KR102019397B1 - 축냉재 및 축냉식 냉동기 - Google Patents

축냉재 및 축냉식 냉동기 Download PDF

Info

Publication number
KR102019397B1
KR102019397B1 KR1020160056994A KR20160056994A KR102019397B1 KR 102019397 B1 KR102019397 B1 KR 102019397B1 KR 1020160056994 A KR1020160056994 A KR 1020160056994A KR 20160056994 A KR20160056994 A KR 20160056994A KR 102019397 B1 KR102019397 B1 KR 102019397B1
Authority
KR
South Korea
Prior art keywords
layer
stage
wire rod
temperature side
cold storage
Prior art date
Application number
KR1020160056994A
Other languages
English (en)
Other versions
KR20160056864A (ko
Inventor
밍야오 쉬
티엔 레이
아키히로 츠치야
Original Assignee
스미도모쥬기가이고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이고교 가부시키가이샤 filed Critical 스미도모쥬기가이고교 가부시키가이샤
Publication of KR20160056864A publication Critical patent/KR20160056864A/ko
Application granted granted Critical
Publication of KR102019397B1 publication Critical patent/KR102019397B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • F28D17/023Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

열교환의 효율을 높일 수 있는 축냉재 및 그 축냉재를 구비하는 축냉식 냉동기를 제공한다.
제1단 축냉재(30), 제2단 축냉재(60)는, GM 냉동기(1)에 사용되는, 적층 구조를 가지는 축냉재이다. 축냉재의 각 층에는 적층 방향을 따라 기체가 통과할 수 있도록 복수의 구멍이 형성되어 있다. 적어도 1개의 층은 기재와 기재를 덮는 코팅층을 포함한다. 20켈빈부터 40켈빈의 온도 범위에 있어서의 코팅층의 용적 비열은 기재의 용적 비열보다 크다.

