WO2019232919A1 - 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机 - Google Patents

蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机 Download PDF

Info

Publication number
WO2019232919A1
WO2019232919A1 PCT/CN2018/099437 CN2018099437W WO2019232919A1 WO 2019232919 A1 WO2019232919 A1 WO 2019232919A1 CN 2018099437 W CN2018099437 W CN 2018099437W WO 2019232919 A1 WO2019232919 A1 WO 2019232919A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
storage material
cold
tin alloy
alloy particles
Prior art date
Application number
PCT/CN2018/099437
Other languages
English (en)
French (fr)
Inventor
周志坡
李奥
曾伟巍
陶远
Original Assignee
中船重工鹏力(南京)超低温技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工鹏力(南京)超低温技术有限公司 filed Critical 中船重工鹏力(南京)超低温技术有限公司
Priority to US15/734,950 priority Critical patent/US11906228B2/en
Priority to EP18921799.5A priority patent/EP3805666A4/en
Publication of WO2019232919A1 publication Critical patent/WO2019232919A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/15Millimeter size particles, i.e. above 500 micrometer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/02Gas cycle refrigeration machines using the Joule-Thompson effect
    • F25B2309/023Gas cycle refrigeration machines using the Joule-Thompson effect with two stage expansion

Definitions

  • the present invention relates to the technical field of low-temperature refrigerators, in particular to cold storage materials used for low-temperature refrigerants, and in particular to a cold storage material that does not contain lead, has low toxicity, is easy to spheroidize, is easily obtained, and has good thermal performance.
  • Cold storage type low temperature refrigerator using the cold storage material in particular to cold storage materials used for low-temperature refrigerants, and in particular to a cold storage material that does not contain lead, has low toxicity, is easy to spheroidize, is easily obtained, and has good thermal performance.
  • Regenerative refrigerators are collectively referred to refrigerators with regenerators, and include, for example, GM refrigerators, Stirling refrigerators, pulse tube refrigerators, and Solven refrigerators.
  • the regenerator is filled with a heat exchange material, which is called a cold storage material.
  • a cold storage material As a cold storage material, it must have a large specific heat capacity in the corresponding temperature zone.
  • the low-temperature refrigerator requires that the specific heat storage material selected in the corresponding temperature range be as large as possible.
  • the volumetric specific heat of the same material is different in different temperature zones and different materials in the same temperature zone. Therefore, no one material can be applied to all temperature zones, and different material combinations must be adopted according to the temperature zone distribution.
  • An object of the present invention is to provide a cold storage material that does not contain lead, has low toxicity, is easy to be spheroidized, and is easy to obtain, and has good thermal performance, and a cold storage type low temperature refrigerator using the cold storage material. .
  • a cold storage material characterized in that the cold storage material is tin alloy particles, and the tin content in the tin alloy particles is not less than 40% and not more than 99%.
  • the cold storage material contains at least one component of bismuth, antimony, silver, and gold in addition to tin, which is a binary or multicomponent alloy of tin.
  • the proportion of the particles of the tin alloy particles having a diameter of 0.15 mm to 1 mm in the cold storage material to the total weight of the tin alloy particles is not less than 65%.
  • the ratio of the particle diameter of the short alloy to the long diameter of the particles of the tin alloy particles in the cold storage material greater than 0.7 accounts for not less than 65% of all the tin alloy particles.
  • the cold storage material is prepared by melting metal quenching, or plasma, or gas atomization, into tin alloy particles.
  • a cold storage low temperature refrigerator includes a cold storage, characterized in that the cold storage material filled in the cold storage is tin alloy particles.
  • the cold accumulator includes a first-stage push piston and / or a second-stage push piston, and the first-stage cold storage material filled in the first-stage push piston and / or the second-stage cold storage material filled in the second-stage push piston uses tin alloy particles.
  • the tin-alloy particles serve as the first-stage cold-storage material that pushes the cold end of the piston one-stage.
  • the secondary cold storage material includes a secondary hot end cold storage material and a secondary cold end cold storage material. Tin alloy particles are used as the secondary hot end cold storage material on the secondary side of the piston and the secondary cold end cold storage on the secondary side of the piston.
  • the material is GOS or HoCu 2 .
  • the cold storage low-temperature refrigerator is a 4K low-temperature refrigerator for nuclear magnetic resonance and is applied to a superconducting system.
  • the refrigerator includes a Gifford-McMahon refrigerator, a Stirling refrigerator, a Salvin refrigerator, and a pulse tube refrigerator, and is not limited to the above-mentioned low-temperature refrigerators, but any low-temperature refrigerator with a cooler Both are applicable.
  • the present invention has the following advantages:
  • the cold storage material provided by the present invention does not contain lead, has low toxicity, is easily spheroidized, is easy to obtain, and has good thermal performance.
  • the performance of the cold storage material is comparable to that of lead. When the cold storage material is used in a cold storage refrigerator, Have better heat transfer performance.
  • FIG. 1 is a schematic diagram of a cold storage material filled in a lead cooler in the prior art
  • FIG. 2 is a schematic diagram showing the distribution of the cold storage material filled in the tin alloy cold storage device of the present invention
  • FIG. 3 is a schematic structural diagram of an ultra-low temperature refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a structural sectional view of a two-stage shift piston in a GM refrigerator according to an embodiment of the present invention
  • Figure 6 is a particle diameter distribution histogram of a tin alloy cold storage material of the present invention.
  • FIG. 7 is a performance comparison chart of a tin alloy cold storage material and a lead cold storage material of the present invention (Sn in the figure represents a tin alloy);
  • FIG. 8 is a performance comparison chart of different filling ratios of hafnium copper and tin alloy in the tin alloy regenerator of the present invention (Sn in the figure represents tin alloy);
  • FIG. 9 is a short-term stability performance test chart of the low-temperature refrigerator of the present invention for 24 hours.
  • 1 compressor
  • 2 hood assembly
