WO2019235097A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019235097A1
WO2019235097A1 PCT/JP2019/017626 JP2019017626W WO2019235097A1 WO 2019235097 A1 WO2019235097 A1 WO 2019235097A1 JP 2019017626 W JP2019017626 W JP 2019017626W WO 2019235097 A1 WO2019235097 A1 WO 2019235097A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
wiring
conductive
conduction
circuit pattern
Prior art date
Application number
PCT/JP2019/017626
Other languages
English (en)
French (fr)
Inventor
誠 磯崎
聖一 ▲高▼橋
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2020523563A priority Critical patent/JP6888742B2/ja
Priority to DE112019000169.8T priority patent/DE112019000169T5/de
Priority to CN201980006085.5A priority patent/CN111418049B/zh
Publication of WO2019235097A1 publication Critical patent/WO2019235097A1/ja
Priority to US16/883,464 priority patent/US11177190B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32153Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/32155Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. being an insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the semiconductor device includes, for example, semiconductor elements such as an IGBT (Insulated Gate Bipolar Transistor) and a power MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • Such a semiconductor device is used as, for example, a power conversion device.
  • a semiconductor device is arbitrarily connected by a wiring member using a plurality of IGBT chips and FWD (Free Wheeling Diode) chips. Thereby, the semiconductor device can realize a desired function such as an inverter.
  • Such a semiconductor device is required to have a large capacity. For example, a semiconductor module structure capable of processing a large current is demanded (for example, see Patent Document 1).
  • abnormal overheating in the wiring member which is not a problem with the conventional rated current, may occur.
  • abnormal overheating occurs in the wire connecting the circuit patterns of the ceramic circuit board. If abnormal overheating occurs inside the semiconductor device, the overheating may cause a failure of the semiconductor device. This leads to a decrease in the reliability of the semiconductor device.
  • This invention is made in view of such a point, and it aims at providing the semiconductor device which can suppress generation
  • a first conductive portion having a first conductive region and a first wiring region connected to the first conductive region via a first communication portion, a second conductive region, and the second conductive region.
  • a second conductive portion that communicates with the conduction region via a second communication portion and has a second wiring region that faces the first wiring region and is separated by a predetermined distance; and the first wiring region and the second wiring region; And a wiring member that electrically connects the first communication portion and the second communication portion as viewed from the wiring direction of the wiring member.
  • FIG. (1) which shows the modification of the circuit pattern of the ceramic circuit board of embodiment. It is FIG.
  • FIG. (2) which shows the modification of the circuit pattern of the ceramic circuit board of embodiment. It is FIG. (1) which shows the modification of the circuit pattern of the ceramic circuit board of a reference example. It is FIG. (2) which shows the modification of the circuit pattern of the ceramic circuit board of a reference example.
  • FIG. 1 is a plan view of an example of the semiconductor device of the embodiment
  • FIG. 2 is a cross-sectional view of the example of the semiconductor device of the embodiment. 2 is a cross-sectional view taken along one-dot chain line XX in FIG.
  • the semiconductor device 60 includes ceramic circuit boards 10a and 10b, semiconductor elements 21a, 21b, 21c and 21d provided on the front surfaces of the ceramic circuit boards 10a and 10b, and semiconductor elements. 22a, 22b, 22c, 22d.
  • the ceramic circuit boards 10a and 10b are electrically connected by wires 51a and 51b.
  • the semiconductor device 60 includes a case in which the ceramic circuit boards 10a and 10b are arranged on the heat sink 30 and the heat sink 30 arranged via solder (not shown) and surround the ceramic circuit boards 10a and 10b. 40.
  • the case 40 and the ceramic circuit boards 10a and 10b are electrically connected by wires 52a, 52b and 52c.
  • the semiconductor device 60 a case where the connection between the ceramic circuit boards 10a and 10b and the connection between the ceramic circuit boards 10a and 10b and the case 40 are performed by a plurality of wires 51a, 51b, 52a, 52b, and 52c, respectively, is exemplified. Yes.
  • the semiconductor device 60 is not limited to the plurality of wires 51a, 51b, 52a, 52b, and 52c, and may be any wiring member having conductivity.
  • the wiring member has two or more joint portions that are joined to the ceramic circuit boards 10a and 10b or the case 40 directly or via a joining member such as solder, and the electrical connection therebetween is established. Further, the wiring member has a non-bonded portion that does not contact the ceramic circuit boards 10a and 10b or the case 40 between the bonded portions.
  • the wiring member may be a plate-like lead frame or a ribbon-like ribbon.
  • the semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d are switching elements made of silicon or silicon carbide.
  • the switching element is, for example, an IGBT or a power MOSFET.
  • Such semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d are controlled, for example, with the input electrode (drain electrode or collector electrode) as the main electrode on the back surface and the main electrode on the front surface.
  • An electrode (gate electrode) and an output electrode (source electrode or emitter electrode) are provided.
  • the semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d include diodes such as SBD (Schottky Barrier Diode) and FWD as necessary.
  • Such semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, 22d have an output electrode (cathode electrode) as a main electrode on the back surface and an input electrode (anode electrode) as a main electrode on the front surface.
  • the semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d may include a RC (Reverse-Conducting) -IGBT that is a single element in which an IGBT and an FWD are combined.
  • the case where only the semiconductor elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, and 22d are included is described as an example.
  • electronic components may be installed as necessary.
  • the electronic component is, for example, a resistor, a thermistor, a capacitor, a surge absorber, or the like.
  • the metal plates 12a and 12b are made of a metal such as aluminum, iron, silver, copper, or an alloy containing at least one of them having excellent thermal conductivity.
  • the circuit patterns 13a, 14a, 15a, and 16a and the circuit patterns 13b, 14b, and 15b are made of metal such as copper or copper alloy having excellent conductivity.
  • the semiconductor elements 21a, 21b, 21c, and 21d and the semiconductor elements 22a, 22b, 22c, and 22d are arranged on the circuit patterns 14a and 13b, respectively.
  • the circuit pattern 16a is electrically connected to the control electrodes of the semiconductor elements 21a, 21b, 21c, and 21d through wires (not shown).
  • the circuit pattern 15b is electrically connected to the control electrodes of the semiconductor elements 22a, 22b, 22c, and 22d via wires (not shown).
  • the circuit pattern 13a is electrically connected to the output electrodes of the semiconductor elements 21a, 21b, 21c, and 21d via wires (reference numerals omitted).
  • the circuit pattern 14b is electrically connected to the output electrodes of the semiconductor elements 22a, 22b, 22c, and 22d through wires (not shown).
  • the numbers and shapes of the circuit patterns 13a, 14a, 15a, and 16a and the circuit patterns 13b, 14b, and 15b are examples, and other numbers and shapes may be used.
  • the thickness of the circuit patterns 13a, 14a, 15a, 16a and the circuit patterns 13b, 14b, 15b is 0.1 mm or more and 1 mm or less. Details of the circuit patterns 13a, 14a, 15a, 16a and the circuit patterns 13b, 14b, 15b will be described later.
  • a DCB (Direct Copper Bonding) board or an AMB (Active Metal Brazed) board can be used as the ceramic circuit boards 10a and 10b having such a configuration.
  • the ceramic circuit boards 10a and 10b are formed of the semiconductor elements 21a, 21b, 21c, and 21d and the heat generated in the semiconductor elements 22a, 22b, 22c, and 22d, the circuit pattern 14a and the circuit pattern 13b, the insulating plates 11a and 11b, and the metal plate 12a, It can be made to conduct to the heat sink 30 side through 12b.
  • the heat sink 30 is made of, for example, aluminum, iron, silver, copper, or an alloy containing at least one of them having excellent thermal conductivity.
  • a material such as nickel may be formed on the surface of the heat sink 30 by plating or the like.
  • nickel there are a nickel-phosphorus alloy, a nickel-boron alloy, and the like.
  • the cooler in this case is made of, for example, aluminum, iron, silver, copper, or an alloy containing at least one of them having excellent thermal conductivity.
  • the cooler a fin, a heat sink composed of a plurality of fins, a cooling device by water cooling, or the like can be applied.
  • the heat sink 30 may be integrated with such a cooler. In that case, it is comprised with the alloy containing aluminum, iron, silver, copper excellent in thermal conductivity, or at least one of these.
  • materials such as nickel, on the surface of the heat sink 30 integrated with the cooler by the plating process etc., for example.
  • nickel there are a nickel-phosphorus alloy, a nickel-boron alloy, and the like.
  • the case 40 has a side wall 41 that forms a storage area 44 in a box shape that surrounds the four sides.
  • step portions 42 a and 42 b are formed on the side of the storage region 44 of the opposite side wall portion 41 among the side wall portions 41 that surround the four sides.
  • terminal arrangement portions 43a, 43b, 43c, and 43d are formed at end portions on the opening side of the side wall portion 41 where the step portions 42a and 42b are formed.
  • the case 40 includes an internal terminal portion 45a disposed on the step portion 42a and an external terminal portion 46a disposed on the terminal placement portion 43a.
  • the external connection terminal 46 a is electrically connected to the internal terminal portion 45 a and the side wall portion 41.
  • the case 40 includes an internal terminal portion 45b disposed on the step portion 42a and an external terminal portion 46b disposed on the terminal placement portion 43b.
  • the external connection terminal 46 b is electrically connected within the internal terminal portion 45 b and the side wall portion 41.
  • the case 40 includes an internal terminal portion 45c disposed on the step portion 42b and external terminal portions 46c and 46d disposed on the terminal placement portions 43c and 43d.
  • the external connection terminals 46 c and 46 d are electrically connected to the internal terminal portion 45 c and the side wall portion 41.
  • the internal terminal portion 45a and the circuit pattern 14a are electrically connected by a wire 52a.
  • the internal terminal portion 45b and the circuit pattern 15a are electrically connected by a wire 52c.
  • the internal terminal portion 45c and the circuit pattern 13b are electrically connected by a wire 52b. Accordingly, a positive electrode is connected to the external terminal portion 46a and a negative electrode is connected to the external terminal portion 46b, and outputs are obtained from the external terminal portions 46c and 46d.
  • the side wall 41 of the case 40 includes a control terminal to which a control signal is input. The control terminals are electrically connected to the circuit patterns 16a and 15b, respectively.
  • Such a case 40 is configured by, for example, injection molding using a thermoplastic resin.
  • Examples of such a resin include polyphenylene sulfide (PPS), polybutylene terephthalate (PBT) resin, polybutylene succinate (PBS) resin, polyamide (PA) resin, and acrylonitrile butadiene styrene (ABS) resin.
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PBS polybutylene succinate
  • PA polyamide
  • ABS acrylonitrile butadiene styrene
  • the housing region 44 of the case 40 is filled with a sealing member, and the semiconductor elements 21a, 21b, 21c, 21d and the semiconductor elements 22a, 22b, 22c, 22d in the storage region 44
  • the structures such as the wires 52a, 52b, and 52c and the ceramic circuit boards 10a and 10b are sealed.
  • the sealing member is made of a thermosetting resin such as a maleimide-modified epoxy resin, a maleimide-modified phenol resin, or a maleimide resin.
  • the sealing member may be made of silicone gel.
  • the wires 51a, 51b, 52a, 52b, and 52c (and the wires that are omitted from the reference numerals) used in the semiconductor device 60 include aluminum, copper, or at least one of these having excellent conductivity. It is composed of an alloy or the like. Moreover, it is preferable that these diameters are 100 micrometers or more and 1 mm or less.
  • FIG. 3 is a plan view of an example of the ceramic circuit board according to the embodiment.
  • the ceramic circuit boards 10a and 10b shown in FIG. 3 are included in the semiconductor device 60 shown in FIGS. 1 and 2, and a plan view thereof is shown.
  • the circuit patterns 13a, 14a, 15a, and 16a are arranged on the insulating plate 11a in the ceramic circuit board 10a.
  • the circuit pattern 13a includes a conduction region 13a1 and a wiring region 13a3 that communicates with the conduction region 13a1 via a communication portion 13a2 (shown by a broken line).
  • the conduction region 13a1 is a region that is electrically connected to the semiconductor elements 21a and 21b through wires (not shown) and conducts current to the semiconductor elements 21a and 21b.
  • the wiring region 13a3 is a region to which a wire 51a that conducts current to the circuit pattern 13b is connected.
  • the wiring region 13a3 is wider than the conduction region 13a1, and the wiring region 13a3 extends perpendicularly to the conduction region 13a1.
  • the circuit pattern 15a includes a conduction region 15a1 and a wiring region 15a3 that communicates with the conduction region 15a1 via a communication portion 15a2 (shown by a broken line).
  • the wiring region 15a3 is wider than the conduction region 15a1, and the wiring region 15a3 extends perpendicular to the conduction region 15a1.
  • the circuit pattern 14a includes element arrangement regions 14a1 and 14a2 in which the semiconductor elements 21a, 21b, 21c, and 21d are arranged.
  • the circuit patterns 13b, 14b, and 15b are arranged on the insulating plate 11b in the ceramic circuit board 10b.
  • the circuit pattern 13b includes a conduction region 13b1 and a wiring region 13b3 that communicates with the conduction region 13b1 via a communication portion 13b2 (shown by a broken line) and is opposed to the wiring region 13a3 by a predetermined distance.
  • the conduction region 13b1 is a region in which the semiconductor elements 22a and 22b are arranged and current is conducted to the semiconductor elements 22a and 22b.
  • the wiring region 13b3 is a region to which a wire 51a that conducts current is connected to another circuit pattern 13a.
  • the wiring region 13b3 is wider than the conduction region 13b1, and the wiring region 13b3 extends perpendicularly to the conduction region 13b1. That is, the conduction regions 13a1 and 13b1 extend to the opposite sides with respect to the wiring regions 13a3 and 13b3.
  • the communication portion 13b2 has a cutout portion 13b4 at a side portion thereof where at least the communication portion 13a2 and the conduction region 13b1 overlap when viewed from the wiring direction W1 of the wire 51a. Furthermore, the notch 13b4 is formed so as to be equal to or larger than the width of the communication portion 13a2 when viewed from the wiring direction W1 of the wire 51a from the side opposite to the extending direction of the wiring region 13a3.
  • the wiring direction W1 of the wire 51a indicates a direction composed of two connection points, that is, a connection point of the wire 51a in the ceramic circuit board 10a and a connection point of the wire 51a in the ceramic circuit board 10b.
  • the conduction region 13b1 includes element arrangement regions 13b5 and 13b6 in which the semiconductor elements 22a, 22b, 22c, and 22d are arranged.
  • the circuit pattern 14b includes a conductive region 14b1 and a wiring region 14b3 that communicates with the conductive region 14b1 via a communication portion 14b2 (shown by a broken line) and is opposed to the wiring region 15a3 by a predetermined distance.
  • the wiring region 14b3 is wider than the conduction region 14b1, and the wiring region 14b3 extends at a right angle to the conduction region 14b1. That is, the conduction regions 15a1 and 14b1 extend to the opposite sides with the wiring regions 15a3 and 14b3 interposed therebetween.
  • external connection terminals may be electrically connected to the conductive regions 13a1 and 15a1 of the circuit patterns 13a and 15a of the ceramic circuit board 10a as necessary.
  • external connection terminals may be electrically connected to the conductive regions 13b1 and 14b1 of the circuit patterns 13b and 14b of the ceramic circuit board 10b as necessary.
  • the wiring region 13a3 of the circuit pattern 13a and the wiring region 13b3 of the circuit pattern 13b are connected by a wire 51a (not shown in FIG. 3).
  • the wiring region 15a3 of the circuit pattern 15a and the wiring region 14b3 of the circuit pattern 14b are connected by a wire 51b (not shown in FIG. 3).
  • the communication portion 13a2 of the circuit pattern 13a and the communication portion 13b2 of the circuit pattern 13b are separated (distance D1) as viewed from the wiring direction W1 of the wire 51a.
  • the communication portion 15a2 of the circuit pattern 15a and the communication portion 14b2 of the circuit pattern 14b are separated (distance D2) as viewed from the wiring direction W2 of the wire 51b.
  • the wiring regions 13a3, 15a3, 13b3, and 14b3 are examples in which the wires 51a and 51b that connect the circuit patterns 13a, 13b, 14b, and 15a between the ceramic wiring substrates 10a and 10b are connected. It was.
  • the wiring region may be a region where wires 52a, 52b, and 52c that connect the circuit patterns 14a, 15a, and 13b of the ceramic wiring substrates 10a and 10b and the internal terminal portion 45a of the case 40 are connected.
  • the wires 51a, 51b, 52a, 52b, and 52c may be wiring members, and may be lead frames or ribbons, for example.
  • FIG. 4 is a plan view of a sample ceramic circuit board of a reference example.
  • the same reference numerals are given to the same configurations as the semiconductor device 60.
  • the circuit pattern 113b of the ceramic circuit board 110b includes a conduction region 13b1 and a wiring region 13b3 that communicates with the conduction region 13b1 via a communication portion 113b2 (shown by a broken line). That is, unlike the communication portion 13b2, the communication portion 113b2 is not formed with the cutout portion 13b4.
  • the wiring region 13a3 of the circuit pattern 13a and the wiring region 13b3 of the circuit pattern 113b are electrically connected by a wire 51a.
  • the wiring region 15a3 of the circuit pattern 15a and the wiring region 14b3 of the circuit pattern 14b are electrically connected by a wire 51b.
  • the element arrangement regions 14a1 and 14a2 of the circuit pattern 14a and the conduction region 13a1 of the circuit pattern 13a are electrically connected by wires (reference numerals omitted).
  • the element arrangement regions 13b5 and 13b6 of the circuit pattern 113b and the conduction region 14b1 of the circuit pattern 14b are electrically connected by a wire (reference numeral omitted).
  • a current of 1000 A is input from the circuit patterns 14a and 15a of the ceramic circuit board 10a (regions to which the wires 52a and 52c are connected (FIG. 1)). Then, a current is output from the circuit pattern 113b of the ceramic circuit board 110b (a portion corresponding to a region to which the wire 52b of the circuit pattern 13b in FIG. 1 is connected).
  • the surface temperature distribution in the circuit patterns 13a and 113b and the wire 51a when the current was circulated was analyzed.
  • the current input to the circuit pattern 14a is conducted along the conduction path Ia1 in the circuit pattern 13a and flows into the wire 51a.
  • the current from the wire 51a is conducted along the conduction path Ib1 in the circuit pattern 113b.
  • the current input to the circuit pattern 14b is conducted along the conduction path Ib2 in the circuit pattern 14b and flows into the wire 51b.
  • the current from the wire 51b is conducted through the circuit pattern 15a along the conduction path Ib2.
  • FIG. 5 is a diagram showing the rising temperature distribution on the surface of the main part of the sample of the ceramic circuit board of the reference example.
  • the analysis results of the rising temperatures of the circuit patterns 13a and 113b and the wires 51a to be measured are displayed.
  • the isoline described in FIG. 5 represents the distribution of the rising temperature.
  • the wire 51a is represented by a rectangular shape for the sake of convenience in expressing the distribution of the rising temperature.
  • the highest rising temperature (110 ° C.) was analyzed in the isoline region Ta1 on the side close to the communicating portion 13a2 of the wire 51a (the lower side in FIG. 5). Further, as the distance from the region Ta1 increases, the rising temperature decreases. As described with reference to FIG. 4, the current is conducted in the circuit pattern 13a along the conduction path Ia1. That is, when the current flows from the conduction region 13a1 into the wiring region 13a3 via the communication portion 13a2, the conduction direction turns 90 degrees to conduct the wiring region 13a3 (upward in FIG. 5). For this reason, in the circuit pattern 13a, it is possible that the temperature inside a turning part becomes high.
  • region 13a3 flows out into the wire 51a.
  • the current flowing from the wire 51a is conducted along the conduction path Ib1 in the circuit pattern 113b.
  • the lower side in FIG. 5 is shorter than the upper side. Therefore, the wire 51a has a larger current flow rate on the lower side in FIG. 5 than on the upper side.
  • the conduction region 13b1 of the circuit pattern 113b also has a higher current flow rate and a higher temperature on the lower side in FIG.
  • the circuit patterns 13a and 113b through which the current is conducted are asymmetric, the current conduction paths Ia1 and Ib1 through which the current is conducted are also asymmetric. For this reason, in the wire 51a, the heat generation location is biased.
  • the surface temperature distribution and the like related to the circuit patterns 15a and 14b and the wire 51b will be described later.
