WO2019230658A1 - 振動発電装置および振動発電素子 - Google Patents

振動発電装置および振動発電素子 Download PDF

Info

Publication number
WO2019230658A1
WO2019230658A1 PCT/JP2019/020928 JP2019020928W WO2019230658A1 WO 2019230658 A1 WO2019230658 A1 WO 2019230658A1 JP 2019020928 W JP2019020928 W JP 2019020928W WO 2019230658 A1 WO2019230658 A1 WO 2019230658A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
vibration power
comb
tooth portion
movable
Prior art date
Application number
PCT/JP2019/020928
Other languages
English (en)
French (fr)
Inventor
年吉 洋
久幸 芦澤
將裕 森田
Original Assignee
国立大学法人 東京大学
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 株式会社鷺宮製作所 filed Critical 国立大学法人 東京大学
Priority to US17/058,328 priority Critical patent/US11451167B2/en
Priority to CN201980028473.3A priority patent/CN112042104A/zh
Publication of WO2019230658A1 publication Critical patent/WO2019230658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes

Definitions

  • the present invention relates to a vibration power generation device and a vibration power generation element.
  • the vibration power generation element described in Patent Literature 1 includes a fixed electrode and a movable electrode having a comb-teeth structure, and generates power by changing the facing area between the fixed electrode and the movable electrode due to vibration of the movable electrode.
  • the vibration power generator includes a first vibration power generation component configured by a first fixed comb tooth portion and a first movable comb tooth portion meshing with each other, and a second fixed comb meshing with each other.
  • a second vibration power generation component comprising a tooth portion and a second movable comb tooth, a first output electrode connected to the first vibration power generation component, and a second output connected to the second vibration power generation component.
  • the output of the first vibration power generation component is different from the output of the second vibration power generation component.
  • the vibration power generation element is a vibration power generation element used in the vibration power generation apparatus according to the first aspect, and is constituted by the first fixed comb tooth portion and the first movable comb tooth portion.
  • the first vibration power generating component, and the second vibration power generating component composed of the second fixed comb tooth portion and the second movable comb tooth portion, and the first fixed comb tooth portion and
  • Each of the comb teeth included in the second fixed comb tooth portion is electrically insulated, the first output electrode is connected to the first fixed comb tooth portion, and the second fixed comb tooth portion is connected to the second fixed comb tooth portion.
  • the vibration power generation element is a vibration power generation element used in the vibration power generation apparatus according to the first aspect, and includes the first fixed comb tooth portion and the first movable comb tooth portion.
  • the first vibration power generating component, and the second vibration power generating component composed of the second fixed comb tooth portion and the second movable comb tooth portion, and the first fixed comb tooth portion,
  • the second fixed comb tooth portion is electrically insulated, the first output electrode is connected to the first fixed comb tooth portion, and the second output electrode is connected to the second fixed comb tooth portion.
  • the first movable comb teeth and the second movable comb teeth are electrically insulated, the first output electrode is connected to the first movable comb teeth, and the second movable comb
  • the second output electrode is connected to the tooth portion.
  • At least one of the first fixed comb tooth portion and the second fixed comb tooth portion electrically insulated from each other is electrically insulated.
  • the first fixed comb tooth portion and the first movable comb tooth portion are the first ones.
  • a vibration power generation component, and the second vibration power generation component including the second fixed comb tooth portion and the second movable comb tooth portion, the first fixed comb tooth portion and the first movable comb. It is preferable that the total number of comb teeth included in the tooth portion is different from the total number of comb teeth included in the second fixed comb tooth portion and the second movable comb tooth portion.
  • the first fixed comb tooth portion and the first movable comb tooth portion are the first ones.
  • a vibration power generation component, and the second vibration power generation component composed of the second fixed comb tooth portion and the second movable comb tooth portion.
  • the first fixed comb tooth portion and the first movable comb tooth portion are the first ones.
  • a vibration power generation component, and the second vibration power generation component including the second fixed comb tooth portion and the second movable comb tooth portion, the first fixed comb tooth portion and the first movable comb.
  • the interval between the comb teeth of the tooth portions engaged with each other is different from the interval between the comb teeth engaged with each other of the second fixed comb teeth portion and the second movable comb teeth portion.
  • the first fixed comb tooth portion and the first movable comb tooth portion are the first ones.
  • the comb tooth length of the tooth part is set shorter than the comb tooth lengths of the first fixed comb tooth part and the first movable comb tooth part, and the second fixed comb tooth part and the first
  • the two movable comb teeth are preferably set so as to be in a non-engagement state.
  • the first vibration power generation structural body and the second vibration power generation structural body mesh with each other. It is preferable that an electret is formed on at least one of the above.
  • the vibration power generation element is a vibration power generation element used in the vibration power generation apparatus according to the first aspect, and includes the first fixed comb tooth portion and the first movable comb tooth portion.
  • the first vibration power generation component, and the second vibration power generation component composed of the second fixed comb tooth portion and the second movable comb tooth portion.
  • electrets are formed on at least one of the comb teeth meshing with each other, and the amount of charge per unit area of the electret is determined by the first vibration power generation component and the second vibration power generation component. Is different.
  • the vibration state of the vibration power generation element can be accurately grasped.
  • FIG. 1 is a diagram showing a schematic configuration of a vibration power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing another configuration of the first fixed comb teeth portion.
  • FIG. 3 is a diagram for explaining a comparative example of the present embodiment.
  • FIG. 4 is a diagram for explaining the operation of the vibration power generator according to the present embodiment.
  • FIG. 5 is a block diagram of a power supply device using the vibration power generator.
  • FIG. 6 is a diagram illustrating a first modification of the vibration power generator.
  • FIG. 7 is a diagram illustrating a second modification of the vibration power generator.
  • FIG. 8 is a diagram illustrating a third modification of the vibration power generator.
  • FIG. 9 is a diagram illustrating a fourth modification of the vibration power generator.
  • FIG. 1 is a diagram showing a schematic configuration of a vibration power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing another configuration of the first fixed comb teeth portion.
  • FIG. 10 is a diagram illustrating a fifth modification of the vibration power generator.
  • FIG. 11 is a diagram illustrating a sixth modification of the vibration power generator.
  • FIG. 12 is a diagram showing a configuration in the case where a plurality of movable comb electrodes provided in the movable portion are electrically separated.
  • FIG. 13 is a diagram illustrating a fixed comb group and a movable comb group.
  • FIG. 1 is a diagram showing a schematic configuration of a vibration power generator 1 according to an embodiment of the present invention.
  • FIG. 1 (a) is a plan view
  • FIG. 1 (b) is an A- It is A sectional drawing.
  • the vibration power generator 1 shown in FIG. 1 includes a vibration power generation device 10 provided with two vibration power generation components 11A and 11B, a power output electrode 20A connected to the vibration power generation component 11A, and a vibration power generation component 11B. And a monitoring electrode 20B connected to the.
  • the vibration power generation device 10 is formed by a general MEMS (Microelectromechanical Systems) processing technique using, for example, an SOI (Silicon On Insulator) substrate.
  • the SOI substrate is configured, for example, by stacking a lower Si layer on which a handle layer is formed, an SiO 2 layer on which a BOX layer is formed, and an upper Si layer on which a device layer is formed.
  • the vibration power generation device 10 includes a base 12, a fixed portion 13 on which fixed comb electrodes 13a, 13b, 13c and 13d are formed, and a movable portion 14 on which movable comb electrodes 14a, 14b, 14c, 14d and 14e are formed. And an elastic support portion 15 that elastically supports the movable portion 14.
  • the movable portion 14 is elastically supported with respect to the base 12 by a pair of elastic support portions 15.
  • the number of fixed comb electrodes and movable comb electrodes is not limited to that shown in FIG.
  • the movable portion 14 having the movable comb electrodes 14a and 14e and the fixed comb electrodes 13a to 13d are formed from the upper Si layer 120 of the SOI substrate and are movable.
  • Aluminum layers 131 and 141 which are conductive layers are formed on the upper surface of the portion 14 and the fixed comb electrodes 13a to 13d.
  • the aluminum layers 131 and 141 are not necessarily formed on the entire upper surface of the movable portion 14 and the fixed comb electrodes 13a to 13d.
  • the fixed comb electrodes 13a to 13d are fixed on the base 12 formed of the lower Si layer 100 via the SiO 2 layer 110.
  • At least one of the meshed fixed comb electrodes 13a to 13d and the movable comb electrodes 14a to 14e is formed with an electret near the surface of the opposing surface.
  • an electret for example, a method suggested in Japanese Unexamined Patent Publication No. 2016-149914 is known.
  • the vibration power generation device 10 generates power by causing the movable comb electrodes 14a to 14e to vibrate in the x-axis direction with respect to the fixed comb electrodes 13a to 13d by external vibration.
  • the power output electrode 20A is connected to the fixed comb electrodes 13a, 13b and 13c constituting the vibration power generation structure 11A, and is used as an output terminal of a current generated by the vibration power generation structure 11A.
  • the monitor electrode 20B is connected to the fixed comb electrode 13d, and is used as an output terminal for current generated by the vibration power generation component 11B.
  • the fixed comb electrodes 13a to 13d provided in the vibration power generation device 10 are formed separately from each other, and each is electrically insulated.
  • the comb electrode group including the fixed comb electrodes 13a to 13c constitutes a first fixed comb tooth portion
  • the fixed comb electrode 13d constitutes a second fixed comb tooth portion.
  • the fixed comb electrode constituting the second fixed comb tooth portion is composed of only one fixed comb electrode 13d.
  • the monitor electrode 20B is connected to all of the fixed comb electrodes.
  • the fixed comb electrodes 13a to 13c of the first fixed comb portion are electrically connected to the power output electrode 20A inside or outside the vibration power generation device 10.
  • the inside of the vibration power generation device 10 means that wiring is formed in the vibration power generation device 10 alone.
  • the fixed comb electrodes 13 a to 13 c are not electrically connected in the vibration power generation device 10 alone, and the fixed comb on the circuit board side on which the vibration power generation device 10 is mounted. This means that the tooth electrodes 13a to 13c are electrically connected by wiring on the circuit board.
  • the fixed comb electrode 13d of the second fixed comb portion is connected to the monitor electrode 20B.
  • the fixed comb electrodes 13a to 13d are separated in FIG. 1, the fixed comb electrodes 13a to 13c may be integrated as shown in FIG.
  • the fixed comb-tooth electrodes 13a to 13c constituting the first fixed comb-tooth portion are connected by the connection portion 13e, and the power output electrode 20A is connected to the connection portion 13e.
  • Other configurations are the same as those of the vibration power generator 1 shown in FIG.
  • the number of fixed comb electrodes of the second fixed comb portion connected to the monitor electrode 20B is adjusted according to the magnitude of the output necessary for the monitor signal and the use of the monitor signal. be able to.
  • FIG. 3 is a diagram showing a comparative example of the present embodiment.
  • the vibration power generator 1 of the present embodiment two outputs can be taken out from the power output electrode 20A and the monitor electrode 20B, but the vibration power generator 30 shown in FIG.
  • One vibration power generation component composed of the comb tooth portion 31 and the fixed comb tooth portion 32 is provided, and a single output configuration is used to output a current from the one vibration power generation component.
  • 3 (b) shows the vibration amplitude x of the movable comb tooth portion 31, and
  • FIG. 3 (c) shows the distance between the movable comb tooth portion 31 and the fixed comb tooth portion 32 in the vibration state as shown in FIG. 3 (b).
  • the open circuit voltage V is shown.
  • the charge of the comb electrode moves to move between the movable comb electrode and the fixed comb electrode.
  • Voltage is generated.
  • the waveform of the open circuit voltage V is a waveform having a proportional amplitude that is synchronized with the amplitude x of the vibration of the movable comb tooth portion 31.
  • the power supply circuit 33 is connected to the vibration power generator 30, when the output voltage of the rectifier circuit rises to the rated voltage of the capacitor, a behavior is shown in which a current flows through the resistor while the voltage remains constant.
  • FIG. 4 is a diagram when the power supply circuit 33 is connected to the vibration power generator 1 shown in FIG.
  • the movable comb electrode of the vibration power generation structure 11A having the power output electrode 20A and the movable comb electrode of the vibration power generation structure 11B having the monitor electrode 20B are the same movable part. 14 is provided. Therefore, even when the power supply circuit 33 is connected, the voltage V2 of the monitoring electrode 20B shown in FIG. 4D has a waveform having an amplitude proportional to the amplitude x of the movable portion 14 shown in FIG. Become. On the other hand, the waveform of the voltage V1 of the power output electrode 20A is as shown in FIG.
  • the number of the fixed comb electrodes of the fixed comb portion 32 is four.
  • the number of the fixed comb electrodes of the vibration power generation component 11B of FIG. is there. Therefore, the amplitude of the voltage waveform in FIG. 4D is smaller than the amplitude of the voltage waveform in FIG.
  • the number of fixed comb electrodes of the vibration power generation structure 11B for monitor signals is made smaller than the number of fixed comb electrodes of the vibration power generation structure 11A for power.
  • the monitor signal can be obtained while suppressing a decrease in output power from the power output electrode 20A.
  • FIG. 5 shows an example of an application example of the output signal of the monitoring electrode 20B, and is a block diagram of a power supply device using the vibration power generator 1.
  • FIG. The output of the vibration power generation component 11 ⁇ / b> A for power is input to the voltage conversion circuit 21 of the power supply unit 2.
  • the power supply unit 2 includes an amplitude detection circuit 22 and a charging unit 23 in addition to the voltage conversion circuit 21.
  • the output of the monitoring vibration power generation component 11 ⁇ / b> B is input to the amplitude detection circuit 22, and the amplitude information detected by the amplitude detection circuit 22 is input to the voltage conversion circuit 21.
  • the voltage conversion circuit 21 Based on the amplitude information input from the amplitude detection circuit 22, the voltage conversion circuit 21 performs voltage conversion so that, for example, power from the vibration power generation component 11 ⁇ / b> A is efficiently output, and outputs the voltage to the charging unit 23. For this purpose, it is necessary to accurately grasp the amplitude information of the output of the vibration power generation component 11A. In this embodiment, the amplitude information is accurately grasped by using the output of the vibration power generation component 11B. Can do.
  • FIG. 6 is a diagram for explaining a first modification of the vibration power generator 1.
  • FIG. 6A is a schematic diagram showing the configuration of the movable comb electrode and the fixed comb electrode provided in the vibration power generation device 10.
  • the amplitude of the monitoring signal by the vibration power generation structure 11B is set by setting the number of fixed comb electrodes of the vibration power generation structure 11B to be smaller than the number of fixed comb electrodes of the vibration power generation structure 11A. Is smaller than the amplitude of the output signal from the vibration power generation component 11A.
  • the vibration power generation component 11B are made to have different electrostatic capacities so that the outputs of the vibration power generation components 11A and 11B are different.
  • the lateral width W2 of the fixed comb electrodes 13c and 13d of the vibration power generation structure 11B is set smaller than the lateral width W1 of the fixed comb electrodes 13a and 13b of the vibration power generation structure 11A.
  • the distances d1 and d2 between the fixed comb electrode and the movable comb electrode in the vibration power generation components 11A and 11B are d1 ⁇ d2.
  • the lateral width of the movable comb electrodes 14d and 14e may be set to W2.
  • the vibration power generation structure 11 ⁇ / b> A is described in order to explain that the output is different between the vibration power generation structure 11 ⁇ / b> A and the vibration power generation structure 11 ⁇ / b> B by changing the width of the fixed comb electrode.
  • the vibration power generation component 11B the number of fixed comb electrodes is the same.
  • the number of fixed comb electrodes of the vibration power generation component 11B is set as shown in FIG. It is preferable to use the same number of fixed comb electrodes as in the case.
  • the open circuit voltage V4 of the vibration power generation structure 11B shown in FIG. 6C is the vibration power generation structure shown in FIG. 6B.
  • the amplitude is smaller than the open circuit voltage V3 of the body 11A.
  • the amplitudes of the open-circuit voltages V3 and V4 change in proportion to the amplitude of the movable portion 14 that vibrates.
  • FIG. 6 illustrates an example in which a plurality of fixed comb electrodes are separated into two groups as shown in FIG. 2, but a plurality of fixed comb electrodes are separated as shown in FIG.
  • the output of the vibration power generation structure 11A and the output of the vibration power generation structure 11B can be made different by making the interval between the comb teeth different between the vibration power generation structure 11A and the vibration power generation structure 11B.
  • FIG. 7 is a diagram for explaining a second modification of the vibration power generator 1.
  • FIG. 7 is a schematic diagram illustrating a configuration of a movable comb electrode and a fixed comb electrode provided in the vibration power generation device 10.
  • 7A is a plan view of the vibration power generation device 10
  • FIG. 7B is a cross-sectional view along D1-D1
  • FIG. 7C is a cross-sectional view along D2-D2.
  • the height of the fixed comb electrode is made different between the vibration power generation structure 11A and the vibration power generation structure 11B, so that the opposed areas of the movable electrode and the fixed electrode are different, and the vibration power generation structure 11A, The output of 11B was made different.
  • the height H2 (see FIG. 7C) of the fixed comb electrodes 13c and 13d of the vibration power generation structure 11B is the height H1 (see FIG. 7) of the fixed comb electrodes 13a and 13b of the vibration power generation structure 11A. 7 (b)).
  • the vibration power generation structure 11A and the vibration power generation structure 11B are the same as that of the power generation component 11B.
  • the number of fixed comb electrodes of the vibration power generation component 11B is set as shown in FIG. It is preferable to use the same number of fixed comb electrodes as in the case.
  • the opposing area between the fixed comb electrode and the movable comb electrode in the vibration power generation structure 11B is the vibration power generation. It becomes smaller than the case of the structure 11A. Therefore, the amount of change in the facing area when the movable portion 14 is displaced is smaller in the case of the vibration power generation structure 11B than in the case of the vibration power generation structure 11A.
  • the open circuit voltage of the vibration power generation structure 11B is smaller than the open voltage of the vibration power generation structure 11A. In any open circuit voltage, the amplitude thereof changes in proportion to the amplitude of the oscillating movable portion 14.
  • the height of the fixed comb electrode is varied between the vibration power generation component 11 ⁇ / b> A and the vibration power generation component 11 ⁇ / b> B, but the height may be varied on the movable comb electrode side.
  • FIG. 7C only the fixed comb electrode 13d is set to the height H2 in the vibration power generation structure 11B.
  • the heights of the movable comb electrodes 14d and 14e may be set to H2. good.
  • the output of the vibration power generation structure 11 ⁇ / b> A and the output of the vibration power generation structure 11 ⁇ / b> B can be made different by changing the comb tooth height between the vibration power generation structure 11 ⁇ / b> A and the vibration power generation structure 11 ⁇ / b> B. .
  • FIG. 8 is a diagram for explaining a third modification of the vibration power generator 1.
  • FIG. 8A is a schematic diagram illustrating a configuration of a movable comb electrode and a fixed comb electrode provided in the vibration power generation device 10.
  • FIG. 8B shows the waveform of the open circuit voltage V5 of the vibration power generation structure 11A
  • FIG. 8C shows the waveform of the open circuit voltage V6 of the vibration power generation structure 11B.
  • the length of the fixed comb-teeth electrode not the number of fixed comb-teeth electrodes, is different between the vibration power generation component 11A and the vibration power generation component 11B, so that the meshing start timing of the movable electrode and the fixed electrode is increased.
  • the outputs of the vibration power generation components 11A and 11B are made different.
  • the length L2 of the fixed comb electrodes 13c and 13d of the vibration power generation structure 11B is set shorter than the length L1 of the fixed comb electrodes 13a and 13b of the vibration power generation structure 11A.
  • the vibration power generation structure 11A and the vibration power generation component 11B have the same number of fixed comb electrodes.
  • the number of fixed comb electrodes of the vibration power generation structure 11B is set as shown in FIG. It is preferable to use the same number of fixed comb electrodes as in the case.
  • the vibration power generation component 11A is opened in synchronization with the amplitude of vibration of the movable portion 14.
  • the voltage V5 has a waveform as shown in FIG. 8B
  • the open circuit voltage V6 of the vibration power generation component 11B has a waveform as shown in FIG. 8C.
  • the position in the x direction of the movable portion 14 in FIG. 8A shows a state where the electric force by the electret and the elastic force of the elastic support portion 15 are balanced.
  • the fixed comb electrodes 13c and 13d and the movable comb electrodes 14c to 14e of the vibration power generation structure 11B are not meshed with each other.
  • x0 is the amplitude of the movable portion 14.
  • the displacement of the movable part 14 that moves upward in the figure reaches the amplitude x0 at time t2.
  • the open-circuit voltages V5 and V6 of the vibration power generation components 11A and 11B have positive peaks.
  • the movable portion 14 moves in the negative x-axis direction, so that the opposing area between the fixed comb electrode and the movable comb electrode decreases in both the vibration power generation component 11A and the vibration power generation component 11B.
  • the open circuit voltages V5 and V6 drop.
  • the open circuit voltage V6 is V6 ⁇ 0 only near the maximum peak of the open circuit voltage V5. That is, the monitoring signal is output only in the vicinity of the maximum output peak where the fixed comb electrodes 13c and 13d and the movable comb electrodes 14c to 14e of the vibration power generation component 11B are engaged.
  • the comb tooth length on the fixed comb electrode side is L1 in the vibration power generation structure 11A and L2 in the vibration power generation structure 11B, but the comb tooth length on the movable comb electrode side is L1, You may make it set to L2.
  • the movable comb electrodes 14a to 14c are set to L1
  • the movable comb electrodes 14d and 14e are set to L2.
  • the comb tooth length of the fixed comb electrode of the vibration power generation structure 11B is set to be shorter than the comb tooth length of the fixed comb electrode of the vibration power generation structure 11A.
  • FIG. 9 is a diagram for explaining a fourth modification of the vibration power generator 1.
  • the movable comb electrodes of the vibration power generation components 11A and 11B are all arranged on the right side of the movable portion 14, but in Modification 4, the movable comb electrodes of the vibration power generation component 11B are arranged. 14 d and 14 e are arranged on the left side of the movable portion 14 in the figure.
  • the vibration power generation component 11A includes movable comb electrodes 14a to 14d disposed on the right side of the movable portion 14, and fixed comb electrodes 13a to 13c meshing with the movable comb electrodes 14a to 14d.
  • the vibration power generation component 11B includes movable comb electrodes 14e and 14f disposed on the left side of the movable portion 14, and fixed comb electrodes 13d that mesh with the movable comb electrodes 14e and 14f.
  • the facing areas of the movable comb electrodes 14a to 14d and the fixed comb electrodes 13a to 13c in the vibration power generation structure 11A increase, and the movable comb in the vibration power generation structure 11B.
  • the facing area between the tooth electrodes 14e and 14f and the fixed comb electrode 13d is reduced.
  • the facing area of the movable comb electrodes 14a to 14d and the fixed comb electrodes 13a to 13c in the vibration power generation structure 11A decreases, and the vibration power generation structure 11B.
  • the waveform of the open circuit voltage of the vibration power generation structure 11B is shifted by 180 degrees with respect to the waveform of the open circuit voltage of the vibration power generation structure 11A, but the waveform of each open voltage of the vibration power generation structure 11A, 11B is The waveform is synchronized with the amplitude of the movable portion 14. That is, as in the case of the above-described embodiment, a signal output from the monitoring electrode 20B of the vibration power generation structure 11B can be used as a monitoring signal for the power output from the vibration power generation structure 11A. .
  • FIG. 9 illustrates an example in which a plurality of fixed comb electrodes are separated into two groups.
  • the plurality of fixed comb electrodes are separated from each other as shown in FIG. You may make it arrange
  • FIG. 10 is a diagram for explaining a fifth modification of the vibration power generator 1.
  • the vibration power generation device 10 has a configuration in which the movable comb electrode is displaced in the same plane with respect to the fixed comb electrode. However, as shown in FIG. May be configured to vibrate out of plane.
  • the first fixed comb teeth 41A and the second fixed comb teeth formed by the upper Si layer 120 via the SiO 2 layer 110 are provided on the base 12 formed by the lower Si layer 100 of the SOI substrate.
  • a portion 41B and a cantilever 42 are formed on the base 12 formed by the lower Si layer 100 of the SOI substrate.
  • the cantilever 42 is formed with a first movable comb tooth portion 40A that meshes with the first fixed comb tooth portion 41A and a second movable comb tooth portion 40B that meshes with the second fixed comb tooth portion 41B.
  • the power output electrode 20A is connected to the first fixed comb portion 41A
  • the monitor electrode 20B is connected to the second fixed comb portion 41B.
  • the first and second movable comb teeth 40A and 40B, the first and second fixed comb teeth 41A and 41B, and the conductive layer formed on the upper surface of the cantilever 42 (corresponding to the aluminum layers 131 and 141 in FIG. 1) The illustration is omitted for.
  • the vibration power generation component 11A is composed of a first movable comb tooth portion 40A and a first fixed comb tooth portion 41A
  • the vibration power generation component body 11B is composed of a second movable comb tooth portion 40B and a second fixed comb tooth portion 41B. Is done.
  • the electret is provided on the electrode surface as in the case of the first embodiment.
  • the cantilever 42 bends in the z-direction, and the first and second movable comb-tooth portions 40A, 40B are z-direction relative to the first and second fixed comb-tooth portions 41A, 41B. Vibrate.
  • the output of the vibration power generation structure 11B is smaller than the output of the vibration power generation structure 11A.
  • the output amplitude is made different by making the total number of the fixed comb electrode and the movable comb electrode different between the vibration power generation structure 11 ⁇ / b> A and the vibration power generation structure 11 ⁇ / b> B. Because of the external vibration, the output amplitude can be varied even if the lengths of the fixed comb electrode and the movable comb electrode are varied. Of course, as in the case of Modification 1 (see FIG. 6), even if the interval between the meshed fixed comb electrode and the movable comb electrode is made different between the vibration power generation component 11A and the vibration power generation component 11B, the output The amplitude of can be varied.
  • the magnitudes of the outputs of the vibration power generation components 11A and 11B are the electrode spacing between the fixed comb electrode and the movable comb electrode, the opposing area between the fixed comb electrode and the movable comb electrode, It depends on the charge amount of the electret formed on the fixed comb electrode or the movable comb electrode.
  • the opposing areas of the vibration power generation components 11A and 11B are made different, and the widths of the fixed comb electrodes are made different.
  • the comb-teeth electrode intervals in the vibration power generation components 11A and 11B were varied.
  • the output of the vibration power generation structure 11A and the output of the vibration power generation structure 11B are made different. You can also.
  • a plurality of fixed comb electrodes are separated into two insulated fixed comb teeth, but a plurality of movable comb electrodes provided in one movable portion 14 are insulated. It may be separated into two movable comb-tooth portions, or a plurality of movable comb-tooth electrodes provided on one movable portion 14 may be formed so as to be electrically insulated from each other.
  • the movable comb electrodes 14a to 14e formed on the movable portion 14 are the movable comb teeth of the vibration power generation component 11A, and the movable comb electrodes 14d and 14e are vibrated. It was set as the movable comb-tooth part of the electric power generation structure 11B.
  • the upper Si layer 120 forming the movable comb electrodes 14a to 14c and the upper Si layer 120 forming the movable comb electrodes 14d and 14e are separated, and the movable comb electrode 14a is separated.
  • 14c and the movable comb electrodes 14d and 14e are electrically insulated.
  • a power output electrode 20A is connected to the movable comb electrodes 14a to 14c, and a monitor electrode 20B is connected to the movable comb electrodes 14d and 14e.
  • FIG. 12 shows a case where a plurality of movable comb electrodes 14a to 14e provided in one movable portion 14 are formed so as to be electrically insulated from each other.
  • the movable comb electrodes 14a to 14e are formed on the lower Si layer 100 via the SiO 2 layer 110, and the upper Si layers 120 of the movable comb electrodes 14a to 14e are separated from each other and electrically insulated. It has a configuration.
  • a power output electrode 20A is connected to the movable comb electrodes 14a to 14c, and a monitor electrode 20B is connected to the movable comb electrodes 14d and 14e.
  • the power output electrode 20 ⁇ / b> A and the monitor electrode 20 ⁇ / b> B may be connected inside the vibration power generation device 10 or may be connected outside the vibration power generation device 10.
  • the number of movable comb electrodes to which the monitor electrode 20B is connected depends on the magnitude of the output required as the monitor signal and the use of the monitor signal. Can be adjusted.
  • the vibration power generation apparatus 1 and the vibration power generation device 10 described in the above-described embodiments and modifications are collectively described as follows.
  • the vibration power generator 1 includes the fixed comb electrodes 13a to 13c and the movable comb electrodes 14a to 14d constituting the vibration power generation structure 11A, and the vibration power generation structure 11B.
  • a vibration power generation device 10 having a fixed comb electrode 13d and movable comb electrodes 14d and 14e is provided.
  • the difference in output means that the magnitude of the amplitude of the monitoring signal by the vibration power generation component 11B is different from the magnitude of the amplitude of the output signal by the vibration power generation component 11A.
  • the vibration state of the vibration power generation device 10 can be accurately grasped using the monitor signal. it can.
  • the generated power can be efficiently used by using the monitor signal.
  • the monitor signal is used for increasing the efficiency of the generated power has been described, it can also be used as, for example, a trigger signal for detecting a failure or an input signal to a protection circuit during abnormal operation.
  • the monitor electrode 20B is connected in accordance with the magnitude of the output required for the monitor signal and the use of the monitor signal. The number of comb electrodes can be easily adjusted.
  • each of the fixed comb electrodes 13a to 13d or each of the movable comb electrodes 14a to 14e is electrically insulated.
  • the fixed comb electrodes 13a to 13c of the vibration power generation structure 11A are electrically integrated
  • the movable comb electrodes 14a to 14c of the vibration power generation structure 11A and The movable comb electrodes 14d and 14e of the vibration power generation component 11B are electrically integrated with each other.
  • the present invention is not limited to such a configuration, and a configuration as shown in FIGS. 13A and 13B may be employed.
  • the fixed comb electrodes 13a to 13c to which the power output electrode 20A is connected are fixed combs composed of fixed comb electrodes 13a and 13b that are electrically integrated with the fixed comb electrode 13c. Tooth group G1.
  • the fixed comb electrode 13c can also be considered as a fixed comb group of one fixed comb electrode.
  • the fixed comb electrodes 13d and 13e to which the monitor electrode 20B is connected are electrically insulated from each other. In this case as well, each of the fixed comb electrodes 13d and the fixed comb electrodes 13e constitutes a fixed comb group. Can be considered.
  • the electrodes 14a to 14d to which the power output electrode 20A is connected are movable with respect to the movable comb electrodes 14a and 14b (fixed comb group G2) which are electrically integrated.
  • the comb-tooth electrodes 14c and 14d are electrically insulated from each other.
  • the movable comb electrodes 14c and 14d constitute a movable comb group composed of one movable comb electrode.
  • the movable comb electrodes 14e and 14f to which the monitor electrode 20B is connected are electrically insulated from each other.
  • the movable comb electrodes 14e and 14f also constitute a movable comb group of one movable comb electrode.
  • FIG. 13A at least the first fixed comb teeth (fixed comb electrodes 13a to 13c) and the second fixed comb teeth (fixed comb electrodes 13d and 13e) that are electrically insulated from each other.
  • One has two or more fixed comb groups electrically insulated.
  • FIG. 13B at least one of the first movable comb teeth (movable comb electrodes 14a to 14d) and the second movable comb teeth (movable comb electrodes 14e and 14f) that are electrically insulated from each other is shown. It has two or more movable comb teeth groups which are electrically insulated.
  • the vibration power generation structure 11A and the vibration power generation structure 11B may be different from each other.
  • the second modification at least one of the fixed comb electrode and the movable comb electrode that mesh with each other.
  • the tooth height may be different between the vibration power generation component 11A and the vibration power generation component 11B, and as described in the first modification (see FIG. 6), the fixed comb electrode and the movable comb electrode that mesh with each other. May be different between the vibration power generation component 11A and the vibration power generation component 11B.
  • the comb teeth of the fixed comb electrodes 13d and 13d of the vibration power generation component 11B are set to the vibration power generation structure.
  • the length is set to be shorter than the comb teeth length of the fixed comb electrodes 13a and 13b of the vibration power generation structure 11A, or the comb tooth lengths of the movable comb electrodes 14d and 14e of the vibration power generation structure 11B are set to the vibration power generation structure.
  • a monitoring signal is output only near the maximum output peak where the fixed comb electrodes 13c and 13d and the movable comb electrodes 14c to 14e of the vibration power generation structure 11B are engaged. It will be. As a result, the peak timing of the output of the power output electrode 20A can be detected by the monitor signal.
  • the vibration power generation structure 11A and the vibration power generation structure are configured by making the charge amount per unit area of the electret different between the vibration power generation structure 11A and the vibration power generation structure 11B.
  • the output amplitude can be made different from that of the body 11B.
  • the amplitude of the output of the vibration power generation component 11B becomes a waveform proportional to the vibration amplitude of the movable portion 14, and the output of the vibration power generation component 11B can be used as a monitor signal.
  • the comb-shaped electrode is formed using the upper Si layer 120 of the SOI substrate, and the fixed comb-shaped electrode is physically separated to achieve electrical insulation.
  • the method for achieving electrical insulation is not limited to this.
  • a comb tooth electrode may be formed by forming a comb tooth from quartz, forming a silicon layer on the comb tooth, and electretizing the silicon layer.
  • comb-shaped electrodes that are electrically insulated by forming each comb tooth as shown in FIG. 1 may be formed, or divided into two groups as shown in FIG.
  • two groups of comb-teeth electrodes that are electrically insulated by forming a silicon layer may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

