X, Y are hydrogen, hydroxyl group, alkyl group, aryl group, alicyclic group, amino group, oxime or ester group, X, Y are the same or different from each other.
  • the compound represented by Chemical Formula 1 is preferably included in an amount of 0.01 to 10% by weight in the total weight of the composition for episulfide-based optical materials. More preferably, it can be used by including 0.01 to 7% by weight, more preferably 0.05 to 5% by weight.
  • the episulfide compound represented by Chemical Formula 1 is, for example, a method of reacting 2,3-epoxypropyl (2,3-ethiothio) sulfide with 2,2,6,6-tetramethylpiperidine, Alternatively, it can be obtained by a method such as reacting 2,3-epoxypropyl (2,3-epithiopropyl) sulfide with 2,2,6,6-tetramethylpiperidyl methacrylate. After obtaining bis(3-chloro-2-hydroxypropyl) sulfide using pyrochlorohydrin as a starting material, bis(2,3-epoxypropyl) sulfide can be obtained by treating with caustic soda solution.
  • Bis(2,3-epoxypropyl) sulfide can be reacted selectively with thiourea to obtain 2,3-epoxypropyl (2,3-ethiothiopropyl) sulfide. After dissolving 2,3-epoxypropyl (2,3-ethiothiopropyl) sulfide and hindered amine in an organic solvent, reacting at 30 to 35° C. to obtain a new episulfide compound of the present invention (Formula 1).
  • 2,3-epoxypropyl(2,2) is added to a mixture of bis(2,3-epiopropyl)sulfide and 2,3-epoxypropyl(2,3-ethiothiopropyl)sulfide without using an organic solvent.
  • a novel episulfide compound (Formula 1) can be obtained by a 1:1 reaction of 3-epithiopropyl)sulfide and hindered amine.
  • composition for an episulfide-based optical material of the present invention includes an episulfide compound represented by Chemical Formula 2 below, an episulfide compound represented by Chemical Formula 1, a polythiol compound, and a polymerization catalyst.
  • X and Y are O or S, m is an integer from 0 to 4, and n represents an integer from 0 to 2.
  • the episulfide compound represented by Formula 2 is a main component of the composition for episulfide-based optical materials.
  • the formula 2 episulfide compound is, for example, bis(2,3-ethiothio) sulfide, bis(2,3-ethiothiopropyl)disulfide, 2,3-epoxypropyl (2,3-ethiothiopropyl) Disulfide, 2,3-epoxypropyl(2,3-ethiothiopropyl)sulfide, 1,3 and 1,4-bis( ⁇ -epithiopropylthio)cyclohexane, 1,3 and 1,4-bis( ⁇ -epithiopropylthiomethyl)cyclohexane, bis[4-( ⁇ -epithiopropylthio)cyclohexyl]methane, 2,2-bis[4-( ⁇ -epithiopropylthio)cyclohexyl]propane
  • halogen substituent such as a chlorine substituent or a bromine substituent of a compound having an episulfide group as an episulfide compound, an alkyl substituent, an alkoxy substituent, a prepolymer modified with a nitro substituent or polythiol, and the like can also be used.
  • the episulfide compound preferably, bis(2,3-ethiothio)sulphide, bis(2,3-ethiothiopropyl)disulfide, 2,3-epoxypropyl(2,3-ethiothiopropyl)sulfide , 2,3-epoxypropyl(2,3-ethiothiopropyl)disulfide, 1,3 and 1,4-bis( ⁇ -epithiopropylthio)cyclohexane, 1,3 and 1,4-bis( ⁇ - Epithiopropylthiomethyl)cyclohexane, 2,5-bis( ⁇ -epithiopropylthiomethyl)-1,4-dithiane, 2,5-bis( ⁇ -epithiopropylthioethylthiomethyl)-1, One or more of 4-dithiane and 2-(2- ⁇ -epithiopropylthioethylthio)-1,3-bis( ⁇ -epit
  • the polythiol compound is not particularly limited, and any compound having at least one thiol group may be used alone or in combination of two or more.
  • any compound having one or more thiol groups may be used alone or in combination of two or more.
  • polythiol compound particularly preferably, bis(2-mercaptoethyl)sulfide or 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane or other polythiol compound 1 It can be used by mixing more than one species.
  • the polythiol may preferably be included in the composition for the optical material 1 to 15% by weight, more preferably 4 to 13% by weight, even more preferably 5 to 11% by weight.
  • the polymerization catalyst preferably, one or more selected from amine, quaternary ammonium salt, quaternary phosphonium salt, tertiary sulfonium salt, secondary iodonium salt, phosphine compound is used. More preferably, one or more selected from quaternary ammonium salts, quaternary phosphonium salts, and phosphine compounds may be used.
  • quaternary ammonium salt for example, tetra-n-butylammonium bromide, tetraphenylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, 1-n-dodecylpyridinium chloride, etc. can be used.
  • quaternary phosphonium salt for example, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, or the like can be used.
  • phosphine compound triphenylphosphine or the like can be used.
  • the polymerization catalyst is a quaternary phosphonium salt, and includes any of tetra-n-butylphosphonium bromide and tetraphenylphosphonium bromide. These polymerization catalysts may be used alone or in combination of two or more.
  • the episulfide-based optical material composition may further include sulfur.
  • sulfur When sulfur is further included, the refractive index may be increased to an ultra-high refractive index of 1.71 or more.
  • the sulfur contained in the composition is preferably 98% or more in purity. In the case of less than 98%, the transparency of the optical material may be reduced due to impurities.
  • the purity of sulfur is more preferably 99.0% or more, and particularly preferably 99.5% or more.
  • commercially available sulfur is classified by differences in shape or purification method, and there are finely divided sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, and sublimation sulfur. In the present invention, any sulfur can be used as long as the purity is 98% or more.
  • the content of sulfur in the composition is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, and most preferably 3 to 22% by weight of the total weight of the composition for optical materials.
  • the episulfide-based optical material composition may further include a polyisocyanate compound.
  • the polyisocyanate compound is not particularly limited, and a compound having at least one isocyanate group and/or isothiocyanate group may be used.
  • Aromatic isocyanate compounds Bis (isocyanatoethyl) sulfide, bis (isocyanatopropyl) sulfide, bis (isocyanatohexyl) sulfide, bis (isocyanatomethyl) sulfone, bis (isocyanatomethyl) disulfide, Bis(isocyanatopropyl)disulfide, bis(isocyanatomethylthio)methane, bis(isocyanatoethylthio)methane, bis(isocyanatoethylthio)ethane, bis(isocyanatomethyl Sulfur-containing aliphatic isocyanate compounds such as thio)ethane and 1,5-diisocyanato-2-isocyanatomethyl-3-thiapentane; Diphenylsulfide-2,4-diisocyanate, diphenylsulfide-4,4'-diisocyanate,
  • the compound has at least one isocyanate group and/or isothiocyanate group, one or two or more of them may be used in combination.
  • these isocyanate compounds include halogen substituents such as chlorine substituents and bromine substituents, alkyl substituents, alkoxy substituents, nitro substituents, prepolymer-modified products with polyhydric alcohols or thiols, carbodiimide-modified products, urea-modified products, and burette-modified products. Alternatively, dimerization or trimerization reaction products may also be used.
  • polyisocyanate compound preferably, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (H12MDI), xylylene diisocyanate (XDI), 3,8-bis (iso Cyanatomethyl)tricyclo[5,2,1,02,6]decane, 3,9-bis(isocyanatomethyl)tricyclo[5,2,1,02,6]decane, 4,8-bis (Isocyanatomethyl)tricyclo[5,2,1,02,6]decane, 2,5-bis(isocyanatomethyl)bicyclo[2,2,1]heptane, 2,6-bis(iso One or more selected from cyanatomethyl)bicyclo[2,2,1]heptane can be used.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • H12MDI dicyclohexy
  • the episulfide-based optical material composition may further include a tin-halogen compound as a polymerization regulator.
  • the tin halogen compound may be preferably one of dibutyl tin dichloride and dimethyl tin dichloride, or a small amount of monomethyl tin trichloride contained therein. More preferably, monomethyl tin trichloride may be included in an amount of 0.1 to 3.5% by weight.
  • the polymerization regulator is preferably used in an amount of 0.01 to 5% by weight of the total weight of the composition for an optical material. With the use of this polymerization regulator, not only the rapid increase in viscosity can be suppressed by controlling the polymerization rate, but as a result, the polymerization yield is increased, and the generation of bubbles is also eliminated.
  • an alkylimidazole may be further included as a polymerization regulator.
  • the alkylimidazole particularly preferably comprises 2-mercapto-1-methylimidazole.
  • 2-Mercapto-1-methylimidazole is preferably used having a purity of 98% or more.
  • the optical material composition may preferably contain 0.01 to 5% by weight, more preferably 0.1 to 3% by weight, and even more preferably 0.15 to 1% by weight.
  • the composition for an optical material of the present invention may further include an internal release agent.
  • a phosphoric acid ester compound may be included as the internal release agent.
  • Phosphoric acid ester compounds are prepared by adding 2 to 3 mol of alcohol compounds to phosphorus pentoxide (P 2 O 5 ). At this time, various types of phosphoric acid ester compounds can be obtained depending on the type of alcohol used. Typical examples are those in which ethylene oxide or propylene oxide is added to an aliphatic alcohol or ethylene oxide or propylene oxide is added to a nonylphenol group.
  • the composition of the present invention preferably 4-PENPP [polyoxyethylene nonylphenol ether phosphate (5% by weight of 5 mol added ethylene oxide, 80% by weight of 4 mol added, 80% by 3 mol added) 10% by weight, 5% by weight of 1 mole added), 8-PENPP [polyoxyethylene nonylphenol ether phosphate (3% by weight of 9 moles of ethylene oxide added, 80% by weight of 8 moles added, 9 5% by weight of molar addition, 6% by weight of 7 mole addition, 6% by weight of 6 mole addition), 12-PENPP [polyoxyethylenenonylphenol ether phosphate (3% by weight of 13 moles of ethylene oxide added) , 80% by weight of 12 moles added,
  • the composition for an optical material of the present invention may further include an olefin compound as a reactive resin modifier for the purpose of adjusting impact resistance, specific gravity and monomer viscosity to improve the optical properties of the optical material.
  • an olefin compound which can be added as a resin modifier for example, benzyl acrylate, benzyl methacrylate, butoxyethyl acrylate, butoxymethyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2 -Hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, phenoxy ethyl acrylate, phenoxyethyl methacrylate, phenyl methacrylate, ethylene glycol di Acrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacryl
  • the composition for an optical material of the present invention may further include an ultraviolet absorber as needed.
  • the ultraviolet absorber is used for improving light resistance and blocking ultraviolet rays of the optical material, and a known ultraviolet absorber used for the optical material can be used without limitation.
  • a known ultraviolet absorber used for the optical material can be used without limitation.
  • ethyl-2-cyano-3,3-diphenylacrylate 2-(2'-hydroxy-5-methylphenyl)-2H-benzotriazole; 2-(2'-hydroxy-3',5'-di-t-butylphenyl)-5-chloro-2H-benzotriazole; 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5-chloro-2H-benzotriazole; 2-(2'-hydroxy-3',5'-di-t-amylphenyl)-2H-benzotriazole; 2-(2'-hydroxy-3',5'-di-t-butylphenyl)
  • 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5 having good ultraviolet absorbing ability in a wavelength range of 400 nm or less and good solubility in the composition of the present invention.
  • -Chloro-2H-benzotriazole and 2-(2'-hydroxy-5'-t-octylphenyl)-2H-benzotriazole can be used.
  • an ultraviolet absorber is used in an amount of 0.6 g or more with respect to 100 g of a composition for an optical material, it is possible to block 400 nm or more.
  • composition for optical materials of the present invention may further include various additives such as chain extenders, crosslinking agents, light stabilizers, antioxidants, colorants, organic dyes, fillers, and adhesion improvers, if necessary.
  • additives such as chain extenders, crosslinking agents, light stabilizers, antioxidants, colorants, organic dyes, fillers, and adhesion improvers, if necessary.
  • composition for an optical material of the present invention composed as above preferably has a liquid phase viscosity of 500 cps (20° C.) or less, and a solid phase refractive index (Ne) after polymerization does not include sulfur, 1.67 to 1.70, when sulfur is included. 1.71 to 1.77.
  • the composition composed as above is mold-polymerized, an episulfide-based optical material can be obtained.
  • the details are as follows. First, the polymerizable composition of the present invention is injected between a molding mold held with a gasket or a tape. At this time, it is often desirable to perform defoaming under reduced pressure, filtration treatment such as pressurization or reduced pressure, etc., depending on the physical properties required for the obtained optical material and, if necessary.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the polymerizable composition, the type and amount of the catalyst, the shape of the mold, and the like, but are carried out at a temperature of about -50 to 130°C for 1 to 50 hours. In some cases, it is preferable to maintain or gradually raise the temperature in the temperature range of 10 to 130°C and cure at 1 to 48 hours.
  • the episulfide compound-based optical material obtained by curing may be subjected to treatment such as annealing, if necessary.
  • the treatment temperature is usually performed at 50 to 130°C, and is preferably performed at 90 to 120°C.
  • the optical material of the present invention can be obtained as a molded body of various shapes by changing the mold during mold polymerization, it can be used as various optical materials such as spectacle lenses, camera lenses, and light emitting diodes (LEDs).
  • it is suitable as an optical element such as a spectacle lens, a camera lens, a light emitting diode, and an optical element.
  • the episulfide-based optical material obtained according to the present invention is excellent in hard adhesion, so that a hard coating is possible without a primer, coating is very easy, and stability of the coating is also very good.
  • the plastic optical lens obtained according to the present invention can be used by forming various coating layers on one or both sides, if necessary.
  • a primer layer, a hard coating layer, an antireflection coating layer, an anti-fog coating layer, an anti-pollution layer, a water-repellent layer, etc. can all be used, and these coating layers may be used alone or in multiple layers.
  • the dropwise addition is within 1 hour, and the aging is performed at 37°C for about 30 minutes, and after aging, 2000 g of toluene is added, stirred for about 10 minutes, separated by layer separation, and the organic layer, which is the supernatant, is washed three times with water, and the organic layer solution is removed as much as possible. Further, 400 g of methanol was added to the mixture, followed by stirring. The reaction temperature was 8°C, 372.23 g (4.89 mol) of thiourea and acetic anhydride (35 g) were added, and the reaction temperature was reacted at 18°C for 24 hours.
  • 2,3-epoxypropyl (2,3-ethiothio) sulfide compound (100.00 g, 0.61 mol), 2,2,6,6-tetramethylpiperidine (87.05 g, 0.61 mol) in 1 liter reaction vessel ) And dichloromethane (500 g) were added and stirred at 35° C. for 3 hours to react. After the reaction, the solvent was removed and 1-(2,2,6,6-tetramethylpiperidin-1-yl)-3-((tyran-2-ylmethylthio)propan-2-ol (187g) was obtained. .
  • the reactor was decompressed to 1.0 torr or less, and the external temperature was adjusted to 54°C. While stirring this reactor, 77.5g of bis(2,3-ethiothiopropyl)sulfide compounds and 1.5g of 2,3-epoxypropyl(2,3-ethiothiopropyl), 1-(2-hydroxy-3-(( Diiran-2-ylmethyl)thio)propyl)-2,2,6,6-detramethylpiperidine-4-yl methacrylate 0.15g is added, sulfur 16g, sunscreen UV 31 0.8g, organic Dye HTAQ (88ppm) and PRD (30ppm) were added, defoamed under reduced pressure for 30 minutes, and 0.75 g of 2-mercapto-1-methylimidazole was added and stirred for 1 hour.
  • Refractive index and Abbe's number Measured using an Atago's DR-M4 model, an Abbe refractometer.
  • McLee Polymerization Unbalance: 100 lenses with 80mm diameter and +11 D in diameter are manufactured, and observed by the Schlieren method under the USHIO USH-10D Mercury Arc Lamp. Did. Among the 100 lenses, no pulsations were observed at all, " ⁇ ", and 1 to 5 of 100 lenses were observed as “ ⁇ ”, and 6 to 9 lenses at 100 lenses. It is indicated by “ ⁇ ” that the pulse is observed, and "x” is the pulse that is observed by 10 or more of the 100 lenses.
  • compositions and the optical lens were prepared in the same manner as in Example 1 , except that the composition was listed in Table 1 below, and the physical properties were tested. The results are shown in Tables 1 and 2 below.
  • the reactor was decompressed to 1.0 torr or less, and the external temperature was adjusted to 54°C. While stirring this reactor, 77.5g of bis(2,3-ethiothiopropyl) sulfide compounds and 1.5g of 2,3-epoxypropyl(2,3-ethiothiopropyl), sulfur 16g, sunscreen UV 31 0.8g, organic dye HTAQ (88 ppm) and PRD (30 ppm) were added, and after defoaming under reduced pressure for 30 minutes, 0.75 g of 2-mercapto-1-methylimidazole was added and stirred for 1 hour. Then cooled to 30° C.
  • An optical lens was prepared in the same manner as in Comparative Example 1 , except that the composition shown in Table 2 was followed, and its physical properties were tested. Table 2 shows the results.
  • EEPS 2,3-Epoxypropyl (2,3-Epoxypropyl) sulfide (2,3-epithiopropyl)sulfide)
  • EPDS Bis(2,3-epithiopropyl)disulfide
  • BMMS Bis(mercaptomethyl)sulfide (Bis(mercaptomethyl)sulfide)
  • TMPP 1-(2,2,6,6-tetramethylpiperidin-1-yl)-3-((tyran-2-ylmethylthio)propan-2-ol (1-(1-(2, 2,6,6-tetramethylpiperidin-1-yl)-3-((thiiran-2-ylmethylthio)propan-2-ol)
  • TMPMA 1-(2-hydroxy-3-(diiran-2-ylmethylthio)propyl)-2,2,6,6-detramethylpiperidin-4-yl methacrylate (1-( 2-hydroxy-3-(thiiran-2-ylmethylthio)propyl)-2,2,6,6-tetramethylpiperidin-4-yl methacrylate)
  • novel episulfide compound of the present invention can be used to increase light resistance, heat resistance, and transparency by being added to an episulfide-based optical material.
  • the episulfide-based optical material obtained according to the present invention is a high-quality lens excellent in light resistance, heat resistance and transparency, and can be usefully used for lenses for corrective sunglasses, fashion lenses, discoloration lenses, camera lenses, lenses for optical devices, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

본 발명은 에피설파이드계 광학재료용 조성물 중에 소량 포함시킴으로써 광학재료의 내광성, 내열성 및 투명성을 개선할 수 있는 신규한 에피설파이드 화합물과 이를 포함하는 에피설파이드계 광학재료용 조성물, 광학재료의 제조방법에 관한 것이다. 본 발명에서는, 화학식 2로 표시되는 에피설파이드 화합물, 화학식 1로 표시되는 에피설파이드 화합물, 폴리티올 화합물 및 중합촉매를 포함하는 에피설파이드계 광학재료용 조성물을 제공한다.

Description

신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
본 발명은 신규한 에피설파이드 화합물과 이를 포함하는 에피설파이드계 광학재료에 관한 것으로, 특히 에피설파이드계 광학재료용 조성물 중에 소량 포함시킴으로써 광학재료의 내광성, 내열성 및 투명성을 개선할 수 있는 신규한 에피설파이드 화합물과 이를 포함하는 에피설파이드계 광학재료용 조성물, 광학재료의 제조방법에 관한 것이다.
플라스틱 렌즈는 가볍고 내충격성이 좋고 착색이 용이하여, 근래 대부분의 안경렌즈에 플라스틱 렌즈가 사용되고 있다. 플라스틱 안경렌즈는 경량성, 투명성, 낮은 황색도, 내열성, 내광성, 강도를 개선하는 방향으로 발전되어 왔다.
한국등록특허 10-0681218호에서는 에피설파이드계 플라스틱 렌즈를 개시하고 있다. 에피설파이드계 렌즈는 고굴절률이면서도 고아베수를 갖는 우수한 성질이 있으나, 인장강도, 압축강도, 착색성, 하드 접착력, 생산성 등의 면에서 문제가 많다. 이러한 문제점을 해결하기 위하여 두 종류의 서로 다른 성질의 수지를 공중합하는 방법, 즉 에피설파이드 화합물과 폴리티올 화합물 또는 여기에 폴리이소시아네이트 화합물을 함께 공중합하는 방법이 한국등록특허 10-0417985호, 일본공개특허 평11-352302호 등에서 제안되었다.
최근에는 에피설파이드 화합물을 포함하는 에피설파이드계 렌즈에서 굴절율을 더욱 높여 1.71 이상의 초고굴절률과 고아베수를 달성하기 위해, 에피설파이드 화합물에 황 원자나 셀레늄 원자 등의 무기 화합물을 배합하는 광학재료용 조성물이 제안되었다(일본 공개특허 2001-2783).
그러나 에피설파이드계 렌즈에서는 내광성 및 내열성이 떨어지고 종종 투명성이 저하되는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허공보 10-0417985
(특허문헌 2) 일본 공개특허공보 특개평 11-352302
(특허문헌 3) 일본 공개특허공보 2001-2783
(특허문헌 4) 대한민국 공개특허공보 10-2014-0122721
에피설파이드계 고굴절 광학렌즈에서는 내광성, 내열성이 떨어지고 종종 투명성이 저하되는 문제가 있다. 이러한 문제는 사용자가 장시간 야외활동이나 사우나 같은 고온 환경에 노출될 때 렌즈의 변형을 초래할 수 있으며, 렌즈의 품질을 떨어뜨리게 된다. 또, 투명성 저하의 경우 이로 인한 불량으로 생산성을 저하시키게 되고, 상품화에 지장을 초래할 수 있다.
본 발명에서는 에피설파이드계 광학재료용 조성물에 새로운 에피설파이드 화합물을 포함시킴으로써 이러한 문제를 해결하고자 한다. 본 발명의 목적은 에피설파이드계 고굴절 광학렌즈에서 나타나는 낮은 내광성 및 내열성과 투명성 저하의 문제를 해결할 수 있는 새로운 에피설파이드 화합물을 제공하는 것이다. 또한, 이 화합물을 이용하여 내광성, 내열성 및 투명성이 우수한 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명에서는,
아래 화학식 1로 표시되는 에피설파이드 화합물을 제공한다.
또한, 본 발명에서는,
아래 화학식 2로 표시되는 에피설파이드 화합물,
아래 화학식 1로 표시되는 에피설파이드 화합물,
폴리티올 화합물 및
중합촉매를 포함하는 에피설파이드계 광학재료용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019015800-appb-I000001
(X, Y는 수소, 하이드록실기, 알킬기, 아릴기, 지환족기, 아미노기, 옥심 또는 에스테르기이며, X, Y는 서로 동일하거나 또는 다르다.)
[화학식 2]
Figure PCTKR2019015800-appb-I000002
(식 중에서 X, Y는 O 또는 S이며, m은 0~4의 정수이며, n은 0~2의 정수를 나타낸다.)
상기 에피설파이드계 광학재료용 조성물은 황을 더 포함할 수 있다.
상기 에피설파이드계 광학재료용 조성물은 폴리이소시아네이트 화합물을 더 포함할 수 있다.
상기 에피설파이드계 광학재료용 조성물은, 주석할로겐 화합물을 중합조절제로 더 포함할 수 있다.
또한, 본 발명에서는 상기 에피설파이드계 광학재료용 조성물을 중합시키는 것을 포함하는, 에피설파이드계 고굴절 광학재료의 제조방법을 제공한다.
본 발명에서 제공하는 화학식 1의 에피설파이드 화합물은 신규한 화합물로, 에피설파이드계 광학재료에서 나타나는 낮은 내광성 및 내열성과 투명성 저하의 문제를 해결할 수 있다. 본 발명에서는 이 화합물을 에피설파이드계 광학재료용 조성물에 10중량% 이하로 소량 포함시켜 중합하는 비교적 간단한 방법으로 내광성, 내열성 및 투명성이 우수한 에피설파이드계 광학재료를 얻을 수 있다.
본 발명에서 '고굴절'은 특별히 한정하지 않으면 1.67 이상부터 통상 초고굴절로 지칭되는 1.71 이상까지 모두 포함하는 의미이다. 한정되는 것은 아니나 보통 굴절률 1.67에서 1.77 범위가 여기에 해당된다.
본 발명에서는 아래 화학식 1로 표시되는 신규한 에피설파이드 화합물을 제공한다.
Figure PCTKR2019015800-appb-C000001
(X, Y는 수소, 하이드록실기, 알킬기, 아릴기, 지환족기, 아미노기, 옥심 또는 에스테르기이며, X, Y는 서로 동일하거나 또는 다르다.)
화학식 1로 표시되는 에피설파이드 화합물을 에피설파이드계 광학재료용 조성물에 소량 포함시켜 중합하면 내광성, 내열성 및 투명성 면에서 훨씬 좋은 광학재료를 얻을 수 있다. 화학식 1로 표시되는 화합물은 에피설파이드계 광학재료용 조성물 전체 중량 중에 0.01~10중량%로 포함시키는 것이 바람직하다. 보다 바람직하게는 0.01~7중량%, 더욱 바람직하게는 0.05~5중량%로 포함시켜 사용할 수 있다.
화학식 1로 표시되는 에피설파이드 화합물은, 예를 들어, 2,3-에폭시프로필(2,3-에피티오프로필)설파이드와 2,2,6,6-테트라메틸피페리딘을 반응시키는 방법으로, 또는 2,3-에폭시프로필(2,3-에피티오프로필)설파이드와 2,2,6,6-테트라메틸피페리딜 메타아크릴레이트를 반응시키는 등의 방법으로 얻을 수 있다. 피클로로히드린을 출발물질로 하여 비스(3-클로로-2-히드록시프로필)설파이드를 얻은 후, 가성소다 용액으로 처리하여 비스(2,3-에폭시프로필)설파이드를 얻을 수 있다. 비스(2,3-에폭시프로필)설파이드는 티오우레아를 선택적으로 반응시켜 2,3-에폭시프로필(2,3-에피티오프로필)설파이드를 얻을 수 있다. 2,3-에폭시프로필(2,3-에피티오프로필)설파이드와 힌더드 아민을 유기용매에 녹인 후, 30~35℃에서 반응시켜 본 발명의 신규 에피설파이드 화합물(화학식 1)을 얻을 수 있다. 경우에 따라서는 유기용매를 사용하지 않고 비스(2,3-에피티오프로필)설파이드와 2,3-에폭시프로필(2,3-에피티오프로필)설파이드의 혼합물에 2,3-에폭시프로필(2,3-에피티오프로필)설파이드과 힌더드 아민의 1:1 반응으로 신규 에피설파이드 화합물(화학식 1)을 얻을 수 있다.
본 발명의 에피설파이드계 광학재료용 조성물은, 아래 화학식 2로 표시되는 에피설파이드 화합물, 상기 화학식 1로 표시되는 에피설파이드 화합물, 폴리티올 화합물 및 중합촉매를 포함한다.
Figure PCTKR2019015800-appb-C000002
(식 중에서 X, Y는 O 또는 S이며, m은 0~4의 정수이며, n은 0~2의 정수를 나타낸다.)
상기 화학식 2로 표시되는 에피설파이드 화합물은, 에피설파이드계 광학재료용 조성물의 주성분이다. 상기 화학식 2 에피설파이드 화합물은, 예를 들어, 비스(2,3-에피티오프로필)설파이드, 비스(2,3-에피티오프로필)디설파이드, 2,3-에폭시프로필(2,3-에피티오프로필)디설파이드, 2,3-에폭시프로필(2,3-에피티오프로필)설파이드, 1,3 및 1,4-비스(β-에피티오프로필티오)시클로헥산, 1,3 및 1,4-비스(β-에피티오프로필티오메틸)시클로헥산, 비스[4-(β-에피티오프로필티오)시클로헥실]메탄, 2,2-비스[4-(β-에피티오프로필티오)시클로헥실]프로판, 비스[4-(β-에피티오프로필티오)시클로헥실]설파이드 등의 지환족골격을 갖는 에피설파이드화합물; 1,3 및 1,4-비스(β-에피티오프로필티오메틸)벤젠, 비스[4-(β-에피티오프로필티오)페닐]메탄, 2,2-비스[4-(β-에피티오프로필티오)페닐]프로판, 비스[4-(β-에피티오프로필티오)페닐]설파이드, 비스[4-(β-에피티오프로필티오)페닐]설핀, 4,4-비스(β-에피티오프로필티오)비페닐 등의 방향족골격을 갖는 에피설파이드화합물; 2,5-비스(β-에피티오프로필티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸)-1,4-디티안, 2,3,5-트리(β-에피티오프로필티오에틸)-1,4-디티안 등의 디티안사슬 골격을 갖는 에피설파이드화합물; 2-(2-β-에피티오프로필티오에틸티오)-1,3-비스(β-에피티오프로필티오)프로판, 1,2-비스[(2-β-에피티오프로필티오에틸)티오]-3-(β-에피티오프로필티오)프로판, 테트라키스(β-에피티오프로필티오메틸)메탄, 1,1,1-트리스(β-에피티오프로필티오메틸)프로판, 비스-(β-에피티오프로필)설파이드 등의 지방족 골격을 갖는 에피설파이드화합물 등이 될 수 있다. 이외에도 에피설파이드화합물로 에피설파이드기를 가진 화합물의 염소 치환체, 브롬 치환체 등의 할로겐 치환체, 알킬 치환체, 알콕시 치환체, 니트로 치환체나 폴리티올과의 프리폴리머형 변성체 등도 사용될 수 있다.
상기 에피설파이드 화합물로, 바람직하게는, 비스(2,3-에피티오프로필)설파이드, 비스(2,3-에피티오프로필)디설파이드, 2,3-에폭시프로필(2,3-에피티오프로필)설파이드, 2,3-에폭시프로필(2,3-에피티오프로필)디설파이드, 1,3 및 1,4-비스(β-에피티오프로필티오)시클로헥산, 1,3 및 1,4-비스(β-에피티오프로필티오메틸)시클로헥산, 2,5-비스(β-에피티오프로필티오메틸)-1,4-디티안, 2,5-비스(β-에피티오프로필티오에틸티오메틸)-1,4-디티안, 2-(2-β-에피티오프로필티오에틸티오)-1,3-비스(β-에피티오프로필티오)프로판 중 1종 이상을 사용할 수 있다.
상기 폴리티올화합물은, 특별히 한정되지 않고 최소한 1개 이상의 티올기를 가진 화합물이면 1종 또는 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는, 비스(2-메르캅토에틸)설파이드, 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄, 2,3-비스(2-메르캅토에틸티오)프로판-1-티올, 2,2-비스(메르캅토메틸)-1,3-프로판디티올, 테트라키스(메르캅토메틸)메탄; 2-(2-메르캅토에틸티오)프로판-1,3-디티올, 2-(2,3-비스(2-메르캅토에틸티오)프로필티오)에탄티올, 비스(2,3-디메르캅토프로판닐)설파이드, 비스(2,3-디메르캅토프로판닐)디설파이드, 1,2-비스(2-메르캅토에틸티오)-3-메르캅토프로판, 1,2-비스(2-(2-메르캅토에틸티오)-3-메르캅토프로필티오)에탄, 비스(2-(2-메르캅토에틸티오)-3-메르캅토프로필)설파이드, 비스(2-(2-메르캅토에틸티오)-3-메르캅토프로필)디설파이드, 2-(2-메르캅토에틸티오)-3-2-메르캅토-3-[3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오]프로필티오-프로판-1-티올, 2,2 -비스-(3-메르캅토-프로피오닐옥시메틸)-부틸 에스테르, 2-(2-메르캅토에틸티오)-3-(2-(2-[3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오]에틸티오)에틸티오)프로판-1-티올, (4R,11S)-4,11-비스(메르캅토메틸)-3,6,9,12-테트라티아테트라데칸-1,14-디티올, (S)-3-((R-2,3-디메르캅토프로필)티오)프로판-1,2-디티올, (4R,14R)-4,14-비스(메르캅토메틸)-3,6,9,12,15-펜타티아헵탄-1,17-디티올, (S)-3-((R-3-메르캅토-2-((2-메르캅토에틸)티오)프로필)티오)프로필)티오)-2-((2-메르캅토에틸)티오)프로판-1-티올, 3,3'-디티오비스(프로판-1,2-디티올), (7R,11S)-7,11-비스(메르캅토메틸)-3,6,9,12,15-펜타티아헵타데칸-1,17-디티올, (7R,12S)-7,12-비스(메르캅토메틸)-3,6,9,10,13,16-헥사티아옥타데칸-1,18-디티올, 5,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 4,7-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 4,8-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸, 펜타에리트리톨 테트라키스(3-메르캅토프로피오네이트), 트라이메틸올프로판 트리스(3-메르캅토프로피오네이트), 펜타에트리톨테트라키스(2-메르캅토아세테이트), 비스펜타에리트리톨-에테르-헥사키스(3-메르캅토프로피오네이트), 1,1,3,3-테트라키스(메르캅토메틸티오)프로판, 1,1,2,2-테트라키스(메르캅토메틸티오)에탄, 4,6-비스(메르캅토메틸티오)-1,3-디티안 및 2-(2,2-비스(메르캅토디메틸티오)에틸)-1,3-디티안 중에서 선택된 1종 이상을 사용할 수 있다. 이외에도 1개 이상의 티올기를 가진 화합물이면 1종 또는 2종 이상을 혼합하여 사용할 수 있다. 또한 폴리티올화합물에 이소시아네이트나 에피설파이드 화합물, 티에탄 화합물 또는 수지개질제로 불포화 결합을 가진 화합물과의 예비중합에서 얻어진 중합 변성체도 사용이 가능하다.
폴리티올화합물로, 특히 바람직하게는, 비스(2-메르캅토에틸)설파이드 또는 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄 또는 여기에 다른 폴리티올화합물을 1종 이상 혼합하여 사용할 수 있다.
폴리티올은 바람직하게는 상기 광학재료용 조성물 중에 1~15중량% 포함될 수 있으며, 보다 바람직하게는 4~13중량%, 더욱 바람직하게는 5~11중량% 포함될 수 있다.
상기 중합촉매는, 바람직하게는 아민, 제4급 암모늄염, 제4급 포스포늄염, 제3급 술포늄염, 제2급 요오드늄염, 포스핀 화합물 중에서 선택된 1종 이상을 사용한다. 보다 바람직하게는 제4급 암모늄염, 제4급 포스포늄염, 포스핀 화합물 중에서 선택된 1종 이상을 사용할 수 있다. 제4급 암모늄염으로는, 예를 들어, 테트라-n-부틸암모늄브로마이드, 테트라페닐암모늄브로마이드, 트리에틸벤질암모늄클로라이드, 세틸디메틸벤질암모늄클로라이드, 1-n-도데실피리디늄클로라이드 등을 사용할 수 있다. 제4급 포스포늄염으로는, 예를 들어, 테트라-n-부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드 등을 사용할 수 있다. 포스핀 화합물로는 트리페닐포스핀 등을 사용할 수 있다. 특히 바람직하게는 상기 중합촉매는 제4급 포스포늄염이며, 테트라-n-부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드 중 어느 하나를 포함한다. 이들 중합 촉매는 단독으로 사용하거나 2종 이상을 혼합하여 사용할 수 있다.
상기 에피설파이드계 광학재료용 조성물은 황을 더 포함할 수 있다. 황을 더 포함할 경우 굴절률을 1.71 이상의 초고굴절로 높일 수 있다. 조성물에 포함되는 황은 바람직하게는 순도 98% 이상이다. 98% 미만의 경우, 불순물의 영향으로 광학재료의 투명도가 떨어질 수 있다. 황의 순도는 보다 바람직하게는 99.0% 이상이며, 특히 바람직하게는 99.5% 이상이다. 통상 상업적으로 입수 가능한 황은 형상이나 정제법의 차이에 의해 구분되는데, 미분황, 콜로이드황, 침강황, 결정황, 승화황 등이 있다. 본 발명에서는, 순도 98% 이상이면 어떤 황이나 사용 가능하다. 바람직하게는, 광학재료용 조성물 제조시 용해가 용이한 미세입자의 미분황을 사용할 수 있다. 조성물 중 황의 함유량은, 바람직하게는 상기 광학재료용 조성물 전체 중량 중 1~40중량%이며, 보다 바람직하게는 2~30중량%, 가장 바람직하게는 3~22중량%이다.
상기 에피설파이드계 광학재료용 조성물은 폴리이소시아네이트 화합물을 더 포함할 수 있다. 폴리이소시아네이트 화합물은, 특별히 한정되지 않고 최소한 1개 이상의 이소시아네이트 기 및/또는 이소티오시아네이트 기를 가진 화합물이 사용될 수 있다. 예를 들어, 2,2-디메틸펜탄디이소시아네이트, 2,2,4-트리메틸헥산디이소시아네이트, 부텐디이소시아네이트, 1,3-부타디엔-1,4-디이소시아네이트, 헥사메틸렌디이소시아네이트, 2,4,4-트리메틸헥사메틸렌디이소시아네이트, 1,6,11-운데칸트리이소시아네이트, 1,3,6-헥사메틸렌트리이소시아네이트, 1,8-디이소시아네이트-4-이소시아네이토메틸옥탄, 비스(이소시아네이토에틸)카보네이트, 비스(이소시아네이토에틸)에테르 등의 지방족 이소시아네이트 화합물; 이소포론디이소시아네이트, 1,2-비스(이소시아네이토메틸)시클로헥산, 1,3-비스(이소시아네이토메틸)시클로헥산, 1,4-비스(이소시아네이토메틸)시클로헥산, 디시클로헥실메탄디이소시아네이트, 시클로헥산디이소시아네이트, 메틸시클로헥산디이소시아네이트, 디시클로헥실디메틸메탄이소시아네이트, 2,2-디메틸디시클로헥실메탄이소시아네이트 등의 지환족 이소시아네이트 화합물; 자일릴렌디이소시아네이트(XDI), 비스(이소시아네이토에틸)벤젠, 비스(이소시아네이토프로필)벤젠, 비스(이소시아네이토부틸)벤젠, 비스(이소시아네이토메틸)나프탈렌, 비스(이소시아네이토메틸)디페닐에테르, 페닐렌디이소시아네이트, 에틸페닐렌디이소시아네이트, 이소프로필페닐렌디이소시아네이트, 디메틸페닐렌디이소시아네이트, 디에틸페닐렌디이소시아네이트, 디이소프로필페닐렌디이소시아네이트, 트리메틸벤젠트리이소시아네이트, 벤젠트리이소시아네이트, 디페닐디이소시아네이트, 톨루이딘디이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, 3,3'-디메틸디페닐메탄-4,4'-디이소시아네이트, 비벤질-4,4'-디이소시아네이트, 비스(이소시아네이토페닐)에틸렌, 3,3'-디메톡시비페닐-4,4'-디이소시아네이트, 헥사히드로벤젠디이소시아네이트, 헥사히드로디페닐메탄-4,4'-디이소시아네이트 등의 방향족 이소시아네이트 화합물; 비스(이소시아네이토에틸)설파이드, 비스(이소시아네이토프로필)설파이드, 비스(이소시아네이토헥실)설파이드, 비스(이소시아네이토메틸)설폰, 비스(이소시아네이토메틸)디설파이드, 비스(이소시아네이토프로필)디설파이드, 비스(이소시아네이토메틸티오)메탄, 비스(이소시아네이토에틸티오)메탄, 비스(이소시아네이토에틸티오)에탄, 비스(이소시아네이토메틸티오)에탄, 1,5-디이소시아네이토-2-이소시아네이토메틸-3-티아펜탄 등의 함황 지방족 이소시아네이트 화합물; 디페닐설파이드-2,4-디이소시아네이트, 디페닐설파이드-4,4'-디이소시아네이트, 3,3'-디메톡시-4,4'-디이소시아네이토디벤질티오에테르, 비스(4-이소시아네이토메틸벤젠)설파이드, 4,4-메톡시벤젠티오에틸렌글리콜-3,3-디이소시아네이트, 디페닐디설파이드-4,4'-디이소시아네이트, 2,2'-디메틸디페닐디설파이드-5,5'-디이소시아네이트, 3,3'-디메틸디페닐디설파이드-5,5'-디이소시아네이트, 3,3'-디메틸디페닐디설파이드-6,6'-디이소시아네이트, 4,4'-디메틸디페닐디설파이드-5,5'-디이소시아네이트, 3,3'-디메톡시디페닐디설파이드-4,4'-디이소시아네이트, 4,4'-디메톡시디페닐디설파이드-3,3'-디이소시아네이트 등의 함황 방향족 이소시아네이트 화합물; 2,5-디이소시아네이토티오펜, 2,5-비스(이소시아네이토메틸)티오펜, 2,5-디이소시아네이토테트라히드로티오펜, 2,5-비스(이소시아네이토메틸)테트라히드로티오펜, 3,4-비스(이소시아네이토메틸)테트라히드로티오펜, 2,5-디이소시아네이토-1,4-디티안, 2,5-비스(이소시아네이토메틸)-1,4-디티안, 4,5-디이소시아네이토-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-1,3-디티오란, 4,5-비스(이소시아네이토메틸)-2-메틸-1,3-디티오란 등의 함황 복소환 이소시아네이트 화합물 중에서 선택된 1종 또는 2종 이상의 화합물이 사용될 수 있다. 이외에도 최소한 1개 이상의 이소시아네이트 기 및/또는 이소티오시아네이트 기를 가진 화합물이면 1종 또는 2종 이상을 혼합 사용할 수 있다. 또한, 이들 이소시아네이트 화합물의 염소 치환체, 브롬 치환체 등의 할로겐 치환체, 알킬 치환체, 알콕시 치환체, 니트로 치환체나, 다가 알코올 혹은 티올과의 프리폴리머형 변성체, 카르보디이미드 변성체, 우레아 변성체, 뷰렛 변성체 혹은 다이머화, 트라이머화 반응 생성물 등도 사용 가능하다. 폴리이소시아네이트 화합물로, 바람직하게는, 이소포론디이소시아네이트(IPDI), 헥사메틸렌디이소시아네이트(HDI), 디사이클로헥실메탄디이소시아네이트(H12MDI), 자일릴렌디이소시아네이트(XDI), 3,8-비스(이소시아나토메틸)트리시클로[5,2,1,02,6]데칸, 3,9-비스(이소시아나토메틸)트리시클로[5,2,1,02,6]데칸, 4,8-비스(이소시아나토메틸)트리시클로[5,2,1,02,6]데칸, 2,5-비스(이소시아나토메틸)비시클로[2,2,1]헵탄, 2,6-비스(이소시아나토메틸)비시클로[2,2,1]헵탄 중에서 선택된 1종 이상을 사용할 수 있다.
상기 에피설파이드계 광학재료용 조성물은 중합조절제로 주석할로겐 화합물을 더 포함할 수 있다. 상기 주석할로겐 화합물은 바람직하게는 디부틸주석디클로라이드, 디메틸주석디클로라이드 중 어느 하나 또는 여기에 모노메틸주석트리클로라이드가 소량 포함된 것을 사용할 수 있다. 더욱 바람직하게는 모노메틸주석트리클로라이드는 0.1~3.5중량%로 포함될 수 있다. 에피설파이드계 광학재료용 조성물은 중합 경화시킬 때 반응이 빠르게 진행되어 조성물의 점도가 급격하게 상승될 수 있다. 상기 중합 조절제는 반응속도를 조절함으로써 점도의 급격한 상승을 억제할 수 있으므로, 상기 중합 조절제의 사용으로 이러한 문제를 해결할 수 있다. 상기 중합 조절제는 광학재료용 조성물 전체 중량 중 0.01~5 중량%로 사용하는 것이 바람직하다. 이 중합 조절제의 사용으로 중합 속도를 조절하여 점도의 급격한 상승을 억제할 수 있을 뿐만 아니라 그 결과 중합 수율이 높아지고, 기포의 발생 또한 없어진다.
상기 에피설파이드계 광학재료용 조성물 중에 황을 포함할 경우, 프리폴리머를 형성한 후 중합하는 것이 바람직한데, 이때 프리폴리머의 형성을 원활하게 하기 위해 바람직하게는 중합조절제로 알킬이미다졸을 더 포함할 수 있다. 상기 알킬이미다졸은 특히 바람직하게는 2-메르캅토-1-메틸이미다졸을 포함한다. 2-메르캅토-1-메틸이미다졸은 바람직하게는 순도 98% 이상의 것을 사용한다. 광학재료용 조성물 중에 바람직하게는 0.01~5중량% 포함될 수 있으며, 보다 바람직하게는 0.1~3중량%, 더욱 바람직하게는 0.15~1중량%가 포함될 수 있다.
본 발명의 광학재료용 조성물은 내부이형제를 더 포함할 수 있다. 바람직하게는 내부이형제로 인산에스테르 화합물을 포함할 수 있다. 인산에스테르 화합물은 포스포러스펜톡사이드(P2O5)에 2~3몰의 알코올 화합물을 부가하여 제조하는데 이때 사용하는 알코올 종류에 따라 여러 가지 형태의 인산에스테르 화합물을 얻을 수 있다. 대표적인 것으로는 지방족 알코올에 에틸렌옥사이드 혹은 프로필렌 옥사이드가 부가되거나 노닐페놀기 등에 에틸렌 옥사이드 혹은 프로필렌 옥사이드가 부가된 종류들이다. 본 발명의 중합성 조성물에, 에틸렌 옥사이드 혹은 프로필렌 옥사이드가 부가된 인산에스테르화합물이 내부이형제로 포함될 경우, 이형성이 좋고 품질이 우수한 광학재료를 얻을 수 있어 바람직하다. 본 발명의 조성물은, 내부이형제로, 바람직하게는, 4-PENPP[폴리옥시에틸렌노닐페놀에테르포스페이트(에틸렌옥사이드가 5몰 부가된 것 5중량%, 4몰 부가된 것 80중량%, 3몰 부가된 것 10중량%, 1몰 부가된 것 5중량%)], 8-PENPP[폴리옥시에틸렌노닐페놀에테르포스페이트(에틸렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80중량%, 9몰 부가된 것 5중량%, 7몰 부가된 것 6중량%, 6몰 부가된 것 6중량%)], 12-PENPP[폴리옥시에틸렌노닐페놀에테르포스페이트(에틸렌옥사이드 13몰 부가된 것 3중량%, 12몰 부가된 것 80중량%, 11몰 부가된 것 8중량%, 9몰 부가된 것 3중량%, 4몰 부가된 것 6중량%)], 16-PENPP[폴리옥시에틸렌 노닐페놀에테르포스페이트(에틸렌옥사이드가 17몰 부가된 것 3중량%, 16몰 부가된 것 79중량%, 15몰 부가된 것 10중량%, 14몰 부가된 것 4중량%, 13몰 부가된 것 4중량%)], 20-PENPP[폴리옥시에틸렌노닐페놀에테르 포스페이트(에틸렌옥사이드가 21몰 부가된 것 6중량%, 20몰 부가된 것 76중량%, 19몰 부가된 것 7중량%, 18몰 부가된 것 6중량%, 17몰 부가된 것 5중량%)], 4-PPNPP[폴리옥시프로필렌노닐페놀에테르포스페이트(프로필렌옥사이드가 5몰 부가된 것 5중량%, 4몰 부가된 것 80중량%, 3몰 부가된 것 10중량%, 1몰 부가된 것 5중량%)], 8-PPNPP[폴리옥시프로필렌노닐페놀에테르포스페이트(프로필렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80중량%, 9몰 부가된 것 5중량%, 7몰 부가 된 것 6중량%, 6몰 부가된 것 6중량%)], 12-PPNPP[폴리옥시프로필렌노닐페놀에테르포스페이트(프로필렌옥사이드 13몰 부가된 것 3중량%, 12몰 부가된 것 80중량%, 11몰 부가된 것 8중량%, 9몰 부가된 것 3중량%, 4몰 부가된 것 6중량%)], 16-PPNPP[폴리옥시프로필렌 노닐페놀에테르포스페이트(프로필렌옥사이드 17몰 부가된 것 3중량%, 16몰 부가된 것 79중량%, 15몰 부가된 것 10중량%, 14몰 부가된 것 4중량%, 13몰 부가된 것 4중량%)], 20-PPNPP[폴리옥시프로필렌노닐페놀에테르포스페이트(프로필렌옥사이드가 21몰 부가된 것 6중량%, 20몰 부가된 것 76중량%, 19몰 부가된 것 7중량%, 18몰 부가된 것 6중량%, 17몰 부가된 것 5중량%)] 및 Zelec UNTM 중에서 선택된 1종 이상을 사용한다. 이러한 인산에스테르화합물의 할로겐화합물 치환체를 비롯한 각종 치환체들도 같은 목적으로 사용이 가능하다.
본 발명의 광학재료용 조성물은, 광학재료의 광학적인 물성을 향상시키기 위해, 내충격성, 비중 및 모노머 점도 등을 조절하는 목적으로 올레핀 화합물을 반응성 수지개질제로 더 포함할 수 있다. 수지개질제로서 첨가할 수 있는 올레핀 화합물로는, 예를 들어, 벤질아크릴레이트, 벤질메타크릴레이트, 부톡시에틸아크릴레이트, 부톡시메틸메타크릴레이트, 시클로헥실아크릴레이트, 시클로헥실메타크릴레이트, 2-히드록시에틸아크릴레이트, 2-히드록시메틸메타크릴레이트, 글리시딜아크릴레이트, 글리시딜메타크릴레이트, 페녹시 에틸아크릴레이트, 페녹시에틸메타크릴레이트, 페닐메타크릴레이트, 에틸렌글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 디에틸렌글리콜디아크릴레이트, 디에틸렌글리콜디메타크릴레이트, 트리에틸렌글리콜디아크릴레이트, 트리에틸렌글리콜디메타크릴레이트, 테트라에틸렌글리콜디아크릴레이트, 테트라에틸렌글리콜디메타크릴레이트, 폴리에틸렌글리콜디아크릴레이트, 폴리에틸렌글리콜디메타크릴레이트, 네오펜틸글리콜디아크릴레이트, 네오펜틸글리콜디메타크릴레이트, 에틸렌글리콜비스글리시딜아크릴레이트, 에틸렌글리콜비스글리시딜메타크릴레이트, 비스페놀 A 디아크릴레이트, 비스페놀 A 디메타크릴레이트, 2,2-비스(4-아크록시에톡시페닐)프로판, 2,2-비스(4-메타크록시에톡시페닐)프로판, 2,2-비스(4-아크록시디에톡시페닐)프로판, 2,2-비스(4-메타크록시디에톡시페닐)프로판, 비스페놀 F 디아크릴레이트, 비스페놀 F 디메타크릴레이트, 1,1-비스(4-아크록시에톡시페닐)메탄, 1,1-비스(4-메타크록시에톡시페닐)메탄, 1,1-비스(4-아크록시디에톡시페닐)메탄, 1,1-비스(4-메타크록시디에톡시페닐)메탄, 디메티롤트리시클로데칸디아크릴레이트, 트리메티롤프로판트리아크릴레이트, 트리메티롤프로판트리메타크릴레이트, 글리세롤디아크릴레이트, 글리세롤디메타크릴레이트, 펜타에리트리톨트리아크릴레이트, 펜타에리트리톨테트라크릴레이트, 펜타에리트리톨테트라메타크릴레이트, 메틸티오아크릴레이트, 메틸티오메타크릴레이트, 페닐티오아크릴레이트, 벤질티오메타크릴레이트, 크실리렌디티올디아크릴레이트, 크실리렌디티올디메타크릴레이트, 메르캅토에틸설파이드디아크릴레이트, 메르캅토에틸설파이드디메타크릴레이트 등의 (메타)아크릴레이트 화합물 및, 알릴글리시딜에테르, 디알릴프탈레이트, 디알릴테레프탈레이트, 디알릴이소프탈레이트, 디알릴카보네이트, 디에틸렌글리콜비스알릴카보네이트 등의 알릴 화합물 및 스티렌, 클로로스티렌, 메틸스티렌, 브로모스티렌, 디브로모스티렌, 디비닐벤젠, 3,9-디비닐스피로비(m-디옥산) 등의 비닐 화합물 등이 있으며, 사용 가능한 화합물이 이들 예시 화합물로 제한되는 것은 아니다. 이들 올레핀 화합물은 단독, 또는 2종류 이상을 혼합하여 사용해도 좋다.