Description

축냉재 및 축냉식 냉동기{Cold accumulating material and cold accumulating refrigerator}
본 출원은, 2013년 12월 13일에 출원된 일본 특허출원 제2013-257721호에 근거하여 우선권을 주장한다. 그 출원의 전체 내용은 이 명세서 중에 참고로 원용되어 있다.
본 발명은, 축냉재 및 그 축냉재를 구비하는 축냉식 냉동기에 관한 것이다.
기포드·맥마흔식(GM) 냉동기, 펄스튜브 냉동기, 스털링 냉동기, 및 솔베이 냉동기 등의 축냉식 냉동기는, 냉각 대상물을, 100K(켈빈) 정도의 저온부터 4K의 극저온까지의 범위로 냉각할 수 있다. 이러한 축냉식 냉동기는, 초전도 자석이나 검출기 등의 냉각, 크라이오펌프 등에 이용되고 있다.
예를 들면, GM 냉동기에서는, 압축기로 압축된 헬륨 가스 등의 작동 가스가 축냉기에 유도되어, 축냉기 내의 축냉재로 예냉된다. 예냉된 작동 가스가 팽창실에서 단열 팽창함으로써 작동 가스의 온도가 더욱 내려간다. 저온의 작동 가스는 다시 축냉기를 통과하여, 압축기로 되돌아간다. 이 때, 작동 가스는, 다음에 유도될 작동 가스를 위하여, 축냉기 내의 축냉재를 냉각하면서, 축냉기를 통과한다. 이 행정을 1사이클로 함으로써, 주기적으로 냉각이 행해진다.
축냉식 냉동기에서는 축냉재의 열교환 효율이 냉동기의 냉동 능력을 크게 좌우한다. 종래에는, 예를 들면 본 출원인은 특허문헌 1에 있어서, 비스무트가 도포 또는 도금된 금속망을 적층함으로써 축냉재를 형성하는 것을 제안하고 있다.
선행기술문헌
(특허문헌)
특허문헌 1: 일본 특허공개공보 2006-242484호
비스무트의 저온역에 있어서의 용적 비열은 비교적 크기 때문에, 비스무트를 이용함으로써 저온역에 있어서의 축냉재의 열용량을 크게 할 수 있다. 그러나, 비스무트를 도금하는 것은 기술상 곤란하거나, 또는 할 수 있다고 해도 번거롭고 비용이 든다.
본 발명은 이러한 상황을 감안하여 이루어진 것으로서, 그 목적은, 열교환의 효율을 높일 수 있는 축냉재 및 그 축냉재를 구비하는 축냉식 냉동기의 제공에 있다.
본 발명의 일 양태는, 축냉재에 관한 것이다. 이 축냉재는, 축냉식 냉동기에 사용되는, 적층 구조를 가지는 축냉재로서, 각 층에는 적층 방향을 따라 기체가 통과할 수 있도록 복수의 구멍이 형성되어 있으며, 적어도 1개의 층은 기재와 기재를 덮는 코팅층을 포함한다. 20켈빈부터 40켈빈의 온도 범위에 있어서의 코팅층의 용적 비열은 기재의 용적 비열보다 크다(단, 코팅층이 비스무트를 주성분으로 하는 경우를 제외함).
본 발명의 다른 양태도 또한, 축냉재이다. 이 축냉재는, 축냉식 냉동기에 사용되는, 적층 구조를 가지는 축냉재로서, 각 층에는 적층 방향을 따라 기체가 통과할 수 있도록 복수의 구멍이 형성되어 있으며, 적어도 1개의 층에는, 비스무트와 주석과의 합금 또는 안티몬과 주석과의 합금 또는 비스무트와 안티몬과 주석과의 합금에 의한 코팅이 실시되어 있다.
본 발명의 또 다른 양태는, 상기의 축냉재를 구비하는 축냉식 냉동기이다.
다만, 이상의 구성요소의 임의의 조합이나, 본 발명의 구성요소나 표현을 장치, 방법, 시스템 등의 사이에서 상호 치환한 것도 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 열교환의 효율을 높일 수 있는 축냉재 및 그 축냉재를 구비하는 축냉식 냉동기를 제공할 수 있다.
도 1은 실시형태에 관한 축냉재를 탑재한 GM 냉동기의 개략적인 구성도이다.
도 2는 도 1의 제1단 축냉재의 구성을 나타내는 모식도이다.
도 3은 저온측의 철망의 선재의 단면도이다.
도 4에 있어서, 도 4(a), (b)는, 각종 금속의 용적 비열과 온도의 관계를 나타내는 그래프이다.
도 5는 도 1의 제2단 축냉재의 구성을 나타내는 모식도이다.
도 6은 도 1의 GM 냉동기에서 실측한 제1단 냉각스테이지의 온도와 냉동 능력의 관계를 나타내는 그래프이다.
도 7은 도 1의 GM 냉동기에서 실측한 제1단 냉각스테이지의 40K에 있어서의 냉동 능력과 선재의 직경의 비의 관계를 나타내는 그래프이다.
도 8은 제1 변형예에 관한 철망의 선재의 단면도이다.
도 9는 제2 변형예에 관한 철망의 선재의 단면도이다.
도 10은 제2 변형예에 관한 철망을 2개 적층했을 때의 단면도이다.
도 11은 제1단 축냉재의 구성의 다른 일례를 나타내는 모식도이다.
도 12에 있어서, 도 12(a), 도 12(b), 및 도 12(c)는 각각, 제1 선재, 제2 선재, 및 제3 선재의 일례를 나타낸다.
도 13에 있어서, 도 13(a), 도 13(b), 및 도 13(c)는 각각, 제1 선재, 제2 선재, 및 제3 선재의 다른 일례를 나타낸다.
도 14에 있어서, 도 14(a), 도 14(b), 및 도 14(c)는 각각, 제1 선재, 제2 선재, 및 제3 선재의 다른 일례를 나타낸다.
이하, 각 도면에 나타나는 동일 또는 동등한 구성요소, 부재에는, 동일한 부호를 붙이는 것으로 하고, 적절히 중복되는 설명은 생략한다. 또, 각 도면에 있어서의 부재의 치수는, 이해를 용이하게 하기 위하여 적절히 확대, 축소되어 나타난다. 또, 각 도면에 있어서 실시형태를 설명하는 데 있어서 중요하지 않은 부재의 일부는 생략하여 표시한다.
<GM 냉동기>
도 1은, 실시형태에 관한 축냉재를 탑재한 GM 냉동기(1)의 개략적인 구성도이다. GM 냉동기(1)는, 가스압축기(3)와, 냉동기로서 기능하는 2단식의 콜드헤드(10)를 가진다. 콜드헤드(10)는, 제1단 냉각부(15)와, 제2단 냉각부(50)를 가지며, 이들 냉각부는, 플랜지(12)에 동일 축이 되도록 연결되어 있다.
제1단 냉각부(15)는, 중공 형상의 제1단 실린더(20)와, 이 제1단 실린더(20) 내에, 축방향(Q)으로 왕복 운동 가능하게 마련된 제1단 디스플레이서(22)와, 제1단 디스플레이서(22) 내에 충전된 실시형태에 관한 제1단 축냉재(30)와, 제1단 실린더(20)의 저온단(23b)측의 내부에 마련되어, 제1단 디스플레이서(22)의 왕복 운동에 의하여 용적이 변화되는 제1단 팽창실(31)과, 제1단 실린더(20)의 저온단(23b) 부근에 마련된 제1단 냉각스테이지(35)를 가진다. 제1단 실린더(20)의 내벽과 제1단 디스플레이서(22)의 외벽과의 사이에는, 제1단 씰(39)이 마련되어 있다.
