CN115124348B - 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法 - Google Patents

一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法 Download PDF

Info

Publication number
CN115124348B
CN115124348B CN202210616198.0A CN202210616198A CN115124348B CN 115124348 B CN115124348 B CN 115124348B CN 202210616198 A CN202210616198 A CN 202210616198A CN 115124348 B CN115124348 B CN 115124348B
Authority
CN
China
Prior art keywords
ablation
powder
solid solution
coating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210616198.0A
Other languages
English (en)
Other versions
CN115124348A (zh
Inventor
张雨雷
张建
陈睿聪
朱肖飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210616198.0A priority Critical patent/CN115124348B/zh
Publication of CN115124348A publication Critical patent/CN115124348A/zh
Application granted granted Critical
Publication of CN115124348B publication Critical patent/CN115124348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种单相(HfxZr1‑x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法,属于超高温抗烧蚀功能涂层技术领域。在实际应用角度上,本发明扩宽了氮化物超高温陶瓷在抗烧蚀防护领域的应用。本发明通过化学气相沉积方法在HfCl4和ZrCl4分别为Hf和Zr源,N2和H2分别为N源和反应气体下在C/C复合材料表面制备了单相(HfxZr1‑x)N固溶体超高温抗烧蚀陶瓷涂层。使用本发明所制备的的涂层能够解决现有的抗烧蚀陶瓷涂层烧蚀时间短、易脱落和不易在异形复杂构件表面均为分布等问题,有效提高了传统陶瓷涂层在超高温烧蚀环境下的服役寿命。

