WO2019230958A1 - 複合材料の製造方法 - Google Patents

複合材料の製造方法 Download PDF

Info

Publication number
WO2019230958A1
WO2019230958A1 PCT/JP2019/021761 JP2019021761W WO2019230958A1 WO 2019230958 A1 WO2019230958 A1 WO 2019230958A1 JP 2019021761 W JP2019021761 W JP 2019021761W WO 2019230958 A1 WO2019230958 A1 WO 2019230958A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
source
silicon carbide
composite material
sicl
Prior art date
Application number
PCT/JP2019/021761
Other languages
English (en)
French (fr)
Inventor
悠太 大塚
康智 田中
飛怜 井上
久保田 渉
康之 福島
いづみ 松倉
Masato ISHIZAKI (石崎 雅人)
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP19811428.2A priority Critical patent/EP3816139A4/en
Publication of WO2019230958A1 publication Critical patent/WO2019230958A1/ja
Priority to US17/106,854 priority patent/US11718569B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms

Definitions

  • the present disclosure relates to a method of manufacturing a composite material.
  • This application claims priority based on Japanese Patent Application No. 2018-106068 for which it applied to Japan on June 1, 2018, and uses the content here.
  • Ceramic matrix composites are known as high-strength, high-temperature materials and lightweight materials, and are expected to replace nickel-based alloys. For example, by applying CMC to the high-temperature part of an aircraft jet engine, it is possible to expect a reduction in engine weight and fuel consumption. For application to a high-temperature part of an aircraft jet engine, it is effective to use silicon carbide having excellent heat resistance as a matrix.
  • a silicon carbide film is formed by depositing silicon carbide on the surface of each fiber of a fiber substrate by a chemical vapor deposition (CVD) method or a chemical vapor impregnation (CVI) method.
  • CVD chemical vapor deposition
  • CVI chemical vapor impregnation
  • a method of forming is known.
  • a raw material gas such as CH 3 SiCl 3 (MTS) and SiCl 4
  • a carrier gas such as H 2 and He
  • an additive gas such as C 2 H 6 and C 2 H 4
  • the present disclosure provides a composite material manufacturing method capable of manufacturing a composite material with high productivity while ensuring uniformity of a silicon carbide film formed on the surface of a material constituting a porous base material such as a fiber base material.
  • the purpose is to provide.
  • a method for producing a composite material according to one embodiment of the present disclosure is a method for producing a composite material having a porous substrate and a silicon carbide film formed on a surface of the material constituting the porous substrate, A silicon carbide film is formed on the surface of the material by reacting a Si source containing Si atoms, a Cl source containing Cl atoms, and a C source containing C atoms.
  • a product generated by bringing the Si source into contact with the Cl source may be reacted with the gas of the C source.
  • the product may be a gas containing SiCl 2 or SiCl.
  • the Si source may be solid Si
  • the Cl source may be Cl 2 gas.
  • a silicon carbide film may be formed by the reaction using a chemical vapor deposition method or a chemical vapor impregnation method.
  • the reaction pressure for forming the silicon carbide film may be 0.1 to 20 Torr (13 to 2660 Pa).
  • the C source is selected from the group consisting of CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 4 , C 2 H 2 , C 6 H 6 and CCl 4. It may be at least one selected hydrocarbon.
  • the porous substrate may be a fiber substrate including a plurality of fibers.
  • the fiber may be a silicon carbide fiber.
  • the silicon carbide film formed on the surface of the material constituting the porous base material such as the fiber base material is excellent in uniformity, and the composite material can be manufactured with high productivity. .
  • FIG. 2 It is the schematic diagram which showed an example of the manufacturing apparatus used for the manufacturing method of the composite material of this indication.
  • 2 is a cross-sectional photograph of the composite material obtained in Example 1.
  • 2 is a cross-sectional photograph of the composite material obtained in Comparative Example 1.
  • It is a diagram showing the correlation between the impregnation rate of the flow rate and silicon carbide of the H 2 gas in the second embodiment. It is the figure which showed the correlation with the temperature of the reactor in Experimental example 1, and the partial pressure of each gas. It is the figure which showed the Arrhenius plot of the mass reduction
  • FIG. It is a diagram showing the mass balance change of the weight loss and Cl 2 dosage of gas of the Si powder in Experimental Example 2.
  • the manufacturing method of the composite material of this indication is a manufacturing method of the composite material which has a porous base material and the silicon carbide film (SiC film) formed on the surface of the material which comprises a porous base material.
  • SiC film silicon carbide film
  • carbonization is performed on the surface of the material constituting the porous substrate by reacting the Si source gas containing SiCl 2 or SiCl with the C source gas containing C atoms. A silicon film is formed.
  • a silicon carbide film on the surface of the material constituting the porous substrate using a chemical vapor deposition (CVD) method or a chemical vapor impregnation (CVI) method.
  • the Si source gas containing SiCl 2 or SiCl is obtained, for example, by bringing a Si source containing Si atoms into contact with a Cl source containing Cl atoms.
  • the manufacturing method of the composite material of this embodiment is a material that forms a porous substrate by reacting a Si source containing Si atoms, a Cl source containing Cl atoms, and a C source containing C atoms.
  • a silicon carbide film is formed on the surface of the substrate.
  • the material constituting the porous substrate examples include fibers and powders.
  • the material constituting the porous substrate may be only fibers, powder only, or a mixed material of fibers and powders.
  • a fiber substrate containing a plurality of fibers is used as the porous substrate. It may be a porous substrate in which powder is attached to the fibers in the fiber substrate.
  • the fibers include silicon carbide fibers, alumina fibers, carbon fibers, and glass fibers.
  • silicon carbide fiber is preferable from the viewpoint of excellent heat resistance.
  • the fiber one kind may be used alone, or two or more kinds may be used in combination.
  • the aspect of a fiber base material is not specifically limited, For example, a textile fabric is mentioned.
  • a fiber bundle in which a plurality of fibers are bundled may be used, or a fiber base material not including a fiber bundle may be used.
  • the shape of a fiber base material is not specifically limited, It can be set as a desired shape according to a use.
  • the powder constituting the porous substrate one kind may be used alone, or two or more kinds may be used in combination.
  • the Si source and the Cl source are brought into contact with each other, and the resulting product is converted to C It is preferred to react with the source gas.
  • the Si source brought into contact with the Cl source does not contain Cl atoms.
  • the Cl source may contain Si atoms or C atoms.
  • Cl source examples include gases such as Cl 2 gas, SiCl 4 gas, and MTS gas.
  • the Cl source is preferably Cl 2 gas because it does not contain C atoms (the C source can be separately supplied at a free quantity ratio).
  • Cl source only one kind may be used alone, or two or more kinds may be used in combination.
  • the product produced by bringing the Si source into contact with the Cl source is preferably a gas containing SiCl 2 or SiCl.