본 발명의 광학재료용 조성물은 필요에 따라 자외선 흡수제를 더 포함할 수 있다. 자외선 흡수제는 광학재료의 내광성 향상 및 자외선 차단을 위하여 사용되는데, 광학재료에 사용되는 공지의 자외선 흡수제가 제한 없이 사용될 수 있다. 예를 들면, 에틸-2-시아노-3,3-디페닐아크릴레이트, 2-(2'-히드록시-5-메틸페닐)-2H-벤조트리아졸; 2-(2'-히드록시-3',5'-디-t-부틸페닐)-5-클로로-2H-벤조트리아졸; 2-(2'-히드록시-3'-t-부틸-5'-메틸페닐)-5-클로로-2H-벤조트리아졸; 2-(2'-히드록시-3',5'-디-t-아밀페닐)-2H-벤조트리아졸; 2-(2'-히드록시-3',5'-디-t-부틸페닐)-2H-벤조트리아졸; 2-(2'-히드록시-5'-t-부틸페닐)-2H-벤조트리아졸; 2-(2'-히드록시-5'-t-옥틸페닐)-2H-벤조트리아졸; 2,4-디히드록시벤조페논; 2-히드록시-4-메톡시벤조페논; 2-히드록시-4-옥틸옥시벤조페논; 4-도데실옥시-2-히드록시벤조페논; 4-벤조록시-2-히드록시벤조페논; 2,2',4,4'-테트라히드록시벤조페논; 2,2'-디히드록시-4,4'-디메톡시벤조페논 등이 단독으로 또는 2종 이상 혼합 사용될 수 있다.
바람직하게는, 400㎚ 이하의 파장역에서 양호한 자외선 흡수능을 가지고, 본 발명의 조성물에 양호한 용해성을 갖는, 2-(2'-히드록시-3'-t-부틸-5'-메틸페닐)-5-클로로-2H-벤조트리아졸과 2-(2'-히드록시-5'-t-옥틸페닐)-2H-벤조트리아졸 등을 사용할 수 있다. 이와 같은 자외선 흡수제는 광학재료용 조성물 100g에 대해 0.6g 이상으로 사용될 때 400nm 이상의 차단이 가능하다.
본 발명의 광학재료용 조성물은 이밖에도 필요에 따라 쇄연장제, 가교제, 광안정제, 산화방지제, 착색 방지제, 유기염료, 충전제, 밀착성 향상제 등의 여러 가지의 첨가제를 더 포함할 수 있다.
위와 같이 조성된 본 발명의 광학재료용 조성물은, 바람직하게는 액상 점도가 500cps(20℃) 이하이며, 중합 후 고상굴절율(Ne)이 황을 포함하지 않을 경우 1.67~1.70, 황을 포함할 경우 1.71~1.77 이다.
위와 같이 조성된 조성물을 주형 중합시키면 에피설파이드계 광학재료를 얻을 수 있다. 좀 더 자세히 설명하면 다음과 같다. 먼저, 개스켓 또는 테이프 등으로 유지된 성형 몰드 사이에, 본 발명의 중합성 조성물을 주입한다. 이때, 얻어지는 광학재료에 요구되는 물성에 따라, 또 필요에 따라, 감압 하에서의 탈포처리나 가압, 감압 등의 여과처리 등을 실시하는 것이 바람직한 경우가 많다. 중합조건은, 중합성 조성물, 촉매의 종류와 사용량, 몰드의 형상 등에 의해서 크게 조건이 달라지기 때문에 한정되는 것은 아니지만, 약 -50~130℃의 온도에서 1~50시간에 걸쳐 실시된다. 경우에 따라서는, 10~130℃의 온도범위에서 유지 또는 서서히 승온하여, 1~48 시간에서 경화시키는 것이 바람직하다.
경화로 얻어진 에피설파이드화합물계 광학재료는, 필요에 따라, 어닐링 등의 처리를 실시해도 좋다. 처리 온도는 통상 50~130℃의 사이에서 행해지며, 90~120℃에서 실시하는 것이 바람직하다.
본 발명의 광학재료는, 주형 중합 시의 몰드를 바꾸는 것으로 여러 가지의 형상의 성형체로 얻을 수 있으므로, 안경 렌즈, 카메라 렌즈, 발광다이오드(LED) 등의 각종 광학재료로 사용하는 것이 가능하다. 특히, 안경 렌즈, 카메라 렌즈, 발광다이오드 등의 광학재료, 광학소자로서 적합하다.
본 발명에 따라 얻어진 에피설파이드계 광학재료는 하드 접착성이 뛰어나 프라이머 없이도 하드 코팅이 가능하고, 코팅이 매우 용이하며, 코팅의 안정성 또한 매우 우수하다. 본 발명에 따라 얻어진 플라스틱 광학렌즈는 이밖에도 필요에 따라, 단면 또는 양면에 다양한 코팅층을 형성하여 사용할 수 있다. 코팅층으로서는, 프라이머층, 하드코팅층, 반사방지막층, 방담코트막층, 방오염층, 발수층 등이 모두 가능하며, 이들 코팅층은 각각 단독으로 사용하는 것도 복수의 코팅층을 다층화하여 사용해도 좋다. 또한, 양면에 코팅층을 형성하는 경우, 각각의 면에 동일한 코팅층을 형성하는 것이나, 상이한 코팅층을 형성하는 것 모두 가능하다.
이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
[합성예 1]
비스(3-클로로-2-히드록시프로필)설파이드의 합성
10리터의 반응기에 에피클로로히드린 (5563g, 60.12 mol) 및 메탄올 (3500g)을 첨가하고 반응온도를 6℃에 맞추고 반응온도가 6℃에 도달했을 때 가성소다 (50% (aq), 5g)를 첨가하였다. 또 다른 10리터의 반응기에 NaSH.xH2O (70% NaSH, 3660g, 45.75mol), 메탄올(1000g) 및 물(500g)을 첨가하고 교반하여 완전히 녹이고, 35.5% 진한염산을 천천히 적가하여 발생한 황화수소 가스를 에피클로로히드린 용액에 첨가하여 비스(3-클로로-2-히드록시프로필)설파이드 및 3-클로로-2-히드록시-프로판-1-티올을 얻었고, 이 반응용액에 에피클로로히드린을 첨가하여 비스(3-클로로-2-히드록시프로필)설파이드를 얻었다. 반응의 종결은 최종생성물을 GC로 확인하여 에피클로로히드린과 3-클로로-2-히드록시프로판-1-티올화합물이 완전히 없어지는 시점으로 하였다.
[합성예 2]
2,3-에폭시프로필(2,3-에피티오프로필)설파이드의 합성
10리터의 반응용기에 비스(3-클로로-2-히드록시프로필)설파이드 1071.15g (4.89mol), 톨루엔 1300g 및 메탄올 800g을 넣고, 교반하면서 반응내부온도를 30℃에 맞춘다. 반응 내부온도가 25℃ 부근에 도달했을 때 50% NaOH(aq) 783.08g (9.78mol)을 적가하고, 적가 시 반응온도는 35~37℃에서 행하고, 이 온도를 유지하면서 반응시켰다. 적가는 1시간 이내로 하며 숙성은 37℃에서 약 30분 동안 행하고 숙성이 끝나면 톨루엔 2000g를 첨가하여 약 10분 동안 교반하고 층분리하여 상층액인 유기층을 물로 3회 세척하고 물을 최대한 제거하고 유기층 용액에 메탄올 400g를 더 첨가하여 교반하고 반응온도를 8℃에서 티오우레아 372.23g(4.89mol) 및 무수초산(35g)을 첨가하고 반응온도를 18℃에서 24시간 반응시켰다. 반응 종료 후 교반을 중지하고 층분리시켜 아래층은 제거하고 유기층은 물로 세 번 세척하고, 톨루엔층을 제거하고 디클로로메탄과 시클로헥산 용매로 전개하여 실리카겔 칼럼으로 정제하였다. 정제하여 2,3-에폭시프로필(2,3-에피티오프로필)설파이드 화합물 277.87g (1.71mol)을 얻었다.
[합성예 3]
1-(2,2,6,6- 테트라메틸피페리딘 -1-릴)-3-((티란-2- 릴메틸티오 )프로판-2-올( TMPP )의 합성
1리터의 반응용기에 2,3-에폭시프로필(2,3-에피티오프로필)설파이드 화합물(100.00g, 0.61mol), 2,2,6,6-테트라메틸피페리딘(87.05g, 0.61mol) 및 디클로로메탄 (500g)을 첨가하고 35℃에서 3시간 동안 교반하여 반응시켰다. 반응 후 용매를 제거하고 1-(2,2,6,6-테트라메틸피페리딘-1-릴)-3-((티란-2-릴메틸티오)프로판-2-올(187g)을 얻었다.
13C NMR(CDCl3): 17ppm(5C), 26ppm(1C), 28ppm(2C), 32ppm(1C), 42ppm(1C), 44ppm(1C), 51ppm(1C), 52ppm(2C), 75ppm(1C).
MS(EI-MS method): 303.17(m/z).
[합성예 4]
1-(2-히드록시-3-(( 디이란 -2- 릴메틸 ) 티오 )프로필)-2,2,6,6- 데트라메틸피페리딘 -4-릴 메타아크릴레이트(TMPMA)의 합성
1L의 반응용기에 2,3-에폭시프로필(2,3-에피티오프로필)설파이드 화합물(100.00g, 0.61mol), 2,2,6,6-테트라메틸피페리딜 메타아크릴레이트(138.87g, 0.61mol) 및 디클로로메탄 (500g)을 첨가하고 35℃에서 3시간 동안 교반하여 반응시켰다. 반응 후 용매를 제거하고 1-(2,2,6,6-테트라메틸피페리딘-1-릴)-3-((티란-2-릴메틸티오)프로판-2-올(238g)을 얻었다.
13C NMR(CDCl3): 18ppm(1C), 26ppm(5C), 33ppm(1C), 43ppm(1C), 44ppm(1C), 46ppm(2C), 51ppm(1C), 56ppm(2C), 63ppm(1C), 75ppm(1C), 125ppm(1C), 136ppm(1C), 167ppm(1C).
MS(EI-MS method): 387.19(m/z).
[실시예 1]
반응기를 1.0 torr 이하로 감압하고, 외부온도를 54℃로 조절하였다. 이 반응기를 교반하면서 비스(2,3-에피티오프로필)설파이드 화합물 77.5g 및 2,3-에폭시프로필(2,3-에피티오프로필) 1.5g, 1-(2-히드록시-3-((디이란-2-릴메틸)티오)프로필)-2,2,6,6-데트라메틸피페리딘-4-릴 메타아크릴레이트 0.15g을 넣고, 황 16g, 자외선 차단제 UV 31 0.8g, 유기염료 HTAQ(88ppm) 및 PRD(30ppm)을 첨가하고, 30분 동안 감압하여 탈포한 후에 2-메르캅토-1-메틸이미다졸 0.75g을 첨가하고 1시간 동안 교반하였다. 이후 30℃로 냉각하고 2,3-비스(2-메르캅토에틸티오)프로판-1-티올 4g, 비스(메르캅토메틸)설파이드 1g, 디부틸틴디클로라이드 0.5g, 테트라부틸포스포늄브로마이드 0.3g 및 내부이형제로 인산에스테르계인 8-PENPP[폴리옥시에티렌노닐페놀에스테르포스페이트(에틸렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80중량%, 9몰 부가된 것 5중량%, 7몰 부가된 것 6중량%, 6몰 부가된 것 6중량%) 0.08g의 혼합용액을 반응기에 넣고, 광학렌즈용 수지 조성물을 만든 후 아래와 같은 방법으로 광학 렌즈를 제조하고 광학렌즈의 물성을 측정하였다.
(1) 위와 같이 제조된 광학렌즈용 수지 조성물을 43℃에서 감압 하에 1시간 동안 교반하며 탈포하고, 30℃로 냉각하고 여과한 다음, 감압탈포를 5분 동안 더 행하고, 폴리에스테르 점착테이프로 조립된 유리몰드에 주입하였다.
(2) 안경 렌즈용 수지조성물이 주입된 유리 몰드를 강제 순환식 오븐에서 30℃에서 110℃까지 20시간에 걸쳐서 가열 경화시킨 후, 70℃로 냉각하여 유리몰드를 탈착하여 렌즈를 얻었다. 얻어진 렌즈는 지름 72mm로 가공한 후 알카리 수성 세척액에 초음파 세척한 다음, 100℃에서 2시간 어닐링 처리하였다. 아래와 같은 방법으로 물성을 측정하여 그 결과를 표 1에 나타내었다.
물성 실험방법
실시예에서 제조된 광학렌즈의 물성을 아래의 실험방법으로 측정하여 그 결과를 표 1에 기재하였다.
1) 굴절률 및 아베수: Atago 사의 DR-M4 모델인 아베 굴절계를 사용하여 측정하였다.
2) 투명성: 100매의 렌즈를 USHIO USH-10D인 수은 아크램프(Mercury Arc Lamp) 아래 육안으로 관찰하여, 렌즈의 탁함이 1개 이하가 발견되면 "◎"로 표시하고, 2~3개가 발견되면 "○"로 표시하고, 4개 이상이면 발견되면 "×"로 표시하였다.
3) 맥리(중합불균형): 렌즈의 직경이 80mm, 돗수가 +11 D인 렌즈를 100장를 제조하고, USHIO USH-10D인 수은 아크램프(Mercury Arc Lamp) 아래 슐리렌법(Schlieren method)에 의해 관찰하였다. 100개 렌즈 중 맥리가 전혀 관찰되지 않은 것은 "◎"로 표시하고, 100개 렌즈 중 1~5개 렌즈에서 맥리가 관찰되는 것은 "○"로 표시하고, 100개 렌즈 중 6~9개의 렌즈에서 맥리가 관찰되는 것은 "Δ"로 표시하고, 100개 렌즈 중 10개 이상 렌즈에서 맥리가 관찰되는 것은 "×"로 표시하였다.
4) 내광성: Q-Lab.사의 QUV/SE 모델 Accelerated Weathering Tester를 사용하였다. QUV 시험은 두께가 1.2mm인 평판렌즈를 UVA-340 (340nm), 광량 0.76W/m2, 4시간 BPT(Black Panel Temperature)(60℃), 4시간 condensation (50℃) 조건하에서 24시간 동안 조사한 후, 색상변화의 측정에서 APHA 값이 0 에서 2 미만으로 변하면 "◎"로 표시하고, APHA 값이 2 에서 5 미만으로 변하면 "○"로 표시하고, APHA 값이 5 이상으로 변하면 "×"로 표시하였다.
5) 열안정성: 경화된 광학렌즈를 100℃에서 3시간 동안 유지하고, 색상변화의 측정에서 APHA 값이 2 미만으로 변하면 "◎"로 표시하고, APHA 값이 2 이상에서 5 미만으로 변하면 "○"로 표시하고, APHA 값이 5 이상에서 9 미만으로 변하면 "Δ"으로 표시하고, APHA 값이 9 이상으로 변하면 "×"로 표시하였다.
6) 이형성: 에폭시 아크릴계 수지 조성물을 열경화시키고 70℃에서 탈형시 플라스틱렌즈와 몰드사이의 분리할 때 분리시 쉽게 분리되어 깨지는 것이 하나도 없으면 "○", 쉽게 분리되지 않아 100의 유리몰드 중 1 이상 깨지면 "X" 로 표기하였다(균일한 평가를 위하여 -0.00 디옵타의 몰드를 이용하였다.).
[실시예 2~9]
아래의 표 1에 기재된 조성에 따른 것을 제외하고는 실시예 1과 동일한 방법으로 각각의 조성물 및 광학렌즈를 제조하고, 그 물성을 실험하였다. 그 결과는 아래 표 1 및 2와 같다.
[실시예 10]
반응기에 비스(2,3-에피티오프로필)설파이드 화합물 90g, 2,3-비스(2-메르캅토에틸티오)프로판-1-티올 10g, 1-(2-히드록시-3-((디이란-2-릴메틸)티오)프로필)-2,2,6,6-데트라메틸피페리딘-4-릴 메타아크릴레이트 0.2g 및 내부이형제로 인산에스테르인 8-PENNP[폴리옥시에티렌노닐에테르포스페이트(에틸렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80%, 9몰 부가된 것 5중량%, 7몰 부가된 것 6중량%, 6몰 부가된 것 6중량%) 0.2 중량부, N,N-디메틸사이클로헥실아민 0.1중량부, HTAQ(88ppm) 및 PRD(30ppm), 자외선 흡수제 HOPBT 0.6g을 20℃에서 혼합용해하여 균일용액의 수지 조성물을 제조하고, 실시예 1과 동일한 방법으로 광학렌즈를 제조하고 그 물성을 평가하였다. 그 결과는 아래 표 2와 같다.
[비교예 1]
1-(2-히드록시-3-((디이란-2-릴메틸)티오)프로필)-2,2,6,6-데트라메틸피페리딘-4-릴 메타아크릴레이트의 힌더드 아민을 첨가하지 않는 것을 제외하고는 실시예 1과 동일하게 실시하였다.
반응기를 1.0 torr 이하로 감압하고, 외부온도를 54℃로 조절하였다. 이 반응기를 교반하면서 비스(2,3-에피티오프로필)설파이드 화합물 77.5g 및 2,3-에폭시프로필(2,3-에피티오프로필) 1.5g, 황 16g, 자외선 차단제 UV 31 0.8g, 유기염료 HTAQ(88ppm) 및 PRD(30ppm)을 첨가하고, 30분 동안 감압하여 탈포한 후에 2-메르캅토-1-메틸이미다졸 0.75g을 첨가하고 1시간 동안 교반하였다. 이후 30℃로 냉각하고 2,3-비스(2-메르캅토에틸티오)프로판-1-티올 4g, 비스(메르캅토메틸)설파이드 1g, 디부틸틴디클로라이드 0.5g, 테트라부틸포스포늄브로마이드 0.3g 및 내부이형제로 인산에스테르계인 8-PENPP[폴리옥시에티렌노닐페놀에스테르포스페이트(에틸렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80중량%, 9몰 부가된 것 5중량%, 7몰 부가된 것 6중량%, 6몰 부가된 것 6중량%) 0.08g의 혼합용액을 반응기에 넣고, 광학렌즈용 수지 조성물을 만든 후 광학렌즈를 제조하고 평가하였다. 그 결과는 아래 표 2와 같다.
[비교예 2~3]
표 2에 기재된 조성에 따르는 것을 제외하고는 비교예 1과 같은 방법으로 광학렌즈를 제조하고, 그 물성을 실험하였다. 그 결과는 표 2에 기재하였다.
[비교예 4]
1-(2-히드록시-3-((디이란-2-릴메틸)티오)프로필)-2,2,6,6-데트라메틸피페리딘-4-릴 메타아크릴레이트의 힌더드 아민 첨가하지 않는 것을 제외하고는 실시예 10과 동일하게 실시하였다.
반응기에 비스(2,3-에피티오프로필)설파이드 화합물 90g, 2,3-비스(2-메르캅토에틸티오)프로판-1-티올 10g 및 내부이형제로 인산에스테르인 8-PENNP[폴리옥시에티렌노닐에테르포스페이트(에틸렌옥사이드 9몰 부가된 것 3중량%, 8몰 부가된 것 80%, 9몰 부가된 것 5중량%, 7몰 부가된 것 6중량%, 6몰 부가된 것 6중량%) 0.2g, N,N-디메틸사이클로헥실아민 0.1중량부, HTAQ(88ppm) 및 PRD(30ppm), 자외선 흡수제 HOPBT 0.6g을 20℃에서 혼합용해하여 균일용액의 수지조성물을 제조하고, 광학렌즈를 제조한 후 물성을 실험하였다. 그 결과는 아래 표 2과 같다.