  • 3 gas pipeline
  • 7 gas pipeline
  • 8 heat cavity
  • 9 first stage expansion cavity
  • 10 second stage expansion cavity
  • 11 first stage push piston
  • 11a first stage piston front hole
  • 11b first stage piston rear hole
  • 11c first stage cold storage material
  • 12 secondary shift piston
  • 12a secondary piston front hole
  • 12b exhaust port
  • 12c secondary cold storage material
  • 12c1 Second-stage hot-end cold storage material
  • 12c2 Second-stage cold-end cold storage material
  • 12d Second-stage piston cylinder
  • 13b Second-stage heat exchanger
  • 30 Divided parts
  • GOS Gd 2 O 2 S (Hodium Oxide Sulfide)
  • Pb-Lead Bi-Bi
  • Sn-Tin Tin-Tin
  • the cold storage material is tin alloy particles, and the tin content in the tin alloy particles is not less than 40% and not more than 99%; in addition to the main component tin, the cold storage material contains at least bismuth, antimony, silver, A component of gold, that is, a binary or multicomponent alloy of tin is a cold storage material.
  • the proportion of the particles of the tin alloy particles in the cold storage material with a diameter of 0.15mm to 1mm to the total weight of the tin alloy particles is not less than 65%; the ratio of the short diameter to the long diameter of the particles of the tin alloy particles in the cold storage material is greater than 0.7.
  • the proportion of the particles in the total tin alloy particles is not less than 65%.
  • the cold storage material is prepared by quenching molten metal, or plasma, or gas atomization, into tin alloy particles.
  • a cold storage cryogenic refrigerator includes a cold storage, and the cold storage material filled in the cold storage is tin alloy particles.
  • the above-mentioned regenerator includes a first-stage shift piston 11 and / or a second-stage shift piston 12, and the first-stage shift piston 11 is filled with a first-stage regenerator material 11 c and / or the second-stage shift piston 12 is filled in the second-stage shift piston 12.
  • Use tin alloy particles are used.
  • the tin alloy particles are used as the first-stage cold storage material 11c
  • the tin alloy particles are used as the first-stage cold storage material 11c that pushes the cold end of the piston 11;
  • the second-stage cold storage material 12c includes the second-stage hot-side storage material 12c1 and the second-stage cold-side storage material 12c2
  • the tin alloy particles are used as the secondary hot-end cold-storage material 12c1 at the hot end of the two-stage push piston 12 and the secondary cold-end cold-storage material 12c2 at the cold end of the two-stage push piston 12 is GOS or HoCu 2 .
  • the cold storage low-temperature refrigerator is a 4K low-temperature refrigerator for nuclear magnetic resonance and is used in ultra ⁇ ⁇ Guide system.
  • FIG. 3 is a schematic structural diagram of a low-temperature refrigerator according to an embodiment of the present invention.
  • the refrigerator includes a compressor 1, a casing assembly 2, a gas pipeline 3, a cylinder 13, a first-stage shifting piston 11, and a second-stage shifting piston 12.
  • the compressor 1 sucks and compresses refrigerant gas to make it a high pressure
  • the refrigerant gas is discharged, and the gas pipeline 3 supplies the high-pressure refrigerant gas to the cover assembly 2;
  • the cylinder 13 is a two-stage type cylinder, the body is made of 304 stainless steel, and is arranged coaxially.
  • the first-stage pusher piston 11 and the second-stage pusher piston 12 are coaxially connected, and driven by a driving mechanism (not shown) together in the cylinder 13 in the direction of Z1 to Z2, and the first-stage pusher piston 11 and the second-stage pusher
  • a driving mechanism not shown
  • the piston 12 moves upward (direction Z1) in the figure, the volumes of the primary expansion cavity 9 and the secondary expansion cavity 10 increase. Conversely, the volume of the corresponding expansion cavity becomes smaller.
  • the incoming refrigerant gas passes through the first-stage piston front hole 11a to perform heat exchange with the first-stage cold storage material 11c inside the first-stage pushing piston 11 and then flows out from the first-stage piston rear hole 11b;
  • the gas expands in the primary expansion cavity 9, and the remaining gas flows into the secondary shift piston 12 through the secondary piston front hole 12a, exchanges heat with the secondary cold storage material 12c inside it, and then flows out from the exhaust port 12b.
  • the refrigerant gas in the process transfers its own heat to the cold storage material, and the temperature changes from normal temperature to low temperature.
  • the cylinder 13 and the one-stage shift piston 11 and the two-stage shift piston 12 are continuously lowered to form a temperature gradient.
  • the returning gas is opposite to the above-mentioned flow process.
  • the refrigerant gas flows out from the secondary expansion chamber 10, performs heat exchange through the exhaust port 12b and the secondary cold storage material 12c in the secondary shift piston 12, and flows out from the secondary piston front hole 12a.
  • the refrigerant gas absorbs heat from the cold storage material and changes from low temperature to normal temperature.
  • the primary cold storage material 11c, the secondary cold storage material 12c, and the refrigerant gas are cooled.
  • the low-temperature gas is continuously expanded to perform work in the primary expansion cavity 9 and the secondary expansion cavity 10 to form a refrigeration source.
  • the secondary cold storage material 12c in the secondary shift piston 12 will be described in detail below.
  • the secondary cold storage material 12c is generally divided into two parts: the secondary hot storage material 12c1 and the secondary cold storage material 12c2, and are stored in the cold storage.
  • Device secondary displacement piston 12
  • the two-stage push piston 12 has a two-stage piston front hole 12a in the upper part, an exhaust port 12b in the lower part, and a two-stage cold storage material 12c to form a porous channel, forming a through gas path.
  • Three partition members 30 are installed in the secondary shifting piston 12 to firmly fix the secondary hot-end cold storage material 12c1 and the secondary cold-end cold storage material 12c2 inside; the partition member 30 allows refrigerant gas to flow through, but does not The cold storage material is allowed to pass, so the secondary hot end cold storage material 12c1 and the secondary cold end cold storage material 12c2 can be designed according to different temperature regions.
  • the secondary cold-side cold storage material 12c2 usually uses HoCu 2 or a combination of HoCu 2 and GOS (Gd 2 O 2 S-rhenium sulfide).
  • HoCu 2 and GOS Ga 2 O 2 S-rhenium sulfide
  • the cold storage materials HoCu 2 and GOS have a larger specific heat than other cold storage materials, and the low-temperature refrigerator has a larger cooling effect.
  • the cooling capacity can reach 1W at 4.2K, and it can be used in magnetic fields. No attenuation will occur. It has become a standard cold storage material for 4K cryogenic refrigerators and is widely used in nuclear magnetic resonance systems for cooling superconducting magnets.
  • Granular bismuth has been proven as a cold storage material and is used in low temperature refrigerators. However, there is no authoritative conclusion on its toxicity, and its large-scale use in low-temperature refrigerators may not be suitable, especially whether low-temperature refrigerators used in medical nuclear magnetic resonance systems meet medical safety requirements.
  • the specific heat of metallic tin is very close to that of metallic bismuth, and tin and lead belong to the same group of elements, and their physical properties are similar.
  • Tin is a non-hazardous metal, which is often used in food packaging and is extremely easy Obtained, cheap, theoretically an ideal alternative material.
  • the temperature is below 13 ° C, the crystal lattice of tin will rearrange and the gaps between atoms will increase, forming a new crystalline form, namely gray tin.
  • Gray tin loses its metallic properties and becomes a semiconductor.
  • the internal stress occurring at the contact between different crystalline lattices causes the metallic tin to break into powder.
  • a tin alloy particle as a cold storage material, which can solve the above problems.
  • the selected particles can be solder balls of tin alloys. Solder balls are widely used in tinplate, fluxes, organic synthesis, chemical production, alloy manufacturing, and the assembly of multiple integrated circuits in the electronics industry. They are low cost and easy to obtain.
  • the selected secondary hot-end cold storage material 12c1 is mainly composed of tin, and its mass fraction is not less than 40%, but not more than 99%; and it contains at least one element of antimony, silver, bismuth, and gold.
  • the content of metal elements reaches a certain level, the occurrence of "tin disease” can be suppressed; in order to avoid "tin disease", common tin alloys are binary alloys such as Sn-Ag, Sn-Sb, and Sn-Bi, and Sn -Ag-Bi-Cu, Sn-Ag-Cu and other multi-component alloys.
  • the above tin alloys are often made into solder balls for welding integrated circuit boards.
  • the hardness and density of the cold storage material are shown in Table 1.
  • the selected tin alloy particles have a hardness comparable to that of lead, and no cracking of the particles was found during repeated impact tests.
  • tin alloys have a lower density and density than lead and bismuth, they can be used in smaller volumes at the same volume, and are more economical, which is beneficial to reducing the cost of low-temperature refrigerators.
  • the particle diameter of the secondary hot-end cold-storage material 12c1 is in the range of 0.15 mm to 1 mm, and accounts for more than 65% of the total weight.
  • the selected particles are particles that are easy to form into balls.
  • the short diameter ratio is preferably greater than 0.7.
  • the spherical diameter tolerance is ⁇ 0.005mm and the roundness is ⁇ 0.005mm.
  • a 0.4mm spherical tin alloy Histogram of particle diameters of cold storage materials. Due to the low price of tin alloy solder balls, the size can be further screened during the implementation process, and the size should be selected as much as possible for testing.
  • a Sn-Ag-Cu ternary alloy is taken as an example, a comparative test of the secondary hot-end cold storage material 12c1 is performed, and the performance of the tin alloy cold storage material is evaluated based on a 1.2W 4.2K low-temperature refrigerator.
  • FIG. 7 (Sn in this figure represents a Sn-Ag-Cu ternary tin alloy), a comparison chart of the performance of a tin alloy cold storage material and a lead cold storage material.
  • the first-stage refrigeration temperature is controlled to 42K
  • the second-stage refrigeration temperature is 4.2K
  • a three-layer filler combination of tin alloy, lead and samarium copper is additionally added to perform a performance comparison test.
  • the combination method is shown in FIG. 7; The material was reduced until all of it was replaced by tin alloy. Although the cooling capacity in the 4.2K temperature zone decreased by 6.4%, it also reached 1.3W or more, which can fully meet the requirements of 1.5T nuclear magnetic resonance.
  • the filling amount of hafnium copper is appropriately increased so that the filling amount of the hafnium copper is slightly larger than that of the tin alloy cold storage material, as shown in FIG. 8.
  • the performance of the tin alloy regenerator can be mentioned to be equivalent to that of the lead regenerator.
  • the stability inspection of the tin alloy cold storage material is also conducted through a 24-hour short-term stability test, as shown in FIG. 9.
  • the cold accumulator repeatedly experienced cold and heat shocks.
  • no cracking or powder emerged By inspecting the tin alloy cold storage material, no cracking or powder emerged, which indicates that the tin alloy is a cold storage material that can be used in low temperature refrigerators.
  • the sintered copper used for the secondary cold-end cold storage material 12c2 of the two-stage shift piston cold end can also use a combination of sintered copper and GOS to improve the performance of the refrigerator.
  • a tin alloy is used as the secondary hot-end cold-storage material 12c1 of the two-stage moving piston 12 of the cold-storage refrigerator. Bulk or gas atomization method.
  • the cold accumulator filled with the cold storage material of the present invention is the two-stage shift piston 12 of the two-stage cryogenic refrigerator in the embodiment, and as shown in FIGS. 2 and 4, it has the tin alloy cold storage material particles provided by the present invention.
  • the cold storage type low temperature refrigerator provided by the present invention has a low temperature cold storage device filled with tin alloy particles as a secondary hot-end cold storage material 12c1; it can be used in combination with samarium copper and GOS for a 4K low temperature refrigerator for nuclear magnetic resonance. Cool the superconducting magnet.
  • the cold storage material provided by the present invention is suitable for Gifford-McMahon type refrigerators, Stirling refrigerators, Solven refrigerators, and pulse tube refrigerators, and is not limited to the above-mentioned low-temperature refrigerators. Any cryogenic refrigerator with a cold accumulator can be used.
  • the cold storage material provided by the present invention does not contain lead, has low toxicity, is easily spheroidized, is easy to obtain, and has good thermal performance.
  • the performance of the cold storage material is comparable to that of lead. When the cold storage material is used in a cold storage refrigerator, Have better heat transfer performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机,该蓄冷材料为锡合金粒子,且锡合金粒子中的锡含量不小于40%且不大于99%,且蓄冷材料中至少包含有铋、锑、银、金中的一种成分。该蓄冷式低温制冷机包括蓄冷器,蓄冷器内填充的蓄冷材料为锡合金粒子,不含铅、毒性低、容易球化、极易获得且具有较好热性能,与铅性能相当,用于蓄冷式制冷机时有较好的换热性能。

Description

蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机 技术领域
本发明涉及低温制冷机技术领域,尤其涉及低温制冷剂所采用的蓄冷材料,具体地说是一种不含铅、毒性低、容易球化、极易获得且具有较好热性能的蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机。
背景技术
蓄冷式制冷机,是对具有蓄冷器的制冷机的统称,例如,包括GM制冷机、斯特林制冷机、脉管制冷机、索尔文制冷机等。在蓄冷器内填充有换热材料,称为蓄冷材料。作为蓄冷材料,必须在对应的温区下有较大的比热容。低温制冷机要实现从室温到4K温区的制冷效应,要求在对应的温区范围内选取的蓄冷材料比热尽可能大。同种材料在不同温区以及不同材料在同种温区体积比热均不一样,因此没有一种材料可以应用于全部温区,必须依据温区分布采取不同材料组合方式。从室温到40K的温区,采用不锈钢或磷青铜丝网,如图1所示:40K~10K采用球状的铅(Pb)、10K以下采用球状的钬铜(HoCu 2)。铅在40K~10K温区相对其他材料有较大的比热,价格便宜易于获得,是该温区最理想的蓄冷材料。但是,就环保而言,铅是一种有害于人体的重金属,对神经有毒性作用,动植物吸收铅后均会出现不同程度的毒性效应。有文献和专利提出采用金属铋替代铅,尽管在性能上与铅大致相当。但是铋的毒性,目前学术界还没有权威论定,蓄冷材料里面大量使用铋未必合适。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种不含铅、毒性低、容易球化、极易获得且具有较好热性能的蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机。
本发明的目的是通过以下技术方案解决的:
一种蓄冷材料,其特征在于:所述的蓄冷材料为锡合金粒子,且锡合金粒子中的锡含量不小于40%且不大于99%。
所述的蓄冷材料中除主体成分锡以外,至少包含有铋、锑、银、金中的一种成分,即蓄冷材料为锡的二元或多元合金。
所述的蓄冷材料中的锡合金粒子粒子直径为0.15mm~1mm的颗粒体占全部锡合金粒子重量的比例不低于65%。
所述蓄冷材料中的锡合金粒子的颗粒短径对长径之比大于0.7的颗粒体占全部锡合 金粒子的比例不低于65%。
所述的蓄冷材料通过熔化金属骤冷、或者等离子体、或者气体雾化制备而成锡合金粒子。
一种蓄冷式低温制冷机,包括蓄冷器,其特征在于:所述蓄冷器内填充的蓄冷材料为锡合金粒子。
所述的蓄冷器包括一级推移活塞和/或二级推移活塞,所述一级推移活塞中填充的一级蓄冷材料和/或二级推移活塞中填充的二级蓄冷材料采用锡合金粒子。
所述的一级蓄冷材料采用锡合金粒子时,锡合金粒子作为一级推移活塞冷端的一级蓄冷材料。
所述的二级蓄冷材料包括二级热端蓄冷材料和二级冷端蓄冷材料,锡合金粒子作为二级推移活塞热端的二级热端蓄冷材料且二级推移活塞冷端的二级冷端蓄冷材料采用GOS或者HoCu 2
所述的二级热端蓄冷材料采用锡合金粒子且二级冷端蓄冷材料采用GOS或者HoCu 2时,该蓄冷式低温制冷机为核磁共振用4K低温制冷机并应用于超导系统。
所述的制冷机包括吉福德-麦克马洪型制冷机、斯特林制冷机、索尔文制冷机、脉管制冷机,并且不局限上述低温制冷机,但凡具有蓄冷器的低温制冷机均可适用。
本发明相比现有技术有如下优点:
本发明所提供的蓄冷材料不含铅、毒性低、容易球化、极易获得且具有较好热性能,且该蓄冷材料的性能与铅性能相当;该蓄冷材料用于蓄冷式制冷机时,有较好的换热性能。
附图说明
附图1为现有技术中的铅蓄冷器内装填的蓄冷材料分布示意图;
附图2为本发明的锡合金蓄冷器内装填的蓄冷材料分布示意图;
附图3为本发明的一实施方式的超低温制冷机的结构示意图;
附图4为本发明的实施方式所涉及的GM制冷机中的二级推移活塞的结构截面图;
附图5为本发明所涉及的不同蓄冷材料的体积比热曲线图;
附图6为本发明的锡合金蓄冷材料的粒子直径分布正方图;
附图7为本发明的锡合金蓄冷材料与铅蓄冷材料的性能对比图(该图中的Sn表示锡合金);
附图8为本发明的锡合金蓄冷器中钬铜与锡合金不同填装比例的性能对比图(该图 中的Sn表示锡合金);
附图9为本发明的低温制冷机24h短期稳定性性能测试图。
其中:1—压缩机;2—罩体组件;3—气体管路;7—密封环;8—热腔;9—一级膨胀腔;10—二级膨胀腔;11—一级推移活塞;11a—一级活塞前孔;11b—一级活塞后孔;11c—一级蓄冷材料;12—二级推移活塞;12a—二级活塞前孔;12b—排气口;12c—二级蓄冷材料;12c1—二级热端蓄冷材料;12c2—二级冷端蓄冷材料;12d—二级活塞筒体;13—气缸;13b—二级换热器;30—分隔部件;GOS—Gd 2O 2S(氧硫化钆);HoCu 2—钬铜;Pb—铅;Bi—铋;Sn—锡。
具体实施方式
下面结合附图与实施例对本发明作进一步的说明。
一种蓄冷材料,该蓄冷材料为锡合金粒子,且锡合金粒子中的锡含量不小于40%且不大于99%;该蓄冷材料中除主体成分锡以外,至少包含有铋、锑、银、金中的一种成分,即蓄冷材料为锡的二元或多元合金。并且蓄冷材料中的锡合金粒子粒子直径为0.15mm~1mm的颗粒体占全部锡合金粒子重量的比例不低于65%;蓄冷材料中的锡合金粒子的颗粒短径对长径之比大于0.7的颗粒体占全部锡合金粒子的比例不低于65%。上述的蓄冷材料通过熔化金属骤冷、或者等离子体、或者气体雾化制备而成锡合金粒子。
如图2-4所示:一种蓄冷式低温制冷机,包括蓄冷器,该蓄冷器内填充的蓄冷材料为锡合金粒子。上述的蓄冷器包括一级推移活塞11和/或二级推移活塞12,所述一级推移活塞11中填充的一级蓄冷材料11c和/或二级推移活塞12中填充的二级蓄冷材料12c采用锡合金粒子。当一级蓄冷材料11c采用锡合金粒子时,锡合金粒子作为一级推移活塞11冷端的一级蓄冷材料11c;二级蓄冷材料12c包括二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2,锡合金粒子作为二级推移活塞12热端的二级热端蓄冷材料12c1且二级推移活塞12冷端的二级冷端蓄冷材料12c2采用GOS或者HoCu 2。另外需要说明的是,二级热端蓄冷材料12c1采用锡合金粒子且二级冷端蓄冷材料12c2采用GOS或者HoCu 2时,该蓄冷式低温制冷机为核磁共振用4K低温制冷机并应用于超导系统。
如图3所示:图3是本发明的一个实施例的低温制冷机的结构示意图。制冷机包含压缩机1、罩体组件2、气体管路3、气缸13、一级推移活塞11、二级推移活塞12,压缩机1通过将制冷剂气体吸入、压缩,而使之作为高压的制冷剂气体排出,气体管路3将该高压的制冷剂气体向罩体组件2进行供给;气缸13是两级式的气缸,本体采用304不锈钢制成,同轴布置。一级推移活塞11与二级推移活塞12同轴连接,在驱动机构(图 中未画出)的带动下一起在气缸13内沿着Z1~Z2方向运动,一级推移活塞11和二级推移活塞12向图中上方(Z1方向)移动,则一级膨胀腔9和二级膨胀腔10的容积增加。反之,对应的膨胀腔容积变小。
在上述膨胀腔容积的变化下,来流的制冷剂气体经过一级活塞前孔11a与一级推移活塞11内部的一级蓄冷材料11c进行热交换,再从一级活塞后孔11b流出;一部分气体在一级膨胀腔9内进行膨胀,剩余的气体通过二级活塞前孔12a流进二级推移活塞12内,与其内部的二级蓄冷材料12c进行换热,然后从排气口12b流出,进入到二级膨胀腔10内,该过程制冷剂气体将自身的热量传递给蓄冷材料,温度由常温变成低温。沿着上述气体流动方向,即Z2方向,气缸13以及一级推移活塞11、二级推移活塞12连续降低,形成温度梯度。
回流的气体与上述流动过程相反,制冷剂气体从二级膨胀腔10流出,通过排气口12b与二级推移活塞12内的二级蓄冷材料12c进行换热,从二级活塞前孔12a流出,与一级膨胀腔9内的制冷剂气体混合;然后经过一级活塞后孔11b,与一级推移活塞11内的一级蓄冷材料11c进行换热,接着通过一级活塞前孔11a,进入到罩体组件2内,再流到压缩机1的低压侧。该过程制冷剂气体从蓄冷材料吸收热量,由低温变成常温。
通过反复进行以上的动作,一级蓄冷材料11c、二级蓄冷材料12c和制冷剂气体被冷却。低温气体在一级膨胀腔9和二级膨胀腔10内不断的膨胀做功,形成制冷源。
下面以二级推移活塞12中的二级蓄冷材料12c进行详细地进行说明。
如图4所示,为了提升制冷机制冷效果,根据温区的不同,二级蓄冷材料12c一般分隔成两部分:二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2,并且容纳于蓄冷器(二级推移活塞12)内。二级推移活塞12的上部有二级活塞前孔12a、下部有排气口12b、以及二级蓄冷材料12c组成多孔通道,形成贯通的气体通路。在二级推移活塞12内安装有三块分隔部件30,将二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2牢牢的固定在其内部;分隔部件30允许制冷剂气体流过,但不允许蓄冷材料通过,因此可根据不同温区来设计二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2。
具体地说:2002年后,4.2K温区的蓄冷材料得到极大发展,二级冷端蓄冷材料12c2通常采用HoCu 2或者是HoCu 2和GOS(Gd 2O 2S-氧硫化钆)的组合,因为在该温区下,蓄冷材料HoCu 2和GOS相对其他蓄冷材料有较大的比热,低温制冷机有较大的制冷效果,制冷量在4.2K可达到1W,且可在磁场中使用,并不会出现衰减,已经成为4K低温制冷机标配的蓄冷材料,广泛用于核磁共振系统中,用于冷却超导磁体。
由于GOS的比热峰值在5.2K,温度大于5.2K后,比热会急剧减小;另外由于HoCu 2为稀土金属材料,价格昂贵,因此整个二级推移活塞12内的蓄冷材料全部填装HoCu 2和GOS不具有经济性和可行性。传统采用铅(Pb)或者是铅的合金,不仅比热大、换热效果好、且价格便宜、容易获取。但是铅作为重金属元素,对人体、动植物都有毒性,从2006年开始全球已经对铅进行严格管控。国外众多企业为降低蓄冷材料的毒性,已经采用金属铋(Bi)替代铅。颗粒状的铋作为蓄冷材料已经经过验证,并用于低温制冷机。但是对于其毒性尚未有权威的定论,大量使用在低温制冷机内未必合适,特别是用于医用核磁共振系统中的低温制冷机是否满足医疗安全要求,尚未有定论。
如图5所示,金属锡的比热与金属铋十分接近,并且锡与铅同属族元素,物理性质接近,而且锡是一种对人体无危害的金属,常用于食品包装中,且极易获得,价格便宜,理论上是理想的替代材料。但是金属锡存在“锡疫”问题,当温度在13℃以下时,锡的结晶点阵就会重新排列,原子之间的空隙就会加大,形成一种新的结晶形态,即灰锡。灰锡就失去了金属特性而成为一种半导体。在不同结晶点阵之间的,接触处发生的内应力使金属锡碎裂成粉末。因此,在本发明中,提出采用一种锡合金粒子作为蓄冷材料,能够解决上述问题。所选的粒子可为锡合金的焊锡球,焊锡球广泛用于马口铁、助熔剂、有机合成、化工生产、合金制造,以及电子行业中多组集成电路的装配等,成本低廉且极易获取。
具体实施过程,选取的二级热端蓄冷材料12c1以锡为主体成分,质量分数不小于40%、但是不大于99%;并且至少包含有锑、银、铋、金中一种元素,当上述金属元素含量达到一定程度后,可使抑制“锡疫”转变的发生;为避免“锡疫”发生,常见的锡合金为Sn-Ag、Sn-Sb、Sn-Bi等二元合金,以及Sn-Ag-Bi-Cu、Sn-Ag-Cu等多元合金,以上锡合金常制成焊锡球,用于集成电路板的焊接。在该实施过程中,蓄冷材料的硬度和密度如表一所示。
Figure PCTCN2018099437-appb-000001
表一 不同蓄冷材料维氏硬度和密度对比表
如表一所示,从硬度看,所选锡合金粒子具有与铅相当的硬度,并且在进行反复冲击试验过程中未发现颗粒出现破裂现象。另外由于锡合金密度密度小于铅和铋,因此在 同等体积下用量较小,经济性更好,利于降低低温制冷机的成本。
其次,实施过程中,二级热端蓄冷材料12c1的颗粒过小会极大的阻碍制冷剂流动,引起流动损失;颗粒过大,又会造成制冷剂与二级热端蓄冷材料12c1的换热面积不够,不利于制冷。理想状态下,二级热端蓄冷材料12c1的粒子直径为0.15mm~1mm范围内,并且占据总重量的65%以上。
再次,所选的粒子为容易成球的粒子,短径比长径大于0.7以上最好,球径公差为±0.005mm、真圆度<0.005mm,如图6所示的0.4mm球形锡合金蓄冷材料的粒子直径正方图。由于锡合金焊锡球价格低廉,因此实施过程中还可以进一步筛选尺寸,尽可能选取尺寸一致进行试验。
本发明中,以Sn-Ag-Cu三元合金为例,进行二级热端蓄冷材料12c1的对比试验,基于1.2W的4.2K低温制冷机,对锡合金蓄冷材料性能进行评价。如图7所示(该图中的Sn表示Sn-Ag-Cu三元锡合金)的锡合金蓄冷材料和铅蓄冷材料性能对比图。其中控制一级制冷温度为42K、二级制冷温度为4.2K,并额外增加了锡合金、铅、钬铜三层填料组合形式进行性能对比试验,组合方式见图7所示;随着铅蓄冷材料的减少,直至全部被锡合金代替,4.2K温区制冷量尽管衰减了6.4%,但也达到了1.3W以上,完全能够满足1.5T核磁共振的要求。
另外为弥补锡合金蓄冷材料带来的蓄冷器性能衰减问题,适当增加钬铜的填装量,使钬铜的填装量稍大于锡合金蓄冷材料的填装量,如图8所示。通过该办法能够将锡合金蓄冷器的性能提到与铅蓄冷器性能相当。同时从图7能够获知,当铅蓄冷材料被锡合金蓄冷材料替代后,能提升一级制冷量。故从综合考虑看,采用锡合金替代铅蓄冷料是一种可行的方案。
本实施方案中,还通过24小时短期稳定性试验对锡合金蓄冷材料进行稳定性考察,如图9所示。在试验过程中,蓄冷器反复经历了冷热冲击,通过检查锡合金蓄冷材料,未出现破裂、出粉现象,这表明锡合金是一种可用于低温制冷机的蓄冷材料。
在本实施方案中,二级推移活塞冷端的二级冷端蓄冷材料12c2采用的钬铜,也可以采用钬铜和GOS组合方式以提升制冷机性能。
如上所述,本实施方案中,采用了锡合金作为蓄冷式制冷机的二级推移活塞12的二级热端蓄冷材料12c1,该二级热端蓄冷材料12c1可采用熔化金属骤冷办法或者等离子体或者气体雾化方法进行制作。
本发明的蓄冷材料所装填的蓄冷器为实施方案中双级低温制冷机的二级推移活塞 12,如图2、4所示,具有本发明所提供的锡合金蓄冷材料粒子。同时,本发明所提供的蓄冷式低温制冷机具有装填锡合金粒子作为二级热端蓄冷材料12c1的低温蓄冷器;并可与钬铜、GOS组合用于核磁共振用4K低温制冷机,用于冷却超导磁体。
在以上实施方案中,本发明提供的蓄冷材料适用于吉福德-麦克马洪型制冷机、斯特林制冷机、索尔文制冷机、脉管制冷机,并且不局限上述低温制冷机,但凡具有蓄冷器的低温制冷机均可适用。
本发明所提供的蓄冷材料不含铅、毒性低、容易球化、极易获得且具有较好热性能,且该蓄冷材料的性能与铅性能相当;该蓄冷材料用于蓄冷式制冷机时,有较好的换热性能。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (10)

  1. 一种蓄冷材料,其特征在于:所述的蓄冷材料为锡合金粒子,且锡合金粒子中的锡含量不小于40%且不大于99%。
  2. 根据权利要求1所述的蓄冷材料,其特征在于:所述的蓄冷材料中至少包含有铋、锑、银、金中的一种成分。
  3. 根据权利要求1或2所述的蓄冷材料,其特征在于:所述的蓄冷材料中的锡合金粒子直径为0.15mm~1mm的颗粒体占全部锡合金粒子重量的比例不低于65%。
  4. 根据权利要求1或2所述的蓄冷材料,其特征在于:所述蓄冷材料中的锡合金粒子的颗粒短径对长径之比大于0.7的颗粒体占全部锡合金粒子的比例不低于65%。
  5. 根据权利要求1所述的蓄冷材料,其特征在于:所述的蓄冷材料通过熔化金属骤冷、或者等离子体、或者气体雾化制备而成锡合金粒子。
  6. 一种采用如权利要求1-5任一所述的蓄冷材料的蓄冷式低温制冷机,包括蓄冷器,其特征在于:所述蓄冷器内填充的蓄冷材料为锡合金粒子。
  7. 根据权利要求6所述的蓄冷式低温制冷机,其特征在于:所述的蓄冷器包括一级推移活塞(11)和/或二级推移活塞(12),一级推移活塞(11)中填充的一级蓄冷材料(11c)和/或二级推移活塞(12)中填充的二级蓄冷材料(12c)采用锡合金粒子。
  8. 根据权利要求7所述的蓄冷式低温制冷机,其特征在于:所述的一级蓄冷材料(11c)采用锡合金粒子时,锡合金粒子作为一级推移活塞(11)冷端的一级蓄冷材料(11c)。
  9. 根据权利要求7或8所述的蓄冷式低温制冷机,其特征在于:所述的二级蓄冷材料(12c)包括二级热端蓄冷材料(12c1)和二级冷端蓄冷材料(12c2),锡合金粒子作为二级推移活塞(12)热端的二级热端蓄冷材料(12c1)且二级推移活塞(12)冷端的二级冷端蓄冷材料(12c2)采用GOS或者HoCu 2
  10. 根据权利要求9所述的蓄冷式低温制冷机,其特征在于:所述的二级热端蓄冷材料(12c1)采用锡合金粒子且二级冷端蓄冷材料(12c2)采用GOS或者HoCu 2时,该蓄冷式低温制冷机为核磁共振用4K低温制冷机并应用于超导系统。
PCT/CN2018/099437 2018-06-04 2018-08-08 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机 WO2019232919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,950 US11906228B2 (en) 2018-06-04 2018-08-08 Cold storage material and cold storage type cryogenic refrigerator using same
EP18921799.5A EP3805666A4 (en) 2018-06-04 2018-08-08 COLD ACCUMULATION MATERIAL AND CRYogenic REFRIGERATOR OF COLD ACCUMULATION TYPE WITH USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810565104.5 2018-06-04
CN201810565104.5A CN108981217A (zh) 2018-06-04 2018-06-04 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机

Publications (1)

Publication Number Publication Date
WO2019232919A1 true WO2019232919A1 (zh) 2019-12-12

Family

ID=64540037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099437 WO2019232919A1 (zh) 2018-06-04 2018-08-08 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机

Country Status (4)

Country Link
US (1) US11906228B2 (zh)
EP (1) EP3805666A4 (zh)
CN (1) CN108981217A (zh)
WO (1) WO2019232919A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022207464A1 (en) * 2021-03-31 2022-10-06 Leybold Dresden Gmbh Regenerator materials, regenerators and refrigeration systems having regenerators
US11906228B2 (en) 2018-06-04 2024-02-20 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440474A (zh) * 2019-07-23 2019-11-12 中船重工鹏力(南京)超低温技术有限公司 高比热推移活塞及其制备方法及蓄冷式制冷机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212722A (zh) * 1996-10-30 1999-03-31 株式会社东芝 超低温蓄冷材料、使用这种超低温蓄冷材料的制冷机以及隔热材料
CN101124289A (zh) * 2005-03-03 2008-02-13 住友重机械工业株式会社 蓄冷材料、蓄冷器以及极低温蓄冷式冷冻机
JP4237791B2 (ja) * 2006-12-04 2009-03-11 株式会社東芝 蓄冷材の製造方法
CN103344147A (zh) * 2013-07-12 2013-10-09 北京依米康科技发展有限公司 相变储能装置
CN104232026A (zh) * 2013-06-20 2014-12-24 住友重机械工业株式会社 蓄冷材料及蓄冷式制冷机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947785B1 (en) * 1997-10-20 2003-04-23 Kabushiki Kaisha Toshiba Cold-accumulating material and cold-accumulating refrigerator
JP3980158B2 (ja) * 1998-03-18 2007-09-26 株式会社東芝 蓄冷材および蓄冷式冷凍機
CN1198897C (zh) * 2000-07-18 2005-04-27 东芝株式会社 蓄冷材料、蓄冷材料制造方法及使用该蓄冷材料的制冷机
JP4445230B2 (ja) * 2003-09-02 2010-04-07 住友重機械工業株式会社 極低温蓄冷材、蓄冷器及び冷凍機
WO2006022297A1 (ja) * 2004-08-25 2006-03-02 Ulvac Cryogenics Incorporated 蓄冷器及びクライオポンプ
TWI585298B (zh) * 2008-04-04 2017-06-01 布魯克機械公司 利用錫銻合金的低溫泵及其使用方法
JP5578501B2 (ja) * 2011-04-11 2014-08-27 住友重機械工業株式会社 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機
KR20150125956A (ko) * 2011-11-14 2015-11-10 히타치가세이가부시끼가이샤 전극용 페이스트 조성물, 태양 전지 소자 및 태양 전지
JP6305285B2 (ja) * 2014-09-10 2018-04-04 住友重機械工業株式会社 パルス管冷凍機
TWI539125B (zh) * 2014-11-20 2016-06-21 國立成功大學 史特靈加熱致冷機
JP2017058079A (ja) * 2015-09-17 2017-03-23 株式会社東芝 極低温冷凍機用蓄冷材、極低温蓄冷器、蓄冷型極低温冷凍機及び蓄冷型極低温冷凍機を備えたシステム
CN108981217A (zh) 2018-06-04 2018-12-11 中船重工鹏力(南京)超低温技术有限公司 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212722A (zh) * 1996-10-30 1999-03-31 株式会社东芝 超低温蓄冷材料、使用这种超低温蓄冷材料的制冷机以及隔热材料
CN101124289A (zh) * 2005-03-03 2008-02-13 住友重机械工业株式会社 蓄冷材料、蓄冷器以及极低温蓄冷式冷冻机
JP4237791B2 (ja) * 2006-12-04 2009-03-11 株式会社東芝 蓄冷材の製造方法
CN104232026A (zh) * 2013-06-20 2014-12-24 住友重机械工业株式会社 蓄冷材料及蓄冷式制冷机
CN103344147A (zh) * 2013-07-12 2013-10-09 北京依米康科技发展有限公司 相变储能装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3805666A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11906228B2 (en) 2018-06-04 2024-02-20 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same
WO2022207464A1 (en) * 2021-03-31 2022-10-06 Leybold Dresden Gmbh Regenerator materials, regenerators and refrigeration systems having regenerators
GB2606990A (en) * 2021-03-31 2022-11-30 Leybold Dresden Gmbh Regenerator materials, regenerators and refrigeration systems having regenerators
GB2606990B (en) * 2021-03-31 2023-05-24 Leybold Dresden Gmbh Regenerator materials, regenerators and refrigeration systems having regenerators

Also Published As

Publication number Publication date
CN108981217A (zh) 2018-12-11
EP3805666A4 (en) 2022-02-23
US20210231349A1 (en) 2021-07-29
US11906228B2 (en) 2024-02-20
EP3805666A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019232919A1 (zh) 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机
KR102019397B1 (ko) 축냉재 및 축냉식 냉동기
EP2286087B1 (en) Cryogenic pump employing tin-antimony alloys and methods of use
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
US10101061B2 (en) Cryogenic regenerator material, regenerative cryocooler, and system including regenerative cryocooler
CN100458310C (zh) 蓄冷器及克莱欧泵
JPWO2003081145A1 (ja) 極低温蓄冷器及び冷凍機
US7549296B2 (en) Low temperature cryocooler regenerator of ductile intermetallic compounds
EP0947785B1 (en) Cold-accumulating material and cold-accumulating refrigerator
US6334909B1 (en) Cold-accumulating material and cold-accumulating refrigerator using the same
JP2008267735A (ja) パルス管冷凍機
WO2001020233A1 (en) Ductile magnetic regenerator alloys for closed cycle cryocoolers
Xu et al. Development of zinc-plated regenerator material
DE3943640C2 (de) Mehrstufige Gaskältemaschine
KR100785745B1 (ko) 축냉기 및 크라이오 펌프
CN219934342U (zh) 一种回热器及脉管制冷机
CN104457007B (zh) 蓄冷式制冷机、一级蓄冷器及二级蓄冷器
JP2837795B2 (ja) 極低温蓄冷器
JP6490152B2 (ja) 蓄冷材および蓄冷式冷凍機
JP2005090854A (ja) 極低温蓄冷器及び冷凍機
CN110440475A (zh) 抗氧化蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机
CN104457007A (zh) 蓄冷式制冷机、一级蓄冷器及二级蓄冷器
Gschneidner et al. Development of new cryocooler regenerator materials—ductile intermetallic compounds
JPS63204077A (ja) 極低温He蓄冷器
JPH11294882A (ja) 蓄冷材および蓄冷式冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018921799

Country of ref document: EP

Effective date: 20210111