제1단 실린더(20)의 고온단(23a)에는, 제1단 축냉재(30)에 대해서 헬륨 가스를 유출입시키기 위하여, 복수의 제1단 고온측 유통로(40-1)가 마련되어 있다. 또, 제1단 실린더(20)의 저온단(23b)에는, 제1단 축냉재(30) 및 제1단 팽창실(31)에 헬륨 가스를 유출입시키기 위하여, 복수의 제1단 저온측 유통로(40-2)가 마련되어 있다.
제2단 냉각부(50)는, 제1단 냉각부(15)와 대략 동일한 구성을 가지며, 중공 형상의 제2단 실린더(51)와, 제2단 실린더(51) 내에 축방향(Q)으로 왕복 운동 가능하게 마련된 제2단 디스플레이서(52)와, 제2단 디스플레이서(52) 내에 충전된 실시형태에 관한 제2단 축냉재(60)와, 제2단 실린더(51)의 저온단(53b)의 내부에 마련되어, 제2단 디스플레이서(52)의 왕복 운동에 의하여 용적이 변화되는 제2단 팽창실(55)과, 제2단 실린더(51)의 저온단(53b) 부근에 마련된 제2단 냉각스테이지(85)를 가진다. 제2단 실린더(51)의 내벽과 제2단 디스플레이서(52)의 외벽과의 사이에는, 제2단 씰(59)이 마련되어 있다. 제2단 실린더(51)의 고온단(53a)에는, 제1단 축냉재(30)에 대해서 헬륨 가스를 유출입시키기 위하여, 제2단 고온측 유통로(40-3)가 마련되어 있다. 또, 제2단 실린더(51)의 저온단(53b)에는, 제2단 팽창실(55)에 헬륨 가스를 유출입시키기 위하여, 복수의 제2단 저온측 유통로(54-2)가 마련되어 있다.
GM 냉동기(1)에 있어서, 가스압축기(3)로부터의 고압의 헬륨 가스는, 고압밸브(5) 및 배관(7)을 통하여, 제1단 냉각부(15)에 공급되고, 또, 저압의 헬륨 가스는, 제1단 냉각부(15)로부터 배관(7) 및 저압밸브(6)를 통하여, 가스압축기(3)로 배기된다. 제1단 디스플레이서(22) 및 제2단 디스플레이서(52)는, 구동모터(8)에 의하여, 축방향(Q)을 따라 왕복 운동한다. 또, 이에 연동하여, 고압밸브(5) 및 저압밸브(6)의 개폐가 행해져, 헬륨 가스의 흡배기의 타이밍이 제어된다.
제1단 실린더(20)의 고온단(23a)은, 예를 들면 실온으로 설정되고, 저온단(23b)은, 예를 들면 20K~40K로 설정된다. 제2단 실린더(51)의 고온단(53a)은, 예를 들면 20K~40K로 설정되고, 저온단(53b)은, 예를 들면 4K로 설정된다.
이상과 같이 구성된 GM 냉동기(1)의 동작에 대해 설명한다.
고압밸브(5)가 폐쇄, 저압밸브(6)가 폐쇄인 상태에서, 제1단 디스플레이서(22) 및 제2단 디스플레이서(52)가, 각각, 제1단 실린더(20) 및 제2단 실린더(51) 내의 하사점에 있는 것으로 한다.
여기에서, 고압밸브(5)를 개방 상태로 하고, 밸브(6)를 폐쇄 상태로 하면, 가스압축기(3)로부터, 고압의 헬륨 가스가 제1단 냉각부(15)로 유입된다. 고압의 헬륨 가스는, 제1단 고온측 유통로(40-1)로부터 제1단 디스플레이서(22)의 내부로 유입되어, 제1단 축냉재(30)에 의하여 소정의 온도까지 냉각된다. 냉각된 헬륨 가스는, 제1단 저온측 유통로(40-2)로부터 제1단 팽창실(31)로 유입된다.
*제1단 팽창실(31)로 유입된 고압의 헬륨 가스의 일부는, 제2단 고온측 유통로(40-3)로부터 제2단 디스플레이서(52)의 내부로 유입된다. 이 헬륨 가스는, 제2단 축냉재(60)에 의하여, 더욱 낮은 소정의 온도까지 냉각되어, 제2단 저온측 유통로(54-2)로부터 제2단 팽창실(55)로 유입된다. 이 결과, 제1단 팽창실(31) 및 제2단 팽창실(55) 내는, 고압 상태가 된다.
다음으로, 제1단 디스플레이서(22) 및 제2단 디스플레이서(52)가 상사점으로 이동함과 함께, 고압밸브(5)가 폐쇄된다. 또, 밸브(6)가 개방된다. 이로써, 제1단 팽창실(31) 및 제2단 팽창실(55) 내의 헬륨 가스는, 고압 상태로부터 저압 상태가 되어, 체적이 팽창한다. 그 결과, 제1단 팽창실(31) 및 제2단 팽창실(55) 내의 헬륨 가스의 온도가 더욱 내려간다. 또, 이로써, 제1단 냉각스테이지(35) 및 제2단 냉각스테이지(85)가 각각 냉각된다.
다음으로, 제1단 디스플레이서(22) 및 제2단 디스플레이서(52)는, 하사점을 향하여 이동된다. 이에 따라, 저압의 헬륨 가스는, 상기의 반대의 순로를 통과하여, 제1단 축냉재(30) 및 제2단 축냉재(60)를 각각 냉각하면서, 밸브(6) 및 배관(7)을 통하여 가스압축기(3)로 되돌아간다. 그 후, 밸브(6)가 폐쇄된다.
이상의 동작을 1사이클로 하여, 상기 동작을 반복함으로써, 제1단 냉각스테이지(35), 제2단 냉각스테이지(85)에 있어서, 각각에 열접속된 냉각 대상물(도시하지 않음)로부터 열을 흡수하여, 냉각할 수 있다.
<축냉재>
도 2는, 제1단 축냉재(30)의 구성을 나타내는 모식도이다. 제1단 축냉재(30)는, N개(N은 2 이상의 자연수)의 시트 형상의 철망(32-1~32-N)을 적층 방향(P)을 따라 적층하여 이루어지는 적층 구조를 가진다. 적층 방향(P)은 콜드헤드(10)의 축방향(Q) 즉 제1단 디스플레이서(22)의 이동 방향과 대략 평행이다. 콜드헤드(10)는, 헬륨 가스가, 제1단 디스플레이서(22) 내를 제1단 디스플레이서(22)의 이동 방향을 따라 이동하도록 구성되어 있다. 따라서, 적층 방향(P)은 헬륨 가스의 이동 방향과 대략 평행이다. 바꾸어 말하면, 헬륨 가스는 제1단 축냉재(30)를 적층 방향(P)을 따라 이동한다.
각 층을 구성하는 철망(32-1~32-N)은 소정의 선 직경 및 소정의 재질을 가지는 선재를 직조함으로써 형성되어 있다. 각 층을 구성하는 철망(32-1~32-N)에 의하여 규정되는 면은 적층 방향(P)과 대략 직교한다. 헬륨 가스는, 제1단 축냉재(30)를 적층 방향(P)을 따라 흐를 때, 각 층을 구성하는 철망(32-1~32-N)의 복수의 개구(33)를 통과한다.
N개의 철망(32-1~32-N) 중 고온측의 철망은 구리 또는 스테인리스강의 선재(37)를 직조함으로써 형성되어 있다. N개의 철망(32-1~32-N) 중 저온측의 철망은, 고온측의 철망의 선재(37)와는 상이한 선재(34)를 직조함으로써 형성되어 있다. 저온측의 철망은, 예를 들면 GM 냉동기(1)의 통상 동작 시에 50K 이하가 되는 철망이다.
도 3은, 저온측의 철망의 선재(34)의 단면도이다. 선재(34)는, 기재(34a)와 그 기재(34a)를 덮는 코팅층(34b)을 포함한다. 기재(34a)는 구리계 재료 또는 스테인리스강에 의하여 형성된다. 구리계 재료는 예를 들면 인청동, 단동, 순동, 터프피치동 또는 무산소동이어도 된다. 코팅층(34b)은, 아연, 주석, 은, 인듐 또는 금 중 어느 1개 혹은 이들 중 적어도 2개를 포함하는 합금에 의하여 형성된다. 특히, 코팅층(34b)은 기재(34a)를 도금 처리함으로써 형성된다.
기재(34a) 및 코팅층(34b)의 재료를 선택할 때의 사상은 이하와 같다.
(1) 20켈빈부터 40켈빈의 온도 범위에 있어서의 코팅층(34b)의 용적 비열(volumetric specific heat)을 기재(34a)의 용적 비열보다 크게 한다. 또, 50켈빈에 있어서의 코팅층(34b)의 용적 비열을 50켈빈에 있어서의 기재(34a)의 용적 비열보다 크게 한다.
도 4(a), (b)는, 각종 금속의 용적 비열과 온도의 관계를 나타내는 그래프이다. 이들 그래프를 참조하면, 20켈빈부터 40켈빈의 온도 범위에 있어서의 아연, 주석, 은, 인듐 및 금의 각각의 용적 비열은 구리의 용적 비열보다 크다. 또, 50켈빈에 있어서의 아연, 주석, 은, 인듐 및 금의 각각의 용적 비열은 50켈빈에 있어서의 구리의 용적 비열보다 크고, 또한, 50켈빈에 있어서의 비스무트의 용적 비열은 50켈빈에 있어서의 구리의 용적 비열보다 작다.
(2) 20켈빈부터 40켈빈의 온도 범위에 있어서의 기재(34a)의 열전도율을 코팅층(34b)의 열전도율보다 크게 한다.
(3) 코팅층(34b)의 전성 또는 연성 혹은 그 양방(즉, 전연성)을 비스무트보다 높게 한다. 전연성이란, 고체 물질의 역학적 특성(소성)의 일종으로, 소재가 파단되지 않고 유연하게 변형되는 한계를 나타낸다. 전연성은 연성과 전성으로 나뉜다. 물질 과학에 있어서, 연성은 특히 물질에 잡아당기는 힘을 가했을 때의 변형하는 능력을 가리키고, 철사 형상으로 늘어나게 하는 능력으로 나타나는 경우가 많다. 한편, 전성은 압축하는 힘을 가했을 때의 변형하는 능력을 가리키고, 단조나 압연으로 얇은 시트 형상으로 성형할 수 있는 능력으로 나타나는 경우가 많다. 비스무트의 전성은 비교적 낮고, 잡아당기는 힘에도 약하다. 이에 반해서 아연, 주석, 은, 인듐 및 금은 모두 전성도 연성도 비교적 높다.
다만, 코팅층(34b)은 주석 도금에 의하여 형성되는 것이 바람직하다. 주석은 예부터 잘 알려져 있는, 익숙한 금속 재료의 하나이다. 철판 상의 용융 주석 도금은 블리크(blik)로서 알려져 있고, 납과의 합금은 땜납으로서 금속끼리의 접합에 예부터 이용되고 있다. 최근, 도금욕의 개량이 진전되어, 광택성, 땜납성, 방식성이 더욱 우수한 광택 주석 도금이 얻어지게 되었다. 주석 도금의 경도를 이하의 표에 나타낸다.
도금의 종류 경도(Hv)
광택 주석(강산욕) 40~60
무광택 주석(강산욕) 5~8
무광택 주석(알칼리욕) 3~4
반광택 주석(중성욕) 10~15
광택 주석(중성욕) 30~50
이 표에 나타나는 바와 같이, 광택 주석의 경도는 30~60Hv이며, 무광택 주석의 3~8Hv보다 높다. 따라서, 기재(34a)를 주석으로 광택 도금함으로써 코팅층(34b)을 형성하면, 코팅층(34b)의 경도를 높일 수 있으므로 바람직하다.
도 5는, 제2단 축냉재(60)의 구성을 나타내는 모식도이다. 제2단 축냉재(60)는 고온측의 부분(62)과 저온측의 부분(64)이 상이한 구성을 가진다. 고온측의 부분(62)은 제1단 축냉재(30)의 저온측과 동일하게 구성된다. 즉, 고온측의 부분(62)은 복수 개의 시트 형상의 철망을 적층 방향(즉, 축방향(Q))을 따라 적층하여 이루어지는 적층 구조를 가진다. 이 철망의 선재는, 기재(34a)에 대응하는 기재와 코팅층(34b)에 대응하는 코팅층을 포함한다.
저온측의 부분(64)은, HoCu2 등의 자성 재료나 비스무트나 납볼을 복수 포함하여 구성된다.
제2단 축냉재(60)는, 고온측의 부분(62)과 저온측의 부분(64)과의 경계(66)의 온도가 GM 냉동기(1)의 통상 동작 시에 10K 정도가 되도록 구성된다.
본 실시형태에 관한 축냉재(30, 60)를 구비하는 GM 냉동기(1)에 의하면, GM 냉동기(1)의 통상 동작 시에 10K~50K가 되는 축냉재(30, 60)의 부분의 비열을 높일 수 있다. 따라서, 축냉재(30, 60)에 있어서의 열교환의 효율을 높일 수 있다. 그 결과, GM 냉동기(1)의 냉동 능력을 높일 수 있다.
도 6은, GM 냉동기(1)에서 실측한 제1단 냉각스테이지(35)의 온도와 냉동 능력의 관계를 나타내는 그래프이다. 도 6에 나타나는 그래프에 있어서, 검정색의 삼각은 제1단 축냉재의 철망에 주석 도금을 실시하지 않은 경우의 데이터를 나타내고, 검정색의 사각은 제1단 축냉재(30)의 저온측의 철망에 주석 도금을 실시한 경우의 데이터를 나타낸다. 이 그래프로부터, 50K 이하의 온도 범위에 있어서, 주석 도금을 실시한 경우의 제1단 냉동 능력은, 주석 도금을 실시하지 않은 경우의 제1단 냉동 능력보다 큰 폭으로 향상되고 있음을 알 수 있다. 특히, 40K에서의 제1단 냉동 능력은, 무도금인 경우의 46.8W로부터, 도금을 실시함으로써 53.4W로 향상되고, 비율로 하면 약 14% 향상된다. 또, 30K에서의 제1단 냉동 능력은 무도금인 경우의 19.0W로부터, 도금을 실시함으로써 36.4W로 향상되고, 비율로 하면 약 91% 향상된다.
도 7은, GM 냉동기(1)에서 실측한 제1단 냉각스테이지(35)의 40K에 있어서의 냉동 능력과 선재(34)의 직경의 비의 관계를 나타내는 그래프이다. 선재(34)의 단면에 있어서의 기재(34a)의 직경을 d1, 코팅층(34b)의 외경을 d2(도 3을 참조)로 할 때, 선재(34)의 직경의 비는 d2/d1로 부여된다. 냉동 능력은, d2/d1=1.4를 대략 중심으로 하는 피크를 그리고 있다. 이것은, 코팅층(34b)이 너무 얇으면 코팅층(34b)에 의한 비열 증대 효과가 약해지고, 한편 코팅층(34b)이 너무 두꺼우면 철망의 개구가 작아져 유로 저항이 증대하거나 또는 기재(34a)가 가늘어져 열전도가 나빠지기 때문이다. 따라서, 이들의 영향이 길항하도록 d2/d1를 1.3부터 1.5의 범위로 하는 것이 보다 적합하다.