  • a predetermined current was actually conducted to such a sample 70 and observed with a thermo viewer. As a result, it was found that the highest temperature of the wire 51a was about 270 ° C., and abnormal overheating occurred. That is, the wire 51a has a larger current flow rate on the lower side in FIG. 5 than on the upper side.
  • the wire 51a is separated from the ceramic circuit boards 10a and 10b except for the joint portions with the wiring regions 13a3 and 13b3, it is difficult to be cooled. Therefore, it is considered that abnormal overheating has occurred in the region Ta1 on the side close to the communication portion 13a2 of the wire 51a.
  • the inventors have found that the abnormal overheating of the wiring member that is the wire 51a is promoted by the variation in the current path length due to the shape of the circuit patterns 13a and 113b. In particular, current concentrates in a short current path portion, and abnormal overheating occurs due to loss due to the resistance of the wiring member.
  • FIG. 6 is a plan view of a sample of the ceramic circuit board of the embodiment.
  • a sample 80 of the ceramic circuit boards 10a and 10b of the semiconductor device 60 shown in FIG. 6 is provided with a circuit pattern 13b instead of the circuit pattern 113b of the sample 70.
  • the circuit pattern 13b of the ceramic circuit board 10b includes a conductive region 13b1 and a wiring region 13b3 communicated via a communication portion 13b2 configured by forming a notch 13b4 in the conductive region 13b1.
  • Other configurations and analysis of the surface temperature distribution are the same as those of the sample 70.
  • the current input to the circuit pattern 14a is conducted along the conduction path Ia1 in the circuit pattern 13a and flows into the wire 51a.
  • the notch part 13b4 is formed in the circuit pattern 13b, the current from the wire 51a passes along the conduction path Ib3 in the order of the wiring area 13b3, the communication part 13b2, and the conduction area 13b1 in the circuit pattern 13b.
  • the current input to the circuit pattern 14b is conducted along the conduction path Ib2 in the circuit pattern 14b and flows into the wire 51b. Then, the current from the wire 51b is conducted along the conduction path Ia2 in the circuit pattern 15a.
  • FIG. 7 is a diagram showing the temperature rise distribution on the surface of the main part of the sample of the ceramic circuit board according to the embodiment.
  • the analysis results of the rising temperatures of the circuit patterns 13a and 13b and the wires 51a to be measured are displayed.
  • the isoline described in FIG. 7 represents the distribution of the rising temperature.
  • the wire 51a is represented by a rectangular shape for the sake of convenience in expressing the temperature rise distribution.
  • an isoline region Ta1 on the side close to the communication portion 13a2 of the wire 51a (lower side in FIG. 7) and a region Tb1 on the side close to the communication portion 13b2 of the wire 51a (upper side in FIG. 7) Were the same temperature and the highest temperature rise (80 ° C.).
  • the temperature decreased as the distance from the regions Ta1 and Tb1 increased.
  • the variation in the rising temperature of the surface was small compared with the case where notch part 13b4 is not formed (sample 70).
  • the communication part 13a2 and the communication part 13b2 are separated from each other when viewed from the wiring direction of the wire 51a. That is, the conduction path Ia1 in the circuit pattern 13a and the conduction path Ib3 in the circuit pattern 13b are point-symmetric (with respect to the center of the wire 51a). For this reason, the variation in the length of the conduction path from the conduction region 13a1 to the conduction region 13b1 via the wire 51a is smaller than that in the case where the notch 13b4 is not formed (sample 70). For this reason, the current flows easily in the wire 51a.
  • the temperature deviation of the wire 51a is suppressed.
  • a predetermined current was actually conducted to such a sample 80 and observed with a thermo viewer.
  • the highest temperature was below 250 ° C., and no abnormal overheating occurred. That is, the inventors suppress the variation in the current path length caused by the shape of the circuit patterns 13a and 13b by separating the communication portion 13a2 and the communication portion 13b2 from the wiring direction of the wire 51a. It has been found that the current in the wiring member which is the wire 51a becomes uniform, and as a result, the occurrence of abnormal overheating can be prevented.
  • the circuit patterns 15a and 14b have not been analyzed for the temperature rise of the surface as described above, but have a point-symmetric shape with respect to the center of the region of the wire 51b, and the communication portion 15a2 and the communication portion 14b2 are formed.
  • the wires 51b are separated from each other when viewed from the wiring direction.
  • the conduction paths Ia2 and Ib2 are symmetrical. That is, even in this case, the variation in the length of the conduction path from the conduction region 14b1 to the conduction region 15a1 via the wire 51b can be reduced. Thereby, it is considered that the temperature deviation of the wire 51b is also suppressed.
  • FIG. 8 is a plan view of another sample of the ceramic circuit board according to the embodiment.
  • a plurality of samples 85 shown in FIG. 8 are formed so that at least two points on the surface of the conduction region 15a1 of the circuit pattern 15a of the sample 80 are electrically connected by the ground wire 53.
  • Other configurations and analysis of the surface temperature distribution are the same as those of the sample 80.
  • the ground wire 53 is formed in the conduction region 15a1 of the circuit pattern 15a is described as an example.
  • the ground wire 53 is made of aluminum, copper, or an alloy containing at least one of them having excellent conductivity.
  • these diameters are 100 micrometers or more and 1 mm or less. It can be formed by a wire bonding apparatus. Such a ground wire 53 is not limited to this case, and may be appropriately formed on the circuit pattern according to the shape and size of the circuit pattern.
  • the rising temperature distribution on the surface is the same as the rising temperature distribution of the sample 80 shown in FIG.
  • the internal resistance of samples 80 and 85 was measured with a tester. Each internal resistance is the total electric resistance excluding the semiconductor elements 21a, 21b, 21c, and 21d and the semiconductor elements 22a, 22b, 22c, and 22d from the internal terminal part 45a to the internal terminal part 45b of the case 40. As a result, the internal resistance of the sample 85 was 82% of the internal resistance of the sample 80 shown in FIG.
  • FIGS. 9 and 10 are diagrams showing modifications of the circuit pattern of the ceramic circuit board according to the embodiment.
  • FIG. 9 shows a case (corresponding to circuit patterns 13a and 13b) in which current conduction paths in a pair of circuit patterns are made symmetric by forming a notch.
  • FIG. 10 shows a case (corresponding to the circuit patterns 15a and 14b) in which current conduction paths of a pair of circuit patterns are symmetric based on the shape.
  • FIG. 9A shows a case where the circuit pattern 13b side is displaced upward in FIG.
  • FIG. 9A shows a case where the circuit pattern 13b side is displaced upward in FIG.
  • FIG. 9A shows a case where the circuit pattern 13b side is displaced upward in FIG.
  • FIG. 9A shows a case where the circuit pattern 13b side is displaced upward in FIG.
  • circuit patterns 23a and 23b are electrically connected by a wire 51a.
  • the circuit pattern 23a includes a conduction region 23a1 and a wiring region 23a3 that communicates with the conduction region 23a1 through the communication portion 23a2 to the central portion.
  • the circuit pattern 23b includes a conductive region 23b1 and a wiring region 23b3 that is connected to the conductive region 23b1 through a pair of communication portions 23b2 that are formed by forming a notch 23b4 in the center.
  • FIG. 9C circuit patterns 23a and 23b are electrically connected by a wire 51a.
  • the circuit pattern 23a includes a conduction region 23a1 and a wiring region 23a3 that communicates with the conduction region 23a1 through the communication portion 23a2 to the central portion.
  • the circuit pattern 23b includes a conductive region 23b1 and a wiring region 23b3 that is connected to the conductive region 23b1 through a pair of communication portions 23b2 that are formed by forming a notch 23
  • FIG. 10A shows a case where the circuit pattern 14b side is displaced upward in FIG.
  • FIG. 10B shows a case where only the conduction region 14b1 of the circuit pattern 14b is displaced upward in FIG.
  • FIG. 10C shows a case where the circuit pattern 14b side is displaced upward in FIG. 10B.
  • the cutout portion 13b4 is formed so that the communication portion 13a2 of the circuit pattern 13a and the communication portion 13b2 of the circuit pattern 13b are in the wiring direction of the wire 51a. Seen away from each other. Also in FIG. 9C, the cutout portion 23b4 is formed so that the communication portion 23a2 of the circuit pattern 23a and the communication portion 23b2 of the circuit pattern 23b are separated from each other when viewed from the wiring direction of the wire 51a. In all of FIG. 10, the communication portion 15a2 of the circuit pattern 15a and the communication portion 14b2 of the circuit pattern 14b are separated from each other when viewed from the wiring direction of the wire 51b.
  • the current conduction paths in the circuit patterns 13a and 15a and the circuit patterns 13b and 14b are point-symmetric with respect to the centers of the wires 51a and 51b. Further, the current conduction paths in the circuit pattern 23a and the circuit pattern 23b are axisymmetric with respect to the wiring direction of the wire 51a. Thereby, the bias of heat generation between the circuit patterns 13a, 23a, 15a and the circuit patterns 13b, 23b, 14b is prevented and the internal resistance is reduced. Therefore, the temperature rise of the wires 51a and 51b is suppressed.
  • FIGS. 11 and 12 are diagrams showing modifications of the circuit pattern of the ceramic circuit board of the reference example.
  • FIG. 11 shows the case where the current conduction paths in the pair of circuit patterns are symmetrized by forming the notches.
  • FIG. 12 shows a case where the current conduction paths of a pair of circuit patterns are symmetrized based on the shape. 11 and 12 show only the circuit pattern of the ceramic circuit board.
  • circuit patterns 80a and 80b are electrically connected by a wire 51a.
  • the circuit pattern 80a includes a conduction region 80a1 and a wiring region 80a3 that communicates with the conduction region 80a1 via a communication unit 80a2.
  • the circuit pattern 80b includes a conductive region 80b1 and a wiring region 80b3 communicated via a communication portion 80b2 configured by forming a notch 80b4 in the conductive region 80b1.
  • the cutout portion 80b4 is shallow, and the communication portion 80a2 of the circuit pattern 80a and the communication portion 80b2 of the circuit pattern 80b overlap with each other as viewed from the wiring direction of the wire 51a.
  • the conduction paths of the circuit patterns 80a and 80b are not symmetric because the communication portion 80a2 and the communication portion 80b2 are overlapped when viewed from the wiring direction of the wire 51a. . For this reason, the heat generation portions of the circuit patterns 80a and 80b are biased, and the temperature of the wire 51a may rise without reducing the internal resistance.
  • circuit patterns 81a and 81b are electrically connected by wires 51b.
  • the circuit pattern 81a includes a conduction region 81a1 and a wiring region 81a3 that communicates with the conduction region 81a1 via a communication portion 81a2.
  • the circuit pattern 81b includes a conduction region 81b1 and a wiring region 81b3 that communicates with the conduction region 81b1 via a communication portion 81b2. Also in this case, the communication portion 81a2 of the circuit pattern 81a and the communication portion 81b2 of the circuit pattern 81b overlap with each other as viewed from the wiring direction of the wire 51b.
  • the conduction paths of the circuit patterns 81a and 81b are not symmetric because the communication portion 81a2 and the communication portion 81b2 have overlapping portions when viewed from the wiring direction of the wire 51b. . For this reason, the heat generation portions of the circuit patterns 81a and 81b are biased, and the temperature of the wire 51b may increase without reducing the internal resistance.
  • circuit patterns 82a and 82b are electrically connected by wires 51b.
  • the circuit pattern 82a includes a conduction region 82a1 and a wiring region 82a3 that communicates with the conduction region 82a1 via a communication portion 82a2.
  • the circuit pattern 82b includes a conduction region 82b1 and a wiring region 82b3 that communicates with the conduction region 82b1 via a communication portion 82b2. Also in this case, the communication portion 82a2 of the circuit pattern 82a and the communication portion 82b2 of the circuit pattern 82b are arranged to face each other when viewed from the wiring direction of the wire 51b.
  • the current is conducted from the conduction region 82a1 to the wiring region 82a3 and flows from the wire 51b to the wiring region 82b3.
  • the temperature above the communication portion 82b2 in the drawing may increase.
  • the heat generation portions of the circuit patterns 82a and 82b are biased, and the temperature of the wire 51b may increase without reducing the internal resistance.
  • the circuit patterns 83a and 83b are electrically connected by the wire 51b.
  • the circuit pattern 83a includes a conduction region 83a1 and a wiring region 83a3 that communicates with the conduction region 83a1 via a communication portion 83a2.
  • the circuit pattern 83b includes a conduction region 83b1 and a wiring region 83b3 that communicates with the conduction region 83b1 via a communication portion 83b2.
  • the communication portion 83a2 of the circuit pattern 83a and the communication portion 83b2 of the circuit pattern 83b are arranged to face each other when viewed from the wiring direction of the wire 51b.
  • the current is conducted from the conduction region 83a1 to the wiring region 83a3 (so as to branch) and flows from the wire 51b to the wiring region 83b3.
  • the temperature at both ends (upper and lower in the drawing) of the communication portion 83b2 may increase.
  • the heat generation portions of the circuit patterns 83a and 83b are biased, and the temperature of the wire 51b may increase without reducing the internal resistance.
  • the semiconductor device 60 has circuit patterns 13a and 15a having conductive regions 13a1 and 15a1 and wiring regions 13a3 and 15a3 connected to the conductive regions 13a1 and 15a1 through the communication portions 13a2 and 15a2. Further, circuit patterns 13b and 14b having conductive regions 13b1 and 14b1 and conductive regions 13b1 and 14b1 are connected to each other through communication portions 13b2 and 14b2 and have wiring regions 13b3 and 14b3 that are spaced apart from each other by a predetermined distance. Have Then, wires 51a and 51b are provided to electrically connect the wiring regions 13a3 and 15a3 and the wiring regions 13b3 and 14b3.
  • the communication portions 13a2 and 15a2 and the communication portions 13b2 and 14b2 are separated from each other when viewed from the wiring direction of the wires 51a and 51b.
  • the conduction path in the circuit patterns 13a and 15a and the conduction path in the circuit patterns 13b and 14b are point-symmetric (with respect to the centers of the wires 51a and 51b).
  • biasing of the electric current of wire 51a, 51b is reduced, the raise of the temperature of wire 51a, 51b is suppressed. Therefore, the semiconductor device 60 can prevent the occurrence of damage or the like due to heat generation, and suppress a decrease in reliability.
  • the conduction paths to the circuit patterns 13a and 13b and the circuit patterns 15a and 14b in the semiconductor device 60 are controlled to suppress an increase in the temperature of the wires 51a and 51b.
  • the circuit patterns are not limited to the circuit patterns 13a and 13b and the circuit patterns 15a and 14b.
  • the circuit patterns 13a and 13b and the circuit patterns 15a and 15a of the present embodiment are connected to the pair of conductive parts. It is possible to control the conduction path as in 14b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

内部の異常過熱の発生を抑制できる。 導通領域(13a1,15a1)と導通領域(13a1,15a1)に連通部(13a2,15a2)を介して連通した配線領域(13a3,15a3)とを有する回路パターン(13a,15a)を有する。また、導通領域(13b1,14b1)と導通領域(13b1,14b1)に連通部(13b2,14b2)を介して連通し、配線領域(13a3,15a3)と所定の間隔離れて向かい合う配線領域(13b3,14b3)とを有する回路パターン(13b,14b)を有する。そして、配線領域(13a3,15a3)と配線領域(13b3,14b3)とを電気的に接続するワイヤを備えている。この際、連通部(13a2,15a2)と連通部(13b2,14b2)とがワイヤの配線方向(W1,W2)から見て離間している。

Description

半導体装置
 本発明は、半導体装置に関する。
 半導体装置は、例えば、IGBT(Insulated Gate Bipolar Transistor)、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体素子を含んでいる。このような半導体装置は、例えば、電力変換装置として利用されている。半導体装置は、IGBTチップとFWD(Free Wheeling Diode)チップとを複数用いて、配線部材で任意に接続される。これにより半導体装置はインバータ等の所望の機能を実現することができる。このような、半導体装置においては、大容量化が求められている。例えば、大電流を処理することが可能な半導体モジュール構造が求められている(例えば、特許文献1参照)。
特開平8-78620号公報
 ところで、大容量化として定格電流を増加させると、従来の定格電流では問題とならなかった、配線部材における異常過熱が発生してしまう場合がある。例えば、セラミック回路基板の回路パターン間を接続するワイヤに異常過熱が発生してしまう。半導体装置の内部に異常過熱が生じると、その過熱が半導体装置の故障の原因となるおそれがある。これが、半導体装置の信頼性の低下につながる。
 本発明は、このような点に鑑みてなされたものであり、内部の異常過熱の発生を抑制できる半導体装置を提供することを目的とする。
 本発明の一観点によれば、第1導通領域と前記第1導通領域に第1連通部を介して連通した第1配線領域とを有する第1導電部と、第2導通領域と前記第2導通領域に第2連通部を介して連通し、前記第1配線領域と所定の間隔離れて向かい合う第2配線領域とを有する第2導電部と、前記第1配線領域と前記第2配線領域とを電気的に接続する配線部材とを備え、前記第1連通部と前記第2連通部とが前記配線部材の配線方向から見て離間している、半導体装置が提供される。
 開示の技術によれば、内部の異常過熱の発生を抑制して、信頼性の低下を防止することができる。
 本発明の上記及び他の目的、特徴及び利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
実施の形態の半導体装置の一例の平面図である。 実施の形態の半導体装置の一例の断面図である。 実施の形態のセラミック回路基板の一例の平面図である。 参考例のセラミック回路基板のサンプルの平面図である。 参考例のセラミック回路基板のサンプルの要部の表面の上昇温度分布を示す図である。 実施の形態のセラミック回路基板のサンプルの平面図である。 実施の形態のセラミック回路基板のサンプルの要部の表面の上昇温度分布を示す図である。 実施の形態のセラミック回路基板の別のサンプルの平面図である。 実施の形態のセラミック回路基板の回路パターンの変形例を示す図(その1)である。 実施の形態のセラミック回路基板の回路パターンの変形例を示す図(その2)である。 参考例のセラミック回路基板の回路パターンの変形例を示す図(その1)である。 参考例のセラミック回路基板の回路パターンの変形例を示す図(その2)である。
 以下、図面を参照して、実施の形態について説明する。実施の形態の半導体装置について、図1及び図2を用いて説明する。図1は、実施の形態の半導体装置の一例の平面図であり、図2は、実施の形態の半導体装置の一例の断面図である。なお、図2は、図1の一点鎖線X-Xにおける断面図である。半導体装置60は、図1及び図2に示されるように、セラミック回路基板10a,10bとセラミック回路基板10a,10bのおもて面に設けられた半導体素子21a,21b,21c,21d及び半導体素子22a,22b,22c,22dとを有している。なお、セラミック回路基板10a,10bはワイヤ51a,51bにより電気的に接続されている。さらに、半導体装置60は、このようなセラミック回路基板10a,10bがはんだ(図示を省略)を介して配置された放熱板30と放熱板30上に配置され、セラミック回路基板10a,10bを取り囲むケース40とを有している。なお、ケース40とセラミック回路基板10a,10bはワイヤ52a,52b,52cで電気的に接続されている。
 半導体装置60では、セラミック回路基板10a,10b間の接続、セラミック回路基板10a,10bとケース40との接続をそれぞれ複数のワイヤ51a,51b,52a,52b,52cにより行っている場合を例示している。半導体装置60では、複数のワイヤ51a,51b,52a,52b,52cに限らず、導電性を有する配線部材であればよい。配線部材は、セラミック回路基板10a,10b、または、ケース40に直接、または、はんだ等の接合部材を介して接合される2つ以上の接合箇所を有し、その間が電気的に導通される。また、配線部材は、接合箇所と接合箇所の間に、セラミック回路基板10a,10b、または、ケース40と接触しない非接合箇所を有する。また、配線部材は、板状のリードフレームまたは薄帯状のリボンを用いてもよい。
 半導体素子21a,21b,21c,21d,22a,22b,22c,22dは、シリコンまたは炭化シリコンから構成されるスイッチング素子である。スイッチング素子は、例えば、IGBT、パワーMOSFET等である。このような半導体素子21a,21b,21c,21d,22a,22b,22c,22dは、例えば、裏面に主電極として入力電極(ドレイン電極またはコレクタ電極)を、おもて面に、主電極として制御電極(ゲート電極)及び出力電極(ソース電極またはエミッタ電極)をそれぞれ備えている。また、半導体素子21a,21b,21c,21d,22a,22b,22c,22dは、必要に応じて、SBD(Schottky Barrier Diode)、FWD等のダイオードを含んでいる。このような半導体素子21a,21b,21c,21d,22a,22b,22c,22dは、裏面に主電極として出力電極(カソード電極)を、おもて面に主電極として入力電極(アノード電極)をそれぞれ備えている。また、半導体素子21a,21b,21c,21d,22a,22b,22c,22dは、IGBTとFWDとを組み合わせた単一素子である、RC(Reverse Conducting)-IGBTを含んでもよい。なお、本実施の形態では、半導体素子21a,21b,21c,21d,22a,22b,22c,22dのみを含む場合を例に挙げて説明している。この場合に限らず、必要に応じて、電子部品も設置してもよい。なお、電子部品は、例えば、抵抗、サーミスタ、コンデンサ、サージアブソーバ等である。
 セラミック回路基板10a,10bは、絶縁板11a,11bと絶縁板11a,11bの裏面に形成された金属板12a,12bとを有している。さらに、セラミック回路基板10a,10bは、絶縁板11aのおもて面に形成された回路パターン13a,14a,15a,16aと絶縁板11bのおもて面に形成された回路パターン13b,14b,15bとをそれぞれ有している。絶縁板11a,11bは、熱伝導性に優れた、酸化アルミニウム、窒化アルミニウム、窒化珪素等の高熱伝導性のセラミックスにより構成されている。金属板12a,12bは、熱伝導性に優れたアルミニウム、鉄、銀、銅、または、少なくともこれらの一種を含む合金等の金属により構成されている。回路パターン13a,14a,15a,16a及び回路パターン13b,14b,15bは、導電性に優れた銅あるいは銅合金等の金属により構成されている。また、回路パターン14a,13b上に、半導体素子21a,21b,21c,21d及び半導体素子22a,22b,22c,22dがそれぞれ配置されている。回路パターン16aは,ワイヤ(符号省略)を介して半導体素子21a,21b,21c,21dの制御電極に電気的に接続されている。回路パターン15bは,ワイヤ(符号省略)を介して半導体素子22a,22b,22c,22dの制御電極に電気的にそれぞれ接続されている。また、回路パターン13aは、ワイヤ(符号省略)を介して半導体素子21a,21b,21c,21dの出力電極に電気的にそれぞれ接続されている。回路パターン14bは、ワイヤ(符号省略)を介して半導体素子22a,22b,22c,22dの出力電極に電気的にそれぞれ接続されている。なお、回路パターン13a,14a,15a,16a及び回路パターン13b,14b,15bの数及び形状は一例であり、別の枚数及び形状であってもよい。このような回路パターン13a,14a,15a,16a及び回路パターン13b,14b,15bの厚さは、0.1mm以上、1mm以下である。また、回路パターン13a,14a,15a,16a及び回路パターン13b,14b,15bの詳細については後述する。このような構成を有するセラミック回路基板10a,10bとして、例えば、DCB(Direct Copper Bonding)基板、AMB(Active Metal Brazed)基板を用いることができる。セラミック回路基板10a,10bは、半導体素子21a,21b,21c,21d及び半導体素子22a,22b,22c,22dで発生した熱を回路パターン14a及び回路パターン13b、絶縁板11a,11b及び金属板12a,12bを介して、放熱板30側に伝導させることができる。
 放熱板30は、熱伝導性に優れた、例えば、アルミニウム、鉄、銀、銅、または、少なくともこれらの一種を含む合金により構成されている。また、耐食性を向上させるために、例えば、ニッケル等の材料をめっき処理等により放熱板30の表面に形成してもよい。具体的には、ニッケルの他に、ニッケル-リン合金、ニッケル-ボロン合金等がある。なお、この放熱板30の裏面側に冷却器(図示を省略)をはんだまたは銀ろう等を介して取りつけて放熱性を向上させることも可能である。この場合の冷却器は、例えば、熱伝導性に優れたアルミニウム、鉄、銀、銅、または、少なくともこれらの一種を含む合金等により構成されている。また、冷却器として、フィン、または、複数のフィンから構成されるヒートシンク並びに水冷による冷却装置等を適用することができる。また、放熱板30は、このような冷却器と一体的に構成されてもよい。その場合は、熱伝導性に優れたアルミニウム、鉄、銀、銅、または、少なくともこれらの一種を含む合金により構成される。そして、耐食性を向上させるために、例えば、ニッケル等の材料をめっき処理等により冷却器と一体化された放熱板30の表面に形成してもよい。具体的には、ニッケルの他に、ニッケル-リン合金、ニッケル-ボロン合金等がある。
 ケース40は、四方を囲む箱状を成して、収納領域44を構成する側壁部41を有している。また、四方を取り囲む側壁部41のうち、対向する側壁部41の収納領域44側に段差部42a,42bが形成されている。また、段差部42a,42bが形成された側壁部41の開口側の端部に端子配置部43a,43b,43c,43dが形成されている。さらに、ケース40は、段差部42a上に配置された内部端子部45aと端子配置部43a上に配置された外部端子部46aとを備えている。外部接続端子46aは、内部端子部45aと側壁部41内で電気的に接続されている。ケース40は、段差部42a上に配置された内部端子部45bと端子配置部43b上に配置された外部端子部46bとを備えている。外部接続端子46bは、内部端子部45bと側壁部41内で電気的に接続されている。さらに、ケース40は、段差部42b上に配置された内部端子部45cと端子配置部43c,43d上に配置された外部端子部46c,46dとを備えている。外部接続端子46c,46dは、内部端子部45cと側壁部41内で電気的に接続されている。また、内部端子部45aと回路パターン14aとはワイヤ52aにより電気的に接続されている。内部端子部45bと回路パターン15aとはワイヤ52cにより電気的に接続されている。内部端子部45cと回路パターン13bとはワイヤ52bにより電気的に接続されている。したがって、外部端子部46aには正極が、外部端子部46bには負極がそれぞれ接続されて、外部端子部46c,46dから出力が得られる。なお、ケース40の側壁部41には、図示はしていないものの、制御信号が入力される制御端子を備える。当該制御端子から回路パターン16a,15bにそれぞれ電気的に接続されている。このようなケース40は、例えば、熱可塑性樹脂を用いた射出成形により構成されている。このような樹脂として、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)樹脂、ポリブチレンサクシネート(PBS)樹脂、ポリアミド(PA)樹脂、または、アクリロニトリルブタジエンスチレン(ABS)樹脂等がある。
 なお、図示はしていないものの、上記ケース40の収納領域44に封止部材を充填して、収納領域44内の半導体素子21a,21b,21c,21d及び半導体素子22a,22b,22c,22dとワイヤ52a,52b,52cとセラミック回路基板10a,10bといった構成が封止されている。封止部材は、例えば、マレイミド変性エポキシ樹脂、マレイミド変性フェノール樹脂、マレイミド樹脂等の熱硬化性樹脂で構成されている。また、封止部材は、シリコーンゲルにより構成されてもよい。また、上記半導体装置60内で用いられているワイヤ51a,51b,52a,52b,52c(及び符号を省略しているワイヤ)は、導電性に優れたアルミニウム、銅または、少なくともこれらの一種を含む合金等により構成されている。また、これらの径は、100μm以上、1mm以下であることが好ましい。
 次に、セラミック回路基板10aに含まれる回路パターン13a,14a,15a,16a及びセラミック回路基板10bに含まれる回路パターン13b,14b,15bについて、図3を用いて説明する。図3は、実施の形態のセラミック回路基板の一例の平面図である。なお、図3に示すセラミック回路基板10a,10bは、図1及び図2に示した半導体装置60に含まれており、これらの平面図を示している。
 セラミック回路基板10aには、既述の通り、回路パターン13a,14a,15a,16aが絶縁板11a上に配置されている。特に、回路パターン13aは、導通領域13a1と導通領域13a1に(破線で示された)連通部13a2を介して連通した配線領域13a3とを有する。導通領域13a1は、ワイヤ(符号省略)を介して半導体素子21a,21bと電気的に接続され、半導体素子21a,21bと電流を導通させる領域である。配線領域13a3は、回路パターン13bへ電流を導通させるワイヤ51aが接続される領域である。回路パターン13aは、配線領域13a3が導通領域13a1よりも幅広く、配線領域13a3は、導通領域13a1に対して直角に延伸している。また、回路パターン15aは、導通領域15a1と導通領域15a1に(破線で示された)連通部15a2を介して連通した配線領域15a3とを有する。回路パターン15aは、配線領域15a3が導通領域15a1よりも幅広く、配線領域15a3は導通領域15a1に対して直角に延伸している。なお、回路パターン14aは、半導体素子21a,21b,21c,21dが配置される素子配置領域14a1,14a2が含まれている。
 セラミック回路基板10bには、既述の通り、回路パターン13b,14b,15bが絶縁板11b上に配置されている。特に、回路パターン13bは、導通領域13b1と導通領域13b1に(破線で示された)連通部13b2を介して連通した、配線領域13a3と所定の間隔離れて向かい合う配線領域13b3とを有する。導通領域13b1は、半導体素子22a,22bが配置され、半導体素子22a,22bと電流を導通させる領域である。配線領域13b3は、他の回路パターン13aと電流を導通させるワイヤ51aが接続される領域である。回路パターン13bは、配線領域13b3が導通領域13b1よりも幅広く、配線領域13b3は、導通領域13b1に対して直角に延伸している。すなわち、導通領域13a1,13b1は、配線領域13a3,13b3を挟んで反対側にそれぞれ延伸している。
 また、連通部13b2は、その側部の、少なくとも、ワイヤ51aの配線方向W1から見て連通部13a2と導通領域13b1とが重なる部分に切り欠き部13b4が形成されている。さらには、切り欠き部13b4は、配線領域13a3の延伸する方向の反対側の側部から、ワイヤ51aの配線方向W1から見て連通部13a2の幅以上となるように形成されている。ここでワイヤ51aの配線方向W1とは、セラミック回路基板10aにおけるワイヤ51aの接続点と、セラミック回路基板10bにおけるワイヤ51aの接続点との2つの接続点からなる方向を指す。複数のワイヤ51aにおいて配線方向W1が異なる場合は、それらの平均的な方向を指す。同様に、セラミック回路基板10a,10bとケース40とをワイヤ52a,52bで接続する場合も、2つの接続点からなる方向を指す。また、リードフレームやリボン等の配線部材においても、各2つの接続点の平均的な方向を指す。例えば、図3の場合には、連通部13a2,13b2の幅が等しくなるように、切り欠き部13b4が形成されている。なお、導通領域13b1には、半導体素子22a,22b,22c,22dが配置される素子配置領域13b5,13b6を含んでいる。また、回路パターン14bは、導通領域14b1と導通領域14b1に(破線で示された)連通部14b2を介して連通した、配線領域15a3と所定の間隔離れて向かい合う配線領域14b3とを有する。回路パターン14bは、配線領域14b3が導通領域14b1よりも幅広く、配線領域14b3は、導通領域14b1に対して直角に延伸している。すなわち、導通領域15a1,14b1は、配線領域15a3,14b3を挟んで反対側にそれぞれ延伸している。
 なお、このようなセラミック回路基板10aの回路パターン13a,15aの導通領域13a1,15a1には、必要に応じて外部接続端子を電気的に接続してもよい。同様に、セラミック回路基板10bの回路パターン13b,14bの導通領域13b1,14b1にも、必要に応じて外部接続端子を電気的に接続してもよい。
 また、図1で示したように、セラミック回路基板10a,10b間において、回路パターン13aの配線領域13a3と回路パターン13bの配線領域13b3とがワイヤ51a(図3では図示を省略)で接続される。また、回路パターン15aの配線領域15a3と回路パターン14bの配線領域14b3とがワイヤ51b(図3では図示を省略)で接続される。この際、回路パターン13aの連通部13a2と回路パターン13bの連通部13b2とがワイヤ51aの配線方向W1から見て(距離D1)離間している。また、回路パターン15aの連通部15a2と回路パターン14bの連通部14b2とがワイヤ51bの配線方向W2から見て(距離D2)離間している。ここでは、配線領域13a3,15a3,13b3,14b3は、セラミック配線基板10a,10bの回路パターン間13a,13b,14b,15aを導通させるワイヤ51a,51bが接続される領域である場合の例を示した。配線領域は、これだけではなく、例えば、セラミック配線基板10a,10bの回路パターン14a,15a,13bとケース40の内部端子部45aとを配線するワイヤ52a,52b,52cが接続される領域でもよい。また、ワイヤ51a,51b,52a,52b,52cは、配線部材であればよく、例えば、リードフレームやリボンであっても構わない。
 このようにワイヤ51a,51bで電気的に接続されたセラミック回路基板10a,10bに導通させた際の表面温度分布の計測を行う。なお、この際の計測対象となるサンプルを複数用意する。まず、以下では、比較対象とする参考例のサンプルについて図4を用いて説明する。図4は、参考例のセラミック回路基板のサンプルの平面図である。なお、図4に示す参考例のサンプル70は、半導体装置60と同じ構成には同じ符号を付している。この参考例では、セラミック回路基板110bの回路パターン113bは、導通領域13b1と導通領域13b1に(破線で示された)連通部113b2を介して連通した配線領域13b3とを有する。すなわち、連通部113b2には、連通部13b2と異なり、切り欠き部13b4が形成されていない。
 また、回路パターン13aの配線領域13a3と回路パターン113bの配線領域13b3とがワイヤ51aで電気的に接続されている。回路パターン15aの配線領域15a3と回路パターン14bの配線領域14b3とがワイヤ51bで電気的に接続されている。さらに、回路パターン14aの素子配置領域14a1,14a2と回路パターン13aの導通領域13a1とがワイヤ(符号省略)により電気的に接続されている。また、回路パターン113bの素子配置領域13b5,13b6と回路パターン14bの導通領域14b1とがワイヤ(符号省略)により電気的に接続されている。
 このような構成を有するサンプル70において、セラミック回路基板10aの回路パターン14a,15a(のワイヤ52a,52cが接続される領域(図1))から1000Aの電流を入力する。そして、セラミック回路基板110bの回路パターン113b(図1の回路パターン13bのワイヤ52bが接続される領域に対応する箇所)から電流を出力させる。このようにして電流を循環させた際の回路パターン13a,113b及びワイヤ51aにおける表面温度分布を解析した。また、このサンプル70では、回路パターン14aに入力された電流は回路パターン13a中では導通経路Ia1に沿って導通してワイヤ51aに流入する。そして、ワイヤ51aからの電流は回路パターン113b中を導通経路Ib1に沿って導通する。また、回路パターン14bに入力された電流は回路パターン14b中では導通経路Ib2に沿って導通してワイヤ51bに流入する。そして、ワイヤ51bからの電流は回路パターン15a中を導通経路Ib2に沿って導通する。
 次に、このようなサンプル70に対して導通させた際の回路パターン13a,113b及びワイヤ51aにおける上昇温度の分布について図5を用いて説明する。なお、上昇温度とは、サンプル70に対して電流を導通させた際の温度から、電流を導通させない時の温度を差し引いた温度である。図5は、参考例のセラミック回路基板のサンプルの要部の表面の上昇温度分布を示す図である。なお、図5では、計測対象の回路パターン13a,113b及びワイヤ51aの上昇温度の解析結果を表示している。また、図5中に記載の等値線は上昇温度の分布を表している。また、ワイヤ51aについては、上昇温度の分布を表現するための便宜上、矩形状で表している。
 図5の表面温度分布によれば、ワイヤ51aの連通部13a2に近い側(図5中下側)の等値線の領域Ta1で最も高い上昇温度(110℃)が解析された。また、この領域Ta1から遠ざかるに連れて上昇温度が低下していた。これは、図4で説明したように、電流は回路パターン13a中を導通経路Ia1に沿って導通する。すなわち、電流は導通領域13a1から連通部13a2を介して配線領域13a3に流入する際に導通方向が90度転回して、配線領域13a3を(図5中上方に)導通する。このため、回路パターン13aにおいては、転回部分の内側の温度が高くなることが考えられる。そして、配線領域13a3を導通する電流はワイヤ51aに流出する。そして、ワイヤ51aから流入された電流は回路パターン113b中を導通経路Ib1に沿って導通する。導通領域13a1からワイヤ51aを介して導通領域13b1までの導通経路は、図5中下側の方が上側より短い。そのため、ワイヤ51aは図5中下側の方が上側より電流の流量が多い。また、回路パターン113bの導通領域13b1も図5中下側の方が電流の流量が多く、温度が高いことが考えられる。
 このように、電流が導通する回路パターン13a,113bが非対称であるためにそこを導通する電流の導通経路Ia1,Ib1も非対称となる。このため、ワイヤ51aにおいて発熱箇所が偏ってしまう。なお、回路パターン15a,14b及びワイヤ51bに関する表面温度分布等については後述する。また、このようなサンプル70に対して、実際に、所定の電流を導通させてサーモビューアで観察した。その結果、ワイヤ51aは、最も高い所の温度が270℃程度になり、異常過熱が発生していることがわかった。つまり、ワイヤ51aは、図5中下側の方が上側より電流の流量が多い。また、ワイヤ51aは、配線領域13a3,13b3との接合箇所以外、セラミック回路基板10a,10bから離れているため、冷却されにくい。そのため、ワイヤ51aの連通部13a2に近い側の領域Ta1において、異常過熱が発生したことが考えられる。以上のように、発明者らは、ワイヤ51aである配線部材の異常過熱が、回路パターン13a,113bの形状に起因する電流経路長のばらつきにより促進されることを見い出した。特に、短い電流経路の部分へ電流が集中し、配線部材の抵抗による損失により、異常過熱が生じる。
 次に、半導体装置60のセラミック回路基板10a,10bに関するサンプルについて、図6を用いて説明する。図6は、実施の形態のセラミック回路基板のサンプルの平面図である。なお、図6に示す半導体装置60のセラミック回路基板10a,10bのサンプル80は、サンプル70の回路パターン113bに代わり、回路パターン13bが設けられている。セラミック回路基板10bの回路パターン13bは、導通領域13b1と導通領域13b1に切り欠き部13b4が形成されて構成された連通部13b2を介して連通した配線領域13b3とを有する。その他の構成、表面温度分布の解析はサンプル70の場合と同様である。このようなサンプル80でも、回路パターン14aに入力された電流は回路パターン13a中では導通経路Ia1に沿って導通してワイヤ51aに流入する。そして、ワイヤ51aからの電流は、回路パターン13bには切り欠き部13b4が形成されているために、回路パターン13b中を配線領域13b3、連通部13b2、導通領域13b1の順に導通経路Ib3に沿って導通する。また、回路パターン14bに入力された電流は回路パターン14b中では導通経路Ib2に沿って導通してワイヤ51bに流入する。そして、ワイヤ51bからの電流は回路パターン15a中を導通経路Ia2に沿って導通する。
 次に、このようなサンプル80に対して導通させた際の回路パターン13a,13b及びワイヤ51aにおける上昇温度の分布について図7を用いて説明する。なお、上昇温度とは、サンプル70に対して電流を導通させた際の温度から、電流を導通させない時の温度を差し引いた温度である。図7は、実施の形態のセラミック回路基板のサンプルの要部の表面の上昇温度分布を示す図である。なお、図7では、計測対象の回路パターン13a,13b及びワイヤ51aの上昇温度の解析結果を表示している。また、図7中に記載の等値線は上昇温度の分布を表している。また、この場合もワイヤ51aについては、上昇温度の分布を表現するための便宜上、矩形状で表している。
 図7によれば、ワイヤ51aの連通部13a2に近い側(図7中下側)の等値線の領域Ta1と、ワイヤ51aの連通部13b2に近い側(図7中上側)の領域Tb1とが同じ温度であり最も高い上昇温度(80℃)であった。ワイヤ51aでは、領域Ta1,Tb1から遠ざかるに連れて温度が低下していた。そして、表面の上昇温度のばらつきは、切り欠き部13b4が形成されていない場合(サンプル70)に比べて、小さかった。
 サンプル80の回路パターン13bでは、切り欠き部13b4が形成されて連通部13b2が構成されるために、連通部13a2と連通部13b2とがワイヤ51aの配線方向から見て離間している。すなわち、回路パターン13a中における導通経路Ia1と、回路パターン13b中における導通経路Ib3とが(ワイヤ51aの中心に対して)点対称となる。このため、導通領域13a1からワイヤ51aを介して導通領域13b1までの導通経路の長さのばらつきは、切り欠き部13b4が形成されていない場合(サンプル70)に比べて、小さくなる。そのため、ワイヤ51aにおいて電流は均等に流れやすい。したがって、ワイヤ51aの温度の偏りが抑制したと考えられる。また、このようなサンプル80に対して、実際に、所定の電流を導通させてサーモビューアで観察した。その結果、最も高い所の温度が250℃を下回り、異常過熱が発生していないことがわかった。つまり、発明者らは、連通部13a2と連通部13b2とがワイヤ51aの配線方向から見て離間していることで、回路パターン13a,13bの形状に起因する電流経路長のばらつきを抑制し、ワイヤ51aである配線部材における電流が均等になり、その結果、異常過熱の発生を防げることを見い出した。
 また、回路パターン15a,14bは、上記のような表面の上昇温度の解析を行っていないものの、ワイヤ51bの領域の中心に対して点対称の形状であり、連通部15a2と連通部14b2とがワイヤ51bの配線方向から見て離間している。このため、回路パターン13a,13bと同様に、導通経路Ia2,Ib2が対称となる。すなわち、この場合でも、導通領域14b1からワイヤ51bを介して導通領域15a1までの導通経路の長さのばらつきが小さくなることが考えられる。これにより、ワイヤ51bの温度の偏りも抑制されていると考えられる。したがって、半導体装置60のケース40内の封止に、耐熱温度が250℃程度のシリコーンゲルが用いられた場合、セラミック回路基板10a,10bを電気的に接続するワイヤ51a,51bの温度が250℃よりも低く抑制される。このため、シリコーンゲルの劣化等が防止されて、半導体装置60の信頼性の低下を抑制することができる。
 次に、サンプル80の回路パターン15aの導通領域15a1にグランドワイヤ53を形成したサンプルについて図8を用いて説明する。図8は、実施の形態のセラミック回路基板の別のサンプルの平面図である。なお、図8に示すサンプル85は、サンプル80の回路パターン15aの導通領域15a1の表面の少なくとも2点間をグランドワイヤ53で電気的に接続するように複数形成されているものである。その他の構成、表面温度分布の解析はサンプル80の場合と同様である。なお、サンプル85では、グランドワイヤ53を回路パターン15aの導通領域15a1に形成している場合を例に挙げて説明している。グランドワイヤ53は、導電性に優れたアルミニウム、銅または、少なくともこれらの一種を含む合金等により構成されている。また、これらの径は、100μm以上、1mm以下であることが好ましい。ワイヤーボンディング装置で形成することができる。このようなグランドワイヤ53は、この場合に限らず、回路パターンの形状、大きさに応じて、回路パターン上に適宜形成してもよい。
 このようなサンプル85は、サンプル80と同様の回路パターンであるために、表面の上昇温度分布は、図7に示したサンプル80の上昇温度分布と同様である。また、サンプル80,85の内部抵抗を、テスターにより計測した。なお、それぞれの内部抵抗は、ケース40の内部端子部45aから内部端子部45bまでの半導体素子21a,21b,21c,21d及び半導体素子22a,22b,22c,22dを除く電気抵抗の合計である。この結果、サンプル85の内部抵抗は、図6に示したサンプル80の内部抵抗の82%であった。これは、回路パターン15aの導通領域15a1にグランドワイヤ53が形成されることにより、導通領域15a1及びグランドワイヤ53の導通が可能となり、内部抵抗の低下が実現できたことが考えられる。このように内部抵抗を低減することができるために、サンプル80の場合よりも、半導体装置60内の導通による発熱を抑制することができるようになり、半導体装置60の信頼性の低下をより抑制することができる。
 次に、図6で示したように導通に伴う発熱の偏りを抑制できる回路パターンの変形例について図9及び図10を用いて説明する。図9及び図10は、実施の形態のセラミック回路基板の回路パターンの変形例を示す図である。なお、図9は、切り欠き部を形成することで一対の回路パターンにおける電流の導通経路を対称化した場合(回路パターン13a,13bに対応)を示している。図10は、形状に基づき、一対の回路パターンの電流の導通経路を対称化した場合(回路パターン15a,14bに対応)を示している。また、図9及び図10でも、半導体装置60と同じ構成には同じ符号を付している。図9(A)は、図6において、回路パターン13b側が図中上方に位置ずれした場合である。図9(B)は、図9(A)においてさらに導通領域13b1及び連通部13b2がワイヤ51aの配線方向に平行となるような傾斜がつけられている場合である。図9(C)は、回路パターン23a,23bがワイヤ51aにより電気的に接続されている。回路パターン23aは、導通領域23a1と導通領域23a1に連通部23a2を介して中央部に連通した配線領域23a3とを有する。回路パターン23bは、導通領域23b1と導通領域23b1に切り欠き部23b4が中央部に形成されて構成された一対の連通部23b2を介して連通した配線領域23b3とを有する。また、図10(A)は、図6において、回路パターン14b側が図中上方に位置ずれした場合である。図10(B)は、図6において、回路パターン14bの導通領域14b1のみが図中上方に位置ずれした場合である。そして、図10(C)は、図10(B)において回路パターン14b側が図中上方に位置ずれした場合である。
 このように、図9(A),(B)のいずれも、切り欠き部13b4が形成されることで、回路パターン13aの連通部13a2と回路パターン13bの連通部13b2とがワイヤ51aの配線方向から見て離間している。図9(C)でも、切り欠き部23b4が形成されることで、回路パターン23aの連通部23a2と回路パターン23bの連通部23b2とがワイヤ51aの配線方向から見て離間している。また、図10のいずれも、回路パターン15aの連通部15a2と回路パターン14bの連通部14b2とがワイヤ51bの配線方向から見て離間している。このため、回路パターン13a,15aと回路パターン13b,14bとにおける電流の導通経路がワイヤ51a,51bの中心に対して点対称となる。また、回路パターン23aと回路パターン23bとにおける電流の導通経路がワイヤ51aの配線方向に対して線対称となる。これにより、回路パターン13a,23a,15aと回路パターン13b,23b,14bとの発熱の偏りが防止されると共に内部抵抗が低減する。したがって、ワイヤ51a,51bの温度上昇が抑制される。
 次に、参考例としてのセラミック回路基板の回路パターンの変形例について図11及び図12を用いて説明する。図11及び図12は、参考例のセラミック回路基板の回路パターンの変形例を示す図である。なお、図11は、切り欠き部を形成することで一対の回路パターンにおける電流の導通経路を対称化した場合を示している。図12は、形状に基づき、一対の回路パターンの電流の導通経路を対称化した場合を示している。また、図11及び図12ではセラミック回路基板の回路パターンのみを表している。
 図11では、回路パターン80a,80bがワイヤ51aにより電気的に接続されている。回路パターン80aは、導通領域80a1と導通領域80a1に連通部80a2を介して連通した配線領域80a3とを有する。回路パターン80bは、導通領域80b1と導通領域80b1に切り欠き部80b4が形成されて構成された連通部80b2を介して連通した配線領域80b3とを有する。回路パターン80bでは、切り欠き部80b4の切り込みが浅く、回路パターン80aの連通部80a2と回路パターン80bの連通部80b2とがワイヤ51aの配線方向から見て離間しておらず重なっている。回路パターン80aから回路パターン80bに電流を導通させると、連通部80a2と連通部80b2とがワイヤ51aの配線方向から見て重複部分があるために、回路パターン80a,80bの導通経路が対称とならない。このため、回路パターン80a,80bの発熱箇所に偏りが生じ、内部抵抗も低減せずに、ワイヤ51aの温度が上昇してしまうおそれがある。
 また、図12(A)では、回路パターン81a,81bがワイヤ51bにより電気的に接続されている。回路パターン81aは、導通領域81a1と導通領域81a1に連通部81a2を介して連通した配線領域81a3とを有する。回路パターン81bは、導通領域81b1と導通領域81b1に連通部81b2を介して連通した配線領域81b3とを有する。この場合も、回路パターン81aの連通部81a2と回路パターン81bの連通部81b2とがワイヤ51bの配線方向から見て離間しておらず重なっている。回路パターン81aから回路パターン81bに電流を導通させると、連通部81a2と連通部81b2とがワイヤ51bの配線方向から見て重複部分があるために、回路パターン81a,81bの導通経路が対称とならない。このため、回路パターン81a,81bの発熱箇所に偏りが生じ、内部抵抗も低減せずに、ワイヤ51bの温度が上昇してしまうおそれがある。
 また、図12(B)では、回路パターン82a,82bがワイヤ51bにより電気的に接続されている。回路パターン82aは、導通領域82a1と導通領域82a1に連通部82a2を介して連通した配線領域82a3とを有する。回路パターン82bは、導通領域82b1と導通領域82b1に連通部82b2を介して連通した配線領域82b3とを有する。この場合も、回路パターン82aの連通部82a2と回路パターン82bの連通部82b2とがワイヤ51bの配線方向から見て対向配置している。例えば、回路パターン82aから回路パターン82bに電流を導通させると、電流は導通領域82a1から配線領域82a3に導通して、ワイヤ51bから配線領域82b3に流入する。この際、連通部82b2の図中上方の温度が上昇してしまうおそれがある。このように、回路パターン82a,82bの発熱箇所に偏りが生じ、内部抵抗も低減せずに、ワイヤ51bの温度が上昇してしまうおそれがある。
 図12(C)でも、回路パターン83a,83bがワイヤ51bにより電気的に接続されている。回路パターン83aは、導通領域83a1と導通領域83a1に連通部83a2を介して連通した配線領域83a3とを有する。回路パターン83bは、導通領域83b1と導通領域83b1に連通部83b2を介して連通した配線領域83b3とを有する。この場合も、回路パターン83aの連通部83a2と回路パターン83bの連通部83b2とがワイヤ51bの配線方向から見て対向配置している。例えば、回路パターン83aから回路パターン83bに電流を導通させると、電流は導通領域83a1から配線領域83a3に(分岐するように)導通して、ワイヤ51bから配線領域83b3に流入する。この際、連通部83b2の両端(図中上下方)の温度が上昇してしまうおそれがある。このように、回路パターン83a,83bの発熱箇所に偏りが生じ、内部抵抗も低減せずに、ワイヤ51bの温度が上昇してしまうおそれがある。
 上記半導体装置60は、導通領域13a1,15a1と導通領域13a1,15a1に連通部13a2,15a2を介して連通した配線領域13a3,15a3とを有する回路パターン13a,15aを有する。また、導通領域13b1,14b1と導通領域13b1,14b1に連通部13b2,14b2を介して連通し、配線領域13a3,15a3と所定の間隔離れて向かい合う配線領域13b3,14b3とを有する回路パターン13b,14bを有する。そして、配線領域13a3,15a3と配線領域13b3,14b3とを電気的に接続するワイヤ51a,51bを備えている。この際、連通部13a2,15a2と連通部13b2,14b2とがワイヤ51a,51bの配線方向から見て離間している。これにより、回路パターン13a,15a中における導通経路と、回路パターン13b,14b中における導通経路とが(ワイヤ51a,51bの中心に対して)点対称となる。このため、ワイヤ51a,51bの電流の偏りが低減されるため、ワイヤ51a,51bの温度の上昇が抑制される。したがって、半導体装置60は、発熱に起因する損傷等の発生を防止して、信頼性の低下を抑制することができる。なお、本実施の形態では、半導体装置60内の回路パターン13a,13b及び回路パターン15a,14bに対する導通経路を制御して、ワイヤ51a,51bの温度の上昇を抑制している。この回路パターン13a,13b及び回路パターン15a,14bに限らない。例えば、一対のリードフレームのような導電部を配線部材で電気的に接続するような場合にも、当該一対の導通部に対して、本実施の形態の回路パターン13a,13b及び回路パターン15a,14bのように導通経路を制御することが可能である。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応するすべての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 10a,10b セラミック回路基板
 11a,11b 絶縁板
 12a,12b 金属板
 13a,14a,15a,16a,13b,14b,15b 回路パターン
 13a1,15a1,13b1,14b1 導通領域
 13a2,15a2,13b2,14b2 連通部
 13a3,15a3,13b3,14b3 配線領域
 13b4 切り欠き部
 14a1,14a2,13b5,13b6 素子配置領域
 21a,22a,21b,22b,21c,22c,21d,22d 半導体素子
 30 放熱板
 40 ケース
 41 側壁部
 42a,42b 段差部
 43a,43b,43c,43d 端子配置部
 44 収納領域
 45a,45b,45c 内部端子部
 46a,46b,46c,46d 外部端子部
 51a,52a,51b,52b,52c ワイヤ
 53 グランドワイヤ
 60 半導体装置
 80,85 サンプル

Claims (10)

  1.  第1導通領域と前記第1導通領域に第1連通部を介して連通した第1配線領域とを有する第1導電部と、
     第2導通領域と前記第2導通領域に第2連通部を介して連通し、前記第1配線領域と所定の間隔離れて向かい合う第2配線領域とを有する第2導電部と、
     前記第1配線領域と前記第2配線領域とを電気的に接続する配線部材とを備え、
     前記第1連通部と前記第2連通部とが前記配線部材の配線方向から見て離間している、
     半導体装置。
  2.  前記第1導電部は、前記第1配線領域が前記第1導通領域より幅広く、
     前記第2導電部は、前記第2配線領域が前記第2導通領域より幅広い、
     請求項1に記載の半導体装置。
  3.  前記第1導電部にて、前記第1配線領域は前記第1導通領域に対して直角に延伸し、
     前記第2導電部にて、前記第2配線領域は前記第2導通領域に対して直角に延伸し、
     前記第1導通領域と前記第2導通領域とは前記第1配線領域及び前記第2配線領域を挟んで反対側にそれぞれ延伸している、
     請求項2に記載の半導体装置。
  4.  前記第1導電部では、前記第1配線領域が前記第1導通領域より幅広く、
     前記第2導電部では、前記第2連通部は、その側部の、少なくとも、前記配線部材の配線方向から見て前記第1連通部と前記第2導通領域とが重なる部分に切り欠き部が形成されている、
     請求項1に記載の半導体装置。
  5.  前記第1導電部では、前記第1配線領域は前記第1導通領域に対して直角に延伸し、
     前記第2導電部では、前記切り欠き部が、前記第1配線領域の延伸する方向の反対側の側部から、前記配線部材の配線方向から見て前記第1連通部の幅以上となるように形成されている、
     請求項4に記載の半導体装置。
  6.  前記第1連通部と前記第2連通部との幅は等しい、
     請求項1乃至5のいずれかに記載の半導体装置。
  7.  前記配線部材は、複数のワイヤ、リードフレームまたはリボンである、
     請求項1乃至6のいずれかに記載の半導体装置。
  8.  前記第1導通領域及び前記第2導通領域の少なくとも一方に半導体素子が配置されている、
     請求項1乃至7のいずれかに記載の半導体装置。
  9.  前記第1導通領域及び前記第2導通領域の少なくとも一方に外部接続端子が電気的に接続されている、
     請求項1乃至8のいずれかに記載の半導体装置。
  10.  前記第1導通領域及び前記第2導通領域の少なくとも一方の表面上の少なくとも2点間を電気的に接続する別の配線部材が形成されている、
     請求項1乃至9のいずれかに記載の半導体装置。
PCT/JP2019/017626 2018-06-06 2019-04-25 半導体装置 WO2019235097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020523563A JP6888742B2 (ja) 2018-06-06 2019-04-25 半導体装置
DE112019000169.8T DE112019000169T5 (de) 2018-06-06 2019-04-25 Halbleitereinrichtung
CN201980006085.5A CN111418049B (zh) 2018-06-06 2019-04-25 半导体装置
US16/883,464 US11177190B2 (en) 2018-06-06 2020-05-26 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018108437 2018-06-06
JP2018-108437 2018-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/883,464 Continuation US11177190B2 (en) 2018-06-06 2020-05-26 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019235097A1 true WO2019235097A1 (ja) 2019-12-12

Family

ID=68769999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017626 WO2019235097A1 (ja) 2018-06-06 2019-04-25 半導体装置

Country Status (5)

Country Link
US (1) US11177190B2 (ja)
JP (1) JP6888742B2 (ja)
CN (1) CN111418049B (ja)
DE (1) DE112019000169T5 (ja)
WO (1) WO2019235097A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3958306A1 (de) * 2020-08-19 2022-02-23 Siemens Aktiengesellschaft Leistungsmodul mit mindestens zwei auf einem substrat kontaktierten leistungshalbleiteranordnungen
WO2023053823A1 (ja) * 2021-09-29 2023-04-06 ローム株式会社 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707643A (zh) * 2021-08-30 2021-11-26 中国振华集团永光电子有限公司(国营第八七三厂) 一种高集成高可靠igbt功率模块及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249394A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 半導体装置
JP2015167233A (ja) * 2015-04-13 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置
JP2017135392A (ja) * 2009-06-18 2017-08-03 ローム株式会社 半導体装置
JP2017139406A (ja) * 2016-02-05 2017-08-10 富士電機株式会社 半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228839B2 (ja) 1994-09-07 2001-11-12 株式会社日立製作所 電力用半導体装置
EP0706221B8 (en) * 1994-10-07 2008-09-03 Hitachi, Ltd. Semiconductor device comprising a plurality of semiconductor elements
JP3222341B2 (ja) 1995-01-11 2001-10-29 株式会社日立製作所 半導体モジュール
JP2001094035A (ja) 1999-09-27 2001-04-06 Toshiba Corp 半導体装置
US20120153444A1 (en) 2009-06-18 2012-06-21 Rohm Co., Ltd Semiconductor device
JP2013258321A (ja) * 2012-06-13 2013-12-26 Fuji Electric Co Ltd 半導体装置
DE112013003161T5 (de) * 2012-07-19 2015-03-12 Mitsubishi Electric Corporation Leistungs-Halbleitermodul
JP5429413B2 (ja) 2013-01-09 2014-02-26 三菱電機株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135392A (ja) * 2009-06-18 2017-08-03 ローム株式会社 半導体装置
JP2011249394A (ja) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp 半導体装置
JP2015167233A (ja) * 2015-04-13 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置
JP2017139406A (ja) * 2016-02-05 2017-08-10 富士電機株式会社 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3958306A1 (de) * 2020-08-19 2022-02-23 Siemens Aktiengesellschaft Leistungsmodul mit mindestens zwei auf einem substrat kontaktierten leistungshalbleiteranordnungen
US11888407B2 (en) 2020-08-19 2024-01-30 Siemens Aktiengesellschaft Power module having at least two power semiconductor arrangements that are contacted on a substrate
WO2023053823A1 (ja) * 2021-09-29 2023-04-06 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US11177190B2 (en) 2021-11-16
US20200286807A1 (en) 2020-09-10
JPWO2019235097A1 (ja) 2020-12-17
JP6888742B2 (ja) 2021-06-16
DE112019000169T5 (de) 2020-08-20
CN111418049A (zh) 2020-07-14
CN111418049B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN106952897B (zh) 半导体装置及其制造方法
US9379083B2 (en) Semiconductor device and method for manufacturing semiconductor device
US9159715B2 (en) Miniaturized semiconductor device
WO2019235097A1 (ja) 半導体装置
WO2016084622A1 (ja) 半導体装置
KR102156867B1 (ko) 반도체 장치
US11456244B2 (en) Semiconductor device
JPWO2018179981A1 (ja) 半導体装置
US7479693B2 (en) Arrangement of conductive connectors in a power semiconductor device
WO2018151010A1 (ja) 半導体装置
CN116072624A (zh) 半导体装置
WO2022059251A1 (ja) 半導体装置
JP6668617B2 (ja) サーミスタ搭載装置およびサーミスタ部品
JP2019029410A (ja) 半導体モジュール
CN110911375A (zh) 半导体装置
JP7118205B1 (ja) 半導体装置及びそれを用いた半導体モジュール
JP7413720B2 (ja) 半導体モジュール
JP7278439B1 (ja) 半導体装置及びそれを用いた電力変換装置
KR20150045652A (ko) 파워 모듈
WO2022224935A1 (ja) 半導体装置
US20240120249A1 (en) Semiconductor module
US20230345637A1 (en) Semiconductor device
WO2023017707A1 (ja) 半導体装置
JP7106014B2 (ja) パワーモジュール
JP7159609B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523563

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19815176

Country of ref document: EP

Kind code of ref document: A1