구 분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7
EPS(g) 77.5 77.5 77.5 77.5
EEPS(g) 1.5 1.5 1.5 1.5 1.4 1.6 1.5
EPDS(g) 80 76.4 72.5
황(g) 16 16 16 16 9.4 7 16
BMMS(g) 1 1 7 14 9
BMS(g) 1 1
GST(g) 4 4 4 4 2 1 1
TMPP 0.2 0.05 0.15 0.15
TMPMA 0.15 0.1 0.2 0.2
굴절률(Ne, 20℃) 1.7376 1.7176 1.7373 1.7373 1.7570 1.7570 1.7750
아베수 32 34 32 32 30 30 28
투명성
중합불균형
내광성 Δ Δ Δ
열안정성 Δ Δ Δ
이형성
구 분 실시예 8 실시예 9 실시예 10 비교예 1 비교예 2 비교예 3 비교예 4
EPS(g) 68.1 76.5 77.5 68.1
EEPS(g) 1.9 1.5 1.5 1.4 1.9
EPDS(g) 10 5 90 80 10 90
황(g) 14 10 16 20 14
BMMS(g) 4 5 1 7 4
BMS(g) 1 1 1
GST(g) 1 1 10 4 2 1 10
TMPP 0.1
TMPMA 0.15 0.1 0.2
굴절률(Ne, 20℃) 1.7183 1.7165 1.7375 1.7376 1.7570 1.7183 1.7375
아베수 34 34 32 32 30 34 32
투명성 ×
중합불균형 Δ ×
내광성 × × × ×
열안정성 × × × ×
이형성 ×
[약어]EPS: 비스(2,3-에피티오프로필)설파이드(Bis(2,3-epithiopropyl)sulfide)
EEPS: 2,3-에폭시프로필(2,3-에피티오프로필)설파이드(2,3-Epoxypropyl)(2,3-epithiopropyl)sulfide)
EPDS: 비스(2,3-에피티오프로필)디설파이드(Bis(2,3-epithiopropyl)disulfide)
BMMS: 비스(메르캅토메틸)설파이드(Bis(mercaptomethyl)sulfide)
BMS: 비스(2-메르캅토에틸)설파이드(Bis(2-mercaptoethyl)sulfie)
GST: 2,3-비스(2-메르캅토에틸티오)프로판-1-티올(2,3-Bis(2-mecaptoethylthio)propane-1-thiol)
TMPP: 1-(2,2,6,6-테트라메틸피페리딘-1-릴)-3-((티란-2-릴메틸티오)프로판-2-올 (1-(1-(2,2,6,6-tetramethylpiperidin-1-yl)-3-((thiiran-2-ylmethylthio)propan-2-ol)
TMPMA: 1-(2-히드록시-3-(디이란-2-릴메틸티오)프로필)-2,2,6,6-데트라메틸피페리딘-4-릴 메타아크릴레이트 (1-(2-hydroxy-3-(thiiran-2-ylmethylthio)propyl)-2,2,6,6-tetramethylpiperidin-4-yl methacrylate)
본 발명의 신규한 에피설파이드 화합물은 에피설파이드계 광학재료에 첨가되어 내광성, 내열성, 투명성을 높이는 용도로 이용될 수 있다.
본 발명에 따라 얻어진 에피설파이드계 광학재료는 내광성, 내열성 및 투명성이 우수한 고품질 렌즈로서, 교정용 선글라스용 렌즈, 패션렌즈, 변색렌즈, 카메라렌즈, 광학 장치용 렌즈 등에 유용하게 이용될 수 있다.

Claims (10)

  1. 아래 화학식 1로 표시되는 에피설파이드 화합물.
    [화학식 1]
    Figure PCTKR2019015800-appb-I000003
    (X, Y는 수소, 하이드록실기, 알킬기, 아릴기, 지환족기, 아미노기, 옥심 또는 에스테르기이며, X, Y는 서로 동일하거나 또는 다르다.)
  2. 아래 화학식 2로 표시되는 에피설파이드 화합물,
    아래 화학식 1로 표시되는 에피설파이드 화합물,
    폴리티올 화합물 및
    중합촉매를 포함하는 에피설파이드계 광학재료용 조성물.
    [화학식 1]
    Figure PCTKR2019015800-appb-I000004
    (X, Y는 수소, 하이드록실기, 알킬기, 아릴기, 지환족기, 아미노기, 옥심 또는 에스테르기이며, X, Y는 서로 동일하거나 또는 다르다.)
    [화학식 2]
    Figure PCTKR2019015800-appb-I000005
    (식 중에서 X, Y는 O 또는 S이며, m은 0~4의 정수이며, n은 0~2의 정수를 나타낸다.)
  3. 제2항에 있어서,
    황을 더 포함하는 에피설파이드계 광학재료용 조성물.
  4. 제2항에 있어서,
    폴리이소시아네이트 화합물을 더 포함하는 에피설파이드계 광학재료용 조성물.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서,
    주석할로겐 화합물을 중합조절제로 더 포함하는 에피설파이드계 광학재료용 조성물.
  6. 제5항에 있어서,
    상기 주석할로겐 화합물은 디부틸주석디클로라이드, 디메틸주석디클로라이드 중 어느 하나 또는 여기에 모노메틸주석트리클로라이드가 0.1~3.5중량%로 소량 포함된 것을 특징으로 하는 에피설파이드계 광학재료용 조성물.
  7. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 화학식 1로 표시되는 에피설파이드 화합물을 0.01~10중량%로 포함하는 에피설파이드계 광학재료용 조성물.
  8. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 중합 촉매는, 아민, 제4급 암모늄염, 제4급 포스포늄염, 제3급 술포늄염, 제2급 요오드늄염, 포스핀 화합물 중에서 선택된 1종 이상인 것을 특징으로 하는 에피설파이드계 광학재료용 조성물.
  9. 제5항에 있어서,
    상기 중합 촉매는, 제4급 포스포늄염이며, 테트라-n-부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드 중 어느 하나를 포함하는 것을 특징으로 하는 에피설파이드계 광학재료용 조성물.
  10. 제2항 내지 제4항 중 어느 한 항의 조성물을 중합시키는 것을 포함하는, 에피설파이드계 고굴절 광학재료의 제조방법.
PCT/KR2019/015800 2018-12-06 2019-11-19 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법 WO2020116821A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180156348A KR102669070B1 (ko) 2018-12-06 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
KR10-2018-0156348 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116821A1 true WO2020116821A1 (ko) 2020-06-11

Family

ID=70973954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015800 WO2020116821A1 (ko) 2018-12-06 2019-11-19 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법

Country Status (1)

Country Link
WO (1) WO2020116821A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116535596A (zh) * 2023-05-29 2023-08-04 益丰新材料股份有限公司 一种耐清洗的光学材料组合物、光学树脂材料和光学透镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150053826A (ko) * 2013-03-14 2015-05-18 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 에피설파이드 화합물 및 광학재료용 조성물
KR101561636B1 (ko) * 2012-02-02 2015-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물의 제조방법
KR20160102961A (ko) * 2013-12-26 2016-08-31 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물 및 그 제조방법
KR20170078780A (ko) * 2015-03-31 2017-07-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 에피설파이드 화합물 및 이것을 포함하는 광학재료 조성물
KR20170090494A (ko) * 2015-03-27 2017-08-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규한 환상 화합물 및 이것을 포함하는 광학재료용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561636B1 (ko) * 2012-02-02 2015-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물의 제조방법
KR20150053826A (ko) * 2013-03-14 2015-05-18 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 에피설파이드 화합물 및 광학재료용 조성물
KR20160102961A (ko) * 2013-12-26 2016-08-31 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물 및 그 제조방법
KR20170090494A (ko) * 2015-03-27 2017-08-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규한 환상 화합물 및 이것을 포함하는 광학재료용 조성물
KR20170078780A (ko) * 2015-03-31 2017-07-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 에피설파이드 화합물 및 이것을 포함하는 광학재료 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116535596A (zh) * 2023-05-29 2023-08-04 益丰新材料股份有限公司 一种耐清洗的光学材料组合物、光学树脂材料和光学透镜
CN116535596B (zh) * 2023-05-29 2023-12-05 益丰新材料股份有限公司 一种耐清洗的光学材料组合物、光学树脂材料和光学透镜

Also Published As

Publication number Publication date
KR20200069146A (ko) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2013109118A1 (ko) 티오에폭시계 광학재료의 제조방법과 그 중합성 조성물
WO2014035166A1 (ko) 티오우레탄계 광학재료의 제조방법
WO2013176506A1 (ko) 신규한 폴리티올 화합물의 제조방법 및 이를 포함하는 광학재료용 중합성 조성물
WO2012112015A2 (ko) 고리개환을 통해 사슬연장된 폴리티올화합물과 그 제조 방법 및 이를 이용한 우레탄계 광학재료용 수지 조성물
KR101487709B1 (ko) 티오에폭시계 광학재료용 중합성 조성물과 티오에폭시계 광학재료의 제조방법
WO2020197156A1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 이를 이용한 광학재료의 제조방법
WO2015190809A1 (ko) 새로운 티올화합물과 이를 포함하는 중합성 조성물
WO2016190599A1 (ko) 티오에폭시계 초고굴절 광학수지 조성물과 티오에폭시계 광학재료의 제조방법
WO2013103276A1 (ko) 티오에폭시 화합물, 폴리이소시아네이트 화합물 및 폴리티올 화합물을 포함하는 고굴절 광학렌즈용 공중합체 조성물과 광학렌즈의 제조방법
US10669367B2 (en) Polythiol composition for plastic lens
WO2020116821A1 (ko) 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
KR20200046829A (ko) 에피설파이드계 고굴절 광학재료용 조성물 및 이를 이용한 광학재료의 제조방법
WO2013112001A1 (ko) 티오에폭시계 광학재료용 폴리티올화합물의 제조방법과 이를 포함하는 티오에폭시계 광학재료용 공중합체 조성물
WO2016178522A2 (ko) 티오에폭시계 광학재료의 제조방법과 티오에폭시계 광학재료용 중합성 조성물
KR102669070B1 (ko) 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
KR20200033426A (ko) 에피설파이드계 고굴절 광학재료용 경화속도 조절제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
WO2013095016A1 (ko) 티오에폭시 화합물을 포함하는 광학재료용 중합성 조성물과 광학재료의 제조방법
KR20210014257A (ko) 광학재료의 내광성 향상을 위한 조성물과 이를 이용하여 광학재료의 내광성을 향상시키는 방법
WO2021172771A1 (ko) 내광성이 향상된 에피설파이드계 고굴절 광학재료용 조성물 및 광학재료의 제조방법
WO2020040485A1 (ko) 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
KR102553438B1 (ko) 에피설파이드계 고굴절 광학재료용 조성물과 광학재료의 제조방법
WO2020040486A1 (ko) 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
WO2020046005A1 (ko) 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
WO2020045974A1 (ko) 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법
WO2020045938A1 (ko) 에피설파이드계 고굴절 광학재료용 안정제와 이를 이용한 광학재료용 조성물 및 광학재료의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892573

Country of ref document: EP

Kind code of ref document: A1