Description

一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备 方法
技术领域
本发明属于抗烧蚀防护涂层制备领域,涉及一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法。
背景技术
在碳基复合材料的热防护领域,涂层技术的应用被认为是一种最有效的方法。超高温陶瓷(UHTC),指的是熔点大于3000℃的过渡金属碳化物、硼化物和氮化物等,这些材料有着高熔点、高硬度、高强度和优异的抗烧蚀性能,成为碳基复合材料在极端环境下热防护涂层的最佳候选材料之一。其中,氮化铪(HfN)和氮化锆(ZrN)陶瓷的有一个趣现象是它们的熔点也大气压有关。而火箭发动机推进系统有着很高的工作压力(10-30MPa),因此这些氮化物可以制成热结构部件或保护涂层以满足恶劣环境下的应用需求。但是,HfN和ZrN在高温烧蚀期间会产生多孔结构的氧化物,并且这些氧化物随着温度发生相变使得涂层内部产生较大的热应力,引起涂层快速失效。截止目前,鲜有对于氮化物超高温陶瓷的作为抗烧蚀涂层的报道。构建氮化物固溶体结构成为了解决这个问题的潜在方法。这种固溶体结构不仅增加了材料的强度,并且在高温烧蚀期间产生的氧化物能够形成稳定且连续的具有致密结构且氧扩散系数低的固溶体氧化物,使其能够发挥独特的结构优势。
文献1“Microstructure and ablation behaviour of a strong,dense,andthick interfacial ZrxHf1-xC/SiC multiphase bilayer coating prepared by a newsimple one-step method”报道了ZrxHf1-xC固溶体结构的抗烧蚀性能要比单一的HfC和ZrC更好,进一步证明了固溶体结构材料在抗烧蚀领域的应用有着巨大的潜力。
由于HfN和ZrN这两种化合物的强共价键和低自扩散系数,造成了在制备上的困难。另外,将这种固溶体结构涂层制备在碳基复合材料的表面也成为了一个严峻的挑战。
CN106699233B公开了采用化学气相共沉积的方法制备了ZrB2-TaB2复合涂层,尽管该方法采制备了含有ZrB2-TaB2固溶体的共沉积复合涂层(Zr(Ta)B4),但是所制备的固溶体涂层的在元素分布并不均匀。但是,CVD方法开辟了固溶体超高温陶瓷制备的新思路。
截止目前,国内外还没有(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层的相关报道。本发明所使用的CVD方法,与传统的CVD制备方式有一定的区别,主要体现在设备构造和前驱体类型。同时,其可以优先调控(HfxZr1-x)N固溶体超高温抗烧蚀涂层中金属原子比(不同的x值),以达到具有不同特殊性能的结构涂层。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法,针对现有涂层体系单一性及存在抗烧蚀性能差的问题,该涂层具有优异的抗烧蚀性能。
本发明的设计思想是:
本发明是利用固溶体结构的独特优势以及超高温陶瓷的高熔点和耐烧蚀性能,通过简单易操作的方法获取了一种单相的氮化物固溶体结构陶瓷涂层。并且基于金属原子的配比对涂层性能的影响,设计了不同原子配比的固溶体结构涂层,使得涂层结构与性能相联系,并通过调制不同原子比获取不同优异性能的涂层。
技术方案
一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层,其特征在于所述(HfxZr1-x)N中x的值根据HfCl4和ZrCl4两种粉料的比例进行调控确定,其中HfCl4和ZrCl4粉料的摩尔比例分别是HfCl4:ZrCl4=1:1;1:3;3:1。
一种制备所述单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层的方法,其特征在于步骤如下:
步骤1:将HfCl4和ZrCl4粉料按照不同的摩尔比例进行混合,包括三种比例1:1;1:3;3:1,置于球磨机中混合,然后将混合的粉料装入沉积炉所带的送粉器内;
步骤2:将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为200-600ml/min;
步骤3:待温度升至1200-1400℃,通入H2,H2流量为200-1000ml/min,并打开送粉器升温开关;
步骤4:调节送粉器转速为3-9rad/min,并调节沉积炉内压力3-15KPa,在设定的温度下沉积1-10h;
步骤5:待沉积结束后关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有(HfxZr1-x)N单相固溶体结构涂层的碳基复合材料。
所述HfCl4和ZrCl4的混合粉料需放置在星式球磨机上,将粉料混合在氧化锆球磨罐中。
有益效果
本发明提出的一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法,属于超高温抗烧蚀功能涂层技术领域。在实际应用角度上,本发明扩宽了氮化物超高温陶瓷在抗烧蚀防护领域的应用。本发明通过化学气相沉积方法在HfCl4和ZrCl4分别为Hf和Zr源,N2和H2分别为N源和反应气体下在C/C复合材料表面制备了单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层。使用本发明所制备的的涂层能够解决现有的抗烧蚀陶瓷涂层烧蚀时间短、易脱落和不易在异形复杂构件表面均为分布等问题,有效提高了传统陶瓷涂层在超高温烧蚀环境下的服役寿命。
本发明的有益效果是:
1、所制备单相(HfxZr1-x)N固溶体超高温抗烧蚀涂层的残余热应力小,并充分发挥出其独特结构的抗烧蚀潜力,实现在极端环境下对碳基复合材料的保护作用。
2、本发明超高温陶瓷涂层的制备方法工艺简单易操作,制备温度低,适合于在多种被防护材料基体中的应用。
3、所制备的固溶体(HfxZr1-x)N固溶体超高温抗烧蚀涂层的性能可以通过调制金属原子直接的配比。探索原子配比对涂层抗烧蚀性能、热物理性能的影响规律,可根据不同的应用环境制备具有不同原子比(x=0.1、0.2、0.3、0.4、0.5等)的(HfxZr1-x)N固溶体涂层。
4、本发明所制备的单相(HfxZr1-x)N固溶体超高温抗烧蚀涂层有着优异的抗烧蚀性能,在长时间的氧乙炔火焰烧蚀下有着较低的烧蚀率,能够保护基体不被氧化侵蚀。
5、由于HfCl4和ZrCl4两种粉料的挥发温度较为接近,在制备过程中会与N2发生固溶反应:2xHfCl4+2(1-x)HfCl4+N2(g)+4H2(g)=2HfxZr1-xN+8HCl(g),使得所制备的涂层具有均匀的结构。
附图说明
图1为实施例1(HfxZr1-x)N固溶体超高温抗烧蚀涂层的SEM照片;
图2为实施例1所制备(HfxZr1-x)N固溶体超高温抗烧蚀涂层的XRD图谱;
图3为实施例1所制备(HfxZr1-x)N固溶体超高温抗烧蚀涂层的纳米压痕结果及形貌;
图4为实施例1在热通量为2.4MW/m2下氧乙炔火焰烧蚀后涂层的表面形貌;
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明的目的是要提供一种新型氮化物超高温陶瓷固溶体结构的涂层材料的制备方法,可提高涂层的抗烧蚀性能。从而达到对涂层材料制备的新突破,实现在超高温极端环境中对复合材料的保护作用。
实施例1:
S1、将HfCl4和ZrCl4粉料按照摩尔比为1:1的比例配置,置于球磨机中混合,然后将混合的粉料装入沉积炉所带的送粉器内;
S2、将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为300ml/min;
S3、待温度升至1300℃,通入H2,打开送粉器升温开关;
S4、调节送粉器转速为6rad/min,并调节沉积炉内压力10KPa,沉积5h;
S5、待沉积结束关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有(HfxZr1-x)N固溶体结构的涂层的碳基复合材料(ⅰ)。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)表面进行进行SEM和能谱测试,测试结果如图1所示。由图1可知涂层表面粗糙、致密,未发现明显缺陷,并且由EDS结果表明涂层表面富含Zr、Hf和N元素,且分布均匀。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)进行XRD测试,测试结果如图2所示。由图2可知,窄而强的衍射峰表明涂层的晶粒尺寸较大,结晶度较高。过将衍射峰角与标准HfN和ZrN卡(No.33-0592和No.02-0956),衍射峰存在于它们之间,呈现明显的面心立方结构,表明形成了单相固溶体。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)进行纳米压痕测试,测试结果如图3所示。由图3可知,涂层呈现的典型纳米压痕载荷-位移曲线,显示了弹性和塑性响应的混合,(HfxZr1-x)N固溶体结构的涂层硬度34GPa,弹性模量为320GPa。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)进行抗烧蚀测试(烧蚀时间为180s),测试结果如图4a所示。由图4a可知,涂层呈现的典型烧蚀形貌特征,质量和线烧蚀率分别是0.264mg/s和0.315μm/s。
实施例2:
S1、将HfCl4和ZrCl4粉料按照摩尔比为1:3的比例配置,置于球磨机中混合,然后将混合的粉料装入沉积炉所带的送粉器内;
S2、将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为400ml/min;
S3、待温度升至1500℃,通入H2,打开送粉器升温开关;
S4、调节送粉器转速为9rad/min,并调节沉积炉内压力3KPa,沉积8h;
S5、待沉积结束关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有(HfxZr1-x)N固溶体结构的涂层的碳基复合材料。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)进行抗烧蚀测试(烧蚀时间为180s),测试结果如图4a所示。由图4a可知,涂层呈现的典型烧蚀形貌特征,质量和线烧蚀率分别是0.61mg/s和0.45μm/s。
实施例3:
S1、将HfCl4和ZrCl4粉料按照摩尔比为3:1的比例配置,置于球磨机中混合,然后将混合的粉料装入沉积炉所带的送粉器内;
S2、将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为500ml/min;
S3、待温度升至1100℃,通入H2,打开送粉器升温开关;
S4、调节送粉器转速为4rad/min,并调节沉积炉内压力4KPa,沉积4h;
S5、待沉积结束关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有(HfxZr1-x)N固溶体结构的涂层的碳基复合材料(ⅰ)。
对单相(HfxZr1-x)N固溶体结构的涂层(ⅰ)进行抗烧蚀测试(烧蚀时间为180s),测试结果如图4a所示。由图4a可知,涂层呈现的典型烧蚀形貌特征,质量和线烧蚀率分别是0.48mg/s和0.26μm/s。
对比实施例1:
S1、将一定质量的HfCl4粉料装入沉积炉所带的送粉器内;
S2、将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为500ml/min;
S3、待温度升至1100℃,通入H2,打开送粉器升温开关;
S4、调节送粉器转速为4rad/min,并调节沉积炉内压力4KPa,沉积4h;
S5、待沉积结束关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有HfN涂层的碳基复合材料。
对单相HfN涂层进行抗烧蚀测试(烧蚀时间为180s),质量和线烧蚀率分别是1.2mg/s和0.98μm/s。
对比实施例2:
S1、将一定质量的ZrCl4粉料装入沉积炉所带的送粉器内;
S2、将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2;,N2流量为500ml/min;
S3、待温度升至1100℃,通入H2,打开送粉器升温开关;
S4、调节送粉器转速为4rad/min,并调节沉积炉内压力4KPa,沉积4h;
S5、待沉积结束关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有ZrN涂层的碳基复合材料。
对单相ZrN涂层进行抗烧蚀测试(烧蚀时间为180s),质量和线烧蚀率分别是1.5mg/s和1.3μm/s。
利用本发明的制备方法制备的新型氮化物超高温陶瓷固溶体结构的涂层可有效缓解热应力的产生和抑制涂层开裂的发生,充分的发挥出其独特的抗烧蚀的潜力,实现在极端环境下对复合材料的应用。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何的简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (2)

1.一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层,其特征在于所述(HfxZr1-x)N中x的值根据HfCl4和ZrCl4两种粉料的比例进行调控确定,其中HfCl4和ZrCl4粉料的摩尔比例分别是HfCl4:ZrCl4=1:1; 3:1;
所述单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层的制备方法步骤如下:
步骤1:将HfCl4和ZrCl4粉料按照不同的摩尔比例进行混合,包括两种比例1:1; 3:1,置于球磨机中混合,然后将混合的粉料装入沉积炉所带的送粉器内;
步骤2:将碳材料基体放入化学气相沉积炉内,设置升温程序,并通入N2,N2流量为200-600 ml/min;
步骤3:待温度升至1200-1400 ℃,通入H2,H2流量为200-1000 ml/min,并打开送粉器升温开关;
步骤4:调节送粉器转速为3-9 rad/min,并调节沉积炉内压力3-15kPa,在设定的温度下沉积1-10 h;
步骤5:待沉积结束后关闭送粉器和H2,保持N2流量不变,设置降温程序,直至降至室温,获得带有(HfxZr1-x)N单相固溶体结构涂层的碳基复合材料。
2.根据权利要求1所述单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层,其特征在于:所述HfCl4和ZrCl4的混合粉料需放置在星式球磨机上,将粉料混合在氧化锆球磨罐中。
CN202210616198.0A 2022-05-31 2022-05-31 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法 Active CN115124348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210616198.0A CN115124348B (zh) 2022-05-31 2022-05-31 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210616198.0A CN115124348B (zh) 2022-05-31 2022-05-31 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法

Publications (2)

Publication Number Publication Date
CN115124348A CN115124348A (zh) 2022-09-30
CN115124348B true CN115124348B (zh) 2023-07-11

Family

ID=83377197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210616198.0A Active CN115124348B (zh) 2022-05-31 2022-05-31 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法

Country Status (1)

Country Link
CN (1) CN115124348B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815971A (zh) * 2012-08-22 2012-12-12 中南大学 一种Hf(Ta)C超高温复相涂层及其制备方法
WO2021103560A1 (zh) * 2019-11-29 2021-06-03 中南大学 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT401391B (de) * 1993-09-09 1996-08-26 Plansee Tizit Gmbh Schneidwerkstoff
EP0845053B1 (de) * 1995-08-19 2001-10-10 Widia GmbH Verbundkörper und verfahren zu dessen herstellung
TWI559381B (zh) * 2013-02-19 2016-11-21 應用材料股份有限公司 金屬合金薄膜的原子層沉積
CN107021773B (zh) * 2017-05-22 2018-03-30 中南大学 一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法
JP7256978B2 (ja) * 2017-09-29 2023-04-13 三菱マテリアル株式会社 硬質被覆層がすぐれた耐溶着性と耐異常損傷性を発揮する表面被覆切削工具
JP7043869B2 (ja) * 2018-02-13 2022-03-30 三菱マテリアル株式会社 硬質被覆層がすぐれた耐溶着性と耐異常損傷性を発揮する表面被覆切削工具
CN110041091B (zh) * 2019-04-02 2022-08-09 上海交通大学 一种高发射率耐烧蚀隔热微球填料的制备方法
CN111646799B (zh) * 2020-05-10 2022-05-27 华北理工大学 一种燃烧法制备Tin+1ACn材料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815971A (zh) * 2012-08-22 2012-12-12 中南大学 一种Hf(Ta)C超高温复相涂层及其制备方法
WO2021103560A1 (zh) * 2019-11-29 2021-06-03 中南大学 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超高温陶瓷基复合材料的改性和烧蚀行为;段刘阳;罗磊;王一光;;中国材料进展(第10期);第762-769页 *

Also Published As

Publication number Publication date
CN115124348A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Wang et al. Preparation and ablation properties of Hf (Ta) C co-deposition coating for carbon/carbon composites
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
CN106699233B (zh) 含化学气相共沉积硼化锆/铪-硼化钽的复合涂层及其制备方法
CN109678511A (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN114044679A (zh) 一种高强韧超高温陶瓷基复合材料及其制备方法
US5145739A (en) Abrasion resistant coated articles
US5300322A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
CN113024281B (zh) 一种碳化硅/石墨烯仿生层叠涂层及制备方法
CN108947588A (zh) 一种C/SiC复合材料和用于该材料的抗氧化涂层及其制备方法
Ren et al. Influences of deposition temperature, gas flow rate and ZrC content on the microstructure and anti-ablation performance of CVD-HfC-ZrC coating
Zhang et al. Preparation and ablation behavior of HfC-SiC co-deposited coatings with different proportions
US4598024A (en) Dispersion toughened ceramic composites and method for making same
CN112899650B (zh) 一种稳定性能优异的(Ta,Hf,Zr)C复合涂层的制备方法
Qiang et al. Oxidation resistance of SiC nanowires reinforced SiC coating prepared by a CVD process on SiC‐coated C/C composites
CN115124348B (zh) 一种单相(HfxZr1-x)N固溶体超高温抗烧蚀陶瓷涂层及制备方法
Archer Chemical vapour deposition
CN112299882B (zh) 一种碳材料表面HfC基三元碳化物梯度涂层的原位制备方法
Liu et al. Research progress on tantalum carbide coatings oncarbon materials
Kim et al. Thermal shock resistance of TaC/SiC coatings on carbon/carbon composites by the CVD process
Li et al. Ablation resistance and mechanism of niobium carbide coatings fabricated by plasma spraying
EP2933353A1 (en) Use of silicon and carbon precursors for producing fiber-reinforced composites
US4180428A (en) Method for making hot-pressed fiber-reinforced carbide-graphite composite
US20040258839A1 (en) Oxidation protective multiple coating method for carbon/carbon composites
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPH068508B2 (ja) ボロンカ−バイドのコ−ティングの製造方法及び得られたコ−ティング

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant