WO2024098919A1 - 一种镍-含镍氮化物复合电极及其制备方法和应用 - Google Patents

一种镍-含镍氮化物复合电极及其制备方法和应用 Download PDF

Info

Publication number
WO2024098919A1
WO2024098919A1 PCT/CN2023/116778 CN2023116778W WO2024098919A1 WO 2024098919 A1 WO2024098919 A1 WO 2024098919A1 CN 2023116778 W CN2023116778 W CN 2023116778W WO 2024098919 A1 WO2024098919 A1 WO 2024098919A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
layer
composite electrode
substrate
aluminum
Prior art date
Application number
PCT/CN2023/116778
Other languages
English (en)
French (fr)
Inventor
孙朱行
Original Assignee
无锡隆基氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡隆基氢能科技有限公司 filed Critical 无锡隆基氢能科技有限公司
Publication of WO2024098919A1 publication Critical patent/WO2024098919A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy

Definitions

  • the present application belongs to the technical field of solar cells, and specifically relates to a nickel-nickel-containing nitride composite electrode and a preparation method and application thereof.
  • Precious metal catalysts such as platinum, rhodium, iridium, ruthenium, etc.
  • the development of catalytic materials that can replace precious metal catalysts is a hot issue in various catalytic fields.
  • nickel nitride materials have received much research attention. Through effective structural and active site regulation, this material can show performance close to or even better than that of precious metal materials in electroreduction and oxidation reactions such as water electroreduction to hydrogen (HER), water electrooxidation to oxygen (OER), hydrogen oxidation (HOR), organic matter oxidation, and catalytic reactions such as hydrolysis of hydrogen-containing compounds (such as sodium borohydride).
  • this material can also be used as an electrode material for high-performance dye-sensitized batteries, lithium-ion batteries, and supercapacitors.
  • nickel nitride materials are usually prepared on the originally fragile skeleton of nickel foam.
  • Nickel nitride exists in the form of a porous structure, which makes the overall mechanical properties of the electrode low and the long-term stability low.
  • the bonding force between the base material and the post-deposition material in the obtained nickel-nickel nitride composite material is mainly van der Waals force.
  • the deposited layer is easy to fall off and separate from the surface of the nickel base, and the long-term stability of the electrode is also problematic.
  • the present application provides a nickel-nickel-containing nitride composite electrode and a preparation method and application thereof.
  • this application involves the following aspects:
  • a method for preparing a nickel-nickel-containing nitride composite electrode comprising the following steps:
  • a nickel-containing layer and an aluminum-containing layer are sequentially formed on the surface of the nickel-containing substrate,
  • the substrate having the nickel-containing layer and the aluminum-containing layer is heat-treated in an inert or reducing atmosphere,
  • the heat treated substrate is treated with alkali to remove aluminum.
  • the substrate after aluminum removal is washed, dried and then nitrided to obtain a nickel-nickel-containing nitride composite electrode.
  • the nickel-containing substrate is selected from one of a wire mesh, a porous plate mesh, and a metal plate.
  • the nickel-containing substrate is a wire mesh, wherein the wire diameter of the wire mesh is 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm, and the mesh number is 5 to 500 meshes, preferably 50 to 200 meshes.
  • the nickel-containing substrate is a porous plate mesh, wherein the porous plate mesh has a plate thickness of 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm, and a pore size of 0.02 to 2.0 mm, preferably 0.2 to 0.6 mm.
  • the nickel-containing substrate is a metal plate, wherein the thickness of the metal plate is 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm.
  • the thickness of the nickel-containing layer is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m; the thickness of the aluminum-containing layer is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m.
  • the nickel-containing layer and the aluminum-containing layer are formed by any one of the following methods: arc spraying, plasma spraying, flame spraying, molten metal immersion, magnetron sputtering, electroplating, and chemical plating, preferably plasma spraying.
  • the plasma spraying uses nickel-containing and aluminum-containing particles as a material source, and the size of the nickel-containing and aluminum-containing particles is 0.1 to 50 ⁇ m, preferably 0.5 to 10 ⁇ m.
  • the surface temperature of the substrate is 1000-1600° C., preferably 1200-1400° C., or
  • the substrate surface temperature is 100-800°C, preferably 400-500°C.
  • the heat treatment temperature is 600-1500° C., preferably 1200-1400° C.
  • the heat treatment time is 5-60 min, preferably 6-30 min.
  • the nitridation treatment method is selected from a chemical vapor method or a plasma nitridation method.
  • the temperature of the nitridation treatment is 300-400° C., preferably 340-350° C.
  • the reaction time is 0.5-24 h, preferably 2-6 h.
  • the chemical vapor method is to place the material in an atmosphere containing ammonia gas to carry out a nitridation reaction, wherein the volume content of the ammonia gas is 50-100%.
  • the nickel-containing substrate is a substrate formed of single-element nickel or an alloy of nickel and other metals.
  • the other metal is selected from one or more of molybdenum, vanadium, iron, cobalt, copper and tungsten.
  • the molar content of nickel in the nickel-containing layer relative to all metal elements is 50 to 100%.
  • the nickel-containing layer includes other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • the aluminum content in the aluminum-containing layer is 50-100%.
  • the aluminum-containing layer includes other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper and tungsten.
  • a nickel-nickel-containing nitride composite electrode comprising a nickel-containing base layer and a rough layer covering the base layer, the rough layer comprising a nickel-containing metal layer and a nickel-containing nitride layer, wherein the nickel-containing metal layer is in contact with the nickel-containing base layer, the nickel-containing nitride layer is in contact with the nickel-containing metal layer, and the molar content of nitrogen increases in a direction from approaching the nickel-containing metal layer to away from the nickel-containing metal layer.
  • the nickel-containing substrate is selected from one of a wire mesh, a porous plate mesh, and a metal plate.
  • the nickel-containing base layer is a wire mesh, wherein the wire diameter of the wire mesh is 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm, and the mesh number is 5 to 500 meshes, preferably 50 to 200 meshes.
  • the nickel-containing base layer is a porous plate mesh, wherein the porous plate mesh has a plate thickness of 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm, and a pore size of 0.02 to 2.0 mm, preferably 0.2 to 0.6 mm.
  • the nickel-containing base layer is a metal plate, wherein the thickness of the metal plate is 0.05 to 2.0 mm, preferably 0.2 to 0.5 mm.
  • the nickel-containing base layer is single-element nickel or an alloy of nickel and other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • the thickness of the nickel-containing base layer accounts for 20-90% of the thickness of the composite electrode, preferably 50-70%.
  • the thickness of the rough layer accounts for 2-50% of the thickness of the composite electrode, preferably 10-30%.
  • pores exist in the rough layer the porosity of the rough layer is 10-60%, preferably 50-60%, and the volume ratio of the pores connected to the outside is more than 90%.
  • the average opening diameter of the pores in the rough layer is 0.1 to 50 ⁇ m, preferably 0.5 to 10 ⁇ m, and the average depth of the pores is 80 to 100% of the thickness of the rough layer, preferably 90 to 100%.
  • the thickness of the nickel-containing nitride layer accounts for 5-90% of the thickness of the rough layer, preferably 40-80%.
  • the nitrogen molar content of the nickel-containing nitride layer increases from 0 to more than 20% in a direction from close to the nickel-containing metal layer to away from the nickel-containing metal layer.
  • the nickel-containing nitride layer comprises nickel nitride.
  • the nickel-containing metal layer and the nickel-containing base layer may have the same material composition or different material compositions. From the perspective of convenient electrode preparation, the two have the same material composition.
  • the molar content of nickel in the nickel-containing nitride layer relative to all metals is 50-100%.
  • the nickel-containing layer includes other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten. Therefore, the nickel-containing metal layer and the nickel-containing base layer can have the same or different material composition by adjusting the metal composition of the substrate and the nickel-containing layer.
  • the composite electrode is prepared by any one of the above-mentioned preparation methods.
  • a device wherein the device comprises any one of the composite electrodes described above.
  • the device is a device for producing hydrogen by electrolyzing water.
  • the catalytic hydrogen evolution reaction is an electrocatalytic hydrogen evolution reaction
  • the catalytic oxygen evolution reaction is an electrocatalytic oxygen evolution reaction
  • the nickel-nickel nitride composite electrode of the present application has a stable structure, and the nickel lattice gradually transforms into nickel nitride with the introduction of nitrogen atoms.
  • the electrode surface is highly active and can operate stably for a long time in a non-acidic environment, effectively improving the stability of the application system, improving the system efficiency, and reducing the system energy consumption.
  • FIG. 1 is a curve showing the change of nitrogen content in the nickel-containing nitride layer from the surface layer to the inner layer in Example 1 of the present application. Wire.
  • the present application provides a method for preparing a nickel-containing nickel nitride composite electrode.
  • the preparation method comprises the following steps:
  • Step 1 Provide a nickel-containing substrate
  • Step 2 forming a nickel-containing layer and an aluminum-containing layer in sequence on the surface of the nickel-containing substrate,
  • Step 3 heat treating the substrate having the nickel-containing layer and the aluminum-containing layer in an inert or reducing atmosphere
  • Step 4 Treat the heat-treated substrate with alkali solution to remove aluminum.
  • Step 5 Wash and dry the substrate after removing the aluminum, and then perform nitridation treatment to obtain a nickel-nickel-containing nitride composite electrode.
  • step one the step of cleaning the surface of the nickel-containing substrate with an alkali solution and an acid solution may also be included.
  • the nickel-containing substrate is selected from one of a wire mesh, a porous plate mesh, and a metal plate.
  • the nickel-containing substrate is a wire mesh, wherein the wire diameter of the wire mesh is 0.05 to 2.0 mm, for example, it can be 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, preferably 0.2 to 0.5 mm; the mesh number is 5 to 500 mesh, for example, it can be 5 mesh, 10 mesh, 10 mesh, 50 mesh, 80 mesh, 100 mesh, 150 mesh, 200 mesh, 250 mesh, 300 mesh, 350 mesh, 400 mesh, 450 mesh, 500 mesh, preferably 50 to 200 mesh.
  • the mesh number refers to the number of holes per square centimeter.
  • the nickel-containing substrate is a porous plate mesh, wherein the thickness of the porous plate mesh is 0.05 to 2.0 mm, for example, 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, preferably 0.2 ⁇ 0.5mm; the shape of the holes of the porous plate net is not limited, and the pore size is 0.02 ⁇ 2.0mm, for example, it can be 0.02mm, 0.05mm, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 0.05 to 2.0 mm
  • the nickel-containing substrate is a metal plate, which may be a flat plate or a curved plate or a plate containing concave and convex surfaces.
  • the thickness of the metal plate is 0.05 to 2.0 mm, for example, 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, preferably 0.2 to 0.5 mm.
  • the structural parameters of the above nickel-containing substrate can ensure that the prepared nickel-nickel nitride composite electrode has sufficient mechanical strength and high material utilization, and meets the requirements of the electrolysis reaction flow field.
  • the nickel-containing substrate is a single substance of nickel or an alloy of nickel and other metals, wherein the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • the addition of other metals can further adjust the d-band electron distribution of nickel and improve the overall conductivity of the material.
  • the nickel-containing layer and the aluminum-containing layer are formed by one of the following methods: arc spraying, plasma spraying, flame spraying, molten metal immersion, magnetron sputtering, electroplating, and chemical plating, preferably plasma spraying.
  • the nickel-containing layer and the aluminum-containing layer are formed by plasma spraying.
  • the specific steps are as follows:
  • a mixture of inert gas (nitrogen, argon or helium) and hydrogen is selected as the working gas for plasma spraying, and nickel-containing and aluminum-containing particles are used as the material source.
  • the particle size is 0.1 to 50 ⁇ m, for example, 0.1 ⁇ m, 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, preferably 0.2 to 30 ⁇ m.
  • the powder feeding rate is 0.1 to 0.5 g/s, preferably 0.2 to 0.3 g/s; the nickel particle layer is deposited first, and then the aluminum particle layer is deposited, and the deposition molar ratio of nickel and aluminum is 1:6 to 6:1, preferably 1:1 to 4:1.
  • the distance between the ion flame outlet and the substrate is controlled to ensure that the substrate surface temperature is 1000 to 1600°C, for example, it can be 1000°C, 1100°C, 1200°C, 1300°C, 1400°C, 1500°C, 1600°C, preferably 1200 to 1400°C, within the temperature range of 1000 to 1600°C, the powder metal source can be fully melted, and the surface of the nickel-containing substrate can be partially melted when it contacts the plasma flame, forming a good combination with the deposited nickel-containing particles.
  • the distance between the ion flame outlet and the substrate is controlled to maintain the substrate surface temperature at 100-800°C, for example, 100°C, 200°C, 300°C, 400°C, 500°C, 600°C, 700°C, 800°C, preferably 400-500°C, to ensure effective deposition of aluminum within the temperature range of 100-800°C while allowing a portion of the aluminum to be alloyed with nickel to a certain extent.
  • the thickness of the nickel-containing layer is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, and the thickness of the aluminum-containing layer is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m.
  • the contents of nickel and aluminum in the nickel-containing layer and the aluminum-containing layer can be adjusted according to actual needs.
  • the molar content of nickel in the nickel-containing layer relative to all metals is 50-100%, for example, 50%, 60%, 70%, 80%, 90%, 100%.
  • the nickel-containing layer includes other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • the molar content of aluminum in the aluminum-containing layer relative to all metals is 50-100%, for example, 50%, 60%, 70%, 80%, 90%, 100%.
  • the aluminum-containing layer includes other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • step three The purpose of step three is to make the nickel-containing layer form good metallurgical contact with the nickel-containing substrate layer, enhance the bonding force between the nickel-containing layer and the substrate, and at the same time, the deposited aluminum layer can fully diffuse into the deposited nickel-containing layer, occupy the gaps in the nickel-containing layer and form an alloy with the nickel-containing layer metal.
  • step 3 one or more gases such as argon, nitrogen, helium, and hydrogen are present in the inert or reducing atmosphere.
  • the heat treatment can be one step or multiple steps. Multiple steps means that the heat treatment can be performed at different temperatures for a certain period of time. When the heat treatment is performed in multiple steps, 2 to 3 steps are preferred.
  • the advantage of a single step is that The operation is simple and time-saving; multiple steps can optimize the use of heat energy.
  • the temperature of the nickel-nickel reaction needs to be close to the melting point of nickel (about 1400°C), while the temperature of forming the nickel-aluminum alloy can be above 500°C, or even lower. If a multi-step heat treatment is used, the nickel layer bonding strength can be promoted at a higher temperature for a short time, and then the nickel-aluminum alloy can be fully formed at a lower temperature for a longer time.
  • the heat treatment temperature is 600-1500°C, for example, it can be 600°C, 700°C, 800°C, 900°C, 1000°C, 1100°C, 1200°C, 1300°C, 1400°C, 1500°C, preferably 1200-1400°C
  • the heat treatment time is 5-60min, for example, it can be 5min, 6min, 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min, 60min, preferably 6-30min.
  • step 4 one-step washing treatment or step-by-step alkali washing can be adopted.
  • the concentration of the alkali solution is 10-50%, preferably 15-35%, and more preferably 20-25%;
  • the temperature of the alkali solution is 25-100°C, preferably 50-90°C, more preferably 60-80°C, and the treatment time is 5-36h, preferably 10-30h, and more preferably 15-20h;
  • the concentration of the alkali solution and/or the temperature are gradually increased, preferably 3 steps, the concentration of the alkali solution in the first step is 2-5%, the temperature is room temperature, and the treatment time is 1-3h;
  • the concentration of the alkali solution in the second step is 5-15%, the temperature is 25-50°C, and the treatment time is 1-3h;
  • the concentration of the alkali solution in the third step is 20-40%, the temperature is 50-100°C, and the treatment time is 0.5-2h.
  • step-by-step alkaline washing is highly efficient and removes the parts of the electrode deposition layer that are not mechanically stable enough; step-by-step alkaline washing is more gentle and can maintain the metal structure of the non-aluminum part of the electrode layer to the greatest extent, removing aluminum more thoroughly.
  • step 5 the substrate after aluminum removal can be washed with deionized water until there is no residual alkali solution on the surface of the material, that is, the deionized water of the last immersion is neutral.
  • the deionized water of the last immersion is neutral.
  • nitrogen molecules diffuse from the outside to the inside into the nickel lattice layer, a gradient nitridation layer will be formed on the electrode; the appropriate nitridation time is selected according to the needs.
  • Ni 3 N nickel nitride
  • the nitridation treatment method may be selected from a chemical vapor method or a plasma nitridation method.
  • the ammonia atmosphere can be generated by amino-containing substances (such as ammonia, hydrazine, urea, etc.).
  • the ammonia gas content in the ammonia atmosphere is 50-100%.
  • the atmosphere can also contain a certain amount of inert gas (argon or helium).
  • reaction temperature is set to 300-400°C, for example 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C, preferably 320-360°C, more preferably 340-350°C;
  • the reaction time is controlled at 0.5-24h, for example, it can be 0.5h, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h, 24h, preferably 1-12h, more preferably 2-6h.
  • nitrogen and ammonia are used as the main working gas and nitrogen source, with a content of 50-100%, preferably 80-100%.
  • the working gas may also contain a certain amount of one or more of argon, helium and hydrogen.
  • the operating voltage is set to 400-600V
  • the reaction temperature is controlled at 300-400°C, for example, 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C, preferably 320-360°C, more preferably 340-350°C
  • the reaction time is controlled at 0.5-24h, for example, it can be 0.5h, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h, 19h, 20h, 21h, 22h, 23h, 24h, preferably 1-12h, more preferably 2-6h.
  • the present application also provides a nickel-nickel-containing nitride composite electrode, wherein the composite electrode comprises a nickel-containing base layer and a rough layer covering the base layer.
  • the nickel-containing base layer is selected from one of a wire mesh, a porous plate mesh, and a metal plate. Specifically, the specific parameters of each structure and the material of the nickel-containing base layer are as described above.
  • the thickness of the nickel-containing base layer accounts for 20-90% of the thickness of the composite electrode, for example, it can be 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, preferably 50-70%.
  • the thickness of the rough layer accounts for 2-50% of the thickness of the composite electrode, for example, 2%, 5%, 10%, 20%, 30%, 40%, 50%, preferably 10-30%.
  • the thickness of the rough layer refers to the total thickness of the rough layer covering the substrate layer.
  • the rough layer has a relatively rough structure, in which there are pores, and the porosity of the rough layer is 10-60%, for example, it can be 10%, 20%, 30%, 40%, 50%, 60%, preferably 50-60%.
  • the pores that are connected to the outside world account for more than 90%, for example, it can be 90%, 91%, 92%, 93%, 94%, 95%, 96%, etc.
  • the average opening diameter of the pores is 0.1-50 ⁇ m, for example, it can be 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, preferably 0.5-10 ⁇ m.
  • the average depth of the pores is 80-100% of the thickness of the rough layer, for example, it can be 80%, 85%, 90%, 95%, 100%, preferably 90 ⁇ 100%.
  • porosity there is no limitation on the determination of porosity, which can be determined by conventional methods in the art. For example, a scanning electron microscope can be used to take pictures, and the porosity can be obtained by calculating the ratio of the hole area in the picture to the total area through image processing software.
  • the rough layer includes a nickel-containing metal layer and a nickel-containing nitride layer, wherein the nickel-containing metal layer contacts the nickel-containing base layer, and the nickel-containing nitride layer contacts the nickel-containing metal layer.
  • the nickel-containing metal layer can be regarded as an intermediate layer transitioning from the nickel-containing base layer to the nickel-containing nitride layer, which provides support for the metal nitride layer to be fixed on the substrate.
  • the thickness of the nickel nitride layer accounts for 5 to 90% of the thickness of the rough layer, for example, it can be 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, preferably 40 to 80%.
  • the molar nitrogen content of the nickel-containing nitride layer increases gradually from the direction close to the nickel-containing metal layer to the direction away from the nickel-containing metal layer, for example, it can increase gradually from 0 to more than 20%.
  • the nickel-containing nitride included in the nickel-containing nitride layer may include nickel-containing multi-metal nitride in addition to nickel nitride.
  • the content of nickel in the nickel-containing nitride layer relative to all metals is 50-100%, for example, it can be 50%, 60%, 70%, 80%, 90%, 100%.
  • the nickel-containing nitride layer includes nitrides of other metals, and the other metals are selected from one or more of molybdenum, vanadium, iron, cobalt, copper, and tungsten.
  • Nickel and one or more of the other metals form a nickel-containing multimetal nitride, such as nickel-molybdenum nitride, nickel-copper nitride, nickel-cobalt nitride, nickel-cobalt-molybdenum nitride, nickel-iron nitride, and nickel-tungsten nitride, to enrich the reaction active sites, improve the conductivity of the material, optimize the distribution of the reaction functional sites, and further improve the electrode catalytic or electrochemical performance.
  • nickel-containing multimetal nitride such as nickel-molybdenum nitride, nickel-copper nitride, nickel-cobalt nitride, nickel-cobalt-molybdenum nitride, nickel-iron nitride, and nickel-tungsten nitride
  • the nickel-nickel-containing nitride composite electrode can be prepared by the preparation method of the present application.
  • the nickel-nickel nitride composite electrode of the present application can be used in a variety of applications, such as catalyzing hydrogen evolution or oxygen evolution reaction, such as electrocatalytic hydrogen evolution or electrocatalytic oxygen evolution, and further used for catalytic water electrolysis to produce hydrogen or water electrolysis to produce oxygen, such as in water electrolysis system or chlor-alkali electrolysis system; it can also be used for other hydrogen-containing substances.
  • hydrogen, or other oxygen-containing substances are oxidized into oxygen, such as chemical hydrolysis hydrogen production system, organic matter (such as urea, etc.) degradation or conversion system. It can also be used to catalyze the reaction of hydrogen oxidation to hydrogen ions or oxygen reduction to water, such as in fuel cells.
  • the nickel-containing nitride on the surface of the nickel-nickel-containing nitride composite electrode of the present application can also be used in supercapacitors, lithium-ion battery systems, dye-sensitized batteries, etc. because of its semiconductor properties.
  • the present application also provides a device, which includes any one of the nickel-nickel-containing nitride composite electrodes of the present application.
  • the device can be a device for electrolyzing water to produce hydrogen.
  • the present application also provides the use of any one of the above nickel-nickel nitride composite electrodes in catalytic hydrogen evolution reaction, catalytic oxygen evolution reaction, catalytic hydrogen oxidation reaction or catalytic oxygen reduction reaction.
  • the catalytic hydrogen evolution reaction can be an electrocatalytic hydrogen evolution reaction
  • the catalytic oxygen evolution reaction can be an electrocatalytic oxygen evolution reaction.
  • Electrode structure 8cm*8cm square wire mesh, wire diameter of 0.3mm, 46 mesh; nickel wire mesh as substrate, 50 ⁇ m rough layer on the substrate, the outermost layer N content is 23-24% (can be measured by electron energy spectrum of scanning electron microscope), the gradient nickel layer is 25 ⁇ m, and the nitrogen content changes from the surface to the inside as shown in Figure 1.
  • the porosity in the rough layer is about 40%, more than 90% of the pores are connected to the outside, the average opening diameter of the pores is 3-5 ⁇ m, and the pore depth is 30-48 ⁇ m.
  • the synthesis method of the electrode is:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Electrode structure 8cm diameter circular wire mesh, wire diameter 0.35mm, 75 mesh; nickel wire mesh as substrate, 80 ⁇ m rough layer on the substrate, electron energy spectrum shows that the surface N content is about 20%, and the gradient nickel layer thickness is about 46 ⁇ m.
  • the porosity in the rough layer is about 35%, more than 95% of the pores are connected to the outside world, the average opening diameter of the pores is 5-6 ⁇ m, and the average pore depth is 68 ⁇ m.
  • the synthesis method of the electrode is:
  • a nickel particle layer is electrodeposited on the substrate surface in a solution containing 0.2M nickel chloride and 2M ammonium chloride under the protection of an inert atmosphere such as nitrogen or argon.
  • the above substrate material is used as a working electrode, and a nickel rod or a graphite rod is used as a counter electrode.
  • the deposition current density is 0.5A/ cm2 , and the deposition time is 1h.
  • a nickel particle layer of about 20 ⁇ m is obtained.
  • nickel-aluminum alloy particles with an average diameter of 2 ⁇ m are added to the electrolyte. These particles are deposited on the electrode surface along with nickel, and the total thickness of the deposited layer is about 50 ⁇ m.
  • the electrode was treated in 30% ammonia/1% hydrogen/argon for 4 h, the temperature was controlled at 310°C, and the gas flow rate was 10 mL/min; and the electrode of this embodiment was obtained by cooling.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Electrode structure square plate mesh with a size of 8cm*8cm, a plate thickness of 0.5mm, a circular plate hole with a diameter of 0.5mm, and a mesh size of 100;
  • the substrate is a nickel wire mesh, on which the electrode contains a 100 ⁇ m rough layer, and there are mountain-like protrusions of 0.5 to 2nm on the surface of the rough layer;
  • the electron energy spectrum measured the surface N content of about 24%, and the thickness of the gradient nitriding layer is about 50 ⁇ m.
  • the porosity in the rough layer is about 45%, 95%
  • the above pores are connected to the outside world, the average opening diameter of the pores is 5 to 6 ⁇ m, and the average pore depth is 78 ⁇ m.
  • the synthesis method of the electrode is:
  • the electrode was treated in a 10% H 2 /N 2 atmosphere at 1300°C for 10 min, and then in a 5% H 2 /N 2 atmosphere at 600°C for 10 h;
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the electrode structure and synthesis method of this embodiment are similar to those of Embodiment 3, with the only difference being that the nickel particle layer and the aluminum particle layer are deposited separately by electroplating in synthesis step b.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the electrode structure of this embodiment is similar to that of embodiment 1, but the rough layer contains metal copper in addition to metal nickel, that is, the rough layer is composed of a copper-nickel alloy layer and a gradient nitrided copper-nickel layer, and the copper-nickel metal ratio is about 1:4.
  • the electrode synthesis process of this embodiment is similar to that of embodiment 1, with the only difference being that in synthesis step b, a 20 ⁇ m copper and nickel mixed particle layer is first sprayed by atmospheric plasma, and then a 10 ⁇ m aluminum particle layer is sprayed.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the electrode structure of this embodiment is similar to that of embodiment 3, but the rough layer contains metal molybdenum in addition to metal nickel, that is, the rough layer is composed of a molybdenum-nickel alloy layer and a gradient nitrided molybdenum-nickel layer. The ratio is 4:1.
  • the electrode synthesis process of this embodiment is similar to that of Embodiment 3, with the only difference being that in synthesis step b, a 35 ⁇ m molybdenum and nickel mixed particle layer or a nickel-molybdenum alloy particle layer is first sprayed by atmospheric plasma, and then a 25 ⁇ m aluminum particle layer is sprayed.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the structure of this embodiment is similar to that of embodiment 3, but the rough layer contains metal cobalt in addition to metal nickel, and the rough layer is composed of a cobalt-nickel alloy layer and a gradient nitrided cobalt-nickel layer, with a molar ratio of cobalt to nickel of 2:3.
  • the electrode synthesis process of this embodiment is similar to that of Embodiment 3, with the only difference being that in synthesis step b, a 35 ⁇ m cobalt and nickel mixed particle layer or a nickel-cobalt alloy particle layer is first sprayed by atmospheric plasma, and then a 25 ⁇ m aluminum particle layer is sprayed.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the electrode structure of this embodiment is a dense, non-porous plate electrode of 8cm*8cm.
  • the grid concave part is square with a side length of 1mm.
  • the grid protrusion is strip-shaped with a thickness of about 0.1mm.
  • the minimum thickness of the plate as a whole is 0.4mm and the maximum thickness is 0.6mm.
  • the electrode contains a 100 ⁇ m rough layer, and there are mountain-like protrusions of 0.5-2nm on the surface of the rough layer; the electron energy spectrum measures that the surface N content is about 24%, and the thickness of the gradient nitriding layer is about 50 ⁇ m.
  • the porosity in the rough layer is about 45%, and more than 95% of the pores are connected to the outside world.
  • the average opening diameter of the pores is 5-6 ⁇ m, and the average pore depth is 78 ⁇ m.
  • the synthesis method of this electrode is consistent with Example 3, except that the substrate is a plate-shaped nickel substrate.
  • the Ni-Ni 3 N electrode was prepared according to the non-patent document DOI:10.1038/s41467-018-06728-7. The steps are as follows: using a nickel foam substrate with an area of 8cm*8cm, a thickness of 0.5mm, a surface density of 300g/m 2 , a pore size of 0.3-0.4mm, and a porosity of 97%, electroplating a nickel layer in a solution containing 2.0M ammonium chloride and 0.1M nickel chloride under nitrogen atmosphere protection, constant current electroplating for 500s at a current density of 1.0A/cm 2 , and then placing the electrode in an ammonia flow at 300°C for 6 hours, with an ammonia flow rate of 10°C/min.
  • the method for preparing the electrode is similar to that in Example 1, except that no nitridation treatment is performed, that is, step e is not performed.
  • the method for preparing the electrode is similar to that of Example 1, except that a nickel foam with an area of 8 cm*8 cm, a thickness of 0.5 mm, a surface density of 300 g/m 2 , a pore size of 0.3-0.4 mm, and a porosity of 97% is used as the substrate.
  • the electrode materials in the above Examples 1 to 6 and the comparative example were used as working electrodes and tested in a three-electrode system.
  • the electrolyte was 1M KOH
  • the counter electrode was a nickel mesh
  • the reference electrode was a Hg/HgO electrode.
  • the overpotential required for the working electrode to perform the hydrogen production half-reaction and its change over time were tested at working currents of 300mA/ cm2 and 500mA/ cm2 (300-600mA/ cm2 is the working current of a general alkaline solution electrolyzer. Under the action of this high current, a large amount of hydrogen bubbles will be generated, which requires extremely high mechanical stability of the electrode) to examine the activity and stability of the electrode.
  • Table 2. 2 It can be seen from the results that the electrode of the embodiment of the present application exhibits better catalytic activity and long-term stability than the electrode of the comparative example.
  • This embodiment constructs an electrolyzer device, which consists of 50 chambers, each of which consists of a cathode plate, a cathode catalytic electrode, a diaphragm, a sealing gasket, an anode catalytic electrode, and an anode plate.
  • the cathode plate and the anode plate are mainly made of carbon steel
  • the cathode catalytic electrode is the material of Example 2, and the size is increased to 2.8 meters in diameter
  • the diaphragm material is a zirconium oxide-polyphenylene sulfide composite diaphragm
  • the anode catalytic electrode is the material of Example 7, and the size is also adjusted to a circular diameter of 2.8 meters.
  • the two ends of the electrolyzer contain two end plates, which can be connected to the positive and negative poles of the external power supply respectively.
  • the electrolyzer is sealed by 10 tie rods and 20 nuts.
  • the rear end of the electrolyzer is connected to a hydrogen and oxygen collection and purification device.
  • the electrolyzer has a low electrode overpotential. At an operating temperature of 90°C, it can achieve a working current density of 5400A/ m2 at a chamber voltage of 1.65V.
  • This embodiment constructs an electrolytic cell device, the overall structure of which is similar to that of embodiment 9, except that the cathode catalytic electrode is composed of two circular nickel-nickel nitride wire meshes with a diameter of 2.8 m in embodiment 2. Due to the increase in the reactive area per unit geometric area of the electrolytic cell, the electrolytic cell has a lower electrode overpotential than that of embodiment 9, and can achieve a working current density of 6100 A/m 2 at a cell voltage of 1.65 V at an operating temperature of 90°C.
  • This embodiment constructs a symmetrical supercapacitor using the material of Example 7 as an electrode, and the electrolyte is 1M KOH.
  • the capacitor exhibits better capacitance performance and cycle stability than existing metal oxide and carbon material capacitors.
  • the current density is 1mA/ cm2
  • the area specific capacitance is 1.28F/ cm2 ; after 10,000 cycles of charge and discharge, the retention rate is 95.3%.
  • This embodiment constructs an alkaline fuel cell stack system, which is composed of 50 battery cells, and each battery cell includes a bipolar plate, a gas diffusion catalyst layer, and a hydroxide ion exchange membrane.
  • the bipolar plate uses a modified graphite material.
  • the double-layer material of Example 1 is used as the HOR anode gas diffusion catalyst layer, and a nickel mesh coated with a certain amount of platinum double layer is used as the ORR anode gas diffusion catalyst layer.
  • This embodiment constructs a lithium-ion battery, with the materials of embodiment 8 and embodiment 7 stacked as the negative electrode of the battery, and the positive electrode of the battery is lithium cobalt oxide.
  • the battery has an overpotential of only 15mV at a current density of 1.5mA/ cm2 , and is still very stable after 5000 cycles of charge and discharge; at a high current density of 5mA/ cm2 , it can still be charged and discharged for more than 250 cycles without short circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本申请提供一种镍-含镍氮化物复合电极的制备方法,所述制备方法包括以下步骤:提供含镍基底,在所述含镍基底的表面依次形成含镍层和含铝层,在惰性或还原性氛围中对具有含镍层和含铝层的基底进行热处理,对热处理后的基底用碱液进行处理以去除铝,将去除铝后的基底进行洗涤、烘干后进行氮化处理,得到镍-含镍氮化物复合电极。本申请还提供一种镍-含镍氮化物复合电极及其应用。申请的镍-含镍氮化物复合电极结构稳固,镍的晶格随着氮原子的引入逐渐转变至氮化镍,电极表面具备高活性,可在非酸性环境中长期稳定运行,有效提升应用系统稳定性,提升系统效率,降低系统能耗。

Description

一种镍-含镍氮化物复合电极及其制备方法和应用
本申请要求在2022年11月8日提交中国专利局、申请号为202211391197.7、名称为“一种镍-含镍氮化物复合电极及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能电池技术领域,具体地,涉及一种镍-含镍氮化物复合电极及其制备方法和应用。
背景技术
贵金属催化剂(如铂、铑、铱、钌等)在多个催化领域呈现优异的催化性能,但贵金属材料本身资源稀缺、价格昂贵,使得其难以大规模应用。开发可替代贵金属催化剂的催化材料是各催化领域的一大热点问题。
近来,氮化镍材料受到了较多的研究关注,通过有效的结构与活性位点调控,该材料在电还原水制氢(HER)、电氧化水制氧(OER)、氢气氧化(HOR)和有机物氧化等电还原与氧化反应及含氢化合物(如硼氢化钠)水解制氢等催化反应中,均可呈现接近甚至超过贵金属材料的性能。此外,该材料亦可作为高性能染料敏化电池、锂离子电池和超级电容器的电极材料。
目前氮化镍材料通常在泡沫镍原本比较脆弱的骨架上制备得到,氮化镍以多孔结构形式存在,使得电极整体机械性能低,长期使用稳定性低,同时所得的镍-氮化镍复合材料中基底材料与后沉积材料之间的结合力主要为范德华力,在实际复杂的化学过程中沉积层易与镍基底表面脱落分离,电极的长期稳定性亦存在问题。
发明内容
针对现有技术存在的问题,本申请提供一种镍-含镍氮化物复合电极及其制备方法和应用。
具体来说,本申请涉及如下方面:
一种镍-含镍氮化物复合电极的制备方法,所述制备方法包括以下步骤:
提供含镍基底,
在所述含镍基底的表面依次形成含镍层和含铝层,
在惰性或还原性氛围中对具有含镍层和含铝层的基底进行热处理,
对热处理后的基底用碱液进行处理以去除铝,
将去除铝后的基底进行洗涤、烘干后进行氮化处理,得到镍-含镍氮化物复合电极。
可选地,所述含镍基底选自丝网、多孔板网、以及金属板中的一种。
可选地,所述含镍基底为丝网,其中所述丝网的丝径为0.05~2.0mm,优选为0.2~0.5mm,目数为5~500目,优选为50~200目。
可选地,所述含镍基底为多孔板网,其中所述多孔板网的板厚为0.05~2.0mm,优选为0.2~0.5mm,孔径为0.02~2.0mm,优选为0.2~0.6mm。
可选地,所述含镍基底为金属板,其中所述金属板的板厚为0.05~2.0mm,优选为0.2~0.5mm。
可选地,所述含镍层的厚度为5~100μm,优选为10~80μm;所述含铝层的厚度为5~100μm,优选为10~80μm。
可选地,形成含镍层和含铝层的方式选自以下中的任意一种:电弧喷涂、等离子喷涂、火焰喷涂、金属熔融液浸渍、磁控溅射、电镀、以及化学镀,优选为等离子喷涂。
可选地,等离子喷涂以含镍、含铝颗粒作为材料源,所述含镍、含铝颗粒的尺寸为0.1~50μm,优选为0.5~10μm。
可选地,在沉积含镍颗粒时,所述基底的表面温度为1000~1600℃,优选为1200~1400℃,或者
在沉积含铝颗粒时,所述基底表面温度为100~800℃,优选为400~500℃。
可选地,所述热处理的温度为600~1500℃,优选为1200~1400℃,热处理时间为5~60min,优选为6~30min。
可选地,所述氮化处理的方法选自化学气相法或等离子氮化法。
可选地,所述氮化处理的温度为300~400℃,优选为340~350℃,反应时间为0.5~24h,优选为2~6h。
可选地,所述的化学气相法为将材料放置于含氨气的氛围中进行氮化反应,所述氨气的体积含量为50~100%。
可选地,所述含镍基底为单质镍形成的基底或镍与其他金属的合金形成 的基底,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
可选地,所述含镍层中镍相对于所有金属元素的摩尔含量为50~100%,当所述含镍层中镍相对于所有金属的摩尔含量小于100%时,所述含镍层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
可选地,所述含铝层中铝含量为50~100%,当所述含铝层中铝含量小于100%时,所述含铝层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
一种镍-含镍氮化物复合电极,所述复合电极包括含镍基底层和覆盖所述基底层的粗糙层,所述粗糙层包括含镍金属层和含镍氮化物层,其中所述含镍金属层与所述含镍基底层接触,所述含镍氮化物层与所述含镍金属层接触,并且在沿靠近所述含镍金属层至远离所述含镍金属层的方向上氮的摩尔含量递增。
可选地,所述含镍基底选自丝网、多孔板网、以及金属板中的一种。
可选地,所述含镍基底层为丝网,其中所述丝网的丝径为0.05~2.0mm,优选为0.2~0.5mm,目数为5~500目,优选为50~200目。
可选地,所述含镍基底层为多孔板网,其中所述多孔板网的板厚为0.05~2.0mm,优选为0.2~0.5mm,孔径为0.02~2.0mm,优选为0.2~0.6mm。
可选地,所述含镍基底层为金属板,其中所述金属板的板厚为0.05~2.0mm,优选为0.2~0.5mm。
可选地,所述含镍基底层为单质镍或镍与其他金属的合金,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
可选地,所述含镍基底层的厚度占所述复合电极厚度的20~90%,优选50~70%。
可选地,所述粗糙层的厚度占所述复合电极厚度的2~50%,优选10~30%。
可选地,所述粗糙层中存在孔缝,所述粗糙层的孔隙率为10~60%,优选50~60%,所述孔缝中与外界连通的孔缝的体积比为90%以上。
可选地,所述粗糙层中所述孔缝的平均开口直径为0.1~50μm,优选为0.5~10μm,所述孔缝的平均深度为所述粗糙层厚度的80~100%,优选90~100%。
可选地,所述含镍氮化物层的厚度占所述粗糙层厚度的5~90%,优选40~80%。
可选地,在沿靠近所述含镍金属层至远离所述含镍金属层的方向上所述含镍氮化物层的氮摩尔含量由0递增至20%以上。
可选地,所述含镍氮化物层包含氮化镍。
可选地,所述含镍金属层与所述含镍基底层可以具有相同的材料组成,也可以具有不同的材料组成,从电极方便制备的角度而言,二者具有相同的材料组成。
可选地,所述含镍氮化物层中镍相对于所有金属的摩尔含量为50~100%,当所述含镍氮化物层中镍相对于所有金属的摩尔含量100%时,所述含镍层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上,因此可以通过调整基底和含镍层的金属组成使得含镍金属层与所述含镍基底层具有相同或不同的材料组成。
可选地,所述复合电极由上述的任意一种制备方法制备得到。
一种装置,其中,所述装置上述的任意一种复合电极。
可选地,所述装置为用于电解水制备氢气的装置。
上述的任意一种复合电极在催化析氢反应、催化析氧反应、催化氢气氧化反应或催化氧气还原反应中的应用。
可选地,所述催化析氢反应为电催化析氢反应,所述催化析氧反应为电催化析氧反应。
本申请的镍-含镍氮化物复合电极结构稳固,镍的晶格随着氮原子的引入逐渐转变至氮化镍,电极表面具备高活性,可在非酸性环境中长期稳定运行,有效提升应用系统稳定性,提升系统效率,降低系统能耗。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1为本申请实施例1的含镍氮化物层中的氮含量由表层及里的变化曲 线。
具体实施例
下面结合实施例进一步说明本申请,应当理解,实施例仅用于进一步说明和阐释本申请,并非用于限制本申请。
除非另外定义,本说明书中有关技术的和科学的术语与本领域内的技术人员所通常理解的意思相同。虽然在实验或实际应用中可以应用与此间所述相似或相同的方法和材料,本文还是在下文中对材料和方法做了描述。在相冲突的情况下,以本说明书包括其中定义为准,另外,材料、方法和例子仅供说明,而不具限制性。以下结合具体实施例对本申请作进一步的说明,但不用来限制本申请的范围。
针对现有技术存在的问题,为获得高效且稳定耐用的镍-含镍氮化物复合电极,本申请提供一种镍-含镍氮化物复合电极的制备方法。所述制备方法包括以下步骤:
步骤一:提供含镍基底,
步骤二:在所述含镍基底的表面依次形成含镍层和含铝层,
步骤三:在惰性或还原性氛围中对具有含镍层和含铝层的基底进行热处理,
步骤四:对热处理后的基底用碱液进行处理以去除铝,
步骤五:将去除铝后的基底进行洗涤、烘干后进行氮化处理,得到镍-含镍氮化物复合电极。
在步骤一中,还可以包括对含镍基底用碱液和酸液清洗基底表面的步骤。
其中,所述含镍基底选自丝网、多孔板网、以及金属板中的一种。
在一个具体的实施方式中,所述含镍基底为丝网,其中所述丝网的丝径为0.05~2.0mm,例如可以为0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm,优选为0.2~0.5mm;目数为5~500目,例如可以为5目、10目、10目、50目、80目、100目、150目、200目、250目、300目、350目、400目、 450目、500目,优选为50~200目。其中,目数是指每平方厘米面积内的孔数。
在一个具体的实施方式中,所述含镍基底为多孔板网,其中所述多孔板网的板厚为0.05~2.0mm,例如可以为0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm,优选为0.2~0.5mm;所述多孔板网的孔形状不限,孔径为0.02~2.0mm,例如可以为0.02mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm,优选为0.2~0.6mm。
在一个具体的实施方式中,所述含镍基底为金属板,金属板可以为平板或曲面或含凹凸板。其中所述金属板的板厚为0.05~2.0mm,例如可以为0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2mm,优选为0.2~0.5mm。
以上含镍基底的结构参数能够确保制备的镍-含镍氮化物复合电极具备足够机械强度和较高的材料利用率,并满足电解反应流场的需求。
在本申请中,所述含镍基底为单质镍或镍与其他金属的合金,其中所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。其他金属的加入可以进一步调节镍的d带电子分布,提高材料整体导电性。
在步骤二中,形成含镍层和含铝层的方式选自以下一种:电弧喷涂、等离子喷涂、火焰喷涂、金属熔融液浸渍、磁控溅射、电镀、以及化学镀,优选为等离子喷涂。
在一个具体的实施方式中,采用等离子喷涂形成含镍层和含铝层。具体的步骤如下:
选用惰性气体(氮气、氩气或氦气)和氢气的混合气作为等离子体喷涂的工作气体,以含镍、含铝颗粒作为材料源,所述颗粒尺寸为0.1~50μm,例如可为0.1μm、0.2μm、0.5μm、1μm、2μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm,优选0.2~30μm, 更优选为0.5~10μm;工作时,送粉速率为0.1~0.5g/s,优选0.2~0.3g/s;先沉积镍颗粒层,再沉积铝颗粒层,镍和铝的沉积摩尔比例为1:6~6:1,优选1:1~4:1。沉积含镍颗粒时,控制离子火焰出口与基底距离,确保基底表面温度为1000~1600℃,例如可以为1000℃、1100℃、1200℃、1300℃、1400℃、1500℃、1600℃,优选1200~1400℃,在1000~1600℃温度范围内粉体金属源可充分融化,同时含镍基底表面可在接触等离子体火焰时局部融化,与沉积的含镍颗粒形成良好的结合。沉积含铝颗粒时,控制离子火焰出口与基底距离,保持基底表面温度为100~800℃,例如可以为100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃,优选400~500℃,在100~800℃温度范围内确保铝的有效沉积的同时,使一部分铝与镍有一定的合金化。
电弧喷涂、火焰喷涂、金属熔融液浸渍、磁控溅射、电镀、以及化学镀的具体操作可以本领域技术人员熟知的方式进行。
在一个具体的实施方式中,所述含镍层的厚度为5~100μm,优选为10~80μm,所述含铝层的厚度为5~100μm,优选为10~80μm。
所述含镍层和含铝层中镍和铝的含量可以根据实际需要进行调节。
在一个具体的实施方式中,所述含镍层中镍相对于所有金属的摩尔含量为50~100%,例如可以为50%、60%、70%、80%、90%、100%。当所述含镍层中镍的摩尔含量小于100%时,所述含镍层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
在一个具体的实施方式中,所述含铝层中铝相对于所有金属的摩尔含量为50~100%,例如可以为50%、60%、70%、80%、90%、100%。当所述含铝层中铝含量小于100%时,所述含铝层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
步骤三的作用为使含镍层与含镍基底层形成良好的冶金接触,增强含镍层与基底的结合力,同时沉积的铝层可充分扩散至沉积的含镍层,占据含镍层空隙及与含镍层金属形成合金。
在步骤三中,惰性或还原性氛围中有氩气、氮气、氦气、氢气等气体中的一种或多种。该热处理可以为一步或多步,多步是指可在不同的温度下处理一定的时间,多步热处理时,优选2~3步。一步的优势在于 操作简便、更节约时间;多步可优化热能利用,例如提高镍与镍作用的温度需接近镍的熔点(约1400℃),而形成镍铝合金的温度在500℃以上便可,甚至可以更低。若采用多步热处理,可在较高的温度下短时间促进镍层结合力,而后在较低的温度下处理较长的时间,使镍铝合金充分形成。
在一个具体的实施方式中,所述热处理的温度为600~1500℃,例如可以为600℃、700℃、800℃、900℃、1000℃、1100℃、1200℃、1300℃、1400℃、1500℃,优选为1200~1400℃,热处理时间为5~60min,例如可以为5min、6min、10min、15min、20min、25min、30min、35min、40min、45min、50min、55min、60min,优选为6~30min。
在步骤四中,可采用一步洗涤处理,也可采用分步碱洗。一步碱洗时,碱液浓度为10~50%,优选15~35%,更优选为20~25%;碱液温度为25~100℃,优选50~90℃,更优选为60~80℃,处理时间为5~36h,优选10~30h,更优选为15~20h;分步碱洗时,碱液浓度或/和温度逐渐升高,优选3步,第一步碱液浓度为2~5%,温度为常温,处理时间为1~3h;第二步碱液浓度为5~15%,温度为25~50℃,处理时间为1~3h;第三步碱液浓度为20~40%,温度为50~100℃,处理时间为0.5~2h。一步碱洗效率高,同时去除了电极沉积层中机械强度不够稳固的部分;分步碱洗更为温和,可最大程度维持电极层中非铝部分的金属结构,铝去除更为彻底。
在步骤五中,对去除铝后的基底进行洗涤时可以用去离子水洗涤至材料表面无残留碱液,即最后一次浸泡的去离子为中性。在该步骤中,由于氮分子由外及里扩散至镍晶格层,电极上将形成梯度氮化层;根据需要选自适宜的氮化时间,若过度氮化,粗糙层中的含镍层较薄,较厚的氮化镍(Ni3N)层将不利于电极高活性的实现,因为基于材料表面吸脱附性能分析,Ni3N本体的催化制氢活性不佳,而其缺陷位点或者不完全配位的N具有较高的催化活性,较薄的Ni3N可以为缺陷位点的形成提供保证。
所述氮化处理的方法可以选自化学气相法或等离子氮化法。
在使用化学气相法进行氮化处理时,将材料放置于氨氛围中,所述氨氛围可以由含氨基的物质(如氨气、联氨、尿素等)产生,该氨氛围中含氨气体含量为50~100%,氛围中还可以包含一定量惰性气体(氩气或氦气) 和/或氢气反应温度设为300~400℃,例如300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃,优选为320~360℃,更优选为340~350℃;反应时间控制在0.5~24h,例如可以为0.5h、1h、2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h、24h,优选1~12h,更优选为2~6h。
在使用等离子氮化法时,以氮气、氨气为主要工作气体和氮源,含量为50~100%,优选80~100%,工作气体中亦可包含一定氩气、氦气和氢气中一种或多种。工作电压设置为400~600V,反应温度控制在300~400℃,例如300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃,优选为320~360℃,更优选为340~350℃;反应时间控制在0.5~24h,例如可以为0.5h、1h、2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h、24h,优选1~12h,更优选为2~6h。
本申请还提供一种镍-含镍氮化物复合电极,所述复合电极包括含镍基底层和覆盖所述基底层的粗糙层。
其中,所述含镍基底层选自丝网、多孔板网、以及金属板中的一种,具体地每种结构的具体参数,以及所述含镍基底层的材料如上所述。
在一个具体的实施方式中,所述含镍基底层的厚度占所述复合电极厚度的20~90%,例如可以为20%、30%、40%、50%、60%、70%、80%、90%,优选50~70%。
在一个具体的实施方式中,所述粗糙层的厚度占所述复合电极厚度的2~50%,例如可以为2%、5%、10%、20%、30%、40%、50%,优选10~30%。其中,粗糙层的厚度是指覆盖所述基底层的粗糙层的总厚度。
所述粗糙层具有相对粗糙的结构,其中存在孔缝,所述粗糙层的孔隙率为的10~60%,例如可以为10%、20%、30%、40%、50%、60%,优选50~60%。所述孔缝中与外界连通的孔缝占90%以上,例如可以90%、91%、92%、93%、94%、95%、96%等。所述孔缝的平均开口直径为0.1~50μm,例如可以为0.1μm、0.5μm、1μm、2μm、5μm、8μm、10μm、20μm、30μm、40μm、50μm,优选为0.5~10μm。所述孔缝的平均深度为所述粗糙层厚度的80~100%,例如可以为80%、85%、90%、95%、100%,优选 90~100%。
在本申请中,对于孔隙率的测定,本申请不作任何限制,其可以通过本领域常规的方法进行测定,例如可以采用扫描电镜拍摄图片,通过图像处理软件计算所拍摄的图片中孔洞区域面积占总面积的比例即可得到孔隙率。
所述粗糙层包括含镍金属层和含镍氮化物层,其中所述含镍金属层与所述含镍基底层接触,所述含镍氮化物层与所述含镍金属层接触。可见,所述含镍金属层可视为所述含镍基底层向所述含镍氮化物层过渡的中间层,其为金属氮化物层固定在基底上提供支撑。
在一个具体的实施方式中,所述含镍氮化物层的厚度占所述粗糙层厚度的5~90%,例如可以为5%、10%、20%、30%、40%、50%、60%、70%、80%、90%,优选40~80%。
所述含镍氮化物层沿靠近所述含镍金属层至远离所述含镍金属层的方向,所述含镍氮化物层的氮摩尔含量递增,例如可以由0递增至20%以上。
所述含镍氮化物层中包括的含镍氮化物除了包含氮化镍外,还可以包含含镍的多金属氮化物。
在一个具体的实施方式中,所述含镍氮化物层中镍相对于所有金属的含量为50~100%,例如可以为50%、60%、70%、80%、90%、100%。当所述含镍氮化物层中镍相对于所有金属的含量小于100%时,所述含镍氮化物层包括其他金属的氮化物,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。镍与其他金属中的一种或两种以上形成含镍的多金属氮化物,如镍钼氮化物,镍铜氮化物、镍钴氮化物、镍钴钼氮化物、镍铁氮化物、镍钨氮化物,以丰富反应活性位点,提高材料导电性,优化反应功能位点分布,进一步提升电极催化或电化学性能。
进一步地,所述镍-含镍氮化物复合电极可以由本申请的制备方法制备得到。
本申请的镍-含镍氮化物复合电极可有多种应用,例如催化析氢或析氧反应,如电催化析氢或电催化析氧,进一步用于催化电解水制氢或电解水制氧比如用于水电解系统或氯碱电解系统中;还可以用于其他含氢物质还 原为氢气,或者将其他含氧物质氧化为氧气,例如化学水解制氢系统、有机物(如尿素等)降解或转化系统。也可以用于催化氢气氧化为氢离子的反应或氧气还原为水的反应,比如用于燃料电池中。
本申请的镍-含镍氮化物复合电极表层的含镍氮化物因其具有半导体的性质,也可以用于超级电容器、锂离子电池系统、染料敏化电池等。
因此,本申请还提供一种装置,所述装置包括本申请的任意一种镍-含镍氮化物复合电极。例如,所述装置可以为用于电解水制备氢气的装置。
本申请还提供上述的任意一种镍-含镍氮化物复合电极在催化析氢反应、催化析氧反应、催化氢气氧化反应或催化氧气还原反应中的应用。其中,所述催化析氢反应可以为电催化析氢反应,所述催化析氧反应为可以电催化析氧反应。
实施例
实施例1
电极结构:8cm*8cm的方形丝网,丝径为0.3mm,46目;基底为镍丝网,基底上为50μm粗糙层,最外层N含量为23~24%(可以通过扫描电镜的电子能谱测得),梯度镍层为25μm,氮含量由表层及里变化如图1所示。粗糙层中孔隙率约为40%,90%以上孔缝与外界相连,孔缝平均开口直径为3~5μm,孔深为30~48μm。
电极的合成方法为:
a.选取丝径为0.25mm,46目,尺寸为8cm*8cm的镍丝网为基底,在80℃热碱(10%KOH)中浸泡30min,去离子水冲洗至中性后,放入常温酸液(10%H2SO4)中处理10min;
b.等离子沉积20μm镍颗粒层,镍颗粒尺寸为1~2μm,送粉速度为0.2g/s,沉积时控制喷剂到达镍网表面温度为1200℃;再沉积10μm铝颗粒层,铝颗粒尺寸为1~1.5μm,送粉速度0.2g/s,基底表面温度控制在500℃;
c.将电极于1400℃的10%H2/Ar氛围中处理20min后,于惰性氛围中冷却;
d.将电极浸泡于80℃碱液中3h,取出后,去离子水洗涤清洁至中性;
e.在30%氨气/氩气中处理电极30min,温度控制在350℃,气体流速 为10mL/min;
f.惰性气体氛围中冷却电极,得本实施例电极。
实施例2:
电极结构:直径为8cm的圆形丝网,丝径为0.35mm,75目;基底为镍丝网,基底上为80μm粗糙层,电子能谱测得表层N含量约为20%,梯度镍层厚约为46μm。粗糙层中孔隙率约为35%,95%以上孔缝与外界相连,孔缝平均开口直径为5~6μm,平均孔深为68μm。
电极的合成方法为:
a.选取丝径为0.26mm、75目、直径8cm的圆形镍丝网为基底,在80℃8%KOH溶液中浸泡30min,去离子水冲洗至中性后,放入常温12%H2SO4中处理8min;
b.在确保基底表面洁净且无氧化层的情况下,于氮气或氩气等惰性气氛保护下,在含有0.2M氯化镍和2M氯化铵的溶液中在基底表面电沉积镍颗粒层,上述基底材料作为工作电极,镍棒或石墨棒作为对电极,沉积电流密度为0.5A/cm2,沉积时间为1h,最终获得约20μm镍颗粒层;接着在电解液中加入平均直径为2μm的镍铝合金颗粒,这些颗粒伴随着镍沉积于电极表面,沉积层总厚度约为50μm;
c.将电极于1350℃的10%H2/Ar氛围中处理30min,使基底层与沉积层之间形成充分的金属键接触,而后于氩气气氛中冷却;
d.将电极浸泡先后于常温3%NaOH、常温10%NaOH、80℃10%NaOH中2h,而后用去离子水洗涤电极至中性;
e.在30%氨气/1%氢气/氩气中处理电极4h,温度控制在310℃,气体流速为10mL/min;冷却得本实施例电极。
实施例3:
电极结构:尺寸为8cm*8cm的方形板网,板厚0.5mm,板孔为直径0.5mm的圆形,目数为100目;基底为镍丝网,基底上为电极含100μm粗糙层,粗糙层表面存在0.5~2nm的山峦状凸起;电子能谱测得表层N含量约为24%,梯度氮化层厚约为50μm。粗糙层中孔隙率约为45%,95% 以上孔缝与外界相连,孔缝平均开口直径为5~6μm,平均孔深为78μm。
电极的合成方法为:
a.选取尺寸为8cm*8cm,板厚约0.35mm,板孔为直径0.6mm的圆形,目数为100目的方形镍板网为基底,在80度10%NaOH中浸泡30min,去离子水冲洗至中性后,放入10%HNO3中处理15min;
b.采用大气等离子体沉积30μm镍颗粒层,镍颗粒平均尺寸为2μm,送粉速度为0.2g/s,沉积时控制喷剂到达镍网表面温度为1200℃;再沉积30μm铝颗粒层,铝颗粒平均尺寸为1.5μm,送粉速度0.2g/s,基底表面温度控制在600℃;
c.将上述电极于1300℃的10%H2/N2氛围中处理10min,而后于600℃的5%H2/N2中处理10h;
d.将电极放入离子氮化炉,反应舱温度控制在320℃,以氮气作为工作气体,在400V工作电压作用下,氮气形成氮等离子体,与电极表层金属反应,使电极表面氮化,氮化处理3h。
实施例4:
本实施例电极结构与合成方法同实施例3相似,区别仅在于合成步骤b采用电镀方式分别沉积镍颗粒层和铝颗粒层。
实施例5:
本实施例电极结构同实施例1相似,但粗糙层中除金属镍外,还包含金属铜,即粗糙层由铜镍合金层和梯度氮化的铜镍层组成。铜镍金属约比为1:4。
本实施例电极合成工艺同实施例1相似,区别仅在于合成步骤b,首先通过大气等离子体喷涂20μm的铜和镍的混合颗粒层,而后再喷涂10μm铝颗粒层。
实施例6:
本实施例电极结构同实施例3相似,但粗糙层中除金属镍外,还包含金属钼,即粗糙层由钼镍合金层和梯度氮化的钼镍层组成。钼镍金属摩尔 比为4:1。
本实施例电极合成工艺同实施例3相似,区别仅在于合成步骤b,首先通过大气等离子体喷涂35μm的钼和镍的混合颗粒层或镍钼合金颗粒层,而后再喷涂25μm铝颗粒层。
实施例7:
本实施例结构同实施例3相似,但粗糙层中除金属镍外,还包含金属钴,粗糙层由钴镍合金层和梯度氮化的钴镍层组成。钴镍金属摩尔比为2:3。
本实施例电极合成工艺同实施例3相似,区别仅在于合成步骤b,首先通过大气等离子体喷涂35μm的钴和镍的混合颗粒层或镍钴合金颗粒层,而后再喷涂25μm铝颗粒层。
实施例8:
本实施例电极结构整体为8cm*8cm的密实无孔的板状电极,板上存在栅格形凹凸,栅格凹处为方形,边长为1mm,栅格凸起为条形,厚度约为0.1mm,板整体最小厚度为0.4mm,最大厚度为0.6mm。电极含100μm粗糙层,粗糙层表面存在0.5~2nm的山峦状凸起;电子能谱测得表层N含量约为24%,梯度氮化层厚约为50μm。粗糙层中孔隙率约为45%,95%以上孔缝与外界相连,孔缝平均开口直径为5~6μm,平均孔深为78μm。该电极除基底为板状镍基底外,合成方法和实施例3一致。
对比例1:
根据非专利文献DOI:10.1038/s41467-018-06728-7制备的Ni-Ni3N电极。步骤为:以面积8cm*8cm、厚度0.5mm、面密度300g/m2、孔径0.3~0.4mm、孔隙率97%的泡沫镍为基底,于氮气气氛保护下,在含有2.0M氯化铵和0.1M氯化镍的溶液中电镀沉积镍层,在1.0A/cm2的电流密度下恒流电镀500s,接着将电极置于氨气流中300℃煅烧6小时,氨气流速10℃/min。
对比例2:
同实施例1制备电极的方法相似,区别仅在于不进行氮化处理,即不进行步骤e。
对比例3:
同实施例1制备电极的方法相似,区别仅在于使用面积8cm*8cm、厚度0.5mm、面密度300g/m2、孔径0.3~0.4mm、孔隙率97%的泡沫镍为基底。
上述各实施例和对比例的主要参数如表1所示。
表1各实施例和对比例的主要参数

电解水制氢性能测试:
将上述实施例1~6及对比例中的电极材料作为工作电极,于三电极体系中测试,电解液为1M KOH,对电极为镍网,参比电极为Hg/HgO电极,分别在工作电流为300mA/cm2和500mA/cm2(300~600mA/cm2为一般碱液电解槽的工作电流,在该大电流作用下,将产生大量的氢气气泡,这对电极的机械稳定性要求极高)下测试工作电极在进行制氢半反应所需过电位及其随时间变化情况,以考察所测电极的活性与稳定性。所得结果如表 2所示。由该结果可知,本申请实施例的电极相对于对比例的电极呈现更优异的催化活性和长期稳定性。
表2
实施例9
本实施例构建了一台电解槽装置,由50个小室组成,每个小室由阴极板、阴极催化电极、隔膜、密封垫片、阳极催化电极、阳极板组成,具体地,阴极板和阳极板为以碳钢材料为主,阴极催化电极为实施例2材料,尺寸增加到直径2.8米;隔膜材料为氧化锆-聚苯硫醚复合隔膜,阳极催化电极为实施例7材料,尺寸亦调整为直径2.8米的圆形。电解槽两端含两个端板,可分别连接外接电源正负极。电解槽整体由10根拉杆和20个螺母压紧密封。电解槽后端连接氢氧收集净化装置。该电解槽具有较低的电极过电位,在90℃工作温度下,能在1.65V的小室电压下,实现5400A/m2工作电流密度。
实施例10
本实施例构建了一台电解槽装置,总体构成同实施例9相似,区别在于阴极催化电极由两片直径2.8m的实施例2圆形镍-氮化镍丝网组成。由于单位电解槽几何面积的反应活性面积增大,该电解槽具有较实施例9更低的电极过电位,在90℃工作温度下,能在1.65V的小室电压下,实现6100A/m2工作电流密度。
实施例11
本实施例建构了一个以实施例7材料为电极的对称型超级电容器,电解液为1M KOH,该电容器表现出较现有金属氧化物和碳材料电容器更为优异的电容性能和循环稳定性,在电流密度为1mA/cm2时,面积比电容为1.28F/cm2;循环充放电10000次后保持率为95.3%。
实施例12
本实施例构建了一个碱性燃料电池堆系统,由50个电池单元构成,单个电池单元包含了双极板、气体扩散催化层、和氢氧根离子交换膜。双极板采用改性的石墨材料,本实施例以双层的实施例1材料作为HOR阳极气体扩散催化层,涂覆一定量铂双层的镍网作为ORR阳极气体扩散催化层。
实施例13
本实施例构建了一个锂离子电池,以实施例8与实施例7材料叠合作为电池负极,电池正极为钴酸锂。该电池在1.5mA/cm2的电流密度下,过电势仅为15mV,循环充放电5000次,依旧十分稳定;在5mA/cm2的高电流密度下,依然可循环充放电250不以上不发生短路。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征, 在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所申请的内容。

Claims (36)

  1. 一种镍-含镍氮化物复合电极的制备方法,其中,所述制备方法包括以下步骤:
    提供含镍基底,
    在所述含镍基底的表面依次形成含镍层和含铝层,
    在惰性或还原性氛围中对具有含镍层和含铝层的基底进行热处理,
    对热处理后的基底用碱液进行处理以去除铝,
    将去除铝后的基底进行洗涤、烘干后进行氮化处理,得到镍-含镍氮化物复合电极。
  2. 根据权利要求1所述的制备方法,其中,所述含镍基底选自丝网、多孔板网、以及金属板中的一种。
  3. 根据权利要求2所述的制备方法,其中,所述含镍基底为丝网,其中所述丝网的丝径为0.05~2.0mm,目数为5~500目。
  4. 根据权利要求2所述的制备方法,其中,所述含镍基底为多孔板网,其中所述多孔板网的板厚为0.05~2.0mm,孔径为0.02~2.0mm。
  5. 根据权利要求2所述的制备方法,其中,所述含镍基底为金属板,其中所述金属板的板厚为0.05~2.0mm。
  6. 根据权利要求1所述的制备方法,其中,所述含镍层的厚度为5~100μm;所述含铝层的厚度为5~100μm。
  7. 根据权利要求1所述的制备方法,其中,形成含镍层和含铝层的方式选自以下中的任意一种:电弧喷涂、等离子喷涂、火焰喷涂、金属熔融液浸渍、磁控溅射、电镀、以及化学镀。
  8. 根据权利要求7所述的制备方法,其中,
    等离子喷涂以含镍、含铝颗粒作为材料源,所述含镍、含铝颗粒的尺寸为0.1~50μm。
  9. 根据权利要求8所述的制备方法,其中,在沉积含镍颗粒时,所述基底的表面温度为1000~1600℃,或者
    在沉积含铝颗粒时,所述基底表面温度为100~800℃。
  10. 根据权利要求1所述的制备方法,其中,所述热处理的温度为600~1500℃,热处理时间为5~60min。
  11. 根据权利要求1所述的制备方法,其中,所述氮化处理的方法选自化学气相法或等离子氮化法。
  12. 根据权利要求11所述的制备方法,其中,所述氮化处理的温度为300~400℃,反应时间为0.5~24h。
  13. 根据权利要求11所述的制备方法,其中,所述的化学气相法为将材料放置于含氨气的氛围中进行氮化反应,所述氨气的体积含量为50~100%。
  14. 根据权利要求1所述的制备方法,其中,所述含镍基底为单质镍形成的基底或镍与其他金属的合金形成的基底,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
  15. 根据权利要求1所述的制备方法,其中,所述含镍层中镍相对于所有金属元素的摩尔含量为50~100%,当所述含镍层中镍相对于所有金属元素的摩尔含量小于100%时,所述含镍层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
  16. 根据权利要求1所述的制备方法,其中,所述含铝层中铝相对于所有金属元素的摩尔含量为50~100%,当所述含铝层中铝相对于所有金属元素的摩尔含量小于100%时,所述含铝层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
  17. 一种镍-含镍氮化物复合电极,其中,所述复合电极包括含镍基底层和覆盖所述基底层的粗糙层,所述粗糙层包括含镍金属层和含镍氮化物层,其中所述含镍金属层与所述含镍基底层接触,所述含镍氮化物层与所述含镍金属层接触,并且在沿靠近所述含镍金属层至远离所述含镍金属层的方向上氮的摩尔含量递增。
  18. 根据权利要求17所述的复合电极,其中,所述含镍基底选自丝网、多孔板网、以及金属板中的一种。
  19. 根据权利要求17所述的复合电极,其中,所述含镍基底层为丝网,其中所述丝网的丝径为0.05~2.0mm,目数为5~500目。
  20. 根据权利要求17所述的复合电极,其中,所述含镍基底层为多孔板网,其中所述多孔板网的板厚为0.05~2.0mm,孔径为0.02~2.0mm。
  21. 根据权利要求17所述的复合电极,其中,所述含镍基底层为金属板,其中所述金属板的板厚为0.05~2.0mm。
  22. 根据权利要求17所述的复合电极,其中,所述含镍基底层为单质镍或镍与其他金属的合金,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
  23. 根据权利要求17所述的复合电极,其中,所述含镍基底层的厚度占所述复合电极厚度的20~90%。
  24. 根据权利要求17所述的复合电极,其中,所述粗糙层的厚度占所述复合电极厚度的2~50%。
  25. 根据权利要求17所述的复合电极,其中,所述粗糙层中存在孔缝,所述粗糙层的孔隙率为10~60%,所述孔缝中与外界连通的孔缝的体积比为90%以上。
  26. 根据权利要求17所述的复合电极,其中,所述粗糙层中所述孔缝的平均开口直径为0.1~50μm,所述孔缝的平均深度为所述粗糙层厚度的80~100%
  27. 根据权利要求17所述的复合电极,其中,所述含镍氮化物层的厚度占所述粗糙层厚度的5~90%。
  28. 根据权利要求17所述的复合电极,其中,在沿靠近所述含镍金属层至远离所述含镍金属层的方向上所述含镍氮化物层的氮摩尔含量由0递增至20%以上。
  29. 根据权利要求17所述的复合电极,其中,所述含镍氮化物层包含氮化镍。
  30. 根据权利要求17所述的复合电极,其中,所述含镍金属层与所述含镍基底层具有相同的材料组成。
  31. 根据权利要求17所述的复合电极,其中,所述含镍氮化物层中镍相对于所有金属的摩尔含量为50~100%,当所述含镍氮化物层中镍相对于所有金属的摩尔含量小于100%时,所述含镍氮化物层包括其他金属,所述其他金属选自钼、钒、铁、钴、铜、钨中的一种或两种以上。
  32. 根据权利要求17所述的复合电极,其中,所述复合电极由权利要求1~16中任一项所述的制备方法制备得到。
  33. 一种装置,其中,所述装置包括权利要求17~32中任一项所述的复合电极。
  34. 根据权利要求32的装置,其中,所述装置为用于电解水制备氢气的装置。
  35. 根据权利要求17~31中任一项所述的复合电极在催化析氢反应、催化析氧反应、催化氢气氧化反应或催化氧气还原反应中的应用。
  36. 根据权利要求35所述的应用,其中,所述催化析氢反应为电催化析氢反应,所述催化析氧反应为电催化析氧反应。
PCT/CN2023/116778 2022-11-08 2023-09-04 一种镍-含镍氮化物复合电极及其制备方法和应用 WO2024098919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211391197.7A CN115595617A (zh) 2022-11-08 2022-11-08 一种镍-含镍氮化物复合电极及其制备方法和应用
CN202211391197.7 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024098919A1 true WO2024098919A1 (zh) 2024-05-16

Family

ID=84853184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116778 WO2024098919A1 (zh) 2022-11-08 2023-09-04 一种镍-含镍氮化物复合电极及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115595617A (zh)
WO (1) WO2024098919A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116575045B (zh) * 2023-07-14 2023-09-26 西湖大学 一种应用于水分解催化的mea水分解装置及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339559A (zh) * 2017-01-25 2018-07-31 天津城建大学 一种氮化镍纳米复合电催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115595617A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US10889903B2 (en) Oxygen-generating anode
WO2024098919A1 (zh) 一种镍-含镍氮化物复合电极及其制备方法和应用
Cheng et al. Hierarchical Ni3S2@ 2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution
CN113430553A (zh) 基于过渡金属异质层状结构双功能催化电极及制备方法
CN110846680B (zh) 一种多缺陷和活性位点的电催化剂的制备方法
Choi et al. Metal-organic framework-derived cobalt oxide and sulfide having nanoflowers architecture for efficient energy conversion and storage
CN111663152A (zh) 一种泡沫镍负载无定型磷掺杂钼酸镍双功能电催化电极的制备方法及应用
CN109273728A (zh) 一种脉冲电沉积制备纳米铂/钴二氧化钛纳米管复合电极的方法
CN111668499A (zh) 一种聚苯胺衍生的氮掺杂碳负载的多元合金催化剂及其制备方法和应用
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
WO2024082842A1 (zh) 一种复合材料及其制备方法、包含复合材料的电极与应用
CN110391428B (zh) 自支撑纳米多孔Mo/Mo2N@Ni3Mo3N复合材料及其制备方法和应用
CN109994744B (zh) 一种促进硼氢化钠直接氧化的镍钴二元催化剂
CN114318361B (zh) 氧化钒修饰的雷尼镍合金电极制备方法、电极及应用
CN105047884A (zh) 三维析氧电极阳极材料及其制备方法和应用
CN110828831A (zh) 非晶氧化钌薄膜包覆泡沫镍复合电极及其制备方法和应用
Jiang et al. Deep reconstruction of Ni–Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer
JP3921300B2 (ja) 水素発生装置
CN114497580B (zh) 一种电极及作为负极在全钒液流电池中的应用
CN114927703B (zh) 一种电还原过氧化氢的催化剂及其制备方法
WO2023092630A1 (zh) 一种三维多孔氮化钴-聚(3,4-乙烯二氧噻吩)柔性复合电极及其制备方法
Xu et al. NiFeLDH/Mo 4/3 B 2− x T z/NF composite electrodes to enhance oxygen evolution performance
CN116856001A (zh) Ar等离子体处理制备Ru/Mn氧化物电催化剂的方法
CN118048650A (zh) 一种低温等离子体结合催化剂前体成膜制备电解水催化剂的方法及其应用
JP2024053492A (ja) 電解装置の運転方法、電解システムの運転方法及び電解システム