WO2019230288A1 - 電動車両の駆動制御装置 - Google Patents

電動車両の駆動制御装置 Download PDF

Info

Publication number
WO2019230288A1
WO2019230288A1 PCT/JP2019/017751 JP2019017751W WO2019230288A1 WO 2019230288 A1 WO2019230288 A1 WO 2019230288A1 JP 2019017751 W JP2019017751 W JP 2019017751W WO 2019230288 A1 WO2019230288 A1 WO 2019230288A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
power
electric vehicle
control device
Prior art date
Application number
PCT/JP2019/017751
Other languages
English (en)
French (fr)
Inventor
ビクラム メノン
マーカス ウール
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2019230288A1 publication Critical patent/WO2019230288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a drive control device for an electric vehicle.
  • the distance of wiring for supplying power from the battery pack to the load may vary depending on each battery pack. Therefore, when battery packs connected in parallel are used at the same time, the battery pack with a relatively short wiring distance to the load is only as much as its wiring resistance is smaller than the battery pack with a relatively long distance. A lot of current is output. For this reason, there is a risk that the battery packs may have a difference in the progress speed of deterioration with the wiring distance.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an electric vehicle including a plurality of battery packs connected in parallel, which can suppress uneven battery deterioration.
  • An object of the present invention is to provide a drive control apparatus.
  • An electric vehicle drive control apparatus is an electric vehicle drive control apparatus in which a plurality of battery packs are connected in parallel, and one of the plurality of battery packs is selected as a drive battery pack.
  • a battery pack selection unit that performs power supply, a power supply unit that supplies power to the driving device of the electric vehicle from the battery pack selected by the battery pack selection unit, and a power capacity that acquires power capacity information of the selected battery pack And when the power capacity of the selected battery pack acquired by the power capacity acquisition unit is a predetermined value or less, the battery pack selection unit is a battery other than the selected battery pack. Select the pack as the driving battery pack.
  • the drive control apparatus for an electric vehicle according to the present invention is different when any one of a plurality of battery packs included in the electric vehicle is selected as a drive battery pack and the power capacity of the drive battery pack is reduced. Is selected as the driving battery pack. That is, since the drive control apparatus of the present invention uses a plurality of battery packs independently and sequentially, the state in which the output current differs between battery packs having different wiring distances to the power supply unit does not become normal. Can be managed individually. Therefore, according to the drive control apparatus for an electric vehicle according to the present invention, in an electric vehicle including a plurality of battery packs connected in parallel, the battery pack as a power source for traveling is sequentially switched according to the remaining power capacity. It is possible to suppress uneven battery deterioration.
  • FIG. 1 is a configuration diagram showing an electric vehicle 1 according to the present invention. More specifically, FIG. 1 is a partial configuration diagram of an electric vehicle 1 schematically showing an electric power system mainly related to traveling drive.
  • An electric vehicle 1 according to the present embodiment includes an electric truck including a side rail 2, a power distribution unit 3, a plurality of battery packs 4, a drive control device 5, a drive unit 6, a rear axle 7, drive wheels 8, and a plurality of cables 9. It is.
  • the electric vehicle 1 appropriately includes components included in a conventional electric truck.
  • the electric vehicle 1 is assumed to be an electric vehicle including an electric motor (a motor 60 described later) as a driving source for traveling, but may be a hybrid vehicle further including an engine.
  • the electric vehicle 1 is not limited to an electric truck, and may be another commercial vehicle including a battery for driving the vehicle.
  • the side rail 2 includes a left side rail 2L and a right side rail 2R that are arranged in parallel to each other in the vehicle width direction, and extends along the longitudinal direction of the electric vehicle 1.
  • the side rail 2 supports a heavy object mounted on the electric vehicle 1.
  • the power distribution unit 3 is a so-called PDU (Power Distribution Unit) that distributes power to various electric auxiliary machines mounted on the electric vehicle 1.
  • PDU Power Distribution Unit
  • the plurality of battery packs 4 are secondary batteries that supply electric power for traveling of the electric vehicle 1 and electric power consumed by the electric auxiliary machine via the power distribution unit 3. Each battery pack 4 is configured to be able to supply power forward and backward with respect to the longitudinal direction of the vehicle.
  • the plurality of battery packs 4 will be described as being composed of two of the first battery pack 4a and the second battery pack 4b connected in parallel, but the number of battery packs is limited to this. is not.
  • the first battery pack 4a includes a first switch SW1 and a first power storage unit B1, and discharge of the first power storage unit B1 is permitted when the first switch SW1 is in a closed state, and the first switch SW1. Is in the open state, the discharge of the first power storage unit B1 is prohibited.
  • the second battery pack 4b includes a second switch SW2 and a second power storage unit B2. When the second switch SW2 is in a closed state, the second battery pack 4b discharges the second power storage unit B2. Is permitted and discharging of the second power storage unit B2 is prohibited when the second switch SW2 is in the open state.
  • the drive control device 5 includes a battery control unit 50 as a “battery pack selection unit”, a power supply unit 51, and a power capacity acquisition unit 52, and controls electric power for traveling of the electric vehicle 1.
  • the battery control unit 50 controls the opening and closing of the first switch SW1 and the second switch SW2, and the output voltage, output current, and battery of each of the first battery pack 4a and the second battery pack 4b.
  • This is a so-called BCU (Battery Control Unit) for monitoring the temperature.
  • the power supply unit 51 is a so-called inverter (INV), converts DC power supplied from the battery pack 4 into AC power, supplies the AC power to a motor 60 described later, and controls the motor 60 according to an accelerator operation on the electric vehicle 1. Control the rotation speed.
  • ISV inverter
  • the power capacity acquisition unit 52 acquires the power capacity information of each of the first power storage unit B1 and the second power storage unit B2, that is, SOC (State of Charge), and notifies the battery control unit 50 of the power capacity information.
  • SOC State of Charge
  • the drive unit 6 includes a reduction mechanism and a differential mechanism (not shown) in addition to the motor 60 as the “drive device”, and converts the electric power supplied from the electric power supply unit 51 into the travel driving force of the electric vehicle 1. As a result, the drive unit 6 causes the electric vehicle 1 to travel by transmitting the travel driving force to the drive wheels 8 via the rear axle 7.
  • the plurality of cables 9 are respectively provided between the power distribution unit 3 and the first battery pack 4a, between the first battery pack 4a and the second battery pack 4b, and between the second battery pack 4b and the battery control unit 50. Connect electrically.
  • the electric vehicle 1 has the first battery pack 4 a and the second battery pack 4 b physically connected in series via the cable 9, but is connected to the power distribution unit 3 and the drive control device 5.
  • the first power storage unit B1 and the second power storage unit B2 are electrically connected in parallel.
  • FIG. 2 is a flowchart showing power control performed by the drive control device 5.
  • the drive control device 5 starts the power control shown in FIG. 2 when an ignition key (not shown) of the electric vehicle 1 is switched from OFF to ON.
  • the first switch SW1 and the second switch SW2 are both open, and power output from the first battery pack 4a and the second battery pack 4b is prohibited. .
  • the battery control unit 50 of the drive control device 5 selects one of the plurality of battery packs 4 as the drive battery pack. For example, when the first battery pack 4a is selected as the driving battery pack, the battery control unit 50 maintains the second switch SW2 in the open state and switches the first switch SW1 to the closed state (step S1). Thus, the drive control device 5 controls the discharge power of the first power storage unit B1 to be supplied to the motor 60 via the second battery pack 4b and the power supply unit 51, so that the first battery pack 4a The electric vehicle 1 is driven with electric power.
  • step S1 when the electric vehicle 1 starts running with electric power from the drive battery pack, the power capacity acquisition unit 52 of the drive control device 5 selects the selected drive battery pack, that is, the first battery pack 4a here. Get power capacity information. Then, the drive control device 5 determines whether or not the SOC of the first battery pack 4a is less than a predetermined value TH (step S2).
  • the predetermined value TH is a threshold value set to determine that the remaining capacity of each battery pack 4 has decreased to such an extent that traveling of the electric vehicle 1 cannot be continued, for example, a fully charged SOC It may be a fixed value such as 15%, or may be a fluctuation value calculated as appropriate based on various parameters.
  • step S2 When it is determined in step S2 that the SOC of the first battery pack 4a is equal to or greater than the predetermined value TH (No in step S2), the drive control device 5 maintains the opening / closing control of the first switch SW1 and the second switch SW2. Then, the electric vehicle 1 is continuously driven by the electric power of the first battery pack 4a.
  • step S2 If it is determined in step S2 that the SOC of the first battery pack 4a is less than the predetermined value TH (Yes in step S2), the drive control device 5 uses the remaining SOC of the first battery pack 4a to It is determined that traveling cannot be continued, and the driver of the electric vehicle 1 is notified of a decrease in the remaining amount of the first battery pack 4a (step S3).
  • the notification of the decrease in the remaining amount can be performed by means such as an indicator lamp provided in the driver's seat of the electric vehicle 1 or voice output. Then, in response to the notification, the drive control device 5 prompts the driver of the electric vehicle 1 to perform the ignition key OFF / ON operation, and determines whether or not the key operation has been performed (step S4).
  • step S4 until a key operation is detected (No in step S4), the drive control device 5 tries to travel the electric vehicle 1 as much as possible with the remaining SOC of the first battery pack 4a.
  • step S4 when a key operation is detected in step S4 (Yes in step S4), the battery control unit 50 of the drive control device 5 selects the first battery selected as the drive battery pack among the plurality of battery packs 4.
  • a battery pack other than the pack 4a, that is, here, the second battery pack 4b is selected again as a driving battery pack. That is, the battery control unit 50 switches the first switch SW1 from the closed state to the open state, and switches the second switch SW2 from the open state to the closed state (step S5).
  • the drive control device 5 controls the electric vehicle 1 with the electric power of the second battery pack 4b by controlling the discharge electric power of the second power storage unit B2 to be supplied to the motor 60 via the electric power supply unit 51. Let it run.
  • step S5 when the traveling of the electric vehicle 1 is resumed by the electric power from the driving battery pack, the power capacity acquisition unit 52 of the driving control device 5 selects the selected driving battery pack, that is, the second battery here. The power capacity information of the pack 4b is acquired. Then, the drive control device 5 determines whether or not the SOC of the second battery pack 4b is less than a predetermined value TH (step S6).
  • step S6 When it is determined in step S6 that the SOC of the second battery pack 4b is equal to or greater than the predetermined value TH (No in step S6), the drive control device 5 maintains the opening / closing control of the first switch SW1 and the second switch SW2. Then, the electric vehicle 1 is continuously driven by the electric power of the second battery pack 4b.
  • step S6 when it is determined that the SOC of the second battery pack 4b is less than the predetermined value TH (Yes in step S6), the drive control device 5 uses the remaining amount of SOC of the second battery pack 4b. It is determined that traveling cannot be continued, and the driver of the electric vehicle 1 is notified of a decrease in the remaining amount of the second battery pack 4b (step S7).
  • the drive control device 5 prompts the driver of the electric vehicle 1 to charge the battery pack 4 and ends the execution of the power control.
  • the drive control device 5 controls the plurality of battery packs 4 not to discharge simultaneously by sequentially switching the selection of the drive battery packs for the plurality of battery packs 4.
  • the first power storage unit B1 and the second power storage unit connected in parallel are controlled by both the first switch SW1 and the second switch SW2 being closed.
  • B2 supplies power to the power supply unit 51 at the same time.
  • the second battery pack 4b since the second battery pack 4b has a shorter wiring distance to the power supply unit 51 than the first battery pack 4a, a larger amount of current is output in accordance with the smaller wiring resistance. Therefore, when the electric vehicle 1 is run using the first battery pack 4a and the second battery pack 4b at the same time, the state where the second battery pack 4b outputs more current than the first battery pack 4a is normal. This will cause a bias in the rate of progress of both degradations.
  • the drive control device 5 since the drive control device 5 according to the present invention uses the first battery pack 4a and the second battery pack 4b independently and sequentially, the second battery pack 4b is more than the first battery pack 4a.
  • the current output state does not become normal, and both current outputs can be individually managed.
  • one of the plurality of battery packs 4 is selected as the drive battery pack, and sequentially driven according to the remaining power capacity. Since the battery pack for the battery is selected and switched, it is possible to reduce a possibility that the progress speed of deterioration for each battery pack is biased.
  • the present invention is not limited to the above-described embodiment.
  • the power control executed by the drive control device 5 has exemplified the aspect in which the discharge of the first battery pack 4a is started first, but the order of use of the plurality of battery packs 4 is limited to this.
  • the remaining capacity may be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】複数の並列接続されたバッテリパックを備える電動車両において、偏ったバッテリ劣化を抑制することができる駆動制御装置を提供すること。 【解決手段】駆動制御装置5は、複数のバッテリパック4が並列接続された電動車両1の駆動制御装置5であって、複数のバッテリパック4のうち、いずれか1つを駆動用バッテリパックとして選択するバッテリ制御ユニット50と、バッテリ制御ユニット50により選択されたバッテリパックからモータ60に電力を供給する電力供給部51と、選択されたバッテリパックの電力容量情報を取得する電力容量取得部52と、を含み、電力容量取得部52により取得される選択されたバッテリパックの電力容量が所定値TH以下となった場合、バッテリ制御ユニット50は、選択されたバッテリパック以外のバッテリパックを駆動用バッテリパックとして選択することを特徴とする。

Description

電動車両の駆動制御装置
 本発明は、電動車両の駆動制御装置に関する。
 近年、環境負荷低減の観点から、トラック等の商用車においても電動車両化が検討されている(例えば、特許文献1参照)。しかしながら、上記商用車は、乗用車と比較して、ユーザの要望に応じた車両仕様バリエーションが非常に多く存在することから、選択された電動商用車の仕様に対する最適なバッテリ容量も条件により様々存在する。
 このような様々なバッテリ容量に応じてバッテリパックのバリエーションを設けると、それぞれのバッテリパックの設計及び製造に係る大幅なコスト上昇を招来する虞が生じる。そのため、要求されるバッテリ容量に応じた個数の所定容量のバッテリパックを並列に接続することにより、コストを抑制しつつも車両仕様に対するバッテリ容量の最適化を図る対応が考えられる。
特開2016-113063号公報
 しかしながら、上記のように並列に接続された複数のバッテリパックを電動車両に搭載すると、バッテリパックから負荷へ電力を供給するための配線の距離が、それぞれのバッテリパックによって異なる場合が生じ得る。そのため、並列に接続されたバッテリパックが同時に使用されると、負荷への配線距離が相対的に近いバッテリパックが、相対的に遠いバッテリパックよりも、その配線抵抗が小ささに応じた分だけ多くの電流が出力されてしまう。そのため、各バッテリパックは、配線距離に伴って劣化の進行速度に差が生じてしまう虞が生じる。
 本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、複数の並列接続されたバッテリパックを備える電動車両において、偏ったバッテリ劣化を抑制することができる電動車両の駆動制御装置を提供することにある。
 本発明に係る電動車両の駆動制御装置は、複数のバッテリパックが並列接続された電動車両の駆動制御装置であって、前記複数のバッテリパックのうち、いずれか1つを駆動用バッテリパックとして選択するバッテリパック選択部と、前記バッテリパック選択部により選択されたバッテリパックから前記電動車両の駆動装置に電力を供給する電力供給部と、前記選択されたバッテリパックの電力容量情報を取得する電力容量取得部と、を含み、前記電力容量取得部により取得される前記選択されたバッテリパックの電力容量が所定値以下となった場合、前記バッテリパック選択部は、前記選択されたバッテリパック以外のバッテリパックを駆動用バッテリパックとして選択する。
 本発明に係る電動車両の駆動制御装置は、電動車両が有する複数のバッテリパックのうち、いずれか1つが駆動用バッテリパックとして選択され、当該駆動用バッテリパックの電力容量が低下した場合に、他のバッテリパックが駆動用バッテリパックとして選択される。すなわち、本発明の駆動制御装置は、複数のバッテリパックを順次独立して使用するため、電力供給部までの配線距離が異なるバッテリパック間で出力電流が異なる状態が常態化せず、両者のそれぞれの出力電流を個別に管理することができる。従って、本発明に係る電動車両の駆動制御装置によれば、複数の並列接続されたバッテリパックを備える電動車両において、走行用の電力源としてのバッテリパックを残りの電力容量に応じて順次切り替えることができ、偏ったバッテリ劣化を抑制することができる。
本発明に係る電動車両を示す構成図である。 駆動制御装置が実行する電力制御を示すフローチャートである。
 以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
 図1は、本発明に係る電動車両1を示す構成図である。より詳しくは、図1は、主に走行駆動に係る電力系統を模式的に示す電動車両1の部分構成図である。本実施形態に係る電動車両1は、サイドレール2、配電部3、複数のバッテリパック4、駆動制御装置5、駆動ユニット6、リアアクスル7、駆動輪8、及び複数のケーブル9を備える電動トラックである。尚、電動車両1は、上記した構成以外にも、従来の電動トラックが備えるコンポーネントを適宜備えている。
 本実施形態において、電動車両1は、走行用駆動源として電動機(後述するモータ60)を備える電気自動車として想定されているが、エンジンを更に備えるハイブリッド自動車であってもよい。また、電動車両1は電動トラックに限定されることなく、車両を駆動するためのバッテリを備える他の商用車であってもよい。
 サイドレール2は、車幅方向に対して互いに平行に配置される左サイドレール2L及び右サイドレール2Rからなり、電動車両1の車両長手方向に沿って延在する。そして、サイドレール2は、電動車両1に搭載される重量物を支持する。
 配電部3は、電動車両1に搭載される様々な電動補機に電力を配電する所謂PDU(Power Distribution Unit)である。
 複数のバッテリパック4は、電動車両1の走行用電力、及び配電部3を介して電動補機で消費される電力を供給する二次電池である。それぞれのバッテリパック4は、車両長手方向に対して前方及び後方にそれぞれ電力を供給できるよう構成されている。本実施形態においては、複数のバッテリパック4は、並列接続された第1バッテリパック4a及び第2バッテリパック4bの2つからなるものとして説明するが、バッテリパックの個数はこれに限定されるものではない。
 ここで、第1バッテリパック4aは、第1スイッチSW1と第1蓄電部B1とを備え、第1スイッチSW1が閉状態である場合に第1蓄電部B1の放電が許可され、第1スイッチSW1が開状態である場合に第1蓄電部B1の放電が禁止される。また、第2バッテリパック4bは、第1バッテリパック4aと同様に、第2スイッチSW2と第2蓄電部B2とを備え、第2スイッチSW2が閉状態である場合に第2蓄電部B2の放電が許可され、第2スイッチSW2が開状態である場合に第2蓄電部B2の放電が禁止される。
 駆動制御装置5は、「バッテリパック選択部」としてのバッテリ制御ユニット50、電力供給部51、及び電力容量取得部52を含み、電動車両1の走行用電力を制御する。
 バッテリ制御ユニット50は、本実施形態においては、第1スイッチSW1及び第2スイッチSW2の開閉を制御すると共に、第1バッテリパック4a及び第2バッテリパック4bのそれぞれの出力電圧、出力電流、及びバッテリ温度を監視する所謂BCU(Battery Control Unit)である。
 電力供給部51は、所謂インバータ(INV)であり、バッテリパック4から供給される直流電力を交流電力に変換して後述するモータ60へ供給し、電動車両1に対するアクセル操作に応じてモータ60の回転速度を制御する。
 電力容量取得部52は、第1蓄電部B1及び第2蓄電部B2のそれぞれの電力容量情報、すなわちSOC(State of Charge)を取得し、当該電力容量情報をバッテリ制御ユニット50へ通知する。
 駆動ユニット6は、「駆動装置」としてのモータ60の他、図示しない減速機構及び差動機構を含み、電力供給部51から供給される電力を電動車両1の走行駆動力に変換する。これにより、駆動ユニット6は、リアアクスル7を介して走行駆動力を駆動輪8に伝達することで電動車両1を走行させる。
 複数のケーブル9は、配電部3と第1バッテリパック4aとの間、第1バッテリパック4aと第2バッテリパック4bとの間、及び第2バッテリパック4bとバッテリ制御ユニット50との間をそれぞれ電気的に接続する。
 上記のような構成により、電動車両1は、第1バッテリパック4a及び第2バッテリパック4bがケーブル9を介して物理的には直列に接続されているものの、配電部3及び駆動制御装置5に対しては第1蓄電部B1及び第2蓄電部B2が電気的には並列に接続されていることになる。
 次に、駆動制御装置5の電力制御動作について説明する。図2は、駆動制御装置5が実行する電力制御を示すフローチャートである。
 駆動制御装置5は、電動車両1の図示しないイグニションキーがOFFからONへ切り替えられた場合に、図2に示す電力制御をスタートさせる。尚、イグニションキーがOFFの状態においては、第1スイッチSW1及び第2スイッチSW2は、いずれも開状態であり、第1バッテリパック4a及び第2バッテリパック4bからの電力の出力が禁止されている。
 電力制御がスタートすると、駆動制御装置5のバッテリ制御ユニット50は、複数のバッテリパック4のうち、いずれか1つを駆動用バッテリパックとして選択する。例えば、第1バッテリパック4aが駆動用バッテリパックとして選択される場合、バッテリ制御ユニット50は、第2スイッチSW2を開状態に維持し、第1スイッチSW1を閉状態に切り替える(ステップS1)。これにより、駆動制御装置5は、第1蓄電部B1の放電電力が第2バッテリパック4b及び電力供給部51を介してモータ60へ供給されるように制御することにより、第1バッテリパック4aの電力で電動車両1を走行させる。
 ステップS1において、駆動用バッテリパックからの電力により電動車両1の走行が開始すると、駆動制御装置5の電力容量取得部52は、選択された駆動用バッテリパック、すなわち、ここでは第1バッテリパック4aの電力容量情報を取得する。そして、駆動制御装置5は、第1バッテリパック4aのSOCが所定値TH未満であるか否かを判定する(ステップS2)。
 ここで、所定値THは、それぞれのバッテリパック4の残容量が、電動車両1の走行を継続できない程度にまで低下したことを判定するために設定される閾値であり、例えば満充電状態のSOCの15%のように固定値であってもよく、各種パラメータに基づいて適宜算出される変動値であってもよい。
 ステップS2において、第1バッテリパック4aのSOCが所定値TH以上であると判定された場合(ステップS2でNo)、駆動制御装置5は、第1スイッチSW1及び第2スイッチSW2の開閉制御を維持し、引き続き電動車両1を第1バッテリパック4aの電力により走行させる。
 ステップS2において、第1バッテリパック4aのSOCが所定値TH未満であると判定された場合(ステップS2でYes)、駆動制御装置5は、第1バッテリパック4aのSOC残量で電動車両1の走行を継続できないと判定し、電動車両1のドライバーに第1バッテリパック4aの残量低下を通知する(ステップS3)。
 ここで、残量低下の通知は、例えば、電動車両1の運転席に設けられる表示灯や音声出力等の手段により行うことができる。そして、当該通知により、駆動制御装置5は、電動車両1のドライバーに対してイグニションキーのOFF/ON操作を促し、キー操作が為されたか否かを判定する(ステップS4)。
 ステップS4において、キー操作が検出されるまでは(ステップS4でNo)、駆動制御装置5は、第1バッテリパック4aのSOC残量で可能な限り電動車両1の走行を試みる。
 一方、ステップS4において、キー操作が検出された場合(ステップS4でYes)、駆動制御装置5のバッテリ制御ユニット50は、複数のバッテリパック4のうち、駆動用バッテリパックとして選択された第1バッテリパック4a以外のバッテリパック、すなわち、ここでは、第2バッテリパック4bをあらためて駆動用バッテリパックとして選択する。つまり、バッテリ制御ユニット50は、第1スイッチSW1を閉状態から開状態に切り替え、第2スイッチSW2を開状態から閉状態に切り替える(ステップS5)。これにより、駆動制御装置5は、第2蓄電部B2の放電電力が電力供給部51を介してモータ60へ供給されるように制御することにより、第2バッテリパック4bの電力で電動車両1を走行させる。
 ステップS5において、駆動用バッテリパックからの電力により電動車両1の走行が再開されると、駆動制御装置5の電力容量取得部52は、選択された駆動用バッテリパック、すなわち、ここでは第2バッテリパック4bの電力容量情報を取得する。そして、駆動制御装置5は、第2バッテリパック4bのSOCが所定値TH未満であるか否かを判定する(ステップS6)。
 ステップS6において、第2バッテリパック4bのSOCが所定値TH以上であると判定された場合(ステップS6でNo)、駆動制御装置5は、第1スイッチSW1及び第2スイッチSW2の開閉制御を維持し、引き続き電動車両1を第2バッテリパック4bの電力により走行させる。
 ステップS6において、第2バッテリパック4bのSOCが所定値TH未満であると判定された場合(ステップS6でYes)、駆動制御装置5は、第2バッテリパック4bのSOC残量で電動車両1の走行を継続できないと判定し、電動車両1のドライバーに第2バッテリパック4bの残量低下を通知する(ステップS7)。
 そして、当該通知により、駆動制御装置5は、電動車両1のドライバーに対してバッテリパック4の充電を促し、電力制御の実行を終了する。
 このように、駆動制御装置5は、複数のバッテリパック4に対し、駆動用バッテリパックの選択を順次切り替えることにより、複数のバッテリパック4が同時に放電しないよう制御する。
 続いて、本発明に係る駆動制御装置5の効果について説明する。ここでは、本発明の駆動制御装置5に対する比較対象として、上記の複数のバッテリパック4を全て同時に使用して電動車両1を走行させた場合について、図1を参照しつつ説明する。また、説明の簡単化のため、第1バッテリパック4a及び第2バッテリパック4bが電力供給部51に対してのみ電力を供給するものとする。
 図1において、複数のバッテリパック4を同時に放電させる場合、第1スイッチSW1及び第2スイッチSW2が共に閉状態に制御されることにより、並列に接続された第1蓄電部B1と第2蓄電部B2とが電力供給部51に同時に電力を供給することになる。
 このとき、第2バッテリパック4bは、第1バッテリパック4aよりも電力供給部51までの配線距離が近いため、その配線抵抗の小ささに応じた分だけ多くの電流が出力されてしまう。従って、第1バッテリパック4a及び第2バッテリパック4bを同時に使用して電動車両1を走行させた場合、第1バッテリパック4aよりも第2バッテリパック4bがより多くの電流を出力する状態が常態化し、両者の劣化の進行速度に偏りが生じてしまう。
 尚、第1バッテリパック4a及び第2バッテリパック4bが配電部3及び電力供給部51の両方に電力を供給する場合であっても、配電部3と比較して電力供給部51が要求する電力が圧倒的に大きいため、両者の劣化の進行速度に偏りが生じる状況は変わらない。
 これに対し、本発明に係る駆動制御装置5は、第1バッテリパック4a及び第2バッテリパック4bを順次独立して使用するため、第1バッテリパック4aよりも第2バッテリパック4bがより多くの電流を出力する状態が常態化せず、両者のそれぞれの電流出力を個別に管理することができる。
 以上のように本発明に係る電動車両1の駆動制御装置5によれば、複数のバッテリパック4のうち、いずれか1つを駆動用バッテリパックとして選択し、残りの電力容量に応じて順次駆動用バッテリパックを選択して切り替えるため、バッテリパックごとの劣化の進行速度に偏りが生じる虞を低減することができる。
 以上で実施形態の説明を終えるが、本発明は上記した実施形態に限定されるものではない。例えば、上記の実施形態では、駆動制御装置5が実行する電力制御において、先に第1バッテリパック4aの放電を開始する態様を例示したが、複数のバッテリパック4の使用順序は、これに限られるものではなく、また、例えば残容量を考慮して適宜変更してもよい。
  1 電動車両
  4 バッテリパック
  4a 第1バッテリパック
  4b 第2バッテリパック
  5 駆動制御装置
  6 駆動ユニット
 50 バッテリ制御ユニット
 51 電力供給部
 52 電力容量取得部
 SW1~SW2 第1スイッチ~第2スイッチ
 B1~B2 第1蓄電部~第2蓄電部
 

Claims (1)

  1.  複数のバッテリパックが並列接続された電動車両の駆動制御装置であって、
     前記複数のバッテリパックのうち、いずれか1つを駆動用バッテリパックとして選択するバッテリパック選択部と、
     前記バッテリパック選択部により選択されたバッテリパックから前記電動車両の駆動装置に電力を供給する電力供給部と、
     前記選択されたバッテリパックの電力容量情報を取得する電力容量取得部と、を含み、 前記電力容量取得部により取得される前記選択されたバッテリパックの電力容量が所定値以下となった場合、前記バッテリパック選択部は、前記選択されたバッテリパック以外のバッテリパックを駆動用バッテリパックとして選択することを特徴とする電動車両の駆動制御装置。
PCT/JP2019/017751 2018-05-29 2019-04-25 電動車両の駆動制御装置 WO2019230288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102007 2018-05-29
JP2018102007A JP2019208309A (ja) 2018-05-29 2018-05-29 電動車両の駆動制御装置

Publications (1)

Publication Number Publication Date
WO2019230288A1 true WO2019230288A1 (ja) 2019-12-05

Family

ID=68698739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017751 WO2019230288A1 (ja) 2018-05-29 2019-04-25 電動車両の駆動制御装置

Country Status (2)

Country Link
JP (1) JP2019208309A (ja)
WO (1) WO2019230288A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974232A1 (en) 2020-09-28 2022-03-30 Suzuki Motor Corporation Charge/discharge control system
FR3114540A1 (fr) 2020-09-28 2022-04-01 Suzuki Motor Corporation Systeme de controle de charge/decharge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251714A (ja) * 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
WO2013061370A1 (ja) * 2011-10-26 2013-05-02 川崎重工業株式会社 電動車両及び該電動車両の駆動方法
US20130106178A1 (en) * 2011-10-31 2013-05-02 Cobasys, Llc Parallel configuration of series cells with semiconductor switching
JP2013207923A (ja) * 2012-03-28 2013-10-07 Sumitomonacco Materials Handling Co Ltd 電気式フォークリフト、及び、充電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251714A (ja) * 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
WO2013061370A1 (ja) * 2011-10-26 2013-05-02 川崎重工業株式会社 電動車両及び該電動車両の駆動方法
US20130106178A1 (en) * 2011-10-31 2013-05-02 Cobasys, Llc Parallel configuration of series cells with semiconductor switching
JP2013207923A (ja) * 2012-03-28 2013-10-07 Sumitomonacco Materials Handling Co Ltd 電気式フォークリフト、及び、充電システム

Also Published As

Publication number Publication date
JP2019208309A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
US10160441B2 (en) Power controller of hybrid vehicle
JP4816128B2 (ja) 車両用発電制御装置
US9616759B2 (en) Electric vehicle
US9233613B2 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
JP6191575B2 (ja) 電源装置
JP6070934B2 (ja) ハイブリッド車の走行モード切換制御装置
CN102985279B (zh) 蓄电容量管理装置
WO2010050040A1 (ja) 電動車両の電源システムおよびその制御方法
US20140180515A1 (en) Traveling mode switching controller of hybrid electric vehicle
WO2013015162A1 (ja) バッテリ装置の充放電システム
JP5772476B2 (ja) 電気自動車
JP7068893B2 (ja) 車両電源システム
JP7081959B2 (ja) 車両電源システム
JP6119725B2 (ja) 充電装置
JP2011223796A (ja) 車両充電装置
JP6562856B2 (ja) 多目的車両
JP7291513B2 (ja) 車両
WO2019230288A1 (ja) 電動車両の駆動制御装置
WO2014148558A1 (ja) 電源制御装置
WO2011155014A1 (ja) 車両の電力制御装置および車両の電力制御方法
JP2010041847A (ja) 複合電源を用いた電動車両
JP7096046B2 (ja) 車両電源システム
WO2015063556A1 (en) Power system of hybrid vehicle
KR20170025605A (ko) 친환경 자동차의 전력변환 제어방법
WO2020202772A1 (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812270

Country of ref document: EP

Kind code of ref document: A1