WO2019233053A1 - 多微孔泡沫镍及其制备方法 - Google Patents

多微孔泡沫镍及其制备方法 Download PDF

Info

Publication number
WO2019233053A1
WO2019233053A1 PCT/CN2018/118015 CN2018118015W WO2019233053A1 WO 2019233053 A1 WO2019233053 A1 WO 2019233053A1 CN 2018118015 W CN2018118015 W CN 2018118015W WO 2019233053 A1 WO2019233053 A1 WO 2019233053A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed nickel
temperature
nickel
ppm
plating
Prior art date
Application number
PCT/CN2018/118015
Other languages
English (en)
French (fr)
Inventor
钟发平
肖进春
李星
郝胜策
彭海青
彭为
Original Assignee
常德力元新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常德力元新材料有限责任公司 filed Critical 常德力元新材料有限责任公司
Publication of WO2019233053A1 publication Critical patent/WO2019233053A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves

Definitions

  • the invention relates to a foamed nickel material, in particular to a multi-microcellular foamed nickel and a preparation method thereof.
  • the foamed nickel material As the base material of the battery positive electrode, the foamed nickel material has a relatively mature preparation process. However, with the development of the battery, higher requirements have been placed on the specific surface area of the foamed nickel material and the ability to adhere to active materials. At the same time, with the expansion of the application fields of nickel foam, such as heat dissipation materials, filter materials, catalyst carriers, etc., the application of these fields has also put forward higher requirements for the specific surface area of nickel foam.
  • the specific surface area of nickel foam is largely determined by the polyurethane sponge substrate. Therefore, to increase the specific surface area, in addition to selecting polyurethane foam substrates with better performance and higher prices, the preparation method of nickel foam can also be improved to improve the foam. Specific surface area of nickel. Due to the limitation of the process, the nickel foam products on the existing market have a high impurity content, and the micropore density and specific surface area cannot meet the needs of users in many cases.
  • the invention aims to provide a microporous foamed nickel with high microporous density, large specific surface area, and improved filling adhesion of the positive electrode active material of the battery, and also provides a method for preparing the microporous foamed nickel of the invention, which is simple and feasible. control.
  • a multi-microcellular foam nickel which uses polyurethane sponge as a matrix and has a three-dimensional network porous structure as a whole.
  • the micropore density is ⁇ 10 / ⁇ m 2
  • the specific surface area is ⁇ 15m 2 / g
  • the nickel content is ⁇ 99.5%
  • the mass proportion is: Cu ⁇ 50ppm, Fe ⁇ 100ppm, Si ⁇ 100ppm, C ⁇ 200ppm, S ⁇ 100ppm.
  • pores with a maximum size below 10 nm are generally defined as micropores.
  • its longitudinal tensile strength is ⁇ 80N / 20mm and its transverse tensile strength is ⁇ 40N / 20mm; its longitudinal elongation is ⁇ 6% and its transverse elongation is ⁇ 15%; its longitudinal resistance is ⁇ 70m ⁇ and its lateral resistance is ⁇ 90m ⁇ .
  • the dimensions of the test samples for longitudinal resistance and lateral resistance are: 100mm in length and 10mm in width.
  • the polyurethane sponge is conductive by PVD vacuum sputtering.
  • the reduction and cooling step is specifically: placing the incinerated material in a reduction device having a temperature of 800-1000 ° C and being filled with a reducing atmosphere for 18 to 36 minutes, and then cooling the material to 80-120 ° C in a protective gas atmosphere. Then, it is cooled to 40-80 ° C by reflux water, and finally cooled to room temperature by air.
  • the reducing atmosphere is a mixed gas of hydrogen and nitrogen, wherein a mass ratio of hydrogen is 60% to 80%, and a mass ratio of nitrogen is 20% to 40%.
  • the protective gas is generally one or more of nitrogen and inert gas.
  • the pre-plating step is generally: pre-plating the conductive sponge substrate in a pre-plating tank containing a Watt plating solution having a temperature of 45-65 ° C and a pH of 4.3-4.6, and the pre-plating current is 30 ⁇ 100A, the traveling speed of the substrate is 0.1 ⁇ 0.3m / min, and the pre-plating time is controlled to 1-3min.
  • the main plating step is generally: placing the pre-plated material in a plating bath containing a Watt plating solution having a temperature of 45-65 ° C and a pH of 4.3-4.6, and the main plating current is 1000-1800A,
  • the main plating time is controlled to 2 to 7 minutes, and the traveling speed of the substrate is 0.1 to 0.3 m / min.
  • the water washing step is generally: the pure water is intermittently washed by the spray head device through the main plating material.
  • the microporous foamed nickel of the present invention has a high microporous density and a large specific surface area, can improve the filling adhesion of the positive electrode active material of a battery, and can effectively increase the capacity of a battery using the microporous foamed nickel of the present invention as a substrate.
  • the microporous foamed nickel of the present invention has high tensile strength and high elongation, which is beneficial to the production of battery pole pieces.
  • the microporous foamed nickel has low resistance and can improve the conductivity of the positive electrode substrate, thereby reducing the use of the present invention. Internal Resistance of Microcellular Foam Nickel Batteries.
  • the method for preparing the microporous foamed nickel of the present invention is simple in method and highly controllable.
  • the drying step is performed simultaneously with the removal of free water and the removal of combined water.
  • the incineration temperature is relatively low, which can save energy consumption and reduce manufacturing costs.
  • FIG. 1 is an SEM image of the microcellular nickel foam prepared by the method of Example 1.
  • FIG. 1 is an SEM image of the microcellular nickel foam prepared by the method of Example 1.
  • a method for preparing multi-microcellular foam nickel is performed according to the following steps:
  • Conductive Conductive conductive polyurethane foam substrate with a thickness of 1.4mm and 120 PPI holes is subjected to PVD vacuum sputtering;
  • the conductive sponge substrate is pre-plated in a pre-plating tank filled with a Watt plating solution having a temperature of 55 ° C and a pH of 4.5.
  • the pre-plating current is 60 A, and the traveling speed of the substrate is 0.2m / min, the pre-plating time is controlled to 3min;
  • Main plating The pre-plated material is placed in an electroplating bath containing a Watt plating solution having a temperature of 55 ° C and a pH of 4.5.
  • the main plating current is 1500A and the traveling speed of the substrate is 0.2m. / min, the main plating time is controlled to 5min;
  • Incineration Put the dried material in an incinerator with a temperature of 550 ° C for 15min;
  • Reduction cooling The incinerated material is placed in a reduction device at a temperature of 900 ° C, filled with a mixture of hydrogen (70% by mass) and nitrogen (30% by mass) for 24 minutes, and then the material is placed in nitrogen In the atmosphere, it is cooled to 100 ° C, then cooled to 60 ° C with reflux water, and finally cooled to room temperature by air.
  • micro-cellular foamed nickel prepared according to the method of Example 1 was subjected to electron microscope microscopic examination, and the SEM image thereof is shown in FIG. 1.
  • the performance comparison test of the microcellular nickel foam prepared according to the method of Example 1 and conventional nickel foam was performed. The test results are shown in Table 1. It can be seen from the data in Table 1 that the multi-cell foamed nickel prepared by the method of Example 1
  • the microcellular density and specific surface area of microcellular foamed nickel are higher than those of conventional foamed nickel. Its tensile strength and elongation are higher than those of conventional foamed nickel, and its electrical resistance is lower than that of conventional foamed nickel.
  • the chemical composition of the microcellular foamed nickel prepared according to the method of Example 1 was tested, and the results were as follows: the nickel content was 99.85%, and among the impurity components: Cu was 24 ppm, Fe was 26 ppm, Si was 30 ppm, C was 84 ppm, and S was 21ppm.
  • a method for preparing a microcellular foamed nickel the steps of which are similar to those of the method for preparing a microcellular foamed nickel in Example 1, the differences are as follows:
  • the thickness of the polyurethane sponge substrate is 1.5mm, and the number of holes is 130PPI;
  • the temperature of the watt plating solution in the pre-plating tank is 65 ° C
  • the pH is 4.3
  • the pre-plating current is 100 A
  • the pre-plating time is controlled to 1 min
  • the traveling speed of the substrate is 0.3 m / min;
  • the temperature of the watt plating solution in the plating bath is 65 ° C
  • the pH is 4.3
  • the main plating current is 1800A
  • the pre-plating time is controlled to 2min
  • the traveling speed of the substrate is 0.3m / min;
  • the temperature of the drying device is 500 ° C, and the drying time is 1min;
  • the temperature of the incineration device is 650 ° C, and the incineration time is 4 minutes;
  • the temperature of the reduction device is 1000 ° C.
  • the mass ratio of hydrogen in the reducing atmosphere is 80%
  • the mass ratio of nitrogen is 20%
  • the reduction time is 18 minutes
  • the material is placed in an argon atmosphere.
  • microcellular foamed nickel prepared according to the method of Example 2 The performance of the microcellular foamed nickel prepared according to the method of Example 2 and conventional nickel foam were compared and tested. The test results are shown in Table 2. From the data in Table 2, it can be seen that most of the cells prepared according to the method of Example 2 The microcellular density and specific surface area of microcellular foamed nickel are higher than those of conventional foamed nickel. Its tensile strength and elongation are higher than those of conventional foamed nickel, and its electrical resistance is lower than that of conventional foamed nickel.
  • the chemical composition of the micro-cellular foamed nickel prepared according to the method of Example 2 was tested, and the results were as follows: the nickel content was 99.90%, and among the impurity components: Cu was 15 ppm, Fe was 28 ppm, Si was 31 ppm, C was 70 ppm, and S was 22ppm.
  • a method for preparing a microcellular foamed nickel the steps of which are similar to those of the method for preparing a microcellular foamed nickel in Example 1, the differences are as follows:
  • the thickness of the polyurethane sponge substrate is 1.8mm, and the number of holes is 140PPI;
  • the temperature of the watt plating solution in the pre-plating bath is 45 ° C
  • the pH is 4.6
  • the pre-plating current is 30 A
  • the pre-plating time is controlled to 3 minutes
  • the traveling speed of the substrate is 0.1 m / min;
  • the temperature of the watt plating solution in the plating bath is 45 ° C
  • the pH is 4.6
  • the main plating current is 1000A
  • the pre-plating time is controlled to 7min
  • the traveling speed of the substrate is 0.1m / min;
  • the temperature of the drying device is 300 ° C, and the drying time is 6 minutes;
  • the temperature of the incineration device is 450 ° C, and the incineration time is 24min;
  • the temperature of the reduction device is 800 ° C
  • the mass ratio of hydrogen in the reducing atmosphere is 60%
  • the mass ratio of nitrogen is 40%
  • the reduction time is 36min.
  • the material is placed in an argon atmosphere. Medium cooling to 120 ° C, then cooling to 80 ° C with reflux water, and finally cooling to room temperature with air, that is to make a multi-microcellular foamed nickel.
  • the performance comparison test of the microporous nickel foam prepared according to the method of Example 3 and conventional nickel foam was performed.
  • the test results are shown in Table 3. From the data in Table 3, it can be seen that many The microcellular density and specific surface area of microcellular foamed nickel are higher than those of conventional foamed nickel. Its tensile strength and elongation are higher than those of conventional foamed nickel, and its electrical resistance is lower than that of conventional foamed nickel.
  • the chemical composition of the microcellular foamed nickel prepared according to the method of Example 3 was tested, and the results were as follows: the nickel content was 99.92%, and among the impurity components: Cu was 19 ppm, Fe was 22 ppm, Si was 25 ppm, C was 60 ppm, and S was 19ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明提供了一种多微孔泡沫镍,以聚氨酯海绵为基体,整体呈三维网状多孔结构,微孔密度≥10个/μm 2,比表面积≥15m 2/g,镍含量≥99.5%,各杂质成分的质量占比为:Cu≤50ppm,Fe≤100ppm,Si≤100ppm,C≤200ppm,S≤100ppm。还提供了其制备方法,将聚氨酯海绵经导电化——预镀——主镀——水洗——烘干——焚烧——还原冷却步骤后制得,将经水洗后的材料置于温度为300~500℃的烘干装置中1~6min;所述焚烧步骤具体为:将经烘干后的材料置于温度为450~650℃的焚烧装置中4~24min。本发明的多微孔泡沫镍,微孔密度大,比表面积大,抗拉强度高,其制备方法简单,工艺可控性高。

Description

多微孔泡沫镍及其制备方法 技术领域
本发明涉及泡沫镍材料,特别涉及一种多微孔泡沫镍及其制备方法。
背景技术
泡沫镍材料作为电池正极的基体材料,其制备工艺比较成熟,但随着电池的发展,对泡沫镍材料的比表面积、活性物质附着能力不断提出了较高的要求。同时,随着泡沫镍的应用领域的扩展,例如作为散热材料、过滤材料、催化剂载体等等,这些领域的应用,也对泡沫镍的比表面积提出了较高的要求。而泡沫镍的比表面积很大程度上决定于聚氨酯海绵基材,因而要提高比表面积,除了选择性能较好、价格较高的聚氨酯海绵基材外,也可改进泡沫镍的制备方法来提高泡沫镍的比表面积。现有市场上的泡沫镍产品,由于工艺的限制,其杂质含量较高,且微孔密度、比表面积等在很多情况下都不能满足用户需求。
发明内容
本发明旨在提供一种微孔密度大、比表面积大、可提高电池正极活性物质填充附着力的多微孔泡沫镍,同时还提供本发明的多微孔泡沫镍的制备方法,方法简单可控。
本发明通过以下方案实现:
一种多微孔泡沫镍,以聚氨酯海绵为基体,整体呈三维网状多孔结构,微孔密度≥10个/μm 2,比表面积≥15m 2/g,镍含量≥99.5%,各杂质成分的质量占比为:Cu≤50ppm,Fe≤100ppm,Si≤100ppm,C≤200ppm,S≤100ppm。为更好地辨别和确定微孔,一般将最大尺寸为10nm以下的孔定义为微孔。
进一步地,其纵向抗拉强度≥80N/20mm,横向抗拉强度≥40N/20mm;纵向 延伸率≥6%,横向延伸率≥15%;纵向电阻≤70mΩ,横向电阻≤90mΩ。纵向电阻、横向电阻的测试样本的尺寸为:长100mm,宽10mm。
一种如上所述的多微孔泡沫镍的制备方法,将聚氨酯海绵经导电化——预镀——主镀——水洗——烘干——焚烧——还原冷却步骤后制得,所述烘干步骤具体为:将经水洗后的材料置于温度为300~500℃的烘干装置中1~6min;所述焚烧步骤具体为:将经烘干后的材料置于温度为450~650℃的焚烧装置中4~24min。
所述聚氨酯海绵导电化方式为PVD真空溅射。
所述还原冷却步骤具体为:将经焚烧后的材料置于温度为800~1000℃、充满还原气氛的还原装置中保持18~36min,之后将材料置于保护气体氛围中冷却至80~120℃,然后经回流水冷却至40~80℃,最后经空气冷却至室温。所述还原气氛为氢气和氮气的混合气体,其中氢气的质量占比为60%~80%,氮气的质量占比为20%~40%。所述保护气体一般为氮气、惰性气体中的一种或多种。
所述预镀步骤一般为:将经导电化的海绵基材置于装有温度为45~65℃、pH为4.3~4.6的瓦特电镀液的预镀槽中进行预镀,预镀电流为30~100A,基材的行进速度为0.1~0.3m/min,预镀时间控制为1~3min。
所述主镀步骤一般为:将预镀后的材料置于装有温度为45~65℃、pH为4.3~4.6的瓦特电镀液的电镀槽中进行主镀,主镀电流为1000~1800A,主镀时间控制为2~7min,基材的行进速度为0.1~0.3m/min。
所述水洗步骤一般为:纯水通过喷头装置对经主镀后的材料进行间断性冲洗。
本发明的多微孔泡沫镍,微孔密度大,比表面积大,可提高电池正极活性物质的填充附着力,可有效提高使用本发明多微孔泡沫镍为基体的电池容量。 同时,本发明的多微孔泡沫镍,抗拉强度高,延伸率高,有利于电池极片制作,且多微孔泡沫镍的电阻低,可提高正极基体导电率,从而降低使用本发明多微孔泡沫镍的电池的内阻。本发明的多微孔泡沫镍的制备方法,方法简单,可控性强,烘干步骤一次到位即脱游离水、脱结合水同时进行,焚烧温度较低,可节省能耗,降低制造成本。
附图说明
图1为实施例1方法制备得到的多微孔泡沫镍的SEM图。
具体实施方式
以下结合附图和实施例对本发明作进一步说明,但本发明并不局限于实施例之表述。
实施例1
一种多微孔泡沫镍的制备方法,按以下步骤进行:
(1)导电化:将厚度为1.4mm、120PPI孔数的聚氨酯海绵基材经PVD真空溅射导电化后;
(2)预镀:将经导电化的海绵基材置于装有温度为55℃、pH为4.5的瓦特电镀液的预镀槽中进行预镀,预镀电流为60A,基材的行进速度为0.2m/min,预镀时间控制为3min;
(3)主镀:将预镀后的材料置于装有温度为55℃、pH为4.5的瓦特电镀液的电镀槽中进行主镀,主镀电流为1500A,基材的行进速度为0.2m/min,主镀时间控制为5min;
(4)水洗:纯水通过喷头装置对经主镀后的材料进行间断性冲洗;
(5)烘干:将经水洗后的材料置于温度为400℃的烘干装置中4min;
(6)焚烧:将经烘干后的材料置于温度为550℃的焚烧装置中15min;
(7)还原冷却:将经焚烧后的材料置于温度900℃、充满氢气(质量占比70%)和氮气(质量占比30%)混合气体的还原装置中24min,之后将材料置于氮气氛围中冷却至100℃,然后经回流水冷却至60℃,最后经空气冷却至室温,即制得多微孔泡沫镍。
将按实施例1方法制备得到的多微孔泡沫镍进行电镜微观检测,其SEM图如图1所示。将按实施例1方法制备得到的多微孔泡沫镍与常规泡沫镍进行性能对比检测,其检测结果如表1所示,从表1中数据可看出,按实施例1方法制备得到的多微孔泡沫镍的微孔密度、比表面积都比常规泡沫镍的高,其抗拉强度、延伸率均比常规泡沫镍的高,其电阻均比常规泡沫镍的低。
表1不同材料的性能对比检测结果
Figure PCTCN2018118015-appb-000001
将按实施例1方法制备得到的多微孔泡沫镍进行化学成分检测,结果为:,镍含量99.85%,杂质成分中:Cu为24ppm,Fe为26ppm,Si为30ppm,C为84ppm,S为21ppm。
实施例2
一种多微孔泡沫镍的制备方法,其步骤与实施例1中的多微孔泡沫镍的制备方法的步骤相类似,其不同之处在于:
1、聚氨酯海绵基材的厚度为1.5mm,孔数为130PPI;
2、预镀步骤中,预镀槽中瓦特电镀液的温度为65℃、pH为4.3的,预镀电流为100A,预镀时间控制为1min,基材的行进速度为0.3m/min;
3、主镀步骤中,电镀槽中瓦特电镀液的温度为65℃、pH为4.3的,主镀电流为1800A,预镀时间控制为2min,基材的行进速度为0.3m/min;
4、烘干步骤中,烘干装置的温度为500℃,烘干时间为1min;
5、焚烧步骤中,焚烧装置的温度为650℃,焚烧时间为4min;
6、还原冷却步骤中,还原装置的温度为1000℃,还原气氛中的氢气的质量占比为80%、氮气的质量占比为20%,还原时间为18min,之后将材料置于氩气氛围中冷却至120℃,然后经回流水冷却至80℃,最后经空气冷却至室温,即制得多微孔泡沫镍。
将按实施例2方法制备得到的多微孔泡沫镍与常规泡沫镍进行性能对比检测,其检测结果如表2所示,从表2中数据可看出,按实施例2方法制备得到的多微孔泡沫镍的微孔密度、比表面积都比常规泡沫镍的高,其抗拉强度、延伸率均比常规泡沫镍的高,其电阻均比常规泡沫镍的低。
表2不同材料的性能对比检测结果
Figure PCTCN2018118015-appb-000002
Figure PCTCN2018118015-appb-000003
将按实施例2方法制备得到的多微孔泡沫镍进行化学成分检测,结果为:,镍含量99.90%,杂质成分中:Cu为15ppm,Fe为28ppm,Si为31ppm,C为70ppm,S为22ppm。
实施例3
一种多微孔泡沫镍的制备方法,其步骤与实施例1中的多微孔泡沫镍的制备方法的步骤相类似,其不同之处在于:
1、聚氨酯海绵基材的厚度为1.8mm,孔数为140PPI;
2、预镀步骤中,预镀槽中瓦特电镀液的温度为45℃、pH为4.6的,预镀电流为30A,预镀时间控制为3min,基材的行进速度为0.1m/min;
3、主镀步骤中,电镀槽中瓦特电镀液的温度为45℃、pH为4.6的,主镀电流为1000A,预镀时间控制为7min,基材的行进速度为0.1m/min;
4、烘干步骤中,烘干装置的温度为300℃,烘干时间为6min;
5、焚烧步骤中,焚烧装置的温度为450℃,焚烧时间为24min;
6、还原冷却步骤中,还原装置的温度为800℃,还原气氛中的氢气的质量占比为60%、氮气的质量占比为40%,还原时间为36min,之后将材料置于氩气氛围中冷却至120℃,然后经回流水冷却至80℃,最后经空气冷却至室温,即制得多微孔泡沫镍。
将按实施例3方法制备得到的多微孔泡沫镍与常规泡沫镍进行性能对比检测,其检测结果如表3所示,从表3中数据可看出,按实施例3方法制备得到 的多微孔泡沫镍的微孔密度、比表面积都比常规泡沫镍的高,其抗拉强度、延伸率均比常规泡沫镍的高,其电阻均比常规泡沫镍的低。
表3不同材料的性能对比检测结果
Figure PCTCN2018118015-appb-000004
将按实施例3方法制备得到的多微孔泡沫镍进行化学成分检测,结果为:,镍含量99.92%,杂质成分中:Cu为19ppm,Fe为22ppm,Si为25ppm,C为60ppm,S为19ppm。

Claims (6)

  1. 一种多微孔泡沫镍,以聚氨酯海绵为基体,整体呈三维网状多孔结构,其特征在于:微孔密度≥10个/μm 2,比表面积≥15m 2/g,镍含量≥99.5%,各杂质成分的质量占比为:Cu≤50ppm,Fe≤100ppm,Si≤100ppm,C≤200ppm,S≤100ppm。
  2. 如权利要求1所述的多微孔泡沫镍,其特征在于:其纵向抗拉强度≥80N/20mm,横向抗拉强度≥40N/20mm;纵向延伸率≥6%,横向延伸率≥15%;纵向电阻≤70mΩ,横向电阻≤90mΩ。
  3. 一种如权利要求1或2所述的多微孔泡沫镍的制备方法,其特征在于:将聚氨酯海绵基材经导电化——预镀——主镀——水洗——烘干——焚烧——还原冷却步骤后制得,所述烘干步骤具体为:将经水洗后的材料置于温度为300~500℃的烘干装置中1~6min;所述焚烧步骤具体为:将经烘干后的材料置于温度为450~650℃的焚烧装置中4~24min。
  4. 如权利要求3所述的多微孔泡沫镍的制备方法,其特征在于:所述聚氨酯海绵导电化方式为PVD真空溅射。
  5. 如权利要求3或4所述的多微孔泡沫镍的制备方法,其特征在于:所述还原冷却步骤具体为:将经焚烧后的材料置于温度为800~1000℃、充满还原气氛的还原装置中保持18~36min,之后将材料置于保护气体氛围中冷却至80~120℃,然后经回流水冷却至40~80℃,最后经空气冷却至室温。
  6. 如权利要求5所述的多微孔泡沫镍的制备方法,其特征在于:所述还原气氛为氢气和氮气的混合气体,其中氢气的质量占比为60%~80%,氮气的质量占比为20%~40%。
PCT/CN2018/118015 2018-06-05 2018-11-28 多微孔泡沫镍及其制备方法 WO2019233053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810574571.4A CN108707931A (zh) 2018-06-05 2018-06-05 多微孔泡沫镍及其制备方法
CN201810574571.4 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019233053A1 true WO2019233053A1 (zh) 2019-12-12

Family

ID=63870373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118015 WO2019233053A1 (zh) 2018-06-05 2018-11-28 多微孔泡沫镍及其制备方法

Country Status (2)

Country Link
CN (1) CN108707931A (zh)
WO (1) WO2019233053A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707931A (zh) * 2018-06-05 2018-10-26 常德力元新材料有限责任公司 多微孔泡沫镍及其制备方法
CN111411923A (zh) * 2020-03-31 2020-07-14 益阳市菲美特新材料有限公司 一种泡沫镍防砂筛管及其制作方法
CN112604689B (zh) * 2020-11-25 2022-03-15 电子科技大学 一种用于催化甲醛分解的多孔氧化铜骨架催化剂制备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) * 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
CN101298686A (zh) * 2007-04-30 2008-11-05 比亚迪股份有限公司 一种泡沫金属的制备方法
CN101566553A (zh) * 2009-04-09 2009-10-28 北京师范大学 泡沫镍比表面积的计算方法
CN102691078A (zh) * 2012-02-20 2012-09-26 南京航空航天大学 泡沫金属及其快速制备方法和所用装置
CN103627920A (zh) * 2013-11-11 2014-03-12 江苏大学 一种多孔镍的制备方法
CN104195608A (zh) * 2014-09-22 2014-12-10 常德力元新材料有限责任公司 车载动力电池正极基板材料泡沫镍的制备方法
CN105525321A (zh) * 2014-10-26 2016-04-27 常德力元新材料有限责任公司 一种制备高抗拉强度泡沫镍的电镀工艺
CN105624742A (zh) * 2014-10-29 2016-06-01 常德力元新材料有限责任公司 一种高抗拉强度泡沫镍材料
CN106757183A (zh) * 2015-11-25 2017-05-31 常德力元新材料有限责任公司 超低面密度、高开孔率的泡沫镍及其制作方法
CN106757186A (zh) * 2015-11-24 2017-05-31 常德力元新材料有限责任公司 一种制备高抗拉强度泡沫镍的电镀工艺
CN108707931A (zh) * 2018-06-05 2018-10-26 常德力元新材料有限责任公司 多微孔泡沫镍及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) * 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
CN101298686A (zh) * 2007-04-30 2008-11-05 比亚迪股份有限公司 一种泡沫金属的制备方法
CN101566553A (zh) * 2009-04-09 2009-10-28 北京师范大学 泡沫镍比表面积的计算方法
CN102691078A (zh) * 2012-02-20 2012-09-26 南京航空航天大学 泡沫金属及其快速制备方法和所用装置
CN103627920A (zh) * 2013-11-11 2014-03-12 江苏大学 一种多孔镍的制备方法
CN104195608A (zh) * 2014-09-22 2014-12-10 常德力元新材料有限责任公司 车载动力电池正极基板材料泡沫镍的制备方法
CN105525321A (zh) * 2014-10-26 2016-04-27 常德力元新材料有限责任公司 一种制备高抗拉强度泡沫镍的电镀工艺
CN105624742A (zh) * 2014-10-29 2016-06-01 常德力元新材料有限责任公司 一种高抗拉强度泡沫镍材料
CN106757186A (zh) * 2015-11-24 2017-05-31 常德力元新材料有限责任公司 一种制备高抗拉强度泡沫镍的电镀工艺
CN106757183A (zh) * 2015-11-25 2017-05-31 常德力元新材料有限责任公司 超低面密度、高开孔率的泡沫镍及其制作方法
CN108707931A (zh) * 2018-06-05 2018-10-26 常德力元新材料有限责任公司 多微孔泡沫镍及其制备方法

Also Published As

Publication number Publication date
CN108707931A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2019233053A1 (zh) 多微孔泡沫镍及其制备方法
CN110344078B (zh) 一种泡沫镍@钴钼磷化物/镍铁双氢氧化物电极及其制备方法与应用
Zhou et al. Highly active and durable self-standing WS 2/graphene hybrid catalysts for the hydrogen evolution reaction
CN1043668C (zh) 制备金属多孔体的方法、电池电极基板及其制备方法
CN103328693B (zh) 具有高耐腐蚀性的多孔金属体及其制造方法
CN107400903B (zh) 一种三维纳米多孔铜修饰的泡沫镍及其制备方法和应用
CN101092718B (zh) 一种泡沫金属复合材料及其制造方法
CN109755515B (zh) 一种锂离子电池硅/碳负极复合材料及其制备方法
CN109509877B (zh) 碳包覆多孔金属涂层集流体、制备方法及锂电池
JP6621500B2 (ja) リチウムイオン電池負極及びリチウムイオン電池
CN101222047B (zh) 薄膜锂离子电池的负极材料及其制备方法
CN109817921A (zh) 一种硫掺杂MXene负极材料及其制备方法和应用
CN109712817B (zh) 一种纳米海绵碳复合Cu2O和Cu柔性电极材料及其制备方法
WO2024098919A1 (zh) 一种镍-含镍氮化物复合电极及其制备方法和应用
CN115440510B (zh) 一种提升含嵌入阴离子的钴基氢氧化物容量的方法
CN112713260A (zh) 一种柔性锂金属电池负极及其制备方法与锂金属电池
CN108823622A (zh) 一种用于锂电池的负极极耳材料及其制造方法
CN112736261A (zh) 多孔碳网络负载铂纳米颗粒复合材料催化剂及其制备方法
CN104600259B (zh) 层状结构的锂电池负极材料及其制备方法
CN102094224A (zh) 多孔金属材料制备方法
KR102077226B1 (ko) 표면처리에 의한 레독스 흐름 전지용 전극의 제조 방법
CN115072697B (zh) 硅碳复合负极材料的制备方法及其应用
CN102136577A (zh) 金属多孔体及使用该金属多孔体的电池用电极、以及金属多孔体的制法
CN105624450A (zh) 一种多孔泡沫镍钴材料的制备方法
CN114744170A (zh) 一种改性磷酸铁锂正极材料的制备方法及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921905

Country of ref document: EP

Kind code of ref document: A1