  • This gas is excellent as a Si source gas in forming a silicon carbide film in the porous substrate.
  • a method of generating a gas containing SiCl 2 or SiCl a method of bringing a source gas into contact with solid Si is preferable.
  • Etching with solid Si Cl source gas produces a gas containing SiCl 2 or SiCl.
  • a method for generating a gas containing SiCl 2 or SiCl a method in which Cl 2 gas is brought into contact with solid Si is particularly preferable.
  • the gas of the Si source that is the product may be a gas containing SiCl 2 gas and not containing SiCl gas, or a gas containing both SiCl 2 gas and SiCl gas. If the product contains SiCl gas, the gas also contains SiCl 2 gas in thermodynamic theory. Incidentally, SiCl the 2 or gas containing SiCl, may contain SiCl 3, the SiCl SiCl 2 and Si sources other than SiCl 4 or the like gas. Note that when MTS is used as the Cl source, MTS may remain slightly in those products, but the remaining amount of MTS after contact with the Si source is small, and the effect of the present disclosure is not impaired.
  • the partial pressure of SiCl 2 gas when the total pressure of the gas and 1 atm (0.1 MPa) can be appropriately set.
  • the partial pressure of the SiCl 2 gas can be set from the viewpoint of ensuring both the uniformity of the silicon carbide film on the surface of each fiber and the productivity.
  • the partial pressure of the SiCl 2 gas may be the upper limit of the thermodynamic theoretical value.
  • the partial pressure of the SiCl gas when the total gas pressure is 1 atm (0.1 MPa) can be set as appropriate.
  • the partial pressure of SiCl gas can be set from the viewpoint of ensuring both the uniformity of the silicon carbide film on the surface of each fiber and the productivity.
  • the partial pressure of the SiCl gas may be the upper limit of the thermodynamic theoretical value.
  • the partial pressure of SiCl 2 or SiCl in the product gas can be adjusted by the temperature at which the Si source and the Cl source are brought into contact with each other.
  • Examples of the C source include hydrocarbons such as CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 4 , C 2 H 2 , C 6 H 6 , and CCl 4 .
  • the C source is preferably at least one hydrocarbon selected from the group consisting of CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 4 , C 2 H 2 , C 6 H 6 and CCl 4 .
  • a carrier gas may be used in the reaction for forming a silicon carbide film in the present disclosure as necessary.
  • the carrier gas include gases inert to the film formation reaction such as H 2 gas, N 2 gas, He gas, and Ar gas.
  • H 2 gas is preferable because the impregnation of silicon carbide into the fiber base material is improved.
  • the carrier gas only one kind may be used alone, or two or more kinds may be used in combination.
  • the reaction temperature for forming the silicon carbide film can be set as appropriate.
  • the lower limit of the reaction temperature can be set from the viewpoint of improving the growth rate of the silicon carbide film and improving the productivity of the composite material.
  • the upper limit of the reaction temperature can be set from the viewpoint of improving the uniformity of the silicon carbide film formed on the surface of the material constituting the porous substrate.
  • the reaction pressure for forming the silicon carbide film is preferably 0.1 to 20 Torr (13 to 2660 Pa), more preferably 5 to 20 Torr (670 to 2660 Pa), and further preferably 15 to 20 Torr (2000 to 2660 Pa). If the reaction pressure is less than the lower limit of this range, the impregnation rate is small, and productivity may be impaired. When the reaction pressure exceeds the upper limit of this range, the impregnation property to the porous substrate is impaired, and the high temperature strength may be lowered.
  • the manufacturing apparatus used in the present disclosure is not particularly limited, and examples thereof include the manufacturing apparatus 100 illustrated in FIG. Note that the drawings illustrated in the following description are merely examples, and the present disclosure is not necessarily limited thereto, and can be appropriately modified and implemented without changing the gist thereof.
  • the manufacturing apparatus 100 includes a tubular reaction furnace 110, a Cl source supply unit 112, a C source supply unit 114, and an exhaust unit 116.
  • a first reaction unit 118 and a second reaction unit 120 are provided in this order from the upstream side of the reaction furnace 110.
  • the 1st reaction part 118 is a part which makes Si source and Cl source contact, and is made to react.
  • the interior of the reaction furnace 110 is partitioned by providing two partition members 122 and 122 having air permeability with a gap in the gas flow direction.
  • a solid Si source 300 (Si powder) is filled between the partition members 122.
  • the partition member 122 may be a member that does not allow Si powder to pass therethrough and allows the Cl source gas and the product Si source gas to pass therethrough, and examples thereof include carbon felt.
  • the first reaction unit 118 of the reaction furnace 110 is provided with a first heater 124 that adjusts the temperature at which the Si source and the Cl source are brought into contact with each other.
  • the second reaction unit 120 is a part that reacts the Si source gas and the C source gas to form a silicon carbide film on the surface of each fiber of the fiber substrate 200.
  • the second reaction unit 120 is configured in such a manner that the fiber substrate 200 can be installed at a position where a silicon carbide film is formed on the surface of the fiber by the reaction between the Si source gas and the C source gas. Is not particularly limited.
  • the second reaction section 120 of the reaction furnace 110 is provided with a second heater 126 that adjusts the reaction temperature for film formation.
  • the Cl source supply unit 112 supplies a Cl source gas.
  • the Cl source supply unit 112 supplies a Cl source gas to the upstream side of the first reaction unit 118 of the reaction furnace 110.
  • the C source supply unit 114 supplies C source gas.
  • the C source supply unit 114 supplies a C source gas between the first reaction unit 118 and the second reaction unit 120 in the reaction furnace 110.
  • the C source gas may be supplied from the C source supply unit 114 together with the carrier gas.
  • the exhaust unit 116 is provided on the downstream side of the reaction furnace 110 and includes a pressure regulating valve 128 and a vacuum pump 130.
  • the exhaust unit 116 depressurizes the inside of the reaction furnace 110 by a pressure regulating valve 128 and a vacuum pump 130 to adjust to a desired pressure.
  • a Cl source gas such as Cl 2 gas is supplied from the Cl source supply unit 112 to the reaction furnace 110, and the Cl source gas and the solid state gas are supplied to the first reaction unit 118.
  • a Si source gas containing SiCl 2 or SiCl as a product is generated by contact between the Cl source gas and solid Si and is sent to the second reaction unit 120.
  • the Si source gas that is the product of the first reaction unit 118 reacts with the C source gas supplied from the C source supply unit 114, and the surface of each fiber of the fiber substrate 200. Silicon carbide is deposited thereon to form a silicon carbide film.
  • a silicon carbide film is formed on the surface of each fiber and the surface of each powder.
  • a composite material may be obtained by forming a silicon carbide film on the surface of each powder of a porous substrate made of powder.
  • the flow rate of H 2 gas supplied to the reaction furnace can be set as appropriate.
  • the lower limit of the flow rate of H 2 gas can be set from the viewpoint of improving the uniformity of the silicon carbide film formed on the surface of the material constituting the porous substrate.
  • carbonization is further performed by a liquid phase impregnation (SPI) method or a melt impregnation (PIP) method as necessary.
  • SPI liquid phase impregnation
  • PIP melt impregnation
  • the silicon carbide film is excellent in impregnation into the porous substrate of silicon carbide and the uniformity of the silicon carbide film formed on the surface of the material constituting the porous substrate.
  • the composite material can be manufactured with high productivity while ensuring the above.
  • the factors for obtaining such an effect are considered as follows.
  • MTS is used as a source gas that becomes a Si source and a C source
  • methyl radicals are generated by thermal decomposition of MTS.
  • the methyl radical is unstable, a film forming reaction is likely to occur on the surface of the substrate before the raw material gas is sufficiently impregnated into the porous substrate, and the impregnation of silicon carbide is reduced.
  • SiCl 2 gas and SiCl gas are more excellent in impregnation into a porous substrate than SiCl 4 gas. Therefore, by using a Si source gas containing SiCl 2 or SiCl, the impregnation property of silicon carbide into the porous substrate becomes particularly excellent, and a silicon carbide film can be uniformly formed in a short time.
  • the impregnation property of silicon carbide into the fiber bundle tends to be lowered.
  • the impregnation property of silicon carbide into the fiber bundle is also excellent, so that even when the fiber bundle is used, both uniformity and productivity of the silicon carbide film can be achieved.
  • the method for manufacturing a composite material according to the present disclosure is not limited to the method using the manufacturing apparatus 100.
  • a manufacturing apparatus including a heater that also serves as them may be used.
  • Example 1 Using the manufacturing apparatus 100 illustrated in FIG. 1, a silicon carbide film was formed on the surface of each fiber of the fiber substrate 200 to obtain a composite material.
  • the fiber base material 200 a fiber molded body formed by stacking and forming 16 plain woven fabrics of silicon carbide fibers was used.
  • Si fine powder (trade name “SIE23PB”, high purity chemical research laboratory, maximum particle size: 5 ⁇ m) was used as the Si source, Cl 2 gas was used as the Cl source, CH 4 gas was used as the C source, and H 2 gas was used as the carrier gas. .
  • CH 4 gas was supplied to the reactor 110 together with H 2 gas by the C source supply unit 114.
  • the flow rate of Cl 2 gas was 500 SCCM, the flow rate of CH 4 gas was 120 SCCM, and the flow rate of H 2 gas was 120 SCCM.
  • the temperature at which Si and Cl 2 gas were brought into contact in the first reaction unit 118 was 1200 ° C., and the reaction temperature for film formation in the second reaction unit 120 was 1160 ° C.
  • the pressure in the reaction furnace 110 was 20 Torr (2660 Pa), and the film formation reaction time was 2 hours.
  • a cross-sectional photograph of the obtained composite material is shown in FIG.
  • the average value of the thickness of the silicon carbide film formed on the surface of each fiber was 1.2 ⁇ m, and the impregnation rate of silicon carbide was 0.6 ⁇ m / hr.
  • a silicon carbide film was formed on the surface of each fiber of the fiber base material to obtain a composite material.
  • the mixed gas of MTS and H 2 was brought into contact with the same fiber substrate used in Example 1.
  • the ratio of MTS to H 2 was 1: 1.
  • the reaction time was 100 hours.
  • a cross-sectional photograph of the obtained composite material is shown in FIG.
  • the average value of the thickness of the silicon carbide film formed on the surface of each fiber was 0.6 ⁇ m, and the impregnation rate of silicon carbide was 0.04 ⁇ m / hr.
  • Example 1 The results of Example 1 and Comparative Example 1 are shown in Table 1.
  • Example 1 using the manufacturing method of the present disclosure, a silicon carbide film was uniformly formed on the surface of each fiber. Also, in Example 1, a thicker silicon carbide film was formed in a shorter time than in Comparative Example 1 using the conventional method, and the silicon carbide impregnation property was excellent.
  • Example 2 Example 1 with the exception of using a fiber substrate with only one plain fabric of silicon carbide fibers or a fiber substrate with 16 layers, and changing the H 2 gas flow rate to 60 SCCM, 120 SCCM, or 240 SCCM. A composite material was produced in the same manner.
  • FIG. 4 shows a graph plotting the impregnation rate of silicon carbide against the flow rate of H 2 gas for each fiber base material. As shown in FIG. 4, the higher the H 2 gas flow rate, the greater the impregnation rate of silicon carbide.
  • Example 1 The reactor is filled with Si powder (trade name “SIE23PB”, manufactured by High Purity Chemical Laboratory, maximum particle size: 5 ⁇ m), Cl 2 gas is supplied to etch Si powder, and the reaction gas is exhausted And was analyzed by a mass spectrometer to determine the partial pressure of each gas species.
  • the partial pressure of each gas type was measured by changing the temperature in the reaction furnace from 400 ° C to 1200 ° C.
  • FIG. 5 shows a graph in which the partial pressure of each gas type is plotted against the temperature in the reaction furnace.
  • the partial pressure of the Cl 2 gas decreased by two orders of magnitude when the temperature of the reactor was in the range of 400 to 500 ° C. From this result, it is considered that Cl 2 gas has a thermal decomposition temperature in the range of 400 to 500 ° C., and Cl ⁇ has reached the gas generation field of 500 ° C. or higher.
  • Experiment 2 Experiment 1 and the temperature inside the reactor were set to 800 ° C., 1000 ° C., 1100 ° C., or 1200 ° C. while keeping the filling amount of the Si powder in the reactor and the contact time between the Si powder and the Cl 2 gas constant. Similarly, the Si powder was etched. The mass of the Si powder before and after the reaction was measured at each temperature, and the temperature dependence of the mass reduction amount of the Si powder was confirmed.
  • FIG. 6 shows an Arrhenius plot of the mass reduction amount of the Si powder.
  • FIG. 7 shows the correlation between the ratio of the mass reduction amount of the Si powder with respect to the Cl input amount and the temperature of the reactor. When the ratio of the amount of mass reduction of the Si powder with respect to the amount of Cl input is 100%, it indicates that all of the input Cl is SiCl.
  • the slope of the mass decrease plot of the Si powder changed at about 1000 ° C. as a boundary.
  • This result shows that in the generation of SiCl 2 and SiCl by contact of Si powder and Cl 2 gas, the generation of SiCl 2 is dominant at temperatures below the boundary of about 1000 ° C., and at temperatures exceeding the boundary of about 1000 ° C. This is considered to indicate that the generation of SiCl is dominant.
  • FIG. 7 at a temperature of about 1050 ° C. or higher, the ratio of the amount of mass reduction of the Si powder to the amount of Cl input exceeded 50%. This result shows that the main product gas in this temperature range is SiCl.
  • the present disclosure can be applied to a method for manufacturing a composite material having a porous substrate and a silicon carbide film formed on the surface of the material constituting the porous substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本開示の複合材料の製造方法は、多孔質基材と、多孔質基材を構成する材料の表面上に形成された炭化ケイ素膜とを有する複合材料の製造方法であって、Si原子を含有するSi源と、Cl原子を含有するCl源と、C原子を含有するC源とを反応させて多孔質基材を構成する材料の表面上に炭化ケイ素膜を形成する。

Description

複合材料の製造方法
 本開示は、複合材料の製造方法に関する。 
 本願は、2018年6月1日に日本に出願された特願2018-106068号に基づき優先権を主張し、その内容をここに援用する。
 セラミックス基複合材料(CMC:Ceramic Matrix Composites)は、高強度の高温材料、軽量材料として知られ、ニッケル基合金の代替として期待されている。例えばCMCを航空用ジェットエンジンの高温部に適用することにより、エンジンの軽量化および低燃費化が期待できる。航空用ジェットエンジンの高温部への適用には、マトリックスとして耐熱性に優れる炭化ケイ素を用いることが有効である。
 CMCのような複合材料の製造方法としては、化学気相堆積(CVD)法又は化学気相含浸(CVI)法によって、繊維基材の各繊維の表面上に炭化ケイ素を堆積させて炭化ケイ素膜を形成する方法が知られている。特許文献1には、CHSiCl(MTS)、SiCl等の原料ガスと、H、He等のキャリアガスと、C、C等の添加ガスを反応炉に流し、CVD法又はCVI法により繊維の表面上に炭化ケイ素膜を形成する方法が提案されている。
日本国特許第5906318号公報
 しかし、特許文献1のような従来の方法においては、繊維基材への炭化ケイ素の含浸性が低いため、各繊維の表面上に形成する炭化ケイ素膜の均一性を確保するには、炭化ケイ素膜の成長速度を低くする必要がある。そのため、複合材料の製造には通常100~200時間程度を要し、生産性が低い。
 本開示は、繊維基材等の多孔質基材を構成する材料の表面上に形成される炭化ケイ素膜の均一性を確保しつつ、高い生産性で複合材料を製造できる複合材料の製造方法を提供することを目的とする。
 本開示の一態様の複合材料の製造方法は、多孔質基材と、前記多孔質基材を構成する材料の表面上に形成された炭化ケイ素膜とを有する複合材料の製造方法であって、Si原子を含有するSi源と、Cl原子を含有するCl源と、C原子を含有するC源とを反応させて前記材料の表面上に炭化ケイ素膜を形成する。
 上記一態様の複合材料の製造方法において、前記Si源と前記Cl源とを接触させて生じた生成物を、前記C源のガスと反応させてもよい。
 上記一態様の複合材料の製造方法において、前記生成物はSiClまたはSiClを含有するガスであってもよい。
 上記一態様の複合材料の製造方法において、前記Si源は固体状のSiであり、前記Cl源はClガスであってもよい。
 上記一態様の複合材料の製造方法において、化学気相堆積法または化学気相含浸法を用いて前記反応により炭化ケイ素膜を形成してもよい。
 上記一態様の複合材料の製造方法において、前記炭化ケイ素膜の膜形成の反応圧力を0.1~20Torr(13~2660Pa)としてもよい。
 上記一態様の複合材料の製造方法において、前記C源が、CH、C、C、C、C、CおよびCClからなる群から選ばれる少なくとも1種の炭化水素であってもよい。
 上記一態様の複合材料の製造方法において、前記多孔質基材が、複数の繊維を含む繊維基材であってもよい。
 上記一態様の複合材料の製造方法において、前記繊維が炭化ケイ素繊維であってもよい。
 本開示の複合材料の製造方法によれば、繊維基材等の多孔質基材を構成する材料の表面上に形成される炭化ケイ素膜の均一性に優れ、高い生産性で複合材料を製造できる。
本開示の複合材料の製造方法に用いる製造装置の一例を示した模式図である。 実施例1で得た複合材料の断面写真である。 比較例1で得た複合材料の断面写真である。 実施例2におけるHガスの流量と炭化ケイ素の含浸速度との相関を示した図である。 実験例1における反応炉の温度と各ガスの分圧との相関を示した図である。 実験例2におけるSi粉末の質量減少量のアレニウスプロットを示した図である。 実験例2におけるSi粉末の質量減少量とClガスの投入量とのマスバランス変化を示した図である。
 本開示の複合材料の製造方法は、多孔質基材と、多孔質基材を構成する材料の表面上に形成された炭化ケイ素膜(SiC膜)とを有する複合材料の製造方法である。本開示の複合材料の製造方法では、SiClまたはSiClを含有するSi源のガスと、C原子を含有するC源のガスとを反応させて多孔質基材を構成する材料の表面上に炭化ケイ素膜を形成する。
 本開示では、化学気相堆積(CVD)法又は化学気相含浸(CVI)法を用いて多孔質基材を構成する材料の表面上に炭化ケイ素膜を形成することが好ましい。
 SiClまたはSiClを含有するSi源のガスは、例えば、Si原子を含有するSi源と、Cl原子を含有するCl源とを接触させることで得られる。
 以下、複合材料の製造方法の実施形態の一例について説明する。
 本実施形態の複合材料の製造方法は、Si原子を含有するSi源と、Cl原子を含有するCl源と、C原子を含有するC源とを反応させて、多孔質基材を構成する材料の表面上に炭化ケイ素膜を形成する。
 多孔質基材を構成する材料としては、繊維、粉体等が挙げられる。多孔質基材を構成する材料は、繊維のみであってもよく、粉体のみであってもよく、繊維と粉体の混合材料であってもよい。
 本開示の製造方法でセラミックス基複合材料(CMC)を製造する場合は、多孔質基材として、複数の繊維を含む繊維基材を用いる。繊維基材における繊維に粉体が付着した多孔質基材でもよい。
 繊維としては、炭化ケイ素繊維、アルミナ繊維、炭素繊維、ガラス繊維等が挙げられる。繊維としては、耐熱性に優れる点から、炭化ケイ素繊維が好ましい。繊維としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 繊維基材の態様は、特に限定されず、例えば、織物が挙げられる。繊維基材には、複数の繊維が束ねられた繊維束を用いてもよく、繊維束を含まない繊維基材を用いてもよい。
 繊維基材の形状は、特に限定されず、用途に応じて所望の形状とすることができる。
 多孔質基材を構成する粉体としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本開示では、多孔質基材を構成する材料の表面上の炭化ケイ素膜の均一性と生産性を両立しやすい点から、Si源とCl源とを接触させ、それによって生じた生成物をC源のガスと反応させることが好ましい。ただし、Cl源と接触させるSi源は、Cl原子を含まない。Cl源は、Si原子やC原子を含んでいてもよい。
 Cl源としては、Clガス、SiClガス、MTSガス等のガスが挙げられる。Cl源としては、C原子を含まない(自由な量比でC源を別途供給できる)ことから、Clガスが好ましい。Cl源としては、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 Si源とCl源とを接触させて生じる生成物は、SiClまたはSiClを含有するガスであることが好ましい。このガスは、多孔質基材内の炭化ケイ素膜の膜形成におけるSi源のガスとして優れている。
 SiClまたはSiClを含有するガスを生じさせる方法としては、固体状のSiにCl源のガスを接触させる方法が好ましい。固体状のSiのCl源のガスによるエッチングにより、SiClまたはSiClを含有するガスが生じる。SiClまたはSiClを含有するガスを生じさせる方法としては、固体状のSiにClガスを接触させる方法が特に好ましい。
 生成物であるSi源のガスは、SiClガスを含有し、SiClガスを含有しないガスであってもよく、SiClガスとSiClガスの両方を含有するガスであってもよい。生成物がSiClガスを含有する場合、熱力学理論上、そのガスはSiClガスも含有する。なお、SiClまたはSiClを含有するガスには、SiCl、SiCl等のSiClおよびSiCl以外のSi源のガスが含まれていてもよい。
 なお、Cl源としてMTSを用いる場合、それらの生成物にMTSが僅かに残存することがあるが、Si源と接触後におけるMTSの残存量は少なく、本開示の効果は損なわれない。
 生成物がSiClを含有するガスである場合、ガスの全圧を1atm(0.1MPa)としたときのSiClガスの分圧は、適宜設定できる。例えば、SiClガスの分圧を、各繊維の表面上の炭化ケイ素膜の均一性の確保と生産性を両立する観点で設定することができる。SiClガスの分圧は、熱力学理論値の上限としてもよい。
 生成物がSiClを含有するガスである場合、ガスの全圧を1atm(0.1MPa)としたときのSiClガスの分圧は、適宜設定できる。例えば、SiClガスの分圧を、各繊維の表面上の炭化ケイ素膜の均一性の確保と生産性を両立する観点で設定することができる。SiClガスの分圧は、熱力学理論値の上限としてもよい。
 生成物のガス中のSiClやSiClの分圧は、Si源とCl源とを接触させる温度により調節できる。
 C源としては、CH、C、C、C、C、C、CCl等の炭化水素が挙げられる。C源としては、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 C源としては、CH、C、C、C、C、CおよびCClからなる群から選ばれる少なくとも1種の炭化水素が好ましい。
 本開示における炭化ケイ素膜の膜形成の反応には、必要に応じて、キャリアガスを使用してもよい。キャリアガスとしては、Hガス、Nガス、Heガス、Arガス等の膜形成反応に対して不活性なガスが挙げられる。キャリアガスとしては、繊維基材への炭化ケイ素の含浸性が向上する点から、Hガスが好ましい。
 キャリアガスとしては、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 炭化ケイ素膜の膜形成の反応温度は、適宜設定できる。例えば、反応温度の下限は、炭化ケイ素膜の成長速度の向上、複合材料の生産性の向上の観点で設定することができる。反応温度の上限は、多孔質基材を構成する材料の表面上に形成される炭化ケイ素膜の均一性の向上の観点で設定することができる。
 炭化ケイ素膜の膜形成の反応圧力は、0.1~20Torr(13~2660Pa)が好ましく、5~20Torr(670~2660Pa)がより好ましく、15~20Torr(2000~2660Pa)がさらに好ましい。反応圧力がこの範囲の下限値未満であれば、含浸速度が小さく、生産性を損なう可能性がある。反応圧力がこの範囲の上限値を超えると、多孔質基材への含浸性が損なわれ、高温強度が低下する可能性がある。
 本開示に用いる製造装置としては、特に限定されず、例えば、図1に例示した製造装置100が挙げられる。なお、以下の説明において例示される図は一例であって、本開示はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 製造装置100は、管状の反応炉110と、Cl源供給部112と、C源供給部114と、排気ユニット116とを備えている。反応炉110には、第1反応部118と第2反応部120が、反応炉110の上流側からこの順に設けられている。
 第1反応部118は、Si源とCl源とを接触させて反応させる部分である。
 この例の第1反応部118では、通気性を有する2つの仕切り部材122,122がガスの流れ方向に間隔をあけて設けられることで反応炉110内が仕切られる。仕切り部材122間に固体状のSi源300(Si粉末)が充填される。仕切り部材122としては、Si粉末が通過せず、Cl源のガスおよび生成物であるSi源のガスが通過する部材であればよく、例えば、カーボンフェルトが挙げられる。
 反応炉110の第1反応部118には、Si源とCl源とを接触させる温度を調節する第1ヒータ124が設けられている。
 第2反応部120は、Si源のガスとC源のガスとを反応させ、繊維基材200の各繊維の表面上に炭化ケイ素膜を形成する部分である。第2反応部120は、Si源のガスとC源のガスとの反応により繊維の表面上に炭化ケイ素膜が形成される位置に繊維基材200を設置できるようになっていれば、その態様は特に限定されない。
 反応炉110の第2反応部120には、膜形成の反応温度を調節する第2ヒータ126が設けられている。
 Cl源供給部112は、Cl源のガスを供給する。Cl源供給部112は、反応炉110の第1反応部118の上流側にCl源のガスを供給する。
 C源供給部114は、C源のガスを供給する。C源供給部114は、反応炉110内の第1反応部118と第2反応部120の間にC源のガスを供給する。C源供給部114からは、C源のガスをキャリアガスとともに供給してもよい。
 排気ユニット116は、反応炉110の下流側に設けられており、調圧弁128と、真空ポンプ130とを備えている。排気ユニット116は、調圧弁128と真空ポンプ130により、反応炉110内を減圧して所望の圧力に調節する。
 製造装置100を用いた複合材料の製造方法では、Cl源供給部112から反応炉110にClガス等のCl源のガスを供給し、第1反応部118においてCl源のガスと固体状のSiとを接触させる。第1反応部118では、Cl源のガスと固体状のSiとの接触により生成物としてSiClまたはSiClを含有するSi源のガスが発生し、第2反応部120に送られる。第2反応部120では、第1反応部118の生成物であるSi源のガスと、C源供給部114から供給されるC源のガスとが反応し、繊維基材200の各繊維の表面上に炭化ケイ素が堆積して炭化ケイ素膜が形成される。繊維基材200に粉体が含まれている場合は、各繊維の表面と各粉体の表面に炭化ケイ素膜が形成される。
 なお、製造装置100を用いて、粉体からなる多孔質基材の各粉体の表面上に炭化ケイ素膜を形成して複合材料を得てもよい。
 キャリアガスとしてHガスを用いる場合、反応炉に供給するHガスの流量は、適宜設定できる。例えば、Hガスの流量の下限は、多孔質基材を構成する材料の表面上に形成される炭化ケイ素膜の均一性の向上の観点で設定することができる。
 本開示の複合材料の製造方法では、CVD法またはCVI法による炭化ケイ素膜の膜形成を行った後、必要に応じて、さらに液相含浸(SPI)法や、溶融含浸(PIP)法により炭化ケイ素のマトリックスを形成してもよい。
 以上説明した本開示の複合材料の製造方法によれば、炭化ケイ素の多孔質基材への含浸性に優れ、多孔質基材を構成する材料の表面上に形成される炭化ケイ素膜の均一性を確保しつつ、高い生産性で複合材料を製造できる。このような効果が得られる要因は、以下のように考えられる。
 従来方法において、Si源およびC源となる原料ガスとしてMTSを用いる場合は、MTSの熱分解によりメチルラジカルが生じる。この場合、メチルラジカルが不安定であるため、原料ガスが多孔質基材の内部まで十分に含侵される前に基材表面で膜形成反応が起きやすく、炭化ケイ素の含浸性が低くなる。これに対して、本開示では、Si源とC源と別々に供給して炭化ケイ素膜を形成するため、メチルラジカルの発生を抑制できる。そのため、反応温度を高めて膜形成速度を速くしても、炭化ケイ素膜の均一性を確保できる。
 また、SiClガスおよびSiClガスは、SiClガスに比べて、多孔質基材への含浸性に優れる。そのため、SiClまたはSiClを含有するSi源のガスを用いることで、多孔質基材への炭化ケイ素の含浸性が特に優れたものとなり、短時間で均一に炭化ケイ素膜を形成できる。
 また、従来の方法では、繊維束を含む繊維基材を用いる場合に特に繊維束の内部への炭化ケイ素の含浸性が低くなる傾向がある。しかし、本開示の製造方法によれば、繊維束の内部への炭化ケイ素の含浸性も優れているため、繊維束を用いる場合でも炭化ケイ素膜の均一性と生産性の両立が可能である。
 なお、本開示の複合材料の製造方法は、製造装置100を用いる方法には限定されない。例えば、製造装置100における第1ヒータ124と第2ヒータ126の代わりに、それらを兼ねるヒータを備えた製造装置を用いてもよい。また、第1反応部と第2反応部とが別々の反応炉になっている製造装置を用いてもよい。
 以下、実施例によって本開示を具体的に説明するが、本開示は以下の記載によっては限定されない。
[炭化ケイ素膜の膜厚、含浸速度]
 光学顕微鏡により各例で得た複合材料の断面を観察し、任意に選択した20箇所について炭化ケイ素膜の膜厚を測定し、平均値を算出した。炭化ケイ素の含浸速度は、炭化ケイ素膜の膜厚を反応時間で除して求めた。
[実施例1]
 図1に例示した製造装置100を用いて、繊維基材200の各繊維の表面上に炭化ケイ素膜を形成して複合材料を得た。
 繊維基材200として、炭化ケイ素繊維の平織物を16枚積層して成形した繊維成形体を用いた。
 Si源としてSi微粉末(商品名「SIE23PB」、高純度化学研究所製、最大粒径:5μm)、Cl源としてClガス、C源としてCHガス、キャリアガスとしてHガスを用いた。C源供給部114によりCHガスをHガスとともに反応炉110に供給した。Clガスの流量は500SCCM、CHガスの流量は120SCCM、Hガスの流量は120SCCMとした。第1反応部118におけるSiとClガスとを接触させる温度は1200℃、第2反応部120における膜形成の反応温度は1160℃とした。反応炉110内の圧力は20Torr(2660Pa)とし、膜形成の反応時間は2時間とした。
 得られた複合材料の断面写真を図2に示す。各繊維の表面上に形成された炭化ケイ素膜の膜厚の平均値は1.2μmであり、炭化ケイ素の含浸速度は0.6μm/hrであった。
[比較例1]
 以下に示す方法により、繊維基材の各繊維の表面上に炭化ケイ素膜を形成して複合材料を得た。
 950℃、5Torr(670Pa)において、MTS及びHの混合ガスを、実施例1で使用したものと同じ繊維基材に接触させた。MTSとHの比率は、1:1であった。反応時間は100時間とした。
 得られた複合材料の断面写真を図3に示す。各繊維の表面上に形成された炭化ケイ素膜の膜厚の平均値は0.6μmであり、炭化ケイ素の含浸速度は0.04μm/hrであった。
 実施例1および比較例1の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図2、図3および表1に示すように、本開示の製造方法を用いた実施例1では、各繊維の表面上に均一に炭化ケイ素膜が形成された。また、実施例1では、従来の方法を用いた比較例1に比べて、より短時間でより厚い炭化ケイ素膜が形成され、炭化ケイ素の含浸性に優れていた。
[実施例2]
 炭化ケイ素繊維の平織物が1枚のみの繊維基材、または積層数が16枚の繊維基材を用い、Hガスの流量を60SCCM、120SCCM、または240SCCMに変更する以外は、実施例1と同様にして複合材料を製造した。
 それぞれの繊維基材を用いた場合について、Hガスの流量に対する炭化ケイ素の含浸速度をプロットしたグラフを図4に示す。
 図4に示すように、Hガスの流量が多いほど、炭化ケイ素の含浸速度が大きくなった。
[実験例1]
 反応炉内にSi粉末(商品名「SIE23PB」、高純度化学研究所製、最大粒径:5μm)を充填し、Clガスを供給してSi粉末をエッチングし、反応後のガスを排気配管から採取して質量分析計により分析し、各ガス種の分圧を求めた。各ガス種の分圧の測定は、反応炉内の温度を400℃から1200℃まで変化させて行った。反応炉内の温度に対する各ガス種の分圧をプロットしたグラフを図5に示す。
 図5に示すように、反応炉の温度が400~500℃の範囲において、Clガスの分圧が二桁下がった。この結果から、Clガスは400~500℃の範囲に熱分解温度を持ち、500℃以上のガス生成場にはClが到達していると考えられる。
[実験例2]
 反応炉内のSi粉末の充填量、およびSi粉末とClガスとの接触時間を一定としたうえで、反応炉内の温度を800℃、1000℃、1100℃または1200℃として実験例1と同様にSi粉末をエッチングした。
 各温度において反応前後のSi粉末の質量を測定し、Si粉末の質量減少量の温度依存性を確認した。Si粉末の質量減少量のアレニウスプロットを図6に示す。また、Cl投入量に対するSi粉末の質量減少量の割合と反応炉の温度との相関を図7に示す。Cl投入量に対するSi粉末の質量減少量の割合が100%である場合は、投入ClがすべてSiClとなったことを示す。
 図6に示すように、Si粉末の質量減少のプロットは、約1000℃を境に傾きが変化した。この結果は、Si粉末とClガスの接触によるSiClとSiClの生成においては、約1000℃の境界以下の温度ではSiClの生成が支配的であり、約1000℃の境界を超える温度ではSiClの生成が支配的であることを示していると考えられる。
 また、図7に示すように、約1050℃以上の温度で、Cl投入量に対するSi粉末の質量減少量の割合が50%を超えていた。この結果は、この温度域での主生成ガスがSiClであることを示している。
 本開示は、多孔質基材と、多孔質基材を構成する材料の表面上に形成された炭化ケイ素膜とを有する複合材料の製造方法に適用することができる。
 100…製造装置
 110…反応炉
 112…Cl源供給部
 114…C源供給部
 116…排気ユニット
 118…第1反応部
 120…第2反応部
 122…仕切り部材
 124…第1ヒータ
 126…第2ヒータ
 128…調圧弁
 130…真空ポンプ

Claims (9)

  1.  多孔質基材と、前記多孔質基材を構成する材料の表面上に形成された炭化ケイ素膜とを有する複合材料の製造方法であって、
     Si原子を含有するSi源と、Cl原子を含有するCl源と、C原子を含有するC源とを反応させて前記材料の表面上に炭化ケイ素膜を形成する、複合材料の製造方法。
  2.  前記Si源と前記Cl源とを接触させて生じた生成物を、前記C源のガスと反応させる、請求項1に記載の複合材料の製造方法。
  3.  前記生成物はSiClまたはSiClを含有するガスである、請求項2に記載の複合材料の製造方法。
  4.  前記Si源は固体状のSiであり、前記Cl源はClガスである、請求項1~3のいずれか一項に記載の複合材料の製造方法。
  5.  化学気相堆積法または化学気相含浸法を用いて前記反応により炭化ケイ素膜を形成する、請求項1~4のいずれか一項に記載の複合材料の製造方法。
  6.  前記炭化ケイ素膜の膜形成の反応圧力を0.1~20Torr(13~2660Pa)とする、請求項1~5のいずれか一項に記載の複合材料の製造方法。
  7.  前記C源が、CH、C、C、C、C、CおよびCClからなる群から選ばれる少なくとも1種の炭化水素である、請求項1~6のいずれか一項に記載の複合材料の製造方法。
  8.  前記多孔質基材が、複数の繊維を含む繊維基材である、請求項1~7のいずれか一項に記載の複合材料の製造方法。
  9.  前記繊維が炭化ケイ素繊維である、請求項8に記載の複合材料の製造方法。
PCT/JP2019/021761 2018-06-01 2019-05-31 複合材料の製造方法 WO2019230958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19811428.2A EP3816139A4 (en) 2018-06-01 2019-05-31 COMPOSITE MATERIAL PRODUCTION PROCESS
US17/106,854 US11718569B2 (en) 2018-06-01 2020-11-30 Production method for composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018106068A JP7052570B2 (ja) 2018-06-01 2018-06-01 複合材料の製造方法
JP2018-106068 2018-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/106,854 Continuation US11718569B2 (en) 2018-06-01 2020-11-30 Production method for composite material

Publications (1)

Publication Number Publication Date
WO2019230958A1 true WO2019230958A1 (ja) 2019-12-05

Family

ID=68696725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021761 WO2019230958A1 (ja) 2018-06-01 2019-05-31 複合材料の製造方法

Country Status (4)

Country Link
US (1) US11718569B2 (ja)
EP (1) EP3816139A4 (ja)
JP (1) JP7052570B2 (ja)
WO (1) WO2019230958A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102373A1 (de) 2022-02-01 2023-08-03 The Yellow SiC Holding GmbH Verfahren und Vorrichtung zur Herstellung eines siliziumkarbidhaltigen Werkstücks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596318B2 (ja) 1977-06-06 1984-02-10 旭化成工業株式会社 有機りん化合物の製造方法
JP2002029846A (ja) * 2000-07-19 2002-01-29 Kawasaki Heavy Ind Ltd セラミック繊維強化セラミックス複合材料の製造方法
JP2012178443A (ja) * 2011-02-25 2012-09-13 Hitachi Kokusai Electric Inc 基板処理装置
JP5906318B2 (ja) * 2012-08-17 2016-04-20 株式会社Ihi 耐熱複合材料の製造方法及び製造装置
JP2018106068A (ja) 2016-12-27 2018-07-05 シンジーテック株式会社 定着部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2365273C3 (de) * 1973-12-31 1980-09-25 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Hydrochlorierung von elementaren Silicium
FR2714076B1 (fr) * 1993-12-16 1996-03-15 Europ Propulsion Procédé de densification de substrats poreux par infiltration chimique en phase vapeur de carbure de silicium.
JP3722188B2 (ja) * 1999-01-28 2005-11-30 石川島播磨重工業株式会社 セラミックス基複合部材及びその製造方法
GB0112893D0 (en) * 2001-05-25 2001-07-18 Dunlop Aerospace Ltd Refractory-carbon composite brake friction elements
WO2012177099A2 (en) * 2011-06-23 2012-12-27 Lg Innotek Co., Ltd. Apparatus and method for deposition
WO2013089463A1 (en) * 2011-12-16 2013-06-20 Lg Innotek Co., Ltd. Method for deposition of silicon carbide and silicon carbide epitaxial wafer
JP6019938B2 (ja) * 2012-08-30 2016-11-02 富士電機株式会社 炭化珪素半導体装置の製造方法
CN203200179U (zh) * 2013-04-07 2013-09-18 山东国晶新材料有限公司 一种直接保护碳纤维的抗硅蒸汽侵蚀内涂层
JP6408221B2 (ja) * 2014-01-24 2018-10-17 イビデン株式会社 原子炉用部材
EP3231782B1 (en) * 2014-12-12 2021-01-13 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material and methods of making it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596318B2 (ja) 1977-06-06 1984-02-10 旭化成工業株式会社 有機りん化合物の製造方法
JP2002029846A (ja) * 2000-07-19 2002-01-29 Kawasaki Heavy Ind Ltd セラミック繊維強化セラミックス複合材料の製造方法
JP2012178443A (ja) * 2011-02-25 2012-09-13 Hitachi Kokusai Electric Inc 基板処理装置
JP5906318B2 (ja) * 2012-08-17 2016-04-20 株式会社Ihi 耐熱複合材料の製造方法及び製造装置
JP2018106068A (ja) 2016-12-27 2018-07-05 シンジーテック株式会社 定着部材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K SUZUKI , K NAKANO , T W CHOU : "Fabrication and Characterization of 3D Carbon-fiber/SiC Composites by Slurry-Pulse CVI Joint Process", KEY ENGINEERING MATERIALS, vol. 164, no. 16, 1 January 1999 (1999-01-01), pages 1 - 9, XP055759437 *
MASANAO NAKAGAWA: "The Preparation of High Purity Silicon by the Reduction of the Silicon Tetrachloride with Hydrogen", THE JOURNAL OF THE SOCIETY OF CHEMICAL INDUSTRY , JAPAN, vol. 62, no. 2, 5 February 1959 (1959-02-05), pages 177 - 181, XP055759442, ISSN: 0023-2734, DOI: 10.1246/nikkashi1898.62.2_177 *

Also Published As

Publication number Publication date
EP3816139A4 (en) 2022-03-02
US20210078910A1 (en) 2021-03-18
EP3816139A1 (en) 2021-05-05
JP7052570B2 (ja) 2022-04-12
US11718569B2 (en) 2023-08-08
JP2019210172A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3109342B1 (en) Method for producing heat-resistant composite material
CA2312790C (en) Growth of very uniform silicon carbide epitaxial layers
JP5101605B2 (ja) 相粉末及びその相粉末の製造方法
JP6170160B2 (ja) Cmc製部品の製造方法
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
EP1867619A2 (en) Coating a ceramic based felt
WO2019230958A1 (ja) 複合材料の製造方法
US11198934B2 (en) Method of chemical vapor infiltration or deposition
US11897773B2 (en) Carbide-coated carbon material
Kim et al. Thermal shock resistance of TaC/SiC coatings on carbon/carbon composites by the CVD process
EP2933353A1 (en) Use of silicon and carbon precursors for producing fiber-reinforced composites
Zhu et al. Thermodynamic analysis on the codeposition of ZrC–SiC by chemical vapor deposition using the ZrCl4–C3H6–MTS–H2–Ar system
US4180428A (en) Method for making hot-pressed fiber-reinforced carbide-graphite composite
WO2019235624A1 (ja) セラミック基複合材料
JP2018511708A (ja) CVD−SiC材の製造方法
CN115124348B (zh) 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法
JPH04254486A (ja) 炭素繊維強化複合材料の耐酸化性被覆層形成方法
Kato Vapour phase synthesis of ultrafine non-oxide powders and their sintering behaviour
CN111217622A (zh) 石墨基材的碳化硅涂布方法
Son et al. Study of the optimum conditions of whisker growth by the novel ICVI process
Revankar et al. Synthesis of multifilament silicon carbide fibers by chemical vapor deposition
JPH04321578A (ja) 複合被覆層を有するセラミックス焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811428

Country of ref document: EP

Effective date: 20210111