振動発電装置は、互いに噛合する第1固定櫛歯部および第1可動櫛歯部で構成される振動発電構成体と、互いに噛合する第2固定櫛歯部および第2可動櫛歯部で構成される振動発電構成体と、振動発電構成体に接続される電力出力用電極と、振動発電構成体に接続されるモニタ用電極と、を備え、振動発電構成体の出力と振動発電構成体の出力とが異なる。

Description

振動発電装置および振動発電素子
 本発明は、振動発電装置および振動発電素子に関する。
 近年、環境中からエネルギーを収穫するエナジーハーベスティング技術の一つとして、振動発電素子を用いて環境振動から発電を行う手法が注目されている(例えば、特許文献1参照)。特許文献1に記載の振動発電素子では、櫛歯構造の固定電極および可動電極を備え、可動電極の振動によって固定電極と可動電極との対向面積が変化することにより発電を行っている。
日本国特開2017-070163号公報
 ところで、振動発電素子から電力を取り出すための電源回路を振動発電素子に接続すると、電源回路の影響で振動発電素子からの出力波形が変化し、振動発電素子振動状態を正確に把握することが難しいという問題があった。
 本発明の第1の態様によると、振動発電装置は、互いに噛合する第1固定櫛歯部および第1可動櫛歯部で構成される第1振動発電構成体と、互いに噛合する第2固定櫛歯部および第2可動櫛歯部で構成される第2振動発電構成体と、前記第1振動発電構成体に接続される第1出力電極と、前記第2振動発電構成体に接続される第2出力電極と、を備え、前記第1振動発電構成体の出力と前記第2振動発電構成体の出力とが異なる。
 本発明の第2の態様によると、振動発電素子は、第1の態様の振動発電装置に用いられる振動発電素子であって、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第1固定櫛歯部および前記第2固定櫛歯部に含まれる櫛歯の各々が電気的に絶縁され、前記第1固定櫛歯部に前記第1出力電極が接続されると共に前記第2固定櫛歯部に前記第2出力電極が接続されるか、または、前記第1可動櫛歯部および前記第2可動櫛歯部に含まれる櫛歯の各々が電気的に絶縁され、前記第1可動櫛歯部に前記第1出力電極が接続されると共に前記第2可動櫛歯部に前記第2出力電極が接続される。
 本発明の第3の態様によると、振動発電素子は、第1の態様の振動発電装置に用いられる振動発電素子であって、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第1固定櫛歯部と前記第2固定櫛歯部とが電気的に絶縁され、前記第1固定櫛歯部に前記第1出力電極が接続されると共に前記第2固定櫛歯部に前記第2出力電極が接続されるか、または、前記第1可動櫛歯部と前記第2可動櫛歯部とが電気的に絶縁され、前記第1可動櫛歯部に前記第1出力電極が接続されると共に前記第2可動櫛歯部に前記第2出力電極が接続される。
 本発明の第4の態様によると、第3の態様の振動発電素子において、互いに電気的に絶縁された前記第1固定櫛歯部および前記第2固定櫛歯部の少なくとも一方は電気的に絶縁された2以上の固定櫛歯群を有し、または、互いに電気的に絶縁された前記第1可動櫛歯部および前記第2可動櫛歯部の少なくとも一方は電気的に絶縁された2以上の可動櫛歯群を有するのが好ましい。
 本発明の第5の態様によると、第2から第4までのいずれか一の態様の振動発電素子において、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第1固定櫛歯部および前記第1可動櫛歯部に含まれる櫛歯の総数が、前記第2固定櫛歯部および前記第2可動櫛歯部に含まれる櫛歯の総数と異なるのが好ましい。
 本発明の第6の態様によると、第2から第4までのいずれか一の態様の振動発電素子において、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、互いに噛合する前記第1固定櫛歯部および前記第1可動櫛歯部の少なくとも一方の櫛歯高さが、互いに噛合する前記第2固定櫛歯部および前記第2可動櫛歯部の櫛歯高さと異なるのが好ましい。
 本発明の第7の態様によると、第2から第4までのいずれか一の態様の振動発電素子において、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第1固定櫛歯部および前記第1可動櫛歯部の互いに噛合する櫛歯の間隔が、前記第2固定櫛歯部および前記第2可動櫛歯部の互いに噛合する櫛歯の間隔と異なるのが好ましい。
 本発明の第8の態様によると、第2から第4までのいずれか一の態様の振動発電素子において、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第2固定櫛歯部または前記第2可動櫛歯部の櫛歯長さは、前記第1固定櫛歯部および前記第1可動櫛歯部の櫛歯長さよりも短く設定され、かつ、非振動時において前記第2固定櫛歯部と前記第2可動櫛歯部とが非噛合状態となるように設定されているのが好ましい。
 本発明の第9の態様によると、第2から第8までのいずれか一の態様の振動発電素子において、前記第1振動発電構成体および前記第2振動発電構成体は、互いに噛合する櫛歯の少なくとも一方にエレクトレットが形成されているのが好ましい。
 本発明の第10の態様によると、振動発電素子は、第1の態様の振動発電装置に用いられる振動発電素子であって、前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、前記第1振動発電構成体および前記第2振動発電構成体は、互いに噛合する櫛歯の少なくとも一方にエレクトレットが形成され、前記エレクトレットの単位面積当たりの電荷量が、前記第1振動発電構成体と前記第2振動発電構成体とで異なっている。
 本発明によれば、振動発電素子の振動状態を正確に把握することができる。
図1は、本発明の一実施の形態に係る振動発電装置の概略構成を示す図である。 図2は、第1固定櫛歯部の他の構成を示す図である。 図3は、本実施の形態の比較例を説明するための図である。 図4は、本実施の形態の振動発電装置の動作を説明する図である。 図5は、振動発電装置を用いた電源装置のブロック図である。 図6は、振動発電装置の変形例1を示す図である。 図7は、振動発電装置の変形例2を示す図である。 図8は、振動発電装置の変形例3を示す図である。 図9は、振動発電装置の変形例4を示す図である。 図10は、振動発電装置の変形例5を示す図である。 図11は、振動発電装置の変形例6を示す図である。 図12は、可動部に設けられた複数の可動櫛歯電極を電気的に分離した場合の構成を示す図である。 図13は、固定櫛歯群および可動櫛歯群を説明する図である。
 以下、図を参照して本発明を実施するための形態について説明する。図1は、本発明の一実施の形態に係る振動発電装置1の概略構成を示す図であり、図1(a)は平面図、図1(b)は、図1(a)のA-A断面図である。図1に示す振動発電装置1は、2つの振動発電構成体11A,11Bが設けられた振動発電デバイス10と、振動発電構成体11Aに接続された電力出力用電極20Aと、振動発電構成体11Bに接続されたモニタ用電極20Bとを備えている。振動発電デバイス10は、たとえばSOI(Silicon On Insulator)基板を用いて、一般的なMEMS(Microelectromechanical Systems)加工技術により形成される。SOI基板は、たとえばハンドル層が形成される下部Si層と、BOX層が形成されるSiO層と、デバイス層が形成される上部Si層とを重ねて構成されている。
 振動発電デバイス10は、ベース12と、固定櫛歯電極13a,13b,13cおよび13dが形成された固定部13と、可動櫛歯電極14a,14b,14c,14dおよび14eが形成された可動部14と、可動部14を弾性支持する弾性支持部15とを備えている。可動部14は、一対の弾性支持部15によりベース12に対して弾性的に支持されている。なお、固定櫛歯電極および可動櫛歯電極の数は図1に示したものに限定されない。
 図1(b)のA-A断面図から分かるように、可動櫛歯電極14a■14eを有する可動部14と固定櫛歯電極13a~13dとはSOI基板の上部Si層120から形成され、可動部14および固定櫛歯電極13a~13dの上面には導電層であるアルミ層131,141が形成されている。なお、アルミ層131,141は、必ずしも可動部14および固定櫛歯電極13a~13dの上面全体に形成されている必要はない。固定櫛歯電極13a~13dはSiO層110を介して下部Si層100で形成されるベース12上に固定されている。
 噛合している固定櫛歯電極13a~13dと可動櫛歯電極14a~14eの少なくとも一方には、それぞれ対向面の表面近傍にエレクトレットが形成されている。これにより、固定櫛歯電極13a~13dと可動櫛歯電極14a~14eの対向面の少なくとも一方とが、それぞれ帯電されている。なお、エレクトレットを形成する方法としては、例えば、日本国特開2016-149914号公報に示唆されているような方法が知られている。
 振動発電デバイス10は、外部からの振動により、可動櫛歯電極14a~14eが固定櫛歯電極13a~13dに対してx軸方向に振動することで、発電を行う。電力出力用電極20Aは、振動発電構成体11Aを構成する固定櫛歯電極13a,13bおよび13cに接続されており、振動発電構成体11Aにより生じる電流の出力端子として用いられる。一方、モニタ用電極20Bは固定櫛歯電極13dに接続されており、振動発電構成体11Bにより生じる電流の出力端子として用いられる。
 なお、図1に示した実施の形態では、振動発電デバイス10に設けられた固定櫛歯電極13a~13dは互いに分離して形成され、各々が電気的に絶縁されている。固定櫛歯電極13a~13cから成る櫛歯電極群は第1固定櫛歯部を構成し、固定櫛歯電極13dは第2固定櫛歯部を構成する。図1に示す例では、第2固定櫛歯部を構成する固定櫛歯電極は一つの固定櫛歯電極13dのみで構成されているが、例えば、第2固定櫛歯部を構成する固定櫛歯電極の数が複数の場合には、モニタ用電極20Bはそれら固定櫛歯電極の全てに接続される。
 第1固定櫛歯部の各固定櫛歯電極13a~13cは振動発電デバイス10の内部において、または外部において電力出力用電極20Aに電気的に接続さされている。ここで、振動発電デバイス10の内部においてとは、振動発電デバイス10単体において配線が形成されているということである。一方、振動発電デバイス10の外部においてとは、振動発電デバイス10単体では固定櫛歯電極13a~13cは電気的に接続されておらず、振動発電デバイス10が実装されている回路基板側において固定櫛歯電極13a~13cが回路基板の配線によって電気的に接続されていることを意味している。第2固定櫛歯部の固定櫛歯電極13dはモニタ用電極20Bに接続されている。
 図1では固定櫛歯電極13a~13dが分離しているが、図2に示すように固定櫛歯電極13a~13cを一体としても良い。図2に示す例では、第1固定櫛歯部を構成する固定櫛歯電極13a~13cは接続部13eによって接続されており、電力出力用電極20Aは接続部13eに接続されている。その他の構成は、図1に示す振動発電装置1と同様である。図1の構成の場合には、モニタ用電極20Bに接続される第2固定櫛歯部の固定櫛歯電極の数を、モニタ信号として必要な出力の大きさやモニタ信号の用途に応じて調整することができる。
 図3は、本実施の形態の比較例を示す図である。本実施の形態の振動発電装置1では、電力出力用電極20Aとモニタ用電極20Bとから2つの出力を取り出すことができるが、図3(a)に示す振動発電装置30は、1組の可動櫛歯部31および固定櫛歯部32で構成される振動発電構成体を一つ備え、その一つの振動発電構成体から電流を出力する1出力構成となっている。図3(b)は、可動櫛歯部31の振動の振幅xを示し、図3(c)は図3(b)のような振動状態における可動櫛歯部31および固定櫛歯部32間の開放電圧Vを示す。
 可動櫛歯部31の移動により噛合状態の可動櫛歯電極と固定櫛歯電極との対向面積が変化すると、櫛歯電極の電荷が移動して可動櫛歯電極と固定櫛歯電極との間に電圧が発生する。その結果、開放電圧Vの波形は、可動櫛歯部31の振動の振幅xと同期し、かつ、比例した振幅を有する波形となる。一方、振動発電装置30に電源回路33を接続した場合、整流回路の出力電圧がコンデンサの定格電圧まで上昇すると、電圧が一定のまま抵抗を介して電流が流れる挙動を示す。その結果、コンデンサの定格電圧に達したところで電圧がサチュレーションし、端子間電圧Vは図3(d)に示すように可動櫛歯部31の振幅xに比例した振幅を有する波形とならない。そのため、図3(d)に示す電圧信号Vから、可動櫛歯部31の振動状態を正確に把握することができない。
 図4は、図2に示した振動発電装置1に電源回路33を接続した場合の図である。図2に示したように、電力出力用電極20Aを有する振動発電構成体11Aの可動櫛歯電極と、モニタ用電極20Bを有する振動発電構成体11Bの可動櫛歯電極とは、同一の可動部14に設けられている。そのため、電源回路33が接続されている場合でも、図4(d)に示すモニタ用電極20Bの電圧V2は、図4(b)に示す可動部14の振幅xに比例した振幅を有する波形となる。一方、電力出力用電極20Aの電圧V1の波形は、電源回路33の影響を受けて図4(c)のような波形となる。
 前述した図3(a)に示す構成では固定櫛歯部32の固定櫛歯電極の数は4であるが、図4(a)の振動発電構成体11Bの固定櫛歯電極の数は1である。そのため、図4(d)の電圧波形の振幅は、図3(c)の電圧波形の振幅より小さくなる。このように、本実施の形態の振動発電装置1では、モニタ信号用の振動発電構成体11Bの固定櫛歯電極数を、電力用の振動発電構成体11Aの固定櫛歯電極数よりも少なくすることで、電力出力用電極20Aからの出力電力の減少を小さく抑えつつモニタ用信号を得られるような構成とした。
 図5は、モニタ用電極20Bの出力信号の応用例の一例を示したものであり、振動発電装置1を用いた電源装置のブロック図である。電力用の振動発電構成体11Aの出力は電源部2の電圧変換回路21へ入力される。電源部2には、電圧変換回路21の他に振幅検出回路22および充電部23を備えている。モニタ用の振動発電構成体11Bの出力は振幅検出回路22に入力され、振幅検出回路22で検出された振幅情報が電圧変換回路21へ入力される。電圧変換回路21は、振幅検出回路22から入力された振幅情報に基づいて、例えば、振動発電構成体11Aからの電力が効率よく出力されるように電圧変換を行い、充電部23へ出力する。そのためには、振動発電構成体11Aの出力の振幅情報を正確に把握する必要があるが、本実施の形態では、振動発電構成体11Bの出力を利用することで振幅情報を正確に把握することができる。
(変形例1)
 図6は振動発電装置1の変形例1を説明する図である。図6(a)は、振動発電デバイス10に設けられた可動櫛歯電極および固定櫛歯電極の構成を示す模式図である。図4に示した構成では、振動発電構成体11Bの固定櫛歯電極数を振動発電構成体11Aの固定櫛歯電極数よりも少なく設定することで、振動発電構成体11Bによるモニタ用信号の振幅の大きさが、振動発電構成体11Aによる出力信号の振幅の大きさよりも小さくなるようにした。
 変形例1では、固定櫛歯電極の数ではなく、固定櫛歯電極と可動櫛歯電極との間隔を振動発電構成体11Aと振動発電構成体11Bとで異ならせ、それにより振動発電構成体11Aと振動発電構成体11Bとで静電容量を相違させて、振動発電構成体11A,11Bの出力を異ならせるようにした。図6(a)では、振動発電構成体11Bの固定櫛歯電極13c,13dの横幅W2を振動発電構成体11Aの固定櫛歯電極13a,13bの横幅W1よりも小さく設定した。その結果、振動発電構成体11A,11Bにおける固定櫛歯電極と可動櫛歯電極との間隔d1,d2はd1<d2のようになる。なお、振動発電構成体11Bの固定櫛歯電極13c,13dの横幅をW2に設定する代わりに、例えば可動櫛歯電極14d,14eの横幅をW2に設定しても良い。
 なお、図6(a)では、固定櫛歯電極の横幅を異ならせることで振動発電構成体11Aと振動発電構成体11Bとの間で出力を異ならせることを説明するため、振動発電構成体11Aと振動発電構成体11Bとで固定櫛歯電極の数を同数とした。しかし、固定櫛歯電極の横幅を異ならせる場合においても、振動発電構成体11Aの出力を可能な限り大きくするためには、振動発電構成体11Bの固定櫛歯電極数を図4(a)の場合と同様の固定櫛歯電極数とするのが好ましい。
 図6(a)のように、固定櫛歯電極13c,13dの横幅W2をW2<W1のように設定すると、固定櫛歯電極13c,13dの側面と可動櫛歯電極14c~14eの側面との間隔が広くなり、振動発電構成体11Aの静電容量に比べて振動発電構成体11Bの静電容量が小さくなる。可動部14が振動したときの電荷移動量は静電容量が大きい方が大きいので、図6(c)に示す振動発電構成体11Bの開放電圧V4は、図6(b)に示す振動発電構成体11Aの開放電圧V3よりも振幅が小さくなる。開放電圧V3,V4の振幅は、いずれも振動する可動部14の振幅に比例して変化する。
 なお、図6では、図2に示すように複数の固定櫛歯電極を2つのグループに分離する場合を例に説明したが、図1に示すように複数の固定櫛歯電極を各々分離する場合においても、振動発電構成体11Aと振動発電構成体11Bとの間で櫛歯の間隔を異ならせることで、振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせることができる。
(変形例2)
 図7は振動発電装置1の変形例2を説明する図である。図7は、振動発電デバイス10に設けられた可動櫛歯電極および固定櫛歯電極の構成を示す模式図である。図7(a)は振動発電デバイス10の平面図、図7(b)はD1-D1断面図、図7(c)はD2-D2断面図である。
 変形例2では、固定櫛歯電極の高さを振動発電構成体11Aと振動発電構成体11Bとで異ならせることで、可動電極と固定電極の対向面積を相違させて、振動発電構成体11A,11Bの出力を異ならせるようにした。図7では、振動発電構成体11Bの固定櫛歯電極13c,13dの高さH2(図7(c)参照)を、振動発電構成体11Aの固定櫛歯電極13a,13bの高さH1(図7(b)参照)よりも小さく設定した。
 なお、図7では、固定櫛歯電極の高さを異ならせることで振動発電構成体11Aと振動発電構成体11Bとの間で出力を異ならせることを説明するため、振動発電構成体11Aと振動発電構成体11Bとで固定櫛歯電極の数を同数とした。しかし、固定櫛歯電極の高さを異ならせる場合においても、振動発電構成体11Aの出力を可能な限り大きくするためには振動発電構成体11Bの固定櫛歯電極数を図4(a)の場合と同様の固定櫛歯電極数とするのが好ましい。
 図7に示すように、固定櫛歯電極13c,13dの高さH2をH2<H1のように設定すると、振動発電構成体11Bにおける固定櫛歯電極と可動櫛歯電極との対向面積が振動発電構成体11Aの場合よりも小さくなる。そのため、可動部14が変位したときの対向面積の変化量は、振動発電構成体11Aの場合に比べて振動発電構成体11Bの場合の方が小さくなる。その結果、変形例1の場合と同様に、振動発電構成体11Bの開放電圧は振動発電構成体11Aの開放電圧よりも小さくなる。いずれの開放電圧の場合も、それらの振幅は振動する可動部14の振幅に比例して変化する。
 図7では、振動発電構成体11Aと振動発電構成体11Bとの間で固定櫛歯電極の高さを異ならせたが、可動櫛歯電極側において高さを異ならせるようにしても良い。さらに、図7(c)では、振動発電構成体11Bにおいて固定櫛歯電極13dのみを高さH2に設定したが、例えば、可動櫛歯電極14dおよび14eの高さもH2に設定するようにしても良い。
 なお、図7では、図2に示すように複数の固定櫛歯電極を2つのグループに分離する場合を例に説明したが、図1に示すように複数の固定櫛歯電極を各々分離する場合においても、振動発電構成体11Aと振動発電構成体11Bとの間で櫛歯高さを異ならせることで、振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせることができる。
(変形例3)
 図8は振動発電装置1の変形例3を説明する図である。図8(a)は、振動発電デバイス10に設けられた可動櫛歯電極および固定櫛歯電極の構成を示す模式図である。図8(b)は振動発電構成体11Aの開放電圧V5の波形を示し、図8(c)は振動発電構成体11Bの開放電圧V6の波形を示す。変形例3では、固定櫛歯電極の数ではなく、固定櫛歯電極の長さを振動発電構成体11Aと振動発電構成体11Bとで異ならせることで、可動電極と固定電極との噛み合い開始時期を相違させて、振動発電構成体11A,11Bの出力を異ならせるようにした。
 図8(a)では、振動発電構成体11Bの固定櫛歯電極13c,13dの長さL2を、振動発電構成体11Aの固定櫛歯電極13a,13bの長さL1よりも短く設定した。なお、図8(a)では、固定櫛歯電極の長さを異ならせることで振動発電構成体11Aと振動発電構成体11Bとの間で出力を異ならせることを説明するため、振動発電構成体11Aと振動発電構成体11Bとで固定櫛歯電極の数を同数とした。しかし、固定櫛歯電極の長さを異ならせる場合においても、振動発電構成体11Aの出力を可能な限り大きくするためには振動発電構成体11Bの固定櫛歯電極数を図4(a)の場合と同様の固定櫛歯電極数とするのが好ましい。
 図8(a)のように固定櫛歯電極13a~13dの長さL1,L2をL2<L1と設定することで、可動部14の振動の振幅に同期して、振動発電構成体11Aの開放電圧V5は図8(b)のような波形となり、振動発電構成体11Bの開放電圧V6は図8(c)のような波形となる。
 図8(a)の可動部14のx方向の位置は、エレクトレットによる電気力と弾性支持部15の弾性力とがつりあっている状態を示している。図8(a)に示す状態では、振動発電構成体11Bの固定櫛歯電極13c、13dと可動櫛歯電極14c~14eとは噛合していない。x0は可動部14の振幅である。図8(b),(c)のt=0のときには、可動部14は釣り合いの位置にある。
 時刻t=0から、可動部14がx軸正方向に移動し始めると、図8(b)に示すように振動発電構成体11Aの開放電圧V5は上昇し始める。しかし、振動発電構成体11Bにおいては、固定櫛歯電極13c、13dと可動櫛歯電極14c~14eとは噛合していないので電荷の移動が無く、開放電圧V6はV6=0のままである。
 時刻t1において可動部14が図8(a)の符号t1で示す位置に移動すると、振動発電構成体11Bの固定櫛歯電極13c、13dと可動櫛歯電極14c~14eとが噛合するようになる。時刻t1の後は、振動発電構成体11Aも振動発電構成体11Bも固定櫛歯電極と可動櫛歯電極との対向面積が増加し、開放電圧V5,V6の両方が上昇する。
 図示上側に移動する可動部14の変位が、時刻t2において振幅x0に達する。そのとき、振動発電構成体11A,11Bの開放電圧V5,V6は正のピークとなる。時刻t2以後は可動部14がx軸負方向に移動するので、振動発電構成体11Aも振動発電構成体11Bも固定櫛歯電極と可動櫛歯電極との対向面積が減少する。その結果、開放電圧V5,V6は下降する。
 可動部14が図示下側に移動開始した後、時刻t3になると振動発電構成体11Bの対向面積はゼロとなり、時刻t3以後も対向面積はゼロのままなので開放電圧V6はV6=0となる。一方、振動発電構成体11Aの対向面積は時刻t3以後も減少するので、開放電圧V5は正のまま減少する。そして、時刻t4において可動部14の釣り合い位置となり、時刻t4以後は電荷の移動方向が逆になるので開放電圧V5は負となる。
 上述のように、振動発電構成体11Bの固定櫛歯電極13c,13dの長さL2を振動発電構成体11Aの固定櫛歯電極13a,13bの長さL1よりも短く設定することにより、開放電圧V6は開放電圧V5の最大ピーク付近でのみV6≠0となる。すなわち、振動発電構成体11Bの固定櫛歯電極13c,13dと可動櫛歯電極14c~14eとが噛合状態となる出力最大ピーク付近でのみ、モニタ用信号が出力される。
 図8に示す構成では、固定櫛歯電極側の櫛歯長さを振動発電構成体11AではL1とし振動発電構成体11BではL2としたが、可動櫛歯電極側の櫛歯長さをL1,L2に設定するようにしても良い。例えば、可動櫛歯電極14a~14cをL1とし、可動櫛歯電極14dおよび14eをL2に設定する。
 なお、図8では、図2に示すように複数の固定櫛歯電極を2つのグループに分離する場合を例に説明したが、図1に示すように複数の固定櫛歯電極を各々分離する場合においても、振動発電構成体11Bの固定櫛電極の櫛歯長さを振動発電構成体11Aの固定櫛電極の櫛歯長さよりも短く設定し、かつ、非振動時において振動発電構成体11Bが非噛合状態となるように設定することで、振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせることができる。
(変形例4)
 図9は振動発電装置1の変形例4を説明する図である。上述の図2に示した構成では、振動発電構成体11A,11Bの可動櫛歯電極を全て可動部14の図示右側に配置したが、変形例4では、振動発電構成体11Bの可動櫛歯電極14d,14eを可動部14の図示左側に配置するような構成とした。振動発電構成体11Aは、可動部14の右側に配置された可動櫛歯電極14a~14dと、可動櫛歯電極14a~14dと噛合する固定櫛歯電極13a~13cとで構成される。振動発電構成体11Bは、可動部14の左側に配置された可動櫛歯電極14e,14fと、可動櫛歯電極14e,14fと噛合する固定櫛歯電極13dとで構成される。
 可動部14がx軸の正方向に変位すると、振動発電構成体11Aにおける可動櫛歯電極14a~14dと固定櫛歯電極13a~13cとの対向面積が増加し、振動発電構成体11Bにおける可動櫛歯電極14e,14fと固定櫛歯電極13dとの対向面積が減少する。逆に、可動部14がx軸の負方向に変位すると、振動発電構成体11Aにおける可動櫛歯電極14a~14dと固定櫛歯電極13a~13cとの対向面積が減少し、振動発電構成体11Bにおける可動櫛歯電極14e,14fと固定櫛歯電極13dとの対向面積が増加する。そのため、振動発電構成体11Aの開放電圧の波形に対して振動発電構成体11Bの開放電圧の波形は位相が180度だけずれているが、振動発電構成体11A,11Bの各開放電圧の波形は可動部14の振幅に同期した波形となっている。すなわち、上述した実施の形態の場合と同様に、振動発電構成体11Bのモニタ用電極20Bから出力される信号を、振動発電構成体11Aから出力される電力のモニタ用信号として利用することができる。
 なお、図9では複数の固定櫛歯電極を2つのグループに分離する場合を例に説明したが、複数の固定櫛歯電極を図1のように各々分離して、それらを可動部14の図示右側および図示左側に分けて配置するようにしても良い。
(変形例5)
 図10は振動発電装置1の変形例5を説明する図である。上述した実施の形態および変形例では、振動発電デバイス10は、固定櫛歯電極に対して可動櫛歯電極が同一面内で変位する構成であったが、図10に示すように可動櫛歯電極が面外振動する構成であっても良い。
 図10において、SOI基板の下部Si層100で形成されるベース12の上には、SiO層110を介して上部Si層120で形成される第1固定櫛歯部41A,第2固定櫛歯部41Bおよびカンチレバー42が形成されている。カンチレバー42には、第1固定櫛歯部41Aに噛合する第1可動櫛歯部40Aと第2固定櫛歯部41Bに噛合する第2可動櫛歯部40Bとが形成されている。第1固定櫛歯部41Aには電力出力用電極20Aが接続されており、第2固定櫛歯部41Bにはモニタ用電極20Bが接続されている。なお、第1および第2可動櫛歯部40A,40B、第1および第2固定櫛歯部41A,41Bおよびカンチレバー42の上面に形成される導電層(図1のアルミ層131,141に相当)については、図示を省略した。
 振動発電構成体11Aは第1可動櫛歯部40Aと第1固定櫛歯部41Aとで構成され、振動発電構成体11Bは第2可動櫛歯部40Bと第2固定櫛歯部41Bとで構成される。電極面にエレクトレットを設けるのは第1の実施の形態の場合と同様である。振動発電デバイス10に外部振動が印加されるとカンチレバー42がz方向に撓み、第1および第2固定櫛歯部41A,41Bに対して第1および第2可動櫛歯部40A,40Bがz方向に振動する。振動発電構成体11Bの櫛歯電極数は振動発電構成体11Aの櫛歯電極数よりも少ないので、振動発電構成体11Bの出力は振動発電構成体11Aの出力よりも小さい。
 なお、図10に示す構成では、固定櫛歯電極および可動櫛歯電極の総数を振動発電構成体11Aと振動発電構成体11Bとで異ならせることで出力の振幅を異ならせるようにしたが、面外振動であるため、固定櫛歯電極および可動櫛歯電極の長さを異ならせるようにしても出力の振幅を異ならせることができる。もちろん、変形例1(図6参照)の場合と同様に、噛合する固定櫛歯電極と可動櫛歯電極との間隔を振動発電構成体11Aと振動発電構成体11Bとで異ならせても、出力の振幅を異ならせることができる。
 ところで、振動発電構成体11A,11Bの各出力の大きさは、固定櫛歯電極と可動櫛歯電極との間の電極間隔や、固定櫛歯電極と可動櫛歯電極との間の対向面積や、固定櫛歯電極や可動櫛歯電極に形成されたエレクトレットの電荷量に依存する。上述した実施の形態および変形例では、固定櫛歯電極の長さや高さを異ならせることで振動発電構成体11A,11Bの対向面積を異ならせたり、固定櫛歯電極の幅を異ならせることで振動発電構成体11A,11Bにおける櫛歯電極間隔を異ならせたりした。しかし、振動発電構成体11Aと振動発電構成体11Bとの間で単位面積当たりのエレクトレット電荷量を異ならせることで、振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせることもできる。
(変形例6)
 上述した実施の形態や変形例では、複数の固定櫛歯電極を絶縁された2つの固定櫛歯部に分離したが、一つの可動部14に設けられた複数の可動櫛歯電極を絶縁された2つの可動櫛歯部に分離しても良いし、一つの可動部14に設けられた複数の可動櫛歯電極を各々電気的に絶縁されるように形成しても良い。
 図11では、可動部14に形成された可動櫛歯電極14a~14eの内、可動櫛歯電極14a~14cを振動発電構成体11Aの可動櫛歯部とし、可動櫛歯電極14d,14eを振動発電構成体11Bの可動櫛歯部とした。可動部14において、可動櫛歯電極14a~14cを形成している上部Si層120と可動櫛歯電極14d,14eを形成している上部Si層120とは分離されており、可動櫛歯電極14a~14cと可動櫛歯電極14d,14eとは電気的に絶縁されている。可動櫛歯電極14a~14cには電力出力用電極20Aが接続されており、可動櫛歯電極14d,14eにはモニタ用電極20Bが接続されている。
 図12は、一つの可動部14に設けられた複数の可動櫛歯電極14a~14eを各々電気的に絶縁されるように形成した場合を示す。可動櫛歯電極14a~14eは下部Si層100の上にSiO層110を介して形成されており、各可動櫛歯電極14a~14eの上部Si層120は互いに分離され電気的に絶縁された構成となっている。可動櫛歯電極14a~14cには電力出力用電極20Aが接続され、可動櫛歯電極14d,14eにはモニタ用電極20Bが接続されている。電力出力用電極20Aおよびモニタ用電極20Bの接続は、振動発電デバイス10の内部で接続される構成でも良いし、振動発電デバイス10の外部において接続される構成でも良い。図12の構成の場合も、図1の構成の場合と同様に、モニタ用電極20Bが接続される可動櫛歯電極の数を、モニタ信号として必要な出力の大きさやモニタ信号の用途に応じて調整することができる。
 上述した実施形態、変形例で説明した振動発電装置1および振動発電デバイス10をまとめて説明すると以下のとおりである。
(1)図1や図2に示すように、振動発電装置1は、振動発電構成体11Aを構成する固定櫛歯電極13a~13cおよび可動櫛歯電極14a~14dと、振動発電構成体11Bを構成する固定櫛歯電極13dおよび可動櫛歯電極14d,14eとを有する振動発電デバイス10を備える。そして、電力出力用電極20Aが接続される固定櫛歯電極13a~13cの数と、モニタ用電極20Bが接続される固定櫛歯電極13dの数を異ならせることで、すなわち、固定櫛歯電極と可動櫛歯電極の総数を振動発電構成体11Aと振動発電構成体11Aとで異ならせて、振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせるようにした。ここで、出力が異なるとは、振動発電構成体11Bによるモニタ用信号の振幅の大きさが、振動発電構成体11Aによる出力信号の振幅の大きさと異なるということである。
 このように、電力出力とは別に可動部14の振幅と同期したモニタ用信号を出力できる構成とすることで、モニタ用信号を利用して振動発電デバイス10の振動状態を正確に把握することができる。例えば、図5で説明したように、モニタ用信号を利用することで発電電力を効率よく利用することができる。
 なお、モニタ用信号を発電電力の効率化に使用する場合について説明したが、例えば、故障検知用のトリガ信号や異常動作時の保護回路への入力信号としても使用することができる。
(2)振動発電デバイス10において、振動発電構成体11A,11Bの固定櫛歯電極13a~13dの各々が図1に示すように電気的に絶縁されている場合には、振動発電構成体11Aの固定櫛歯電極13a~13cに電力出力用電極20Aが接続され、振動発電構成体11Bの固定櫛歯電極13dにモニタ用電極20Bが接続される。また、図12に示すように振動発電構成体11A,11Bの可動櫛歯電極14a~14eの各々が電気的に絶縁されている場合には、振動発電構成体11Aの可動櫛歯電極14a~14dに電力出力用電極20Aが接続され、振動発電構成体11Bの可動櫛歯電極14d,14eにモニタ用電極20Bが接続される。
 図2の構成のように、振動発電デバイス10の段階で電力出力用電極20Aに接続される櫛歯電極とモニタ用電極20Bに接続される櫛歯電極とグループで分離されている場合に比べ、図1の構成のように全ての固定櫛歯電極を互いに電気的に絶縁して形成した場合、モニタ信号として必要な出力の大きさやモニタ信号の用途に応じて、モニタ用電極20Bが接続される櫛歯電極の数を容易に調整することができる。
 なお、図1または図12に示す例では、固定櫛歯電極13a~13dの各々または可動櫛歯電極14a~14eの各々が電気的に絶縁される構成とした。一方、図2に示す例では振動発電構成体11Aの固定櫛歯電極13a~13cは電気的に一体に形成され、図11に示す例では振動発電構成体11Aの可動櫛歯電極14a~14cおよび振動発電構成体11Bの可動櫛歯電極14d,14eはそれぞれ電気的に一体に形成されていた。しかしながら、このような構成に限らず、図13(a),13(b)に示すような構成としても良い。
 図13(a)では、電力出力用電極20Aが接続される固定櫛歯電極13a~13cは、固定櫛歯電極13cと電気的に一体形成されている固定櫛歯電極13a,13bから成る固定櫛歯群G1とを有している。なお、固定櫛歯電極13cも一つの固定櫛歯電極から成る固定櫛歯群と考えることができる。モニタ用電極20Bが接続される固定櫛歯電極13d,13eは互いに電気的に絶縁されており、この場合も、固定櫛歯電極13dおよび固定櫛歯電極13eの各々が固定櫛歯群を構成していると考えることができる。
 図13(b)に示す例では、電力出力用電極20Aが接続される14a~14dは、電気的に一体となっている可動櫛歯電極14a,14b(固定櫛歯群G2)に対して可動櫛歯電極14c,14dはそれぞれ電気的に絶縁されている。可動櫛歯電極14c,14dは、それぞれ一つの可動櫛歯電極から成る可動櫛歯群を構成している。モニタ用電極20Bが接続される可動櫛歯電極14e,14fは互いに電気的に絶縁されている。可動櫛歯電極14e,14fも、それぞれ一つの可動櫛歯電極から成る可動櫛歯群を構成している。
 このように、図13(a)では互いに電気的に絶縁された第1固定櫛歯部(固定櫛歯電極13a~13c)および第2固定櫛歯部(固定櫛歯電極13d,13e)の少なくとも一方は電気的に絶縁された2以上の固定櫛歯群を有する。また、図13(b)では互いに電気的に絶縁された第1可動櫛歯部(可動櫛歯電極14a~14d)および第2可動櫛歯部(可動櫛歯電極14e,14f)の少なくとも一方は電気的に絶縁された2以上の可動櫛歯群を有する。
(3)振動発電構成体11Aの出力と振動発電構成体11Bの出力とを異ならせる方法としては、図1,2,9~13に示すように固定櫛歯電極および可動櫛歯電極の総数を振動発電構成体11Aと振動発電構成体11Bとで異ならせても良いし、変形例2(図7参照)で説明したように、噛合する固定櫛歯電極および可動櫛歯電極の少なくとも一方の櫛歯高さを振動発電構成体11Aと振動発電構成体11Bとで異ならせても良いし、変形例1(図6参照)で説明したように、噛合する固定櫛歯電極と可動櫛歯電極との間隔を振動発電構成体11Aと振動発電構成体11Bとで異ならせても良い。
(4)また、図8のように可動櫛歯電極が固定櫛歯電極に対して面内振動する構成の振動発電デバイス10において、振動発電構成体11Bの固定櫛歯電極13d,13dの櫛歯長さを振動発電構成体11Aの固定櫛歯電極13a,13bの櫛歯長さよりも短く設定し、または、振動発電構成体11Bの可動櫛歯電極14d,14eの櫛歯長さを振動発電構成体11Aの可動櫛歯電極14a,14bの櫛歯長さよりも短く設定し、かつ、非振動時において固定櫛歯電極13d,13dと可動櫛歯電極14d,14eとが非噛合状態となるように設定しても良い。
 そのような構成とすることで、振動発電構成体11Bの固定櫛歯電極13c,13dと可動櫛歯電極14c~14eとが噛合状態となる出力最大ピーク付近でのみ、モニタ用信号が出力されることになる。その結果、モニタ用信号によって電力出力用電極20Aの出力のピークタイミングを検知することができる。
(5)また、変形例5に記載したように、エレクトレットの単位面積当たりの電荷量を振動発電構成体11Aと振動発電構成体11Bとで異ならせることで、振動発電構成体11Aと振動発電構成体11Bとで出力の振幅を異ならせることができる。その結果、振動発電構成体11Bの出力の振幅は可動部14の振動振幅に比例した波形となり、振動発電構成体11Bの出力をモニタ信号として利用することができる。
 なお、上述した実施形態では、図1,2に示すようにSOI基板の上部Si層120を用いて櫛歯電極を形成し、固定櫛歯電極を物理的に分離することで電気的絶縁を図るようにしたが、電気的絶縁を図る方法としてはこれに限らない。例えば、石英で櫛歯を形成し、その櫛歯にシリコン層を形成し、シリコン層をエレクトレット化すること櫛歯電極を形成しても良い。その場合、シリコン層を形成する際に、図1のように櫛歯毎に形成して電気的に絶縁された櫛歯電極を形成しても良いし、図2のように2つのグループに分けてシリコン層を形成することで電気的に絶縁された2グループの櫛歯電極としても良い。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018年第105434号(2018年5月31日出願)
 1,30…振動発電装置、10…振動発電デバイス、11A,11B…振動発電構成体、12…ベース、13a~13d…固定櫛歯電極、14…可動部、14a~14e…可動櫛歯電極、15…弾性支持部、20A…電力出力用電極、20B…モニタ用電極、21…電力変換部、22…振幅検出回路、23…充電部、31…可動櫛歯部、32…固定櫛歯部、40A…第1可動櫛歯部、40B…第2可動櫛歯部、41A…第1固定櫛歯部、41B…第2固定櫛歯部、42…カンチレバー、G1…固定櫛歯群、G2…可動櫛歯群

Claims (10)

  1.  互いに噛合する第1固定櫛歯部および第1可動櫛歯部で構成される第1振動発電構成体と、
     互いに噛合する第2固定櫛歯部および第2可動櫛歯部で構成される第2振動発電構成体と、
     前記第1振動発電構成体に接続される第1出力電極と、
     前記第2振動発電構成体に接続される第2出力電極と、を備え、
     前記第1振動発電構成体の出力と前記第2振動発電構成体の出力とが異なる、振動発電装置。
  2.  請求項1に記載の振動発電装置に用いられる振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第1固定櫛歯部および前記第2固定櫛歯部に含まれる櫛歯の各々が電気的に絶縁され、前記第1固定櫛歯部に前記第1出力電極が接続されると共に前記第2固定櫛歯部に前記第2出力電極が接続されるか、または、前記第1可動櫛歯部および前記第2可動櫛歯部に含まれる櫛歯の各々が電気的に絶縁され、前記第1可動櫛歯部に前記第1出力電極が接続されると共に前記第2可動櫛歯部に前記第2出力電極が接続される、振動発電素子。
  3.  請求項1に記載の振動発電装置に用いられる振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第1固定櫛歯部と前記第2固定櫛歯部とが電気的に絶縁され、前記第1固定櫛歯部に前記第1出力電極が接続されると共に前記第2固定櫛歯部に前記第2出力電極が接続されるか、または、前記第1可動櫛歯部と前記第2可動櫛歯部とが電気的に絶縁され、前記第1可動櫛歯部に前記第1出力電極が接続されると共に前記第2可動櫛歯部に前記第2出力電極が接続される、振動発電素子。
  4.  請求項3に記載の振動発電素子において、
     互いに電気的に絶縁された前記第1固定櫛歯部および前記第2固定櫛歯部の少なくとも一方は電気的に絶縁された2以上の固定櫛歯群を有し、または、互いに電気的に絶縁された前記第1可動櫛歯部および前記第2可動櫛歯部の少なくとも一方は電気的に絶縁された2以上の可動櫛歯群を有する、振動発電素子。
  5.  請求項2から請求項4までのいずれか一項に記載の振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第1固定櫛歯部および前記第1可動櫛歯部に含まれる櫛歯の総数が、前記第2固定櫛歯部および前記第2可動櫛歯部に含まれる櫛歯の総数と異なる、振動発電素子。
  6.  請求項2から請求項4までのいずれか一項に記載の振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     互いに噛合する前記第1固定櫛歯部および前記第1可動櫛歯部の少なくとも一方の櫛歯高さが、互いに噛合する前記第2固定櫛歯部および前記第2可動櫛歯部の櫛歯高さと異なる、振動発電素子。
  7.  請求項2から請求項4までのいずれか一項に記載の振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第1固定櫛歯部および前記第1可動櫛歯部の互いに噛合する櫛歯の間隔が、前記第2固定櫛歯部および前記第2可動櫛歯部の互いに噛合する櫛歯の間隔と異なる、振動発電素子。
  8.  請求項2から請求項4までのいずれか一項に記載の振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第2固定櫛歯部または前記第2可動櫛歯部の櫛歯長さは、前記第1固定櫛歯部および前記第1可動櫛歯部の櫛歯長さよりも短く設定され、かつ、非振動時において前記第2固定櫛歯部と前記第2可動櫛歯部とが非噛合状態となるように設定されている、振動発電素子。
  9.  請求項2から請求項8までのいずれか一項に記載の振動発電素子において、
     前記第1振動発電構成体および前記第2振動発電構成体は、互いに噛合する櫛歯の少なくとも一方にエレクトレットが形成されている、振動発電素子。
  10.  請求項1に記載の振動発電装置に用いられる振動発電素子であって、
     前記第1固定櫛歯部および前記第1可動櫛歯部で構成される前記第1振動発電構成体と、
     前記第2固定櫛歯部および前記第2可動櫛歯部で構成される前記第2振動発電構成体と、を備え、
     前記第1振動発電構成体および前記第2振動発電構成体は、互いに噛合する櫛歯の少なくとも一方にエレクトレットが形成され、
     前記エレクトレットの単位面積当たりの電荷量が、前記第1振動発電構成体と前記第2振動発電構成体とで異なっている、振動発電素子。
PCT/JP2019/020928 2018-05-31 2019-05-27 振動発電装置および振動発電素子 WO2019230658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/058,328 US11451167B2 (en) 2018-05-31 2019-05-27 Vibration-driven energy harvesting device and vibration-driven energy harvester
CN201980028473.3A CN112042104A (zh) 2018-05-31 2019-05-27 振动发电装置及振动发电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105434 2018-05-31
JP2018105434A JP6985702B2 (ja) 2018-05-31 2018-05-31 振動発電装置および振動発電素子

Publications (1)

Publication Number Publication Date
WO2019230658A1 true WO2019230658A1 (ja) 2019-12-05

Family

ID=68696994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020928 WO2019230658A1 (ja) 2018-05-31 2019-05-27 振動発電装置および振動発電素子

Country Status (4)

Country Link
US (1) US11451167B2 (ja)
JP (1) JP6985702B2 (ja)
CN (1) CN112042104A (ja)
WO (1) WO2019230658A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993951B2 (ja) * 2018-10-15 2022-01-14 株式会社鷺宮製作所 振動発電素子
JP7258795B2 (ja) * 2020-02-10 2023-04-17 株式会社鷺宮製作所 振動発電素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011547A (ja) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd 発電デバイス
JP2014050249A (ja) * 2012-08-31 2014-03-17 Aoi Electronics Co Ltd 静電誘導型変換装置およびdc−dcコンバータ
WO2015019919A1 (ja) * 2013-08-08 2015-02-12 アオイ電子株式会社 アクチュエータ、シャッタ装置、流体制御装置、スイッチおよび2次元走査型センサ装置
JP2017070163A (ja) * 2015-10-02 2017-04-06 株式会社鷺宮製作所 振動発電素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124223B2 (ja) * 2005-03-23 2008-07-23 セイコーエプソン株式会社 アクチュエータおよびアクチュエータを有する光学装置及び当該アクチュエータの製造方法
JP2008109772A (ja) 2006-10-25 2008-05-08 Sanyo Electric Co Ltd スイッチング素子、スイッチ回路、モータおよび発電装置
JP6002497B2 (ja) 2012-08-01 2016-10-05 鳥取コスモサイエンス株式会社 電源回路
JP2016127656A (ja) 2014-12-26 2016-07-11 ムネカタ株式会社 環境発電素子で発生した電力を蓄電する蓄電装置
JP6569933B2 (ja) 2015-02-13 2019-09-04 国立大学法人 東京大学 エレクトレット素子、電気機械変換器およびエレクトレット素子の製造方法
JP5990352B1 (ja) 2016-01-26 2016-09-14 株式会社アウルソリューション 電源回路およびその電源回路を備えた電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011547A (ja) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd 発電デバイス
JP2014050249A (ja) * 2012-08-31 2014-03-17 Aoi Electronics Co Ltd 静電誘導型変換装置およびdc−dcコンバータ
WO2015019919A1 (ja) * 2013-08-08 2015-02-12 アオイ電子株式会社 アクチュエータ、シャッタ装置、流体制御装置、スイッチおよび2次元走査型センサ装置
JP2017070163A (ja) * 2015-10-02 2017-04-06 株式会社鷺宮製作所 振動発電素子

Also Published As

Publication number Publication date
CN112042104A (zh) 2020-12-04
US11451167B2 (en) 2022-09-20
JP2019213294A (ja) 2019-12-12
JP6985702B2 (ja) 2021-12-22
US20210218349A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US9287804B2 (en) Power generation apparatus
WO2018101017A1 (ja) 振動発電素子
US8803401B2 (en) Vibration power generator, vibration power generating device, and electronic device and communication device that have the vibration power generating device installed
JP5411871B2 (ja) エレクトレット電極、それを用いたアクチュエータ、振動発電器、および振動発電装置、ならびに振動発電装置を搭載した通信装置
JP4558007B2 (ja) 静電誘導型発電装置
JPWO2012008113A1 (ja) 微小電気機械発電器およびそれを用いた電気機器
JP5862310B2 (ja) 振動センサ、外部環境検出装置
US20100000324A1 (en) Acceleration sensor and method of fabricating it
CN102057264B (zh) 检测传感器
WO2019230658A1 (ja) 振動発電装置および振動発電素子
CN110050409B (zh) 振动发电装置
JP6338070B2 (ja) 振動発電デバイス
JP5226907B1 (ja) 振動発電器、振動発電装置、及び振動発電装置を搭載した電気機器と通信装置
JP5619998B2 (ja) 可変容量コンデンサ
JP2011108989A (ja) 可変キャパシタ
Honma et al. A double-deck structured MEMS electrostatic vibrational energy harvester for minimal footprint
JP5307955B1 (ja) 微小電気機械発電器およびそれを用いた電気機器
Tao et al. Enhanced performance of electrostatic energy harvester with integrated opposite-charged electrets
CN115932420B (zh) 电场传感器
KR101263343B1 (ko) 정전방식 에너지 수집 장치
JP3801182B2 (ja) 静電振動型デバイス
KR101183458B1 (ko) 정전 방식 에너지 수집 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811835

Country of ref document: EP

Kind code of ref document: A1