또, 본 실시형태에 관한 축냉재(30, 60)를 구비하는 GM 냉동기(1)에서는, 20켈빈부터 40켈빈의 온도 범위에 있어서의 기재(34a)의 열전도율은 코팅층(34b)의 열전도율보다 크다. 따라서, 기재(34a)의 열전도율을 비교적 크게 함으로써 기재(34a)를 통한 열전도를 촉진하여, 축냉재(30, 60)의 직경 방향(적층 방향(P)에 직교하는 방향)에 있어서의 온도차를 저감시킬 수 있다. 이것은 축냉재(30, 60)에 있어서의 열교환의 효율의 향상에 기여한다.
즉, 본 실시형태에 관한 축냉재(30, 60)에 의하면, 축냉재(30, 60)의 열용량을 높이면서 열전도를 높여 온도 구배를 저감시킬 수 있다.
다만, 구리계 재료 중에서도 보다 열전도율이 큰 재료, 예를 들면 인청동보다 열전도율이 큰 단동, 순동, 터프피치동 또는 무산소동을 채용하면 적합하다.
또, 본 실시형태에 관한 축냉재(30, 60)를 구비하는 GM 냉동기(1)에서는, 코팅층(34b)은 비교적 전연성이 좋은 재료에 의하여 형성된다. 따라서, 철망을 디스플레이서(22, 52)에 충전할 때, 기계적 접촉이나 응력, 마찰 등에 의하여 철망의 코팅층(34b)이 파괴될 가능성을 저감시킬 수 있다. 또, GM 냉동기(1)의 통상 동작 중, 축냉재(30, 60)는 디스플레이서(22, 52)와 함께 왕복 운동하는데, 그 때에 진동에 의하여 코팅층(34b)이 파괴될 가능성을 저감시킬 수 있다.
또, 본 실시형태에 관한 축냉재(30, 60)를 구비하는 GM 냉동기(1)에서는, 제1단 축냉재(30)는, N개의 시트 형상의 철망(32-1~32-N)을 적층 방향(P)을 따라 적층하여 이루어지는 적층 구조를 가진다. 따라서, 축냉재로서 복수의 볼을 채용하는 경우와 비교하여 압력 손실을 저감시킬 수 있다.
이상, 실시형태에 관한 축냉재(30, 60)를 구비하는 GM 냉동기(1)의 구성 및 동작에 대해 설명했다. 이 실시형태는 예시이며, 그 각 구성요소의 조합에 각종 변형예가 가능한 것, 또 그러한 변형예도 본 발명의 범위에 있는 것은 당업자에게 이해되는 바이다.
실시형태에서는, N개의 철망(32-1~32-N) 중 저온측의 철망의 선재(34)에 대해, 코팅층(34b)이 최외층인 경우에 대해 설명했지만, 이것에 한정되지 않는다.
도 8은, 제1 변형예에 관한 철망의 선재(134)의 단면도이다. 철망의 선재(134)는, 기재(34a)에 대응하는 기재(134a)와, 코팅층(34b)에 대응하는 코팅층(134b)과, 코팅층(134b)을 덮는 보호층(134c)을 포함한다. 보호층(134c)은, 비스무트 또는 안티몬 혹은 이들의 합금에 의하여 형성된다. 혹은 또한, 보호층(134c)은 광택 주석 또는 크롬에 의하여 형성되어도 된다.
본 변형예에 의하면, 비교적 부드러운 코팅층(134b)을 비교적 단단한 보호층(134c)으로 덮기 때문에, 코팅층(134b)의 손상을 저감시킬 수 있다.
다만, 안티몬 또는 비스무트를 코팅층(134b)의 재료에 혼합시켜, 이들을 동시에 코팅해도 된다. 이 경우, 안티몬 또는 비스무트의 체적 배합비는 0.01%~49.99%인 것이 바람직하다.
실시형태에서는, 선재(34)의 단면은 등방적 즉 원형인 경우에 대해 설명했지만, 이것에 한정되지 않는다.
도 9는, 제2 변형예에 관한 철망의 선재(234)의 단면도이다. 선재(234)는, 기재(234a)와 그 기재(234a)를 덮는 코팅층(234b)을 포함한다. 기재(234a)는 구리계 재료 또는 스테인리스강에 의하여 형성된다. 구리계 재료는 예를 들면 인청동, 단동, 순동, 터프피치동 또는 무산소동이어도 된다. 코팅층(234b)은, 아연, 주석, 은, 인듐 또는 금 중 어느 1개 혹은 이들 중 적어도 2개를 포함하는 합금에 의하여 형성된다.
선재(234)의 단면의 적층 방향(P)에 있어서의 폭(W1)은, 단면 내에서 적층 방향(P)과 교차하는, 특히 직교하는 직교 방향(R)에 있어서의 폭(W2)보다 작다. 특히 선재(234)의 표면은, 적층 방향(P)에서 서로 대향하는 2개의 평면부(236, 238)를 가진다. 이러한 선재(234)는, 예를 들면 단면이 원형인 기재를 압연 처리하고, 이렇게 처리된 기재를 주석 도금함으로써 형성되어도 된다.
도 10은, 제2 변형예에 관한 철망을 2개 적층했을 때의 단면도이다. 선재(234)로 이루어지는 철망을 적층 방향(P)을 따라 적층하면, 상측의 철망의 선재(234)의 하측 평면부(238)와, 하측의 철망의 선재(234)의 상측 평면부(236)가 접촉한다. 이때, 이들의 접촉 면적은, 예를 들면 선재의 단면이 원형인 경우보다 커진다. 따라서, 충전 시의 접촉 응력을 분산시킬 수 있어, 코팅층의 손상을 저감시킬 수 있다.
실시형태에서는, 코팅층(34b)의 재료로서 주석을 사용하는 한편, 코팅층(34b)은 비스무트를 주성분으로 하지 않는 경우에 대해 설명했지만, 이것에 한정되지 않는다. 예를 들면, 코팅층은, 비스무트와 주석과의 합금 또는 안티몬과 주석과의 합금 또는 비스무트와 안티몬과 주석과의 합금이어도 된다.
주석에는 상온에 가까운 온도에 β주석과 α주석의 전이점이 존재한다. α주석으로의 전이에서는 전성이 소실되고, 동시에 큰 폭으로 체적이 증가한다. 통상의 온도 범위에서는 불순물 등의 영향에 의하여 이 전이는 거의 진행되지 않지만, 극지방과 같은 혹한의 환경에 있어서는 전이가 진행되는 경우가 있어, 주석 제품이 팽창하여 부스러져 버리는 현상이 발생한다. 이 현상은 주석 제품의 일부분으로부터 시작되어 결국 전체로 퍼지기 때문에, 전염병에 비유해 주석 페스트로 불린다.
주석에서는 이 동소변태에 의하여 그 물성이 크게 변화된다. β주석으로부터 α주석으로는 물리적으로는 섭씨 13.2도에서 변태하지만, 실제로 반응이 진행되는 것은 섭씨 -10도의 저온 영역부터이며, 섭씨 -45도에서 그 반응속도는 최대가 된다. 본 변형예에 의하면, 코팅층은 β주석에 안티몬 또는 비스무트 혹은 그 양방을 불순물로서 첨가함으로써 형성된다. 따라서, 상기와 같은 동소변태를 억제할 수 있다. 다만, 안티몬 또는 비스무트 혹은 그 양방의 체적 배합비는 0.01%부터 49.99%인 것이 바람직하다.
실시형태에서는, 제1단 축냉재(30) 및/또는 제2단 축냉재(60)가 저온측에 고온측과 상이한 철망을 가지는 경우(즉, 2종류의 철망이 적층되어 있는 경우)에 대해 설명했지만, 이것에 한정되지 않는다. 일 실시형태에 있어서는, 제1단 축냉재(30) 및/ 또는 제2단 축냉재(60)는, 3종류 또는 그보다 다수의 종류의 철망을 가지고, 온도 영역마다 상이한 종류의 철망이 적층되어 있어도 된다.
예를 들면, 도 11에 나타나는 바와 같이, 제1단 축냉재(100)는, 가장 고온측인 제1 부분(101)과, 중간 온도인 제2 부분(102)과, 가장 저온측인 제3 부분(103)을 구비해도 된다. 제1 부분(101)의 저온측이 제2 부분(102)의 고온측에 인접하고, 제2 부분(102)의 저온측이 제3 부분(103)의 고온측에 인접한다.
제1 부분(101), 제2 부분(102), 및 제3 부분(103)은 각각, 적어도 1개의 철망, 통상은 복수 개의 철망을 가진다. 제1 부분(101)에는, 제1 선재로 형성되어 있는 제1 철망이 적층되어 있다. 마찬가지로, 제2 부분(102)에는 제2 선재로 형성되어 있는 제2 철망이 적층되고, 제3 부분(103)에는 제3 선재로 형성되어 있는 제3 철망이 적층되어 있다. 몇 개의 구체예를 이하에 설명하는 바와 같이, 제1 선재, 제2 선재, 및 제3 선재는 서로 상이하며, 따라서, 제1 철망, 제2 철망, 및 제3 철망은 각각 상이한 종류의 철망이다.
제1 선재, 제2 선재, 및 제3 선재는, 기재에 대한 코팅의 용적비에 관하여 서로 상이하며, 구체적으로는, 이 용적비가 저온측일수록 크다. 예를 들면, 선재의 단면(정확하게는, 선재의 길이방향에 수직인 평면에 의한 단면)에 있어서의 기재에 대한 코팅의 면적비가 저온측일수록 커지도록 온도 영역마다 상이한 종류의 선재로 이루어지는 철망이 적층되어, 제1단 축냉재(100)가 구성되어 있다. 예를 들면, 선재의 단면이 원형인 경우에는, 상술의 d2/d1가 저온측일수록 커진다. 따라서, 제1단 축냉재(100)에 있어서는, 저온측일수록, 1층당 코팅 재료의 양이 많아, 1층당 열용량이 크다. 이와 같이 하여, 저온측에서의 열교환의 효율을 높여, GM 냉동기(1)의 냉동 능력을 향상시킬 수 있다.
도 12(a), 도 12(b), 및 도 12(c)는 각각, 제1 선재(104), 제2 선재(105), 및 제3 선재(106)의 일례를 나타낸다. 제1 선재(104), 제2 선재(105), 및 제3 선재(106) 각각의 단면이 도시되어 있다.
제1 선재(104)는, 기재를 구비한다. 제1 선재(104)는, 코팅을 가지지 않는다. 제2 선재(105)는, 기재(105a)와, 기재(105a)를 덮는 코팅층(105b)을 구비한다. 제3 선재(106)는, 기재(106a)와, 기재(106a)를 덮는 코팅층(106b)을 구비한다.
제1 선재(104), 제2 선재(105)의 기재(105a), 및 제3 선재(106)의 기재(106a)는, 동일한 단면 치수를 가진다. 따라서, 제1 선재(104), 제2 선재(105)의 기재(105a), 및 제3 선재(106)의 기재(106a)는, 외경이 동일하다. 한편, 제3 선재(106)의 코팅층(106b)은, 제2 선재(105)의 코팅층(105b)보다 두껍다. 따라서, 제2 선재(105)는 제1 선재(104)보다 굵고, 제3 선재(106)은 제2 선재(105)보다 굵다.
제3 선재(106)가 제2 선재(105)보다 굵기 때문에, 제3 철망은 선재간의 개구가 제2 철망보다 좁아질 수 있다. 그러나, 제3 철망은 제2 철망보다 저온측에 배치되고, 저온측에서는 헬륨 가스의 점도가 낮기 때문에, 제3 부분(103)에 있어서의 압력 손실의 증가(나아가서는 냉동 능력의 저하)는 억제된다. 이로 인하여, 코팅을 두껍게 하는 것에 의한 열교환의 효율 개선은 압력 손실의 증가보다 뛰어나다고 생각된다. 따라서, GM 냉동기(1)의 냉동 능력을 향상시킬 수 있다.
도 13(a), 도 13(b), 및 도 13(c)는 각각, 제1 선재(104), 제2 선재(105), 및 제3 선재(106)의 다른 일례를 나타낸다. 도시되는 바와 같이, 제1 선재(104)는 제2 선재(105)의 기재(105a)와 동일한 단면 치수를 가지지만, 제3 선재(106)의 기재(106a)는 제2 선재(105)의 기재(105a)보다 가늘다. 따라서, 제3 선재(106)의 코팅층(106b)을 제2 선재(105)의 코팅층(105b)보다 두껍게 할 수 있다. 또, 제3 선재(106)의 기재(106a)가 가늘기 때문에, 제3 선재(106)는 제2 선재(105)와 굵기를 동일하게 할 수 있다. 따라서, 도 12(c)에 나타내는 예에 비해, 제3 부분(103)에 있어서의 압력 손실의 증가를 더욱 억제할 수 있다. 다만, 이 경우, 제3 선재(106)는 제2 선재(105)보다 굵게 하여, 코팅층(106b)을 보다 두껍게 해도 된다.
도 14(a), 도 14(b), 및 도 14(c)는 각각, 제1 선재(104), 제2 선재(105), 및 제3 선재(106)의 다른 일례를 나타낸다. 도시되는 바와 같이, 제2 선재(105)의 기재(105a)는 제1 선재(104)보다 가늘고, 제3 선재(106)의 기재(106a)는 제2 선재(105)의 기재(105a)와 동일하다. 이와 같이 하면, 제2 부분(102)에 있어서의 압력 손실의 증가를 억제할 수 있다. 이 경우, 제2 선재(105)는, 제1 선재(104)와 굵기가 동일하거나 그것보다 굵어도 된다.
실시형태에서는, 제1단 축냉재(30)는, N개의 시트 형상의 철망(32-1~32-N)을 적층 방향(P)을 따라 적층하여 이루어지는 적층 구조를 가지는 경우에 대해 설명했지만, 이것에 한정되지 않는다. 예를 들면, 제1단 축냉재는, 복수의 구멍이 형성된 금속판 또는 다공 금속판을 복수 개 적층하여 이루어지는 적층 구조를 가져도 된다. 이 경우, 저온측의 금속판에 도금에 의한 코팅층이 마련되어도 된다. 제2단 축냉재(60)에 대해서도 동일하다.
실시형태에서는, GM 냉동기(1)를 예로서 설명했지만, 이것에 한정되지 않고, 실시형태에 관한 축냉재는 다른 종류의 축냉식 냉동기, 예를 들면 GM형 또는 스털링형 펄스튜브 냉동기, 스털링 냉동기, 솔베이 냉동기에 탑재되어도 된다.
실시형태에 관한 축냉재를 탑재한 GM 냉동기(1)는, 초전도 마그넷, 크라이오펌프, X선 검출기, 적외선 센서, 양자 광자 검출기, 반도체 검출기, 희석 냉동기, He3 냉동기, 단열소자 냉동기, 헬륨 액화기, 크라이오스탯 등에 있어서의 냉각 수단 또는 액화 수단으로서 사용되어도 된다.
1: GM 냉동기
3: 가스압축기
10: 콜드헤드
15: 제1단 냉각부
20: 제1단 실린더
22: 제1단 디스플레이서
30: 제1단 축냉재
35: 제1단 냉각스테이지
50: 제2단 냉각부
51: 제2단 실린더
52: 제2단 디스플레이서
85: 제2단 냉각스테이지

Claims (15)

  1. 축냉식 냉동기에 있어서 20켈빈부터 40켈빈의 온도 범위에 사용되는, 적층 구조를 가지는 축냉재로서,
    각 층에는 적층 방향을 따라 기체가 통과할 수 있도록 복수의 구멍이 형성되어 있으며,
    적어도 1개의 층은 기재와 상기 기재를 덮는 코팅층을 포함하고,
    상기 기재는, 구리계 재료 또는 스테인리스강에 의해 형성되며,
    20켈빈부터 40켈빈의 온도 범위에 있어서의 상기 코팅층의 용적 비열은 상기 기재의 용적 비열보다 크며,
    상기 코팅층은, 아연 또는 주석, 혹은 이들의 합금에 의하여 형성되는 것을 특징으로 하는 축냉재.
  2. 제 1 항에 있어서,
    상기 온도 범위에 있어서의 상기 코팅층의 열전도율은 상기 기재의 열전도율보다 작은 것을 특징으로 하는 축냉재.
  3. 제 1 항 또는 제 2 항에 있어서,
    50켈빈에 있어서의 상기 코팅층의 용적 비열은, 50켈빈에 있어서의 상기 기재의 용적 비열보다 큰 것을 특징으로 하는 축냉재.
  4. 삭제
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 적어도 1개의 층은, 상기 코팅층을 덮는 보호층을 더 포함하고,
    상기 보호층은 비스무트 또는 안티몬, 혹은 이들의 합금에 의하여 형성되는 것을 특징으로 하는 축냉재.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 코팅층은 상기 기재를 주석으로 광택 도금함으로써 형성되는 것을 특징으로 하는 축냉재.
  7. 삭제
  8. 제 1 항 또는 제 2 항에 있어서,
    상기 적어도 1개의 층은 망 형상의 구조를 가지며, 그 선재의 단면의 적층 방향에 있어서의 폭은, 적층 방향과 교차하는 교차 방향에 있어서의 폭보다 작은 것을 특징으로 하는 축냉재.
  9. 제 1 항 또는 제 2 항에 있어서,
    상기 적어도 1개의 층의 선재의 표면은, 적층 방향에서 서로 대향하는 2개의 평면부를 가지는 것을 특징으로 하는 축냉재.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 적어도 1개의 층은 망 형상의 구조를 가지며, 그 선재의 단면에 있어서의 기재의 직경으로 코팅의 외경을 나눈 값은 1.3부터 1.5의 범위에 있는 것을 특징으로 하는 축냉재.
  11. 제 1 항 또는 제 2 항에 있어서,
    저온측의 적어도 1개의 층은, 고온측의 적어도 1개의 층에 비해, 기재에 대한 코팅의 용적비가 큰 것을 특징으로 하는 축냉재.
  12. 제 1 항 또는 제 2 항에 있어서,
    저온측의 적어도 1개의 층의 기재는, 고온측의 적어도 1개의 층의 기재와 동일한 단면 치수를 가지며,
    상기 저온측의 적어도 1개의 층의 코팅은, 상기 고온측의 적어도 1개의 층의 코팅보다 두꺼운 것을 특징으로 하는 축냉재.
  13. 제 1 항 또는 제 2 항에 있어서,
    저온측의 적어도 1개의 층의 기재는, 고온측의 적어도 1개의 층의 기재보다 가는 것을 특징으로 하는 축냉재.
  14. 제 12 항에 있어서,
    상기 저온측의 적어도 1개의 층의 선재는, 상기 고온측의 적어도 1개의 층의 선재와 굵기가 동일하거나 또는 그것보다 굵은 것을 특징으로 하는 축냉재.
  15. 제 1 항 또는 제 2 항에 기재된 축냉재를 구비하는 것을 특징으로 하는 축냉식 냉동기.
KR1020160056994A 2013-06-20 2016-05-10 축냉재 및 축냉식 냉동기 KR102019397B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013129461 2013-06-20
JPJP-P-2013-129461 2013-06-20
JP2013257721A JP6165618B2 (ja) 2013-06-20 2013-12-13 蓄冷材および蓄冷式冷凍機
JPJP-P-2013-257721 2013-12-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20140044114A Division KR20140147670A (ko) 2013-06-20 2014-04-14 축냉재 및 축냉식 냉동기

Publications (2)

Publication Number Publication Date
KR20160056864A KR20160056864A (ko) 2016-05-20
KR102019397B1 true KR102019397B1 (ko) 2019-09-06

Family

ID=52109942

Family Applications (2)

Application Number Title Priority Date Filing Date
KR20140044114A KR20140147670A (ko) 2013-06-20 2014-04-14 축냉재 및 축냉식 냉동기
KR1020160056994A KR102019397B1 (ko) 2013-06-20 2016-05-10 축냉재 및 축냉식 냉동기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR20140044114A KR20140147670A (ko) 2013-06-20 2014-04-14 축냉재 및 축냉식 냉동기

Country Status (5)

Country Link
US (1) US11137216B2 (ko)
JP (1) JP6165618B2 (ko)
KR (2) KR20140147670A (ko)
CN (1) CN104232026B (ko)
TW (1) TW201500704A (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286242B2 (ja) * 2014-03-18 2018-02-28 株式会社日立製作所 超電導磁石装置
JP2017058079A (ja) * 2015-09-17 2017-03-23 株式会社東芝 極低温冷凍機用蓄冷材、極低温蓄冷器、蓄冷型極低温冷凍機及び蓄冷型極低温冷凍機を備えたシステム
JP6585017B2 (ja) * 2016-08-19 2019-10-02 株式会社東芝 極低温冷凍機用蓄冷材、蓄冷型極低温冷凍機、及び蓄冷型極低温冷凍機を備えたシステム
DE102016220368A1 (de) 2016-10-18 2018-04-19 Leybold Gmbh Beschichtetes Wärmeregenerationsmaterial zur Verwendung bei sehr niedrigen Temperaturen
CN107101409B (zh) * 2017-05-17 2018-01-23 宁利平 双作用α型斯特林制冷机
US10753653B2 (en) 2018-04-06 2020-08-25 Sumitomo (Shi) Cryogenic Of America, Inc. Heat station for cooling a circulating cryogen
CN108981217A (zh) * 2018-06-04 2018-12-11 中船重工鹏力(南京)超低温技术有限公司 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机
CN110425279B (zh) * 2019-08-06 2021-04-27 北京卫星环境工程研究所 用于大功率两级g-m制冷机的二级密封环结构
KR102050868B1 (ko) * 2019-11-11 2019-12-03 성우인스트루먼츠 주식회사 세르루리에 트러스 구조를 이용한 외측 샘플 장착을 위한 1k 서브 쿨러용 크라이오스탯
CN112413919B (zh) * 2020-12-21 2022-06-07 深圳供电局有限公司 一种低温制冷机
WO2023077222A1 (en) 2021-11-02 2023-05-11 Anyon Systems Inc. Dilution refrigerator with continuous flow helium liquefier
CN114909818B (zh) * 2022-07-18 2022-10-04 南方科技大学 一种用于核绝热去磁制冷系统中的锡制分合装置
CN115371283A (zh) * 2022-10-24 2022-11-22 氢合科技(广州)有限公司 一种带有多孔换热结构的gm制冷机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228286A (ja) * 2001-02-02 2002-08-14 Sumitomo Heavy Ind Ltd 蓄冷器
JP2003148822A (ja) 2001-11-12 2003-05-21 Fuji Electric Co Ltd 極低温冷凍機の蓄冷器
JP2011522198A (ja) * 2008-04-04 2011-07-28 ブルックス オートメーション インコーポレイテッド 錫−アンチモン合金を用いた極低温真空ポンプおよびその使用方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315800Y2 (ko) * 1985-03-13 1991-04-05
US4619112A (en) * 1985-10-29 1986-10-28 Colgate Thermodynamics Co. Stirling cycle machine
JPH0530135U (ja) * 1991-09-30 1993-04-20 住友重機械工業株式会社 蓄冷器用蓄冷材
US5332029A (en) * 1992-01-08 1994-07-26 Kabushiki Kaisha Toshiba Regenerator
JPH06101915A (ja) 1992-09-18 1994-04-12 Mitsubishi Electric Corp 蓄冷材及びその製造方法
JP3561023B2 (ja) * 1995-02-23 2004-09-02 株式会社東芝 極低温用蓄冷材およびそれを用いた極低温用蓄冷器
JPH10205901A (ja) * 1997-01-23 1998-08-04 Aisin Seiki Co Ltd 蓄冷材、蓄冷器及びこれらを適用した蓄冷型冷凍機
US6131644A (en) * 1998-03-31 2000-10-17 Advanced Mobile Telecommunication Technology Inc. Heat exchanger and method of producing the same
JP2001021245A (ja) * 1999-07-09 2001-01-26 Irie Koken Kk 蓄冷材及び蓄冷器
JP2002206816A (ja) 2001-01-11 2002-07-26 Fuji Electric Co Ltd 蓄冷器及びこれを用いた極低温冷凍機
JP2003065620A (ja) * 2001-08-22 2003-03-05 Sharp Corp スターリング機械用再生器、それを用いたスターリング冷凍機及び流動ガスの熱再生システム
JP2004225920A (ja) 2002-11-27 2004-08-12 Aisin Seiki Co Ltd 蓄冷器
JP2004293998A (ja) 2003-03-28 2004-10-21 Sumitomo Heavy Ind Ltd パルス管冷凍機、及び、その製造方法
JP2004333053A (ja) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd 蓄冷器および蓄冷材の形成方法
JP4445230B2 (ja) 2003-09-02 2010-04-07 住友重機械工業株式会社 極低温蓄冷材、蓄冷器及び冷凍機
JP5127226B2 (ja) 2004-08-25 2013-01-23 アルバック・クライオ株式会社 蓄冷器及びクライオポンプ
JP2006242484A (ja) * 2005-03-03 2006-09-14 Sumitomo Heavy Ind Ltd 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機
JP4237791B2 (ja) * 2006-12-04 2009-03-11 株式会社東芝 蓄冷材の製造方法
JP2011149600A (ja) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd パルスチューブ冷凍機
JP5468424B2 (ja) 2010-03-12 2014-04-09 住友重機械工業株式会社 蓄冷器、蓄冷式冷凍機、クライオポンプ、および冷凍装置
WO2011115200A1 (ja) * 2010-03-19 2011-09-22 住友重機械工業株式会社 蓄冷器、gm冷凍機およびパルスチューブ冷凍機
JP5805421B2 (ja) * 2011-04-04 2015-11-04 住友重機械工業株式会社 蓄冷器式冷凍機及び仕切り部材
JP5578501B2 (ja) 2011-04-11 2014-08-27 住友重機械工業株式会社 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228286A (ja) * 2001-02-02 2002-08-14 Sumitomo Heavy Ind Ltd 蓄冷器
JP2003148822A (ja) 2001-11-12 2003-05-21 Fuji Electric Co Ltd 極低温冷凍機の蓄冷器
JP2011522198A (ja) * 2008-04-04 2011-07-28 ブルックス オートメーション インコーポレイテッド 錫−アンチモン合金を用いた極低温真空ポンプおよびその使用方法

Also Published As

Publication number Publication date
KR20160056864A (ko) 2016-05-20
TW201500704A (zh) 2015-01-01
JP2015025648A (ja) 2015-02-05
US11137216B2 (en) 2021-10-05
CN104232026A (zh) 2014-12-24
US20140374054A1 (en) 2014-12-25
JP6165618B2 (ja) 2017-07-19
KR20140147670A (ko) 2014-12-30
TWI563233B (ko) 2016-12-21
CN104232026B (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
KR102019397B1 (ko) 축냉재 및 축냉식 냉동기
US7594406B2 (en) Regenerator and cryogenics pump
JP4104004B2 (ja) 蓄冷型極低温冷凍機
JP5889743B2 (ja) 蓄冷式冷凍機
US9423160B2 (en) Regenerative refrigerator
US10731914B2 (en) Cryocooler and magnetic shield structure of cryocooler
WO2019232919A1 (zh) 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机
JP6305193B2 (ja) 蓄冷式冷凍機、一段蓄冷器、及び二段蓄冷器
JP6490152B2 (ja) 蓄冷材および蓄冷式冷凍機
JP6376793B2 (ja) 蓄冷器式冷凍機
KR100785745B1 (ko) 축냉기 및 크라이오 펌프
Tanaeva et al. Heat capacities and magnetic moments of potential regenerator materials at low temperatures
JPH0452468A (ja) 極低温冷凍装置
Xiaomin et al. Numerical study of a 10 K two stage pulse tube cryocooler with precooling inside the pulse tube
CN104457007B (zh) 蓄冷式制冷机、一级蓄冷器及二级蓄冷器
JP2845761B2 (ja) 極低温冷凍機用蓄冷器
JP2005090854A (ja) 極低温蓄冷器及び冷凍機
JP2003059713A (ja) 超電導マグネット
JP2845724B2 (ja) 極低温冷凍機用蓄冷器
Ju et al. A computational model for two-stage 4K-pulse tube cooler: Part II. Predicted results
TWI314951B (en) Regenerator and cryopump
JP2010281527A (ja) 蓄冷式冷凍機
JPH0566476U (ja) 極低温冷凍機
JP2014055738A (ja) 蓄冷式冷凍機
JPH0539778A (ja) 極低温冷凍機

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant