WO2019228424A1 - GaN基外延结构及其制备方法 - Google Patents

GaN基外延结构及其制备方法 Download PDF

Info

Publication number
WO2019228424A1
WO2019228424A1 PCT/CN2019/089116 CN2019089116W WO2019228424A1 WO 2019228424 A1 WO2019228424 A1 WO 2019228424A1 CN 2019089116 W CN2019089116 W CN 2019089116W WO 2019228424 A1 WO2019228424 A1 WO 2019228424A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan
quantum well
composition
component
Prior art date
Application number
PCT/CN2019/089116
Other languages
English (en)
French (fr)
Inventor
房育涛
刘波亭
叶念慈
林志东
蔡文必
杨健
Original Assignee
厦门市三安集成电路有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810541107.5A external-priority patent/CN108899365B/zh
Priority claimed from CN201811405399.6A external-priority patent/CN109742140B/zh
Priority claimed from CN201811405798.2A external-priority patent/CN109830535B/zh
Application filed by 厦门市三安集成电路有限公司 filed Critical 厦门市三安集成电路有限公司
Publication of WO2019228424A1 publication Critical patent/WO2019228424A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Definitions

  • the present invention relates to a transistor, and more particularly, to a gallium nitride-based high electron mobility transistor.
  • GaN-based high electron mobility field effect transistor High Electron Mobility Transistor, HEMT
  • Leakage not only worsens the pinch-off performance of the device, weakens the gate's ability to control the channel current, thereby deteriorating the overall performance of the device, but also causes the device to generate heat, which deteriorates the device's output characteristics and affects the reliability and Service life, so in order to obtain good device characteristics and improve device reliability, a high-resistance GaN-based buffer layer must be grown to reduce parasitic leakage current during device operation.
  • HEMT High Electron Mobility Transistor
  • the defect density (dislocation density, doping, etc.) of the buffer layer will directly affect the two-dimensional electron gas mobility of the HE MT device and thus affect the on-resistance of the device. Therefore, a high-quality buffer layer is also an important indicator for improving device performance .
  • MOCVD metal organic chemical vapor deposition
  • Another method is to pass Fe, Cr, and Mg in the epitaxial growth of the GaN-based material. Exogenous dopants of the same metal element form deep level defects in the forbidden band or provide holes to compensate the remaining carriers to obtain a high-resistance GaN-based buffer layer.
  • the first method is to obtain a high-resistance GaN epitaxial layer by adding defects or introducing impurities, so the quality of the epitaxial layer will be deteriorated.
  • the method of obtaining high-resistance GaN by controlling the growth conditions has strong equipment dependence and repeatability.
  • the second method of introducing metal impurities generally has a strong memory effect, which will contaminate the reaction chamber and cause subsequent epitaxial materials to be contaminated by metal impurities. Therefore, a dedicated MOCVD Long high-resistance GaN-based epitaxial materials and the introduction of impurities will reduce the mobility of channel 2DEG and affect device characteristics
  • One object of the present invention is to provide a gallium nitride-based epitaxial structure and a preparation method thereof, which can achieve a high resistance value.
  • the present invention provides a GaN-based epitaxial structure, which includes: a substrate, an A1N nucleation layer, a plurality of periodic structures, and a high-resistance GaN buffer layer; Periodic structure contains at least one periodic structure Layer, where a is 10% -100%.
  • the number of the multiple quantum well periods n is 10-100, One or more of the multiple quantum well periods contains a high The A1 composition decreases the A1 u Ga i_ u N layer.
  • each multi-quantum well period includes a bottom-up stacking arrangement: low
  • each multi-quantum well period includes a bottom-up stacking arrangement: A1 composition decreasing Al u G a iu N layer, A1 composition increasing Al v G a iv N Layer, high A1 component A1 a Ga a N layer, and A1 component decreasing A1 u Ga i_ u N layer.
  • each multi-quantum well period includes a bottom-up layer arrangement: A1 composition decreasing A1 u Ga nN layer, A1 composition increasing A1 v Ga i v N layer, The A1 composition decreases the A1 u Ga i_ u N layer.
  • the plurality of periodic structures include a polarized doped superlattice structure, and the superlattice perimeter The number of phases is 10-100, and one or more of the superlattice periods include a polarized P-type doped A1 x Ga N layer and a pole with gradually increasing A1 components in which the A1 component gradually decreases. N-type doped A1 y Ga h N layer.
  • the superlattice structure includes a first superlattice structure, a second superlattice structure, and a third superlattice structure, which are arranged in a stack from bottom to top, and the first crystal
  • the average A1 component of the lattice structure is XI
  • the average A1 component of the second lattice structure is X2
  • the average A1 component of the third lattice structure is X3, where X1> X2> X3.
  • the plurality of periodic structures include a multiple quantum well stress transfer layer, and the multiple quantum well stress transfer layer includes 3-100 multiple quantum well periods, and at least one of the multiple quantum well periods further includes Including A1 u Ga uN graded transition layer with A1 composition gradation and high A1 composition A1 a Ga N barrier layer and / or low A1 composition Al b Ga, _ b N potential well layer, so that in the multi-quantum period, The content of the A1 component in each layer increases or decreases unilaterally, where a> b.
  • each multi-quantum well cycle further includes a high A1 component A1 a Ga h N barrier layer, a decreasing Al component A1 u Ga i_ u N gradual transition layer, and a low A1 component A1 b Ga uN potential well layer, where a> b.
  • the thickness of the gradual transition layer is 3-100 nm, and the thickness of the low Al-component Al b Ga i_ b N potential well layer is 3-100 nm.
  • the plurality of periodic structures include a plurality of Al x G a ix N nanometer step groups, and the content of A1 in the steps of at least one of the Al x Ga N nanometer step groups is from the bottom layer to the most.
  • the upper layer changes in turn, two adjacent
  • the difference of the A1 component in the nanostep ranges from 2% to 50%.
  • the content of A1 in the high A1 layer on both sides of the nano-step is 5% -100%, and A1 in the low A1 layer on both sides of the nano-step.
  • the component content is 0% -90%.
  • each Al x G a ix N nanometer step is 1-10 nm.
  • the plurality of Al x Ga uN nano-step groups is divided into multiple groups of multiple quantum well structures from bottom to top, wherein the average A1 composition of the multiple quantum well structure located at the lower part is higher than that of the multiple quantum wells located at the upper part. Structure of the average A1 composition.
  • the present invention also provides a method for manufacturing the high-resistance GaN-based buffer layer epitaxial structure as described above, including the following steps: [0021] 1) using metal organic chemical vapor deposition equipment to grow a nucleation layer on a selected substrate;
  • each multi-quantum well period includes a high A1 component A1 a Ga h N layer, and the A1 component decreases A1 u Ga i_ u N layer; the specific preparation method is:
  • a high-resistance GaN buffer layer is grown on a multiple quantum well layer including a high-resistance Al x G a ix N heterojunction.
  • the present invention also provides a high-resistance GaN-based buffer layer epitaxial structure, which includes a substrate layer, an A1N nucleation layer, at least one buffer layer including a polarized doped superlattice, and stacked from bottom to top, High-resistance GaN buffer layer, GaN channel layer, A1 z Ga ! -Z N barrier layer;
  • each superlattice period includes a layer of a polarized p-type doped A1 x Ga uN layer with gradually reduced low A1 components, and A1
  • the gradually increasing composition of the polarized n-type doped Al y Ga H N layer; the number of the superlattice periods is 10-100.
  • the present invention also provides a method for manufacturing the high-resistance GaN-based buffer layer epitaxial structure as described above, which includes the following steps:
  • A1N nucleation layer is epitaxially grown on a substrate at high temperature by using a metal organic chemical vapor deposition device;
  • a polarized p-type doped Al x G a ix N layer with a decreasing A1 component is grown, and then a polarized n-type doped Al y with a gradually increasing A1 component is grown.
  • Ga H layer; the above-mentioned polarized p-type doped A1 x Ga N layer and polarized n-type dopant were repeatedly grown for 10-100 cycles Thereby forming a buffer layer containing a polarized doped superlattice;
  • step 2 Repeat step 2 according to the number of layers of the buffer layer containing the polarized doped superlattice;
  • the present invention provides an epitaxial structure of a high-resistance gallium nitride-based buffer layer with a unilaterally graded multiple quantum well, including: a substrate, a nucleation layer, Edge-graded multi-quantum well GaN-based high-resistance buffer layer and GaN buffer layer:
  • the gallium nitride-based high-resistance buffer layer with unilaterally graded multiple quantum wells includes multiple multiple quantum well stress transfer layers, and the content of A1 in the multiple multiple quantum well stress transfer layers decreases from bottom to top in order;
  • the multiple quantum well stress transfer layer includes multiple multiple quantum well periods, and each multiple quantum well period One step includes an A1 u Ga uN gradual transition layer with A1 composition gradation and a high A1 composition A1 a Ga N barrier layer and / or a low A1 composition Al b Ga, _ b N potential well layer, so that the multi-quantum period
  • the content of the A1 component in each of the gradual transition layers in the layer increases or decreases unilaterally; the number of the multiple quantum cycles is 3-100.
  • each multi-quantum well cycle further includes a high A1 component A1 a Ga h N barrier layer stacked from bottom to top, and a decreasing A1 component A1 u Ga i_ u N gradient Transition layer and low A1 composition A1 b Ga ⁇ N potential well layer; the number of multiple quantum cycles is 3-100.
  • the thickness of the Al A G a ia N barrier layer with a high A1 composition is 1-5 nm, and the thickness of the A1 u Ga uN graded transition layer with decreasing A1 composition is 3-100 nm.
  • the thickness of the N potential well layer is 3-100 nm.
  • the present invention also provides a method for preparing an epitaxial structure of a high-resistance gallium nitride-based buffer layer with a unilaterally graded multiple quantum well, including the following steps:
  • the multi-quantum well stress transfer layer includes multiple multi-quantum well periods, and each multi-quantum well period further includes a gradient Al transition layer of A1 u Ga uN and a high Al transition A1 a Ga N
  • the barrier layer and / low Al A component Al b Ga, _ b N potential well layer so that the content of the A 1 component in each layer in the multiple quantum cycle increases or decreases unilaterally; the number of the multiple quantum cycles is 3-100;
  • a high-resistance GaN buffer layer is grown on the gallium nitride-based high-resistance buffer layer having a single-sided graded multiple quantum well.
  • the nucleation layer is a high-temperature A1N nucleation layer, and when the high-temperature A1N nucleation layer is grown, the growth surface temperature is 1 (XXM200 ° C ; or the nucleation layer is GaN, When growing a GaN nucleation layer, the growth surface temperature is 450-550 ° C; the nucleation layer is a low-temperature A1N nucleation layer, and the growth surface temperature is 600-80 o o c
  • step 2 a high Al component Al b Ga is grown.
  • the specific parameters of the N barrier layer are: the flow rate of TMGa in the MO source is 0-80 sccm, the flow rate of TMA1 is 20-60 Osccm, the flow rate of NH 3 is 1500-30000 sccm, and the growth surface temperature is 1000-1100 ° C.
  • the growth component A1 down Al u G a iu N graded transition layer [0045]
  • the numbers are: The flow comh of TMGa in the MO source, the flow of TMA1 is 0-600 sccm, the flow of NH 3 is 1500-30000 sccm, and the growth surface temperature is 1000-1100 ° C.
  • step 2 the specific parameters for growing a low Al layer Al a G a ia N narrow potential well layer are: the flow rate of TMA1 in the MO source gradually from 20-600 sccm to 0-600 sccm When decreasing, the flow rate of TMGa gradually increases from 0-80 seem to 15-400 sccm, while the flow rate of NH 3 is 1500-30000 sccm, and the growing surface temperature is 1000-1100 o C.
  • the specific parameters for growing the high-resistance GaN buffer layer are: the flow rate of T MGa in the MO source is 100 to 500 sccm, the flow rate of NH 3 is 10,000 to 15000 sccm, and the growth surface temperature It is 950 ⁇ 1050 ° C, the pressure of the reaction chamber is 10 ⁇ 80mbar, and the growth rate is 1.5 ⁇ 3um / h.
  • the present invention provides a high-resistance gallium nitride-based buffer layer epitaxial structure with a nano-step graded layer, which includes a substrate, a nucleation layer, and a nano-layer layered from bottom to top.
  • Stepped high-resistance A1 x Ga N buffer layer and high-resistance GaN buffer layer :
  • the high-resistance Al x Ga N buffer layer with nano steps includes a plurality of Al x Ga N nano step groups, and the content of A1 in the steps of each of the Al x Ga N nano step groups ranges from the lowest layer to the most.
  • the upper layer changes in turn, two adjacent
  • the difference of the A1 component in the nanostep ranges from 2% to 50%.
  • the content of A1 in the high A1 layer in both sides of the nanometer step is 5% -100%, and in both sides of the nanometer step The content of A1 in the low A1 layer is 0% -90%
  • the thickness of each Al x G a ix N nanometer step is 1-10 nm.
  • the present invention also provides a method for preparing a high-resistance gallium nitride-based buffer layer epitaxial structure with a nano-step graded layer, including the following steps:
  • a high-resistance GaN buffer layer is grown on the high-resistance Al x G a ix N buffer layer having a nano-step.
  • the nucleation layer is a high-temperature A1N nucleation layer, and when the high-temperature A1N nucleation layer is grown, the growth surface temperature is 1 (XXM200 ° C ; or the nucleation layer is GaN, When growing a GaN nucleation layer, the growth surface temperature is 450-550 ° C; the nucleation layer is a low-temperature A1N nucleation layer, and the growth surface temperature is 600-80 o o c
  • step 2 the specific parameters for growing a high-resistance Al x G a ix N buffer layer with nano steps are:
  • the flow rate of TMGa in the MO source is 10 ⁇ 80 sccm
  • the flow rate of TMA1 is 10 to 600 sccm
  • the flow rate of NH 3 is 1500 to 30000 sccm
  • the growth surface temperature is 1000 to 1100 ° C.
  • the specific parameters for growing the high-resistance GaN buffer layer are: the flow rate of T MGa in the MO source is 100 to 500 sccm, the flow rate of NH 3 is 10,000 to 15000 sccm, and the growth surface temperature It is 950 ⁇ 1050 ° C, the pressure of the reaction chamber is 10 ⁇ 80mbar, and the growth rate is 1.5 ⁇ 3um / h.
  • the present invention is by growing different periodic component A1 of Al x G a ix N multiquantum well structure, a space area having positive and negative polarization charge remaining in the transition region of the component A1, the use of positive and negative
  • the polarized electric field generated by the charged charges depletes the background electron concentration in the epitaxial material to obtain a high-resistance GaN-based buffer layer.
  • obtaining high-resistance GaN through the A1 x Ga uN multiple quantum well structure not only does not have to worry about contaminating the reaction chamber, but also can obtain high-quality high-resistance GaN-based buffer layer;
  • the gradient interface layer can be used to effectively reduce the polarization intensity gradient so as to avoid the formation of conductive channels in the quantum well, and the abrupt interface can be effectively limited. Carriers in the barrier and carriers under high pressure are prevented from moving longitudinally, so a high-resistance GaN-based buffer layer can be obtained;
  • each layer in the Al x Ga N-based multiple quantum well it can be used as a high-resistance stress-transfer buffer layer for GaN epitaxial growth on a Si substrate and a high resistance in a HEMT device structure. Resistance back barrier layer;
  • the use of a nano-step graded layer at the Al x G a ix N interface of different A1 components during the growth of the buffer layer can on the one hand reduce the polarization gradient of the different A1 components and avoid interface two
  • the formation of two-dimensional carriers reduces the lateral expansion of the interface current and thereby reduces the vertical leakage current.
  • the variable layer can enhance the carrier scattering at the interface and thereby reduce the leakage current and increase the resistance of the buffer layer; through the above two effects, including the nano-step tapered layer buffer layer can reduce the leakage of the buffer layer under high voltage to achieve high resistance GaN-based buffer layers grow.
  • FIG. 1 is a layered structure diagram of a high-resistance gallium nitride-based buffer layer with a unilaterally graded multiple quantum well in a preferred embodiment of the present invention
  • FIG. 2 is a layered structure diagram of a gallium nitride-based high-resistance buffer layer with a unilaterally graded multiple quantum well in a preferred embodiment of the present invention
  • FIG. 3 is a layered structure diagram of a high-resistance gallium nitride-based buffer layer having a nano-step graded layer in a preferred embodiment of the present invention
  • FIG. 4 is a layered structure diagram of a nano-step gradient layer in a preferred embodiment of the present invention.
  • FIG. 5 is a vertical leakage curve diagram of a high-resistance gallium nitride-based buffer layer with a nano-step gradient layer in a preferred embodiment of the present invention.
  • the present invention provides a GaN-based epitaxial structure, which includes: a substrate, an A1N nucleation layer, a plurality of periodic structures, and a high-resistance GaN buffer layer; and at least one of the plurality of periodic structures.
  • the periodic structure includes a high A1 component A1 a Ga a N layer and an A1 component tapered A1 u Ga U N layer, where a is 10% to 100%, and the A1 component tapered Al u G a iu N layer A1 group
  • the points can be linear gradients or step gradients. The following further describes the present invention with reference to the embodiments.
  • An epitaxial structure of a high-resistance GaN-based buffer layer includes: a substrate, an A1N nucleation layer, a multi-quantum well layer including a high-resistance A1 x Ga uN heterojunction, and a high-resistance GaN buffer layer.
  • Floor a substrate, an A1N nucleation layer, a multi-quantum well layer including a high-resistance A1 x Ga uN heterojunction, and a high-resistance GaN buffer layer.
  • each multi-quantum well period includes
  • the Al x Ga N layer and The A1 component is increasing.
  • the A1 x Ga uN layer has spatially separated polarized positive and negative charges.
  • the electric field between the polarized charges can bind the high background carriers in the gallium nitride-based material near the spatially separated polarized charges, thereby reducing it. Freely move the background carrier concentration, reduce the leakage of the material under high voltage, and realize a high resistance GaN-based buffer layer.
  • the method for preparing the epitaxial structure of the high-resistance GaN-based buffer layer includes the following steps:
  • a metal organic chemical vapor deposition device is used to grow a nucleation layer on a selected heteroepitaxial substrate (sapphire, SiC, Si).
  • the nucleation layer may be a high temperature A1N or a low temperature GaN or a low temperature. A1N;
  • the surface temperature of the growing high temperature A1N nucleation layer is 1 (XXM200 ° C, thickness 100-500nm ; the surface temperature of growing low temperature GaN nucleation layer is 450-550 ° C, thickness 10-30nm; growing low temperature ALN nucleation
  • the surface temperature of the layer is 600-800 ° C, and the thickness is 10-50nm;
  • the growth rate of the N layer is lum / h-3um / h, the A1 composition is 10% -100%, and the thickness is 0-50nm;
  • TMGa flow gradually increases from 0-80sccm low to 25-400sccm high while NH 3 flow is 1500-30000 seem, epitaxial growth surface temperature 1000-1100 ° C; in the above
  • the growth rate of the A1 u Ga nN transition layer under the growth conditions of MO flow, V / III ratio and surface temperature is 0.5um / h-3um / h, and the A1 component of the decreasing layer of A1 u Ga N is from 100% -10% Left and right are gradually reduced to 90% -0%, and the thickness is 5-50nm.
  • A1 u Ga gradually decreasing due to polarization effects There are spatially polarized residual negative charges in the layer;
  • TMA1 flow rate is 0-500sccm
  • NH 3 flow rate is 1500-30000 seem
  • epitaxial growth surface temperature is 1000-1100 ° C, under the above MO flow rate, V / III ratio and surface temperature growth conditions Al b Ga i_ b N layer growth rate of lum / h-3um / h, A1 component is 0% to 90%, a thickness of 0-50nm;
  • the TMA1 flow rate gradually increases from 0-500 sccm to 50-600 sccm, and the TMGa flow rate ranges from 2 5-400 sccm to 0. -80sccm gradually decreases, while the flow rate of NH 3 is 1500-30000 seem, and the surface temperature of epitaxial growth is 1000-1100 ° C; under the growth conditions of the above MO flow rate, V / III ratio and surface temperature, the growth rate of A1 transition layer is 0.5um / h-3um / h, the A1 component of the A1 v Ga i_ v component increasing layer is from
  • 0% -90% gradually increase to 10% -100%, and the thickness is 5-50nm.
  • a gradually increasing due to polarization effects There are spatially polarized residual positive charges in the space;
  • a 0.5-2um high-resistance GaN buffer layer is grown on a multi-quantum well layer containing a high-resistance Al x G a ix N heterojunction.
  • the epitaxial growth parameters are: TMGa flow rate is 100 ⁇ 500 sccm, NH 3 The flow rate is 10000 ⁇ 15000 seem, the growth surface temperature is 950 ⁇ 1050 ° C, the pressure of the reaction chamber is 10 ⁇ 80mbar, and the growth rate is 1.5 ⁇ 3um / h.
  • each of the multiple quantum well periods includes a bottom-up arrangement: A1 component decreases Al u G a iu N layer, A1 component increases Al v G a iv N layer, high A1 component A1 a Ga ⁇ N layer.
  • each of the multiple quantum well cycles includes a bottom-up arrangement: A1 component decreases A1 u Ga nN layer, A1 component increases A1 v Ga p v N layers.
  • An epitaxial structure of a high-resistance GaN-based buffer layer includes: a substrate, an A1N nucleation layer, a buffer layer including a polarized doped superlattice, a high-resistance GaN buffer layer, and a GaN trench; Track layer, A1 z Ga ! -Z N barrier layer;
  • each superlattice period includes a polarized P-type doped A1 x Ga uN layer in which the A1 component is gradually reduced and stacked, and the A1 group The polarized n-type doped A1 y Ga i- y Njl is gradually increased, and the number of the superlattice periods is 10-100.
  • the method for preparing the epitaxial structure of the high-resistance GaN-based buffer layer includes the following steps: [0093] (1) A1N nucleation layer is grown on a Si substrate by using a metal organic chemical vapor deposition device.
  • A1N nucleation Layer thickness is about 200nm;
  • the first layer of polarization doped superlattice growth includes:
  • n-type Al y Ga H N layer is grown on p-type Al x G a ix N, the growth conditions are: MO flow where TMGa decreases from 35sccm linear to 25 seem, TMA1 Increased linear from 400sccm to 500sccm, while the flow of NH 3 is 2000 seem to decrease to 1500
  • a buffer layer containing a polarized doped superlattice A buffer layer containing a polarized doped superlattice
  • the metal-organic chemical vapor deposition device is used to continue to grow the polarized doped super-average of about 47.5% on the buffer layer containing the polarized doped superlattice with an average Al composition of 72.5%.
  • the lattice serves as a second layer of a buffer layer containing a polarized doped superlattice.
  • the growth process of the second buffer layer containing the polarized doped superlattice is:
  • a polarized doped n-type Al y Ga H N layer is grown on p-type Al x G a ix N, and the growth conditions are: M0
  • a polarized doped n-type Al y Ga H N layer is grown on p-type Al x G a ix N, and the growth conditions are: M0 flow rate where TMGa decreases from 170 linear to 120 sccm, and TMA1 from 200 seem linear increase to 400sccm, meanwhile the flow rate of NH 3 is 2000 seem to decrease to 1500 seem (A1 component gradually changes from 15% to 30%); surface temperature 1050 ° C, growth time 35s thickness is about 10nm; repeat growth 80 In each period 1-2, a polarization-doped superlattice structure stress transfer layer having an average A1 composition of 22.5% and a thickness of about 1.6um is obtained;
  • a high-resistance GaN layer is grown on the buffer layer containing the polarized doped superlattice.
  • the high-resistance GaN layer is a GaN layer grown at low temperature and low pressure.
  • the TMGa flow rate is 200 sccm, and the NH 3 flow rate is 12000 seem.
  • the growth surface temperature is 980 ° C
  • the pressure of the reaction chamber is 50mbar
  • the growth rate is about 2.5um / h
  • the growth time is 50min
  • the thickness is about 2000nm;
  • a channel layer and a barrier layer are grown on the high-resistance GaN layer.
  • the channel layer is a high-temperature GaN layer
  • the TMGa flow rate is 200 sccm
  • the NH ⁇ flow rate is 30,000 seem
  • the growth surface temperature is 1060 ° C
  • the reaction chamber pressure is 200 mbar
  • the growth rate is 2um / h
  • the thickness is 200nm
  • the barrier layer is An AlxGal-xN layer with a fixed Al component (25%) and a thickness of 25 nm grown at high temperature.
  • TMA1 flow rate is 200 sccm
  • TMGa flow rate is 90 sccm
  • NH 3 flow rate is 9000 seem
  • epitaxial growth surface temperature is 1060 ° C
  • reaction chamber pressure is 75mbar
  • V / III ratio The growth rate of the barrier under the growth conditions of surface temperature is 0.6um / h, and the growth time is 2.5min.
  • the doped superlattice can effectively deplete the background carrier concentration of the stress transfer layer, thereby obtaining a high-resistance GaN-based buffer layer with a low leakage value (0.027uA / mm 2 @ 650V).
  • an epitaxial structure of a high-resistance gallium nitride-based buffer layer with a unilaterally graded multiple quantum well includes: a substrate 1, a nucleation layer 2, and a unilaterally graded multiple quantum well that are stacked in order from bottom to top.
  • the gallium nitride-based high-resistance buffer layer 2 with a single-sided graded multiple quantum well includes a plurality of multiple quantum well stress transfer layers, and the content of A1 in the multiple quantum well stress transfer layers is determined by Decreasing from bottom to top
  • Each multi-quantum well stress transfer layer includes multiple multi-quantum well periods, and each multi-quantum well period further includes an A1 u Ga uN graded transition layer 3122 ... 3nl2 of a graded A1 composition and High A1 component A1 a
  • Ga J barrier layer The potential well layers 3113 ... 3nl3 make the content of the A1 component in each layer of the multi-quantum period increase or decrease unilaterally; the number of the multi-quantum periods is 3-100.
  • each multi-quantum well cycle further includes a high A1 component layered from bottom to top.
  • Gradual transition layers 3122 ... 3nl2 and low A1 composition Al b Ga uN potential well layers 3113 ... 3nl3; the number of multiple quantum cycles is 3-100.
  • the thickness of the high-eight 1-component 8 1 & 1 ⁇ barrier layer 3111 ... 3nl l is 1-5 nm, and the A1 component decreases A1 u
  • the thickness of the N potential well layer 3113.3nl3 is 3-100 nm.
  • the method for preparing the epitaxial structure of the high-resistance gallium nitride-based buffer layer with unilaterally graded multiple quantum wells includes the following steps:
  • A1N nucleation layer was grown on a 1-mm 6-inch Si substrate by MOCVD. Desorption at 1050 ° C 1
  • the oxide and impurities on the Si surface were removed in 5 min, and the step-like surface morphology was exposed. Then the nucleation layer grows at high temperature: the growth temperature is 1100 ° C, the flow rate of TMA1 in the MO source is 250 sccm, the flow rate of NH 3 is 3000 seem, the pressure of the reaction chamber is 70mbar, the growth rate is about 0.3um / h, and the growth time is 40min.
  • the thickness of A1N nucleation layer is about 200nm;
  • the average A1 composition of the first multi-quantum well stress transfer layer is about 74.5%, and the growth includes: 1
  • the growth condition of the Al a G a ia N layer with a high A1 composition (the A1 composition is 85%) is: flow TMGa MO source is 19sccm, TMA1 flow of 450 sccm, while the flow rate of NH 3 was 1500 sccm; the growth surface temperature of 1050 ° C, the growth time 14s, a thickness of about 3nm; composition graded decreasing 2 A1 A1 u Ga N
  • the growth conditions of the layer are: the flow of TMGa in the MO source is 19sccm to 36sccm, the flow of TMA1 is 450sccm to 370sccm, and the flow of NH 3 is 1500sccm; the surface temperature is 1050 ° C, growth time 5 (The A1 composition is 70%)
  • the growth conditions are: the flow rate
  • Growth includes: 1 AUGa ⁇ N layer with high A1 composition (60% A1 composition) Growth conditions: TMGa flow in MO source is 40sccm, TMA1 flow is 450s ccm, and NH 3 flow is 1500sccm; growth surface temperature 1050 ° C, the growth time 10s, a thickness of about 3nm; decreasing 2 A1 composition graded Al v G a iv N layer (A1 component gradient from 60% to 45%) growth conditions: the flow rate of TMGa MO source The gradient is 40sccm to 65sccm, the flow rate of TMA1 is 450sccm to 338sccm, and the flow rate of NH 3 is 1500sccm; the growth surface temperature is 1050 ° C, the growth time is 40s, and the thickness is about 12nm; (The A1 component is 45%) The growth conditions are: The flow rate of TMGa in the MO source is 65 s
  • the growth surface temperature is 1050 ° C
  • the growth time is 50s
  • the thickness is about 15nm
  • Growth includes: 1 AUGa ⁇ N layer with high A1 composition (35% of A1 composition) Growth conditions: The flow rate of TMGa in the MO source is 76 sccm, the flow rate of TMA1 is 263 s ccm, and the flow rate of NH 3 is 2000 sccm; growth The surface temperature is 1050 ° C and the growth time is 9s.
  • the thickness is About 3nm; decreasing 2 A1 composition graded Al w G a iw N layer (A1 component gradient from 35% to 20%) growth conditions: the flow rate of TMGa MO source 76sccm gradient to 95sccm, the flow rate was 263 TMA1 gradients seem to 150 sccm, while the NH 3 flow rate of 1500 sccm; a surface temperature of 1050 ° C, the growth time 36s thickness of about 12nm; 3 lower component A1 of Al f Ga f N layer (from 20% of component A1) is a growth conditions : The flow rate of TMGa in the MO source is 95 sccm, the flow rate of TMA1 is 150 sccm, and the flow rate of NH 3 is 2000 sccm; the surface temperature is 1050 ° C, the growth time is 45s and the thickness is about 15nm; repeat the growth for 50 cycles 1 -3 to obtain a thickness of A third multi-quantum well stress transfer layer with an average A1
  • a high-resistance GaN layer is grown on the above-mentioned multi-quantum well stress transfer layer having a single-sided gradient.
  • the high-resistance GaN layer is a GaN layer grown at low temperature and low pressure.
  • the flow rate of TMGa is 200 sccm, and the flow rate of NH 3 is 12000 seem.
  • the growth surface temperature is about 1000 ° C, the reaction chamber pressure is 50mbar, and the growth rate is about 2.5um / h.
  • the growth time is 40 minutes and the thickness is about 1600 nm.
  • the ground state energy levels of adjacent quantum wells are coupled to form a superlattice structure with a narrow potential well.
  • a high-resistance gallium nitride-based buffer layer can be realized; the alloy compound A1 x In y Ga mN ⁇ A ⁇ GaN can be used instead of A1 b Ga ⁇ N; the method of realizing A1 composition taper in a multi-quantum well structure except adjustment
  • the size of the MO source can also be achieved by adjusting the growth conditions (temperature, air pressure, etc.) of the quantum well.
  • each of the multiple quantum well periods includes a bottom-up arrangement: A1 component with decreasing A1 u Ga nN layer and low A1 component A1 b Ga J layer .
  • each of the multiple quantum well periods includes a layer from bottom to top: It still has to satisfy the average A1 composition of each group of multi-quantum wells gradually decreasing from bottom to top.
  • each of the multiple quantum well periods includes a bottom-to-top layer arrangement: a low A1 component Al a G a ia N layer, and an A1 component increasing Al u G a iu N layer, high A1 composition A1 b Ga N layer.
  • each of the multiple quantum well periods includes a bottom-up layer arrangement: an A1 component with increasing A1 u Ga i u N layer and a high A1 component A1 b Ga i_ b N layers.
  • each of the multiple quantum well cycles includes a bottom-up arrangement: an A1 component increasing A1 u Ga J layer, a low A1 component A1 a Ga N layer .
  • a high-resistance gallium nitride-based buffer layer epitaxial structure with a nano-step tapered layer is characterized by including a substrate, a nucleation layer, and a nano-step structure, which are stacked from bottom to top.
  • High-resistance Al x G a ix N buffer layer and high-resistance GaN buffer layer are stacked from bottom to top.
  • the high-resistance Al x Ga N buffer layer with nano steps includes a plurality of Al x Ga N nano step groups, and the content of A 1 in the steps of each of the Al x Ga N nano step groups is from the lowest layer to the most.
  • the upper layer changes in turn, two adjacent
  • the difference of the A1 component in the nanostep ranges from 2% to 50%.
  • the component content of A1 in the lowermost layer is 5% -100%, and the component content of A1 in the uppermost layer is 0% -90%. Every The thickness of the nano-step is 1-10 nm.
  • A1N nucleation layer 2 ' is grown on a 1-mm 6-inch Si substrate 1' by MOCVD. Desorption at 1050 ° C
  • the growth temperature is 1100 ° C
  • the flow of TMA1 is 250 seem
  • the flow of NH 3 is 300 ( ⁇ 011
  • the pressure of the reaction chamber is 70mbar
  • the growth rate is about 0.3um / h
  • the growth time is 40min.
  • A1N nucleation The layer thickness is about 200 nm.
  • GaN can also be used.
  • the growth surface temperature is 450-550 ° C; or the nucleation layer is a low-temperature A1N nucleation layer.
  • the growth surface temperature is 600-80 0 o C.
  • the high-resistance A1 x Ga uN buffer layer 3 ′ with nano steps includes a plurality of Al 1 x Ga N nano-steps 301-3011, and these steps are layered into multiple groups of multiple quantum well structures from bottom to top.
  • the average A1 composition of the first group of multi-quantum well structures is about 75%.
  • the growth includes: 1 growing Al x G a ix N layers with high A1 composition
  • the composition of A1 is 85%
  • the flow rate of TMGa in the MO source is 20 sccm
  • the flow rate of TMA1 is 500 seem
  • the flow rate of NH 3 is 1500 seem
  • the surface temperature is 1050 ° C
  • the growth time is 40s
  • the thickness is about 10nm Right
  • 2 Growth of three-layer nano-steps with decreasing A1 composition on the Al x G a ix N layer with high A1 composition (A1 composition is 80%, 75%, and 70%, respectively), and the growth conditions are:
  • MO source The flow rate of TMGa is 23sccm, 25sccm, 28sccm
  • the flow rate of TMA1 is 440sccm, 380sccm, 320sccm; meanwhile, NH 3
  • the flow rate is 1500; the surface temperature is 1050 ° C, the growth time of each layer is 20s and the thickness is about 5nm; 3 growth of Al x G a ix N layer with low A1 composition (65% of A1 composition), the growth conditions are: MO
  • the flow of TMGa in the source is 32 seem, the flow of TMA1 is 300 seem, and the flow of NH 3 is 1500 seem;
  • the surface temperature is 1050 ° C, the growth time is 40s, and the thickness is about 10nm;
  • Three layers of Al x G a ix N nano-steps with increasing A1 composition (70%, 75%, and 80% of A1 composition, respectively) continue to grow on the layer, and the growth conditions are:
  • the flow rate of TMGa in the M0 source is 28 sccm, 25 seem
  • the flow rate of 23sccm, TMA1 is 320sccm, 380sccm, 440sccm, and the flow rate of NH 3 is 1500 seem;
  • the high-resistance GaN buffer layer 4 ' is a GaN layer grown at low temperature and low pressure.
  • the flow rate of TMGa is 200 sccm, and the flow rate of NH ⁇ is 12000 seem.
  • the growth time is about 50 min and the thickness is about 2000 nm.
  • the group III nitride and its alloy compounds have Very polar.
  • the polarization intensity difference between A1N and GaN is as high as 0.052 C / cm 2 (0.081 C / m 2 -0.029C / m 2 ).
  • the interface can easily form a two-dimensional carrier leakage channel.
  • a nano-step gradient layer is introduced in this embodiment to slow down the polarization of the interface through multiple nano-steps.
  • the intensity change gradient avoids the formation of two-dimensional carriers, and at the same time, the carrier scattering effect at the step interface will be enhanced to obtain a high-resistance gallium nitride-based buffer layer.
  • obtaining high-resistance GaN through the A1 x Ga N multiple quantum well structure not only does not have to worry about contaminating the reaction chamber, but also can obtain high-quality high-resistance GaN-based buffer layer.
  • the vertical leakage results of the GaN-based epitaxial layer grown on the low-resistance Si substrate according to the above structure are shown in FIG. 5.
  • the multi-quantum well high-resistance layer can effectively deplete the background carrier concentration of the stress transfer layer to have Low leakage value (5nA / mm 2 @ 650V) high resistance gallium nitride based buffer layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种GaN基外延结构,包括由下至上层叠设置的:衬底、AlN成核层、多个周期结构和高阻GaN缓冲层;所述多个周期结构的至少一个周期结构包含高Al组分AlaGa1-aN层和Al组分递变AluGa1-uN层,其中a为10%-100%。本发明提供了一种高阻GaN基缓冲层外延结构及其制备方法,不用担心污染反应室,而且可以获得高质量的高阻GaN基缓冲层。

Description

GaN基外延结构及其制备方法
技术领域
[0001] 本发明涉及晶体管, 尤其涉及氮化镓基高电子迁移率晶体管。
背景技术
[0002] 生长高质量的半绝缘 GaN基缓冲层一直是 GaN基高电子迁移率场效应晶体管 ( High Electron Mobility Transistor, HEMT) 器件外延生长的关键技术之一 在 HEMT器件工作时 GaN基缓冲层的漏电不仅会使器件的夹断性能变差, 使栅极 对沟道电流的控制能力减弱从而恶化器件的整体性能, 同时会导致器件发热, 使器件输出特性变差进而影响到器件的可靠性和使用寿命, 因此为了获得良好 的器件特性和提高器件的可靠性, 必须生长高阻值 GaN基缓冲层减少器件工作时 的寄生漏电流。 另外, 缓冲层的缺陷密度 (位错密度, 掺杂等) 会直接影响 HE MT器件的二维电子气迁移率从而影响器件的导通电阻, 因此高质量的缓冲层也 是提高器件性能的重要指标。
[0003] 在利用金属有机化学气相沉积 (MOCVD) 生长 GaN基外延材料过程中由于背 景氧掺杂、 氮空位等缺陷的存在, 非故意掺杂生长的本征 GaN具有较高的背景电 子浓度 ( 10 16-10 17/cm 3左右) , 因此有必要减少 GaN基外延材料的背景电子浓度 以获得高阻值的 GaN基缓冲层。 通常获得高阻值 GaN基外延材料的方法有两大类 : 一类是通过控制在 MOCVD中外延 GaN过程的生长参数包括反应室气压, 生长 温度, 生长速率, V/III比等, 增加外延材料中的 p-型杂质数量或缺陷态密度来补 偿高的背景电子浓度进而获得高阻值 GaN基缓冲层; 另一种方法是通过在 GaN基 材料的外延生长中通入含有 Fe、 Cr、 Mg等金属元素的外源掺杂剂在禁带中形成 深能级缺陷或提供空穴补偿剩余载流子从而获得高阻值的 GaN基缓冲层。 第一种 方法是通过增加缺陷或者引入杂质获得高阻值 GaN外延层, 因此外延层的质量会 变差, 同时通过控制生长条件获得高阻值 GaN方法的设备依赖性较强, 重复性也 较差; 第二种方法引入金属杂质一般都具有较强的记忆效应会污染反应室使得 后续外延材料都有被金属杂质污染风险, 因此通常需要有一台专用的 MOCVD生 长高阻 GaN基外延材料而且引入杂质会使沟道 2DEG的迁移率下降影响器件特性
[0004] 因此找到一种既可以获得高阻 GaN基缓冲层同时又不会引入过多的杂质缺陷而 造成器件高压下电流崩塌的方法是高性能 GaN基 HEMT器件外延生长的关键。 发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 本发明的目的之一是提供一种氮化镓基外延结构及制备方法, 能够实现高阻值
[0006] 基于此, 本发明提供了一种具有 GaN基外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核层、 多个周期结构和高阻 GaN缓冲层; 其所述多个周期结构的至 少一个周期结构包含高
Figure imgf000004_0001
层,其中 a 为 10%- 100%。
[0007] 在一些实施例中, 所述多个周结构包含高阻 Al xGa i-xN异质结的多量子阱层中 , 所述多量子阱周期 n的个数为 10-100个, 其中一个或者多个所述多量子阱周期 中包含高
Figure imgf000004_0002
A1组分递减 A1 uGa i_uN层。
[0008] 在一个较佳实施例中: 所述每个多量子阱周期中包含由下至上层叠设置的: 低
Figure imgf000004_0003
递减 A1 uGa 层、 低 A1组分 A1 bGa uN层; 其中高 A1组分 A1 aGa N层的 A1含量 范围为 10%-100%; 低 A1组分 Al bGa i-bN层中 A1含量范围为 0%-90%, 并且高 A1组 分 A1 aGa hN层的 A1含量大于低 A1组分 A1 bGa uN层中 A1含量。
[0009] 在一个较佳实施例中: 所述每个多量子阱周期中包含由下至上层叠设置的: A1 组分递减 Al uGa i-uN层、 A1组分递增 Al vGa i-vN层、 高 A1组分 A1 aGa aN层、 A1组 分递减 A1 uGa i_uN层。
[0010] 在一个较佳实施例中: 所述每个多量子阱周期中包含由下至上层叠设置的: A1 组分递减 A1 uGa nN层、 A1组分递增 A1 vGa ivN层、 A1组分递减 A1 uGa i_uN层。
[0011] 在一些实施例中, 所述多个周期结构包含极化掺杂超晶格结构, 所述超晶格周 期的个数为 10-100个, 其中一个或者多个超晶格周期中包含层叠设置的 A1组分逐 渐降低的极化 P-型掺杂 A1 xGa N层和 A1组分逐渐增加的极化 n-型掺杂 A1 yGa hN 层。
[0012] 在一个较佳实施例中, 所述超晶格结构包含由下至上层叠设置的第一超晶格结 构、 第二超晶格结构和第三超晶格结构, 所述第一晶格结构的平均 A1组分为 XI, 所述第二晶格结构的平均 A1组分为 X2,所述第三晶格结构的平均 A1组分为 X3,其 中 X1>X2>X3。
[0013] 在一些实施例中, 所述多个周期结构包含一多量子阱应力传递层, 该多量子阱 应力传递层包括 3-100个多量子阱周期, 其中至少一个多量子阱周期中进一步包 括 A1组分渐变的 A1 uGa uN渐变过渡层以及高 A1组分 A1 aGa N势垒层和 /或低 A1 组分 Al bGa ,_bN势阱层, 使得所述多量子周期中每一层中 A1组分含量单边递增或 递减, 其中 a>b。
[0014] 较佳的, 每一个多量子阱周期中进一步包括由下至上层叠设置的高 A1组分 A1 a Ga hN势垒层、 A1组分递减 A1 uGa i_uN渐变过渡层和低 A1组分 A1 bGa uN势阱层, 其中 a>b。
[0015] 较佳的, 所述高
Figure imgf000005_0001
渐变过渡层的厚度为 3-100nm、 低 A1组分 Al bGa i_bN势阱层的厚度为 3-100nm。
[0016] 在一些实施例中, 所述多个周期结构包含多个 Al xGa i-xN纳米台阶组, 至少一 个所述 A1 xGa N纳米台阶组的台阶中 A1的含量由最下层至最上层依次递变, 相 邻两个
Figure imgf000005_0002
纳米台阶中 A1组分的差值范围为 2%-50%。
[0017] 较佳的, 所述 Al xGa i-xN纳米台阶中, 纳米台阶两侧的高 A1层中 A1的组分含量 为 5%-100%, 纳米台阶两侧的低 A1层中 A1的组分含量为 0%-90%。
[0018] 较佳的, 每一个 Al xGa i-xN纳米台阶的厚度为 l-10nm。
[0019] 较佳的, 所述多个 Al xGa uN纳米台阶组由下至上分为多组多量子阱结构, 其 中位于下部的多量子阱结构的平均 A1组分高于位于上部的多量子结构的平均 A1 组分。
[0020] 本发明还提供了一种如上所述的高阻 GaN基缓冲层外延结构的制备方法, 包括 以下步骤: [0021] 1)利用金属有机化学气相沉积设备在所选用的衬底上生长出成核层;
[0022] 2) 在成核层上继续外延生长包含高阻 Al xGa i-xN异质结的多量子阱层, 所述包 含高阻 A1 xGa uN异质结的多量子阱层中, 每个多量子阱周期中包含高 A1组分 A1 a Ga hN层, A1组分递减 A1 uGa i_uN层; 具体的制备方法为;
[0023] 3) 在包含高阻 Al xGa i-xN异质结的多量子阱层上生长高阻的 GaN缓冲层。
[0024] 本发明还提供了一种高阻 GaN基缓冲层外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核层、 至少一层包含极化掺杂超晶格的缓冲层、 高阻 GaN缓冲层、 GaN沟道层、 A1 zGa !-ZN势垒层;
[0025] 所述包含极化掺杂超晶格的缓冲层中, 每个超晶格周期中包含层叠设置的低 A1 组分逐渐降低的极化 p-型掺杂 A1 xGa uN层, A1组分逐渐增加的极化 n-型掺杂 A1 y Ga HN层; 所述超晶格周期的个数为 10-100个。
[0026] 本发明还提供了一种如上所述的高阻 GaN基缓冲层外延结构的制备方法, 其特 征在于包括以下步骤:
[0027] 1) 利用金属有机化学气相沉积设备在衬底上高温外延生长 A1N成核层;
[0028] 2) 在 A1N成核层上生长 A1组分逐渐降低的极化 p-型掺杂 Al xGa i-xN层, 接着生 长 A1组分逐渐增加的极化 n-型掺杂 Al yGa H层; 重复生长 10-100个周期的上述极 化 p-型掺杂 A1 xGa N层和极化 n-型掺杂
Figure imgf000006_0001
从而形成一层包含极化掺 杂超晶格的缓冲层;
[0029] 3) 根据包含极化掺杂超晶格的缓冲层的层数重复步骤 2;
[0030] 4) 在包含极化掺杂超晶格的缓冲层上生长高阻 GaN缓冲层;
[0031] 5) 在高阻 GaN缓冲层上生长高质量 GaN沟道层;
[0032] 6) 在 GaN沟道层上生长 Al zGa i— ZN势垒层。
[0033] 为了解决上述的技术问题, 本发明提供了具有单边渐变多量子阱高阻氮化镓基 缓冲层外延结构, 包括: 由下至上依次层叠设置的衬底、 成核层、 具有单边渐 变多量子阱氮化镓基高阻缓冲层和 GaN缓冲层:
[0034] 所述具有单边渐变多量子阱氮化镓基高阻缓冲层包含多个多量子阱应力传递层 , 所述多个多量子阱应力传递层中 A1的含量由下至上依次减少;
[0035] 所述多量子阱应力传递层中包括多个多量子阱周期, 每一个多量子阱周期中进 一步包括 A1组分渐变的 A1 uGa uN渐变过渡层以及高 A1组分 A1 aGa N势垒层和 / 或低 A1组分 Al bGa ,_bN势阱层, 使得所述多量子周期中每一层渐变过渡层中 A1组 分含量单边递增或递减; 所述多量子周期的个数为 3-100。
[0036] 在一较佳实施例中: 每一个多量子阱周期中进一步包括由下至上层叠设置的高 A1组分 A1 aGa hN势垒层、 A1组分递减 A1 uGa i_uN渐变过渡层和低 A1组分 A1 bGa ^ N势阱层; 多量子周期的个数为 3-100。
[0037] 在一较佳实施例中: 所述高 A1组分 Al aGa i-aN势垒层的厚度为 l-5nm、 A1组分递 减 A1 uGa uN渐变过渡层的厚度为 3-100nm、 低 A1组分 A1 bGa a
N势阱层的厚度为 3-100nm。
[0038] 本发明还提供了具有单边渐变多量子阱高阻氮化镓基缓冲层外延结构的制备方 法, 包括如下步骤:
[0039] 1)在衬底上生长成核层;
[0040] 2) 在成核层上生长具有单边渐变多量子阱氮化镓基高阻缓冲层, 所述具有单 边渐变多量子阱氮化镓基高阻缓冲层包含多个多量子阱应力传递层, 所述多个 多量子阱应力传递层中 A1的含量由下至上依次减少;
[0041] 所述多量子阱应力传递层中包括多个多量子阱周期, 每一个多量子阱周期中进 一步包括 A1组分渐变的 A1 uGa uN渐变过渡层以及高 A1组分 A1 aGa N势垒层和 / 低 A1组分 Al bGa ,_bN势阱层, 使得所述多量子周期中每一层中 A1组分含量单边递 增或递减; 所述多量子周期的个数为 3-100;
[0042] 3) 在具有单边渐变多量子阱氮化镓基高阻缓冲层上生长高阻 GaN缓冲层。
[0043] 在一较佳实施例中: 所述成核层为高温 A1N成核层, 生长高温 A1N成核层时, 生长表面温度为 1(XXM200°C; 或者所述成核层为 GaN, 生长 GaN成核层时, 生 长表面温度为 450-550°C; 所述成核层为低温 A1N成核层, 生长表面温度为 600-80 ooc
[0044] 在一较佳实施例中: 步骤 2中, 生长高 A1组分 Al bGa ^
N势垒层的具体参数是: MO源中 TMGa的流量为 0-80sccm, TMA1的流量为 20-60 Osccm, NH 3 流量为 1500-30000sccm, 生长表面温度 1000-1100°C。
[0045] 在一较佳实施例中: 步骤 2中, 生长 A1组分递减 Al uGa i-uN渐变过渡层的具体参 数是: MO源中 TMGa的流量 comh, TMA1的流量为 0-600sccm, NH 3的流量为 1500-30000sccm, 生长表面温度 1000-1100°C。
[0046] 在一较佳实施例中: 步骤 2中, 生长低 A1组分 Al aGa i-aN窄势阱层的具体参数是 : MO源中 TMA1的流量从 20-600sccm到 0-600sccm逐渐减小, TMGa的流量从 0-80 seem到 15-400sccm逐渐增加, 同时 NH 3的流量为 1500-30000sccm, 生长的表面温 度 1000-1100oC。
[0047] 在一较佳实施例中: 步骤 3中, 生长高阻 GaN缓冲层的具体参数为: MO源中 T MGa的流量为 100~500sccm, NH 3的流量为 10000〜 15000sccm, 生长表面温度为 950〜 1050°C, 反应室气压为 10〜 80mbar, 生长速率为 1.5〜 3um/h。
[0048] 为了解决上述的技术问题, 本发明提供了一种具有纳米台阶递变层的高阻氮化 镓基缓冲层外延结构, 包括由下至上层叠设置的衬底、 成核层、 具有纳米台阶 的高阻 A1 xGa N缓冲层和高阻 GaN缓冲层:
[0049] 所述具有纳米台阶的高阻 A1 xGa N缓冲层包含多个 A1 xGa N纳米台阶组, 每 一个所述 A1 xGa N纳米台阶组的台阶中 A1的含量由最下层至最上层依次递变, 相邻两个
Figure imgf000008_0001
纳米台阶中 A1组分的差值范围为 2%-50%。
[0050] 在一较佳实施例中: 所述 Al xGa i-xN纳米台阶中, 纳米台阶两侧中的高 A1层中 A1的组分含量为 5%-100%, 纳米台阶两侧中的低 A1层中 A1的组分含量为 0%-90%
[0051] 在一较佳实施例中: 每一个 Al xGa i-xN纳米台阶的厚度为 l-10nm。
[0052] 本发明还提供了一种具有纳米台阶递变层的高阻氮化镓基缓冲层外延结构的制 备方法, 包括如下步骤:
[0053] 1)在衬底上生长成核层;
[0054] 2) 在成核层上通过阶梯式改变生长参数, 生长出具有纳米台阶的高阻 Al xGa i-x
N缓冲层;
[0055] 3) 在具有纳米台阶的高阻 Al xGa i-xN缓冲层上生长高阻 GaN缓冲层。
[0056] 在一较佳实施例中: 所述成核层为高温 A1N成核层, 生长高温 A1N成核层时, 生长表面温度为 1(XXM200°C; 或者所述成核层为 GaN, 生长 GaN成核层时, 生 长表面温度为 450-550°C; 所述成核层为低温 A1N成核层, 生长表面温度为 600-80 ooc
[0057] 在一较佳实施例中: 步骤 2中, 生长具有纳米台阶的高阻 Al xGa i-xN缓冲层的具 体参数是: MO源中 TMGa的流量为 10〜 80sccm, TMA1流量的为 10〜 600sccm, NH 3的流量为 1500〜 30000sccm, 生长表面温度为 1000〜 1100°C。
[0058] 在一较佳实施例中: 步骤 3中, 生长高阻 GaN缓冲层的具体参数是: MO源中 T MGa的流量为 100〜 500sccm, NH 3的流量为 10000〜 15000sccm, 生长表面温度 为 950〜 1050°C, 反应室气压为 10〜 80mbar, 生长速率为 1.5〜 3um/h。
发明的有益效果
有益效果
[0059] 相较于现有技术, 本发明的技术方案具备以下有益效果:
[0060] 1、 本发明通过生长周期性的不同 A1组分的 Al xGa i-xN多量子阱结构, 在 A1组分 渐变区形成具有剩余正负极化电荷的空间区域, 利用正负极化电荷产生的极化 电场耗尽外延材料中的背景电子浓度从而获得高阻值的 GaN基缓冲层。 与传统的 控制 MOCVD生长参数和引入金属杂质能级获得高阻值 GaN方法相比, 通过 A1 x Ga uN多量子阱结构获得高阻 GaN不仅不用担心污染反应室, 而且可以获得高质 量的高阻 GaN基缓冲层;
[0061] 2、 本发明通过生长 Al xGa i-xN基多量子阱结构, 利用渐变界面层可以有效减小 极化强度变化梯度从而避免量子阱中导电沟道形成, 利用突变界面可以有效限 制势垒中的载流子和阻挡高压下的载流子纵向运动, 因此可以获得高阻值的 GaN 基缓冲层;
[0062] 3、 通过设计 A1 xGa N基多量子阱中的各层的 A1组分和厚度可以用来作为 Si衬 底上 GaN外延生长的高阻应力传递缓冲层以及 HEMT器件结构中的高阻值背势垒 层;
[0063] 4、 利用量子阱周期性的应力变化可以促进穿透位错湮灭提高硅基 GaN外延片 的晶体质量
[0064] 5、 在缓冲层生长过程中不同 A1组分的 Al xGa i-xN界面处采用纳米台阶递变层可 以一方面减小不同 A1组分层间的极化强度变化梯度避免界面二维载流子形成减 小界面电流横向扩展从而减小垂直漏电流; 另一方面由多层纳米台阶组成的递 变层可以增强界面处的载流子散射进而减小漏电流增加缓冲层的阻值; 通过上 述两方面的作用包含纳米台阶递变层缓冲层可以减小高电压下缓冲层的漏电实 现高阻值的氮化镓基缓冲层生长。
对附图的简要说明
附图说明
[0065] 图 1为本发明优选实施例中具有单边渐变多量子阱高阻氮化镓基缓冲层的分层 结构图;
[0066] 图 2为本发明优选实施例中具有单边渐变多量子阱氮化镓基高阻缓冲层的分层 结构图;
[0067] 图 3为本发明优选实施例中具有纳米台阶递变层的高阻氮化镓基缓冲层的分层 结构图;
[0068] 图 4为本发明优选实施例中纳米台阶递变层的分层结构图;
[0069] 图 5为本发明优选实施例中具有纳米台阶递变层的高阻氮化镓基缓冲层的垂直 漏电曲线图。
发明实施例
本发明的实施方式
[0070] 本发明提供了一种 GaN基外延结构, 包括由下至上层叠设置的: 衬底、 A1N成 核层、 多个周期结构和高阻 GaN缓冲层; 所述多个周期结构的至少一个周期结构 包含高 A1组分 A1 aGa aN层和 A1组分递变 A1 uGa UN层,其中 a为 10%- 100% , A1组 分递变 Al uGa i-uN层中 A1组分可以是线性渐变或台阶渐变, 下面结合实施例, 对 本发明作进一步说明。
[0071] 实施例 1
[0072] 一种高阻 GaN基缓冲层外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核 层、 包含高阻 A1 xGa uN异质结的多量子阱层和高阻 GaN缓冲层;
[0073] 所述包含高阻 Al xGa i-xN异质结的多量子阱层中, 每个多量子阱周期中包含
[0074] 由下至上层叠设置的: 低 A1组分 Al bGa i-bN层、 A1组分递增 A1 vGa N层、 高 A1
Figure imgf000010_0001
[0075] 在包含高阻 A1 xGa N异质结的多量子阱层中, 由于 A1组分递减 A1 xGa N层和 A1组分递增 A1 xGa uN层存在空间分离的极化正负电荷, 极化电荷间的电场可以 使氮化镓基材料中的高背景载流子束缚在空间分离的极化电荷附近从而降低自 由移动背景载流子浓度, 减小高电压下材料的漏电实现高阻值的氮化镓基缓冲 层。
[0076] 上述的高阻 GaN基缓冲层外延结构的制备方法, 包括以下步骤:
[0077] 1)利用金属有机化学气相沉积设备 (MOCVD) 在所选用的异质外延衬底 (蓝 宝石, SiC, Si) 上生长成核层, 其中成核层可以是高温 A1N或者低温 GaN或者低 温 A1N; 生长高温 A1N成核层的表面温度为 1(XXM200°C, 厚度为 100-500nm; 生 长低温 GaN成核层表面温度为 450-550°C, 厚度为 10-30nm; 生长低温 ALN成核层 表面温度为 600-800°C, 厚度为 10-50nm;
[0078] 2) 在衬底上面继续外延生长包含高阻 Al xGa i-xN异质结的多量子阱层, 所述包 含高阻 A1 xGa N异质结的多量子阱层, 包括高 A1组分 A1 aGa N层, A1组分递减 Al uGa iJl渡层, 低 A1组分 Al bGa i-bN层, 和 A1组分递增 Al vGa i-v过渡层, 外延生 长的具体参数为:
[0079] ①.生长高 A1组分的 Al aGa i-aN层, TMGa流量为 0-80sccm, TMA1流量为
50-600sccm, NH 3的流量为 1500-30000 seem, 外延生长表面温度 1000-1100°C, 在上述 MO流量, V/III比和表面温度的生长条件下 A1 aGa
N层生长速度为 lum/h-3um/h, A1组分为 10%- 100%, 厚度为 0-50nm;
[0080] ② .生长 A1组分递减的 Al uGa i-uN过渡层, 这一层生长过程中 TMA1流量从高
50-600sccm到低 0-500sccm逐渐减小, TMGa流量从低 0-80sccm到高 25-400sccm逐 渐增加同时 NH 3的流量为 1500-30000 seem, 外延生长的表面温度 1000-1100°C; 在上述 MO流量, V/III比和表面温度的生长条件下 A1 uGa nN过渡层生长速度为 0.5um/h-3um/h, A1 uGa N组分递减层的 A1组分从 100%-10%左右逐渐降低到 90%-0% , 厚度为 5-50nm。 由于极化效应组分逐渐减低的 A1 uGa
Figure imgf000011_0001
层中存在空 间极化剩余负电荷;
[0081]
Figure imgf000011_0002
的生长低
Figure imgf000011_0003
TMGa流量为
25-400sccm, TMA1流量为 0-500sccm, NH 3的流量为 1500-30000 seem, 外延生长 表面温度 1000-1100°C, 在上述 MO流量, V/III比和表面温度的生长条件下 Al bGa i_bN层生长速度为 lum/h-3um/h, A1组分为 0%-90%, 厚度为 0-50nm;
[0082] ④ .在低
Figure imgf000012_0001
层上生长 A1组分递增的 A1 vGa ivN过渡层, 这一层的 生长过程中 TMA1流量从低 0-500sccm到高 50-600sccm逐渐增加, TMGa流量从高 2 5-400sccm到低 0-80sccm逐渐减小, 同时 NH 3的流量为 1500-30000 seem, 外延生 长的表面温度 1000-1100°C; 在上述 MO流量, V/III比和表面温度的生长条件下 A1 过渡层生长速度为 0.5um/h-3um/h, A1 vGa i_vN组分递增层的 A1组分从
0%-90%逐渐增加到 10%-100%, 厚度为 5-50nm。 由于极化效应组分逐渐增加的 A
Figure imgf000012_0002
中存在空间极化剩余正电荷;
[0083] 重复或阶梯式改变参数地生长一定周期的上述多量子阱异质结结构得到包含高 阻 A1 xGa uN异质结的多量子阱层。
[0084] 3) 在包含高阻 Al xGa i-xN异质结的多量子阱层上生长 0.5-2um的高阻的 GaN缓冲 层, 外延生长参数为: TMGa流量为 100~500sccm, NH 3流量为 10000〜 15000 seem, 生长表面温度为 950〜 1050°C, 反应室气压为 10〜 80mbar, 生长速率为 1.5〜 3um/h。
[0085] 实施例 2
[0086] 本实施例与实施例 1的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: A1组分递减 Al uGa i-uN层、 A1组分递增 Al vGa i-vN层、 高 A1组分 A1 aGa ^ N层。
[0087] 实施例 3
[0088] 本实施例与实施例 1的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: A1组分递减 A1 uGa nN层、 A1组分递增 A1 vGa pvN层。
[0089] 实施例 4
[0090] 一种高阻 GaN基缓冲层外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核 层、 包含极化掺杂超晶格的缓冲层、 高阻 GaN缓冲层、 GaN沟道层、 A1 zGa !-ZN 势垒层;
[0091] 所述包含极化掺杂超晶格的缓冲层中, 每个超晶格周期中包含层叠设置的 A1组 分逐渐降低的极化 P-型掺杂 A1 xGa uN层, A1组分逐渐增加的极化 n-型掺杂 A1 yGa i-yNjl ; 所述超晶格周期的个数为 10-100个。 [0092] 上述的高阻 GaN基缓冲层外延结构的制备方法, 其特征在于包括以下步骤: [0093] ( 1) 利用金属有机化学气相沉积设备在 Si衬底上生长 A1N成核层。 在 1050°C高 温脱附 15min去掉 Si表面的氧化物和杂质, 露出台阶状的表面形貌。 然后高温下 生长成核层: 生长温度为 1100°C, TMA1流量为 250 seem, NH 3流量300(^011, 反应室气压为 70mbar, 生长速度 0.3um/h左右, 生长时间 40min。 A1N成核层厚度 为 200nm左右;
[0094] (2) 利用金属有机化学气相沉积设备继续在 A1N成核层上继续生长平均 A1组分 为 72.5%左右的极化掺杂超晶格结构作为第一层超晶格应力传递层。 第一层极化 掺杂超晶格生长包括:
[0095] ①极化掺杂 p-型 Al xGa i-xN层, 生长条件为: MO流量其中 TMGa从 25sccm线形 增加到 35sccm, TMA1从 500 seem线形减小到 400sccm, 同时 NH 3的流量为 1500 seem增加到 2000 (A1组分从 80%渐变到 65%) ; 表面温度 1050°C, 生长时间 45s 厚度为 10nm左右;
[0096] ②然后再在 p-型 Al xGa i-xN上生长极化掺杂 n-型 Al yGa HN层, 生长条件为: MO 流量其中 TMGa从 35sccm线形减小到 25 seem, TMA1从 400sccm线形增加到 500sccm, 同时 NH 3的流量为 2000 seem减小到 1500
seem (A1组分从 65%渐变到 80%) ; 表面温度 1050°C, 生长时间 45s厚度为 10nm 左右; 重复生长 10-100个周期的①-②得到厚度为 200nm左右平均 A1组分 72.5%的 包含极化掺杂超晶格的缓冲层;
[0097] (3) 利用金属有机化学气相沉积设备继续在平均 A1组分 72.5%的包含极化掺杂 超晶格的缓冲层上继续生长平均 A1组分为 47.5%左右的极化掺杂超晶格作为第二 层包含极化掺杂超晶格的缓冲层。 第二层包含极化掺杂超晶格的缓冲层的生长 过程为:
[0098] ①极化掺杂 p-型 Al xGa i-xN层, 生长条件为: M0流量其中 TMGa从 58sccm线形 增加到 75sccm, TMA1从 450 seem线形减小到 320sccm, 同时 NH 3的流量为 1500 seem增加到 1800 (A1组分从 55%渐变到 40%) ; 表面温度 1050°C, 生长时间 40s 厚度为 10nm左右;
[0099] ②然后再在 p-型 Al xGa i-xN上生长极化掺杂 n-型 Al yGa HN层, 生长条件为: M0 流量其中 TMGa从 75sccm线形减小到 58 seem, TMA1从 320 seem线形增加到 450 seem, 同时 NH 3的流量为 1800 seem减小到 1500 seem (A1组分从 40%渐变到 55%
) ; 表面温度 1050°C, 生长时间 40s厚度为 10nm左右; 重复生长 40个周期的①-② 得到厚度为 800nm左右平均 A1组分 47.5%的包含极化掺杂超晶格的缓冲层;
[0100] (4) 利用金属有机化学气相沉积设备继续在 (3) 的 47.5%的包含极化掺杂超 晶格的缓冲层上继续生长平均 A1组分为 22.5%左右的包含极化掺杂超晶格的缓冲 层作为第三层。 第三层包含极化掺杂超晶格的缓冲层的生长过程为:
[0101] ①极化掺杂 p-型 Al xGa i-xN层, 生长条件为: M0流量其中 TMGa从 120sccm线形 增加到 170sccm, TMA1从 400 seem线形减小到 200 seem, 同时 NH 3的流量为 1500 seem增加到 2000 seem (A1组分从 30%渐变到 15%) ; 表面温度 1050°C, 生长时 间 35s厚度为 10nm左右;
[0102] ②然后再在 p-型 Al xGa i-xN上生长极化掺杂 n-型 Al yGa HN层, 生长条件为: M0 流量其中 TMGa从 170线形减小到 120sccm, TMA1从 200 seem线形增加到 400sccm , 同时 NH 3的流量为 2000 seem减小到 1500 seem (A1组分从 15%渐变到 30%) ; 表面温度 1050°C, 生长时间 35s厚度为 10nm左右; 重复生长 80个周期的①-②得到 厚度为 1.6um左右平均 A1组分 22.5%的极化掺杂超晶格结构应力传递层;
[0103] (5) 在包含极化掺杂超晶格的缓冲层上生长高阻 GaN层, 高阻 GaN层为低温 低压生长的 GaN层, TMGa流量为 200sccm, 同时 NH 3的流量为 12000 seem, 生长 表面温度为 980°C, 反应室气压为 50mbar, 生长速率为 2.5um/h左右, 生长时间为 50min, 厚度为 2000nm左右;
[0104] (6) 在高阻 GaN层上生长沟道层和势垒层。 沟道层为高温 GaN层, TMGa流量 为 200sccm, 同时 NH ^流量为 30000 seem, 生长表面温度为 1060°C, 反应室气 压为 200mbar, 生长速率为 2um/h, 厚度为 200nm; 势垒层为高温生长的固定 A1组 分 (25%) 厚度为 25nm的 AlxGal-xN层。 具体生长条件为: 生长过程中 TMA1流 量为 200sccm, TMGa流量为 90sccm, NH 3的流量为 9000 seem, 外延生长的表面 温度 1060°C, 反应室气压为 75mbar, 在上述 MO流量, V/III比和表面温度的生长 条件下势垒生长速度为 0.6um/h, 生长时间为 2.5min。
[0105] 按照上面结构在低阻 Si衬底上生长的 GaN基外延层的经过垂直漏电实验后, 极 化掺杂超晶格可以有效耗尽应力传递层的背景载流子浓度, 从而得到具有低漏 电值 (0.027uA/mm 2 @650V) 的高阻 GaN基缓冲层。
[0106] 实施例 5
[0107] 参考图 1, 具有单边渐变多量子阱高阻氮化镓基缓冲层外延结构, 包括: 由下 至上依次层叠设置的衬底 1、 成核层 2、 具有单边渐变多量子阱氮化镓基高阻缓 冲层 3和 GaN缓冲层 4:
[0108] 进一步参考图 2, 所述具有单边渐变多量子阱氮化镓基高阻缓冲层 2包含多个多 量子阱应力传递层, 所多个多量子阱应力传递层中 A1的含量由下至上依次减少
[0109] 每一个多量子阱应力传递层中包括多个多量子阱周期, 每一个多量子阱周期中 进一步包括 A1组分渐变的 A1 uGa uN渐变过渡层 3122......3nl2以及高 A1组分 A1 a
Ga J势垒层
Figure imgf000015_0001
势阱层 3113......3nl3 , 使得所 述多量子周期中每一层中 A1组分含量单边递增或递减; 所述多量子周期的个数 为 3-100。
[0110] 本实施例中, 每一个多量子阱周期中进一步包括由下至上层叠设置的高 A1组分
Figure imgf000015_0002
渐变过渡层 3122......3nl2 和低 A1组分 Al bGa uN势阱层 3113......3nl3; 多量子周期的个数为 3-100。
[0111] 所述高八1组分八1 & 1_^势垒层3111......3nl l的厚度为 l-5nm、 A1组分递减 A1 u
Ga uN渐变过渡层 3122......3nl2的厚度为 3-100nm、 低 A1组分 A1 bGa
N势阱层 3113.3nl3的厚度为 3-100nm。
[0112] 上述具有单边渐变多量子阱高阻氮化镓基缓冲层外延结构的制备方法, 包括如 下步骤:
[0113] ( 1) 利用 MOCVD在 1mm的 6寸 Si衬底上生长 A1N成核层。 在 1050°C高温脱附 1
5min去掉 Si表面的氧化物和杂质, 露出台阶状的表面形貌。 然后高温下生长成核 层: 生长温度为 1100°C, MO源中 TMA1的流量为 250sccm, NH 3 流量为 3000 seem, 反应室气压为 70mbar, 生长速度 0.3um/h左右, 生长时间 40min。 A1N成核 层厚度为 200nm左右;
[0114] (2) 利用 MOCVD继续在 A1N成核层上继续生长具有单边渐变多量子阱氮化镓 基高阻缓冲层, 其包括包含多个多量子阱应力传递层。
[0115] 第一多量子阱应力传递层的平均 A1组分为 74.5%左右, 生长包括: ①高 A1组分 的 Al aGa i-aN层 (A1组分为 85%) 的生长条件为: MO源中 TMGa的流量为 19sccm , TMA1的流量为 450sccm, 同时 NH 3的流量为 1500sccm; 生长表面温度 1050°C , 生长时间 14s, 厚度为 3nm左右; ② A1组分递减的渐变 A1 uGa N层 (A1组分从 85%渐变到 70%) 的生长条件为: MO源中 TMGa的流量为 19sccm渐变到 36sccm , TMA1的流量为 450sccm渐变到 370sccm, 同时 NH 3的流量为 1500sccm; 表面温 度 1050°C, 生长时间 5
Figure imgf000016_0001
(A1组分 为 70%) 的生长条件为: MO源中 TMGa的流量为 36sccm, TMA1的流量为 370scc m, 同时 NH 3的流量为 2000sccm; 生长表面温度 1050°C, 生长时间 60s厚度为 15nm左右; 重复生长 12个周期的①-③得到厚度为 360nm左右平均 A1组分 74.5%的 第一多量子阱应力传递层;
[0116] (3) 利用 MOCVD继续在第一多量子阱应力传递层上继续生长平均 A1组分为 49
.5%左右的第二多量子阱应力传递层。 生长包括: ①高 A1组分的 AUGa ^N层 (A1 组分为 60%) 生长条件为: MO源中 TMGa的流量为 40sccm, TMA1的流量为 450s ccm, 同时 NH 3 流量为 1500sccm; 生长表面温度 1050°C, 生长时间 10s, 厚度 为 3nm左右; ② A1组分递减的渐变 Al vGa i-vN层 (A1组分从 60%渐变到 45%) 生长 条件为: MO源中 TMGa的流量为 40sccm渐变到 65sccm, TMA1的流量为 450sccm 渐变到 338sccm, 同时 NH 3的流量为 1500sccm; 生长表面温度 1050°C, 生长时间 40s , 厚度为 12nm左右;
Figure imgf000016_0002
(A1组分为 45%) 的生长条件 为: MO源中 TMGa的流量为 65sccm,
Figure imgf000016_0003
为 2000sccm; 生长表面温度 1050°C, 生长时间 50s, 厚度为 15nm左右; 重复生长 36个周期的①-③得到厚度为 1080nm左右平均 A1组分 49.5%的第二多量子阱应力传 递层;
[0117] (4) 利用 MOCVD继续在第二多量子阱应力传递层上继续生长平均 A1组分为 24
.5%左右的第三多量子阱应力传递层。 生长包括: ①高 A1组分的 AUGa ^N层 (A1 组分为 35%) 生长条件为: MO源中 TMGa的流量为 76sccm, TMA1的流量为 263s ccm, 同时 NH 3的流量为 2000sccm; 生长表面温度 1050°C, 生长时间 9s厚度为 3nm左右; ② A1组分递减的渐变 Al wGa i-wN层 (A1组分从 35%渐变到 20%) 生长条 件为: MO源中 TMGa的流量为 76sccm渐变到 95sccm, TMA1的流量为 263 seem渐 变到 150sccm, 同时 NH 3 流量为 1500sccm; 表面温度 1050°C, 生长时间 36s厚度 为 12nm左右; ③低 A1组分的 Al fGa fN层 (A1组分从 20%) 的生长条件为: MO源 中 TMGa的流量为 95sccm, TMA1的流量为 150sccm, 同时 NH 3的流量为 2000sccm ; 表面温度 1050°C, 生长时间 45s厚度为 15nm左右; 重复生长 50个周期的① -③得 到厚度为 1.5um左右平均 A1组分 25%的第三多量子阱应力传递层;
[0118] (5) 上述多具有单边渐变多量子阱应力传递层上生长高阻 GaN层。 高阻 GaN 层为低温低压生长的 GaN层, TMGa流量为 200sccm, 同时 NH 3的流量为 12000 seem, 生长表面温度为 1000°C左右, 反应室气压为 50mbar, 生长速率为 2.5um/h 左右, 生长时间为 40min, 厚度为 1600nm左右。
[0119] 作为本发明的简单替换, 当高 A1组分 Al bGa i-bN势垒层厚度小于 10nm时相邻量 子阱的基态能级产生耦合形成具有窄势阱的超晶格结构也可以实现高阻氮化镓 基缓冲层; 可以利用含 In的合金化合物 A1 xIn yGa mN^A^GaN替代 A1 bGa ^N; 在多量子阱结构中实现 A1组分递变的方法除了调节 MO源的大小也可以通过调节 量子阱的生长条件 (温度, 气压等) 实现量子阱结构中 A1组分的递变。
[0120] 实施例 6
[0121] 本实施例与实施例 5的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: A1组分递减 A1 uGa nN层、 低 A1组分 A1 bGa J层。
[0122] 实施例 7
[0123] 本实施例与实施例 5的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的:
Figure imgf000017_0001
其依然要满足由下至 上每组多量子阱的平均 A1组分逐渐减小。
[0124] 实施例 8
[0125] 本实施例与实施例 5的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: 低 A1组分 Al aGa i-aN层、 A1组分递增 Al uGa i-uN层、 高 A1组分 A1 bGa N 层。
[0126] 实施例 9 [0127] 本实施例与实施例 5的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: A1组分递增 A1 uGa iuN层、 高 A1组分 A1 bGa i_bN层。
[0128] 实施例 10
[0129] 本实施例与实施例 5的区别在于: 所述每个多量子阱周期中包含由下至上层叠 设置的: A1组分递增 A1 uGa J层、 低 A1组分 A1 aGa N层。
[0130] 实施例 11
[0131] 参考图 3和 4, 一种具有纳米台阶递变层的高阻氮化镓基缓冲层外延结构, 其特 征在于包括由下至上层叠设置的衬底、 成核层、 具有纳米台阶的高阻 Al xGa i-xN 缓冲层和高阻 GaN缓冲层:
[0132] 所述具有纳米台阶的高阻 A1 xGa N缓冲层包含多个 A1 xGa N纳米台阶组, 每 一个所述 A1 xGa N纳米台阶组的台阶中 A1的含量由最下层至最上层依次递变, 相邻两个
Figure imgf000018_0001
纳米台阶中 A1组分的差值范围为 2%-50%。
[0133] 所述 Al xGa i-xN纳米台阶中, 最下层中 A1的组分含量为 5%-100%, 最上层层中 A1的组分含量为 0%-90%。 每一个
Figure imgf000018_0002
纳米台阶的厚度为 l-10nm。
[0134] 上述一种具有纳米台阶递变层的高阻氮化镓基缓冲层的制备方法如下所述:
[0135] 1) 利用 MOCVD在 1mm的 6寸 Si衬底 1’上生长 A1N成核层 2’。 在 1050°C高温脱附
15min去掉 Si表面的氧化物和杂质, 露出台阶状的表面形貌。 然后高温下生长成 核层: 生长温度为 1100°C, TMA1流量为 250 seem, NH 3流量300(^011, 反应室 气压为 70mbar, 生长速度 0.3um/h左右, 生长时间 40min。 A1N成核层厚度为 200n m左右。 作为本实施例的简单替换成核层还可以为 GaN, 生长 GaN成核层时, 生 长表面温度为 450-550°C; 或者成核层为低温 A1N成核层, 生长表面温度为 600-80 0oC。
[0136] 2) 利用 MOCVD继续在 A1N成核层上继续生长具有纳米台阶的高阻 Al xGa i-xN 缓冲层 3’。 具有纳米台阶的高阻 A1 xGa uN缓冲层 3’包含多个 A1 xGa N纳米台阶 301-3011, 这些台阶由下至上分层多组多量子阱结构。 第一组多量子阱结构的平 均 A1组分为 75%左右, 生长包括: ①生长高 A1组分的 Al xGa i-xN层
(A1组分为 85%) : MO源中 TMGa的流量为 20sccm, TMA1的流量为 500 seem, 同时 NH 3的流量为 1500 seem; 表面温度 1050°C, 生长时间 40s, 厚度为 10nm左 右; ②在高 A1组分的 Al xGa i-xN层上生长 A1组分递减的三层纳米台阶 (A1组分分 别为 80%, 75% , 70%) , 生长条件为: MO源中 TMGa的流量为 23sccm, 25sccm , 28sccm, TMA1的流量为 440sccm, 380sccm, 320sccm; 同时 NH 3
的流量为 1500; 表面温度 1050°C, 每层的生长时间 20s厚度为 5nm左右; ③生长低 A1组分的 Al xGa i-xN层 (A1组分为 65%) , 生长条件为: MO源中 TMGa的流量为 32 seem, TMA1的流量为 300 seem, 同时 NH 3的流量为 1500 seem; 表面温度 1050 °C, 生长时间 40s, 厚度为 10nm左右; ④ .然后在低
Figure imgf000019_0001
层上继续生 长 A1组分递增的三层 Al xGa i-xN纳米台阶 (A1组分分别为 70%, 75% , 80%) , 生长条件为: M0源中 TMGa的流量为 28sccm, 25 seem, 23sccm, TMA1的流量为 320sccm, 380sccm, 440sccm, 同时 NH 3的流量为 1500 seem; 表面温度 1050°C, 每层的生长时间 20s, 厚度为 5nm左右; 经过①-④就得到了一个 A1 xGa N纳米台 阶组。 重复生长 6个周期的①-④得到厚度为 300nm左右平均 A1组分 75%的第一组 多量子阱结构;
[0137] 3) 利用 MOCVD继续在第一组多量子阱结构上继续生长平均 A1组分为 50%左右 的第二组多量子阱结构。 生长过程与步骤 2相比就是减少了 MO源中的流量, 不 再赘述。
[0138] 4) 利用 MOCVD继续在第二组多量子阱结构上继续生长平均 A1组分为 25%左右 的第三组多量子阱结构。
[0139] 5) 在具有纳米台阶的高阻 Al xGa i-xN缓冲层 3’上生长高阻 GaN缓冲层 4’,
高阻 GaN缓冲层 4’为低温低压生长的 GaN层, TMGa流量为 200sccm, 同时 NH ^ 流量为 12000 seem, 生长表面温度为 1000°C左右, 反应室气压为 50mbar, 生长速 率为 2.5um/h左右, 生长时间为 50min, 厚度为 2000nm左右。
[0140] 由于 III族氮化物 (A1N, GaN和 InN) 的纤锌矿结构的空间反演不对称性以及氮 原子和 III族金属原子巨大的电负性差, III族氮化物及其合金化合物具有很强的 极性。 作为高阻氮化镓生长的重要材料的 A1N和 GaN之间的极化强度差高达 0.052 C/cm 2(0.081 C/m 2-0.029C/m 2) , 因此在不同 A1组分 AlGaN层的界面很容易形成 二维载流子漏电通道。 为了避免界面二维漏电通道产生以及增加界面载流子的 散射作用, 本实施例中引入纳米台阶递变层通过多层纳米台阶减缓界面的极化 强度变化梯度避免二维载流子形成, 同时载流子在台阶界面散射效应也会加强 从而获得高阻值的氮化镓基缓冲层。 与传统的控制 MOCVD生长参数和引入金属 杂质能级获得高阻值 GaN方法相比, 通过 A1 xGa N多量子阱结构获得高阻 GaN 不仅不用担心污染反应室, 而且可以获得高质量的高阻 GaN基缓冲层。
[0141] 按照上面结构在低阻 Si衬底上生长的 GaN基外延层的垂直漏电结果如图 5所示, 多量子阱高阻层可以有效耗尽应力传递层的背景载流子浓度得到具有低漏电值 (5nA/mm 2 @650V) 的高阻氮化镓基缓冲层。
[0142] 作为本实施例的简单替换,
Figure imgf000020_0001
缓冲层
Figure imgf000020_0002
yGa x— yN替代 A1 xGa XN
[0143] 显然, 本发明的上述实施例仅仅是为清楚地说明本发明所作的举例, 而并非是 对本发明的实施方式的限定。 对于所属领域的普通技术人员来说, 在上述说明 的基础上还可以做出其它不同形式的变化或变动。 这里无需也无法对所有的实 施方式予以穷举。 凡在本发明的精神和原则之内所作的任何修改、 等同替换和 改进等, 均应包含在本发明权利要求的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种 GaN基外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核层 、 多个周期结构和高阻 GaN缓冲层; 其特征在于: 所述多个周期结构 的至少一个周期结构包含高 A1组分 A1 aGa uN层和 A1组分递变 A1 uGa UN层,其中 a为 10%- 100%。
[权利要求 2] 根据权利要求 1所述的 GaN基外延结构, 其特征在于: 所述多个周期 结构包含一多量子阱层, 该多量子阱的周期 n的个数为 10-100, 其中 至少一个周期中包含高 A1组分 A1 aGa uN层和 A1组分递变 A1 uGa iuN层, 其中 a为 10%-100%。
[权利要求 3] 根据权利要求 2所述的 GaN基外延结构, 其特征在于: 所述多量子阱 层的至少一个周期结构中包含由下至上层叠设置的: 低 A1组分 Al bGa wN层、 A1组分递增 Al vGa i-vN层、 高 A1组分 Al aGa i-aN层、 A1组分递 减 A1 uGa ^ UN层、 低 A1组分 A1 bGa ^ b
NS ; 其中 a为 10%- 100%, b为 0%-90%, 并且 a>b。
[权利要求 4] 根据权利要求 2所述的 GaN基外延结构, 其特征在于: 所述多量子阱 层的至少一个周期结构中包含由下至上层叠设置的: A1组分递减 Al u Ga i-uN层、 A1组分递增 Al vGa i-vN层、 高 A1组分 Al aGa i-aN层、 A1组分 递减 A1 uGa iuN层。
[权利要求 5] 根据权利要求 2所述的 GaN基外延结构, 其特征在于: 所述多量子阱 层的至少一个周期结构中包含由下至上层叠设置的: A1组分递减 Al u
Figure imgf000021_0001
[权利要求 6] 根据权利要求 1所述的 GaN基板外延结构, 其特征在于: 所述多个周 期结构包含一超晶格结构, 所述超晶格结构的周期的个数为 10-100个 , 其中至少一个超晶格周期中包含层叠设置的 A1组分逐渐降低的极化 p-型掺杂 A1 xGa nN层和 A1组分逐渐增加的极化 n-型掺杂
Figure imgf000021_0002
[权利要求 7] 根据权利要求 6所述的 GaN基板外延结构, 其特征在于: 所述超晶格 结构包含由下至上层叠设置的第一超晶格结构、 第二超晶格结构和第 三超晶格结构, 所述第一晶格结构的平均 A1组分为 XI,所述第二晶格 结构的平均 A1组分为 X2,
所述第三晶格结构的平均 A1组分为 X3,其中 X1>X2>X3。
[权利要求 8] 根据权利要求 1所述的 GaN基板外延结构, 其特征在于: 所述多个周 期结构包含一多量子阱应力传递层, 该多量子阱应力传递层包括 3-10 0个多量子阱周期, 其中至少一个多量子阱周期中进一步包括 A1组分 渐变的 A1 uGa uN渐变过渡层以及高 A1组分 A1 aGa
N势垒层和 /或低 A1组分 A1 bGa ,_bN势阱层, 使得所述多量子周期中每 一层中 A1组分含量单边递增或递减, 其中 a>b。
[权利要求 9] 根据权利要求 8所述的 GaN基外延结构, 其特征在于: 每一个多量子 阱周期中进一步包括由下至上层叠设置的高 A1组分 A1 aGa N势垒层 、 A1组分递减 A1 uGa uN渐变过渡层和低
Figure imgf000022_0001
势阱层, 其 中 a>b。
[权利要求 10] 根据权利要求 8所述的 GaN基外延结构, 其特征在于: 所述高 A1组分
A1 aGa N势垒层的厚度为 l-5nm,Al组分递减 A1 uGa N渐变过渡层的 厚度为 3-100nm、 低 A1组分 A1 bGa i_bN势阱层的厚度为 3-100nm。
[权利要求 11] 根据权利要求 1所述的 GaN基外延结构, 其特征在于: 所述多个周期 结构包含多个 A1 xGa N纳米台阶组, 至少一个所述 A1 xGa N纳米台 阶组的台阶中 A1的含量由最下层至最上层依次递变, 相邻两个 Al xGa
Figure imgf000022_0002
纳米台阶中 A1组分的差值范围为 2%-50%。
[权利要求 12] 根据权利要求 11所述的 GaN基外延结构, 其特征在于: 所述 Al xGa i-x
N纳米台阶中, 纳米台阶两侧的高 A1层中 A1的组分含量为 5%-100%, 纳米台阶两侧的低 A1层中 A1的组分含量为 0%-90%。
[权利要求 13] 根据权利要 12所述的 GaN基外延结构, 其特征在于: 每一个 Al xGa i-x
N纳米台阶的厚度为 l-10nm。
[权利要求 14] 根据权利要 12所述的 GaN基外延结构, 其特征在于: 所述多个 Al xGa uN纳米台阶组由下至上分为多组多量子阱结构, 其中位于下部的多 量子阱结构的平均 A1组分高于位于上部的多量子结构的平均 A1组分。
[权利要求 15] 一种 GaN基外延结构, 包括由下至上层叠设置的: 衬底、 A1N成核层 、 包含高阻 AlxGa i-xN异质结的多量子阱层和高阻 GaN缓冲层, 其特 征在于: 所述包含高阻 AlxGa i-xN异质结的多量子阱层中, 所述多量 子阱周期 n的个数为 10-100个, 其中至少一个多量子阱周期中包含高 A 1组分 A1 aGa N层, A1组分递减 A1 uGa N层。
[权利要求 16] 根据权利要求 16所述的一种 GaN基外延结构, 其特征在于: 至少一个 多量子阱周期中包含由下至上层叠设置的: 低 A1组分 A1 bGa u N层、 A1组分递增 AlvGa i-vN层、 高 A1组分 A1 aGa ^
N层、 A1组分递减 AluGa i-uN层、 低 A1组分 AlbGai-b NS; 其中 a为 10%- 100%; b为 0%-90%, 且 a>b。
[权利要求 17] 根据权利要求 16所述的一种 GaN基外延结构, 其特征在于: 至少一个 多量子阱周期中包含由下至上层叠设置的: A1组分递减 AluGa uN层 、 A1组分递增 AlvGa i-vN层、 高 A1组分 AlaGai-aN层、 A1组分递减 A1 u Ga ^ UN层。
[权利要求 18] 根据权利要求 16所述的一种 GaN基外延结构, 其特征在于: 至少一个 多量子阱周期中包含由下至上层叠设置的: A1组分递减 AluGa uN层 、 A1组分递增 AlvGa i-vN层、 A1组分递减 AluGa i-uN层。
[权利要求 19] 一种权利要求 16所述的 GaN基外延结构的制备方法, 包括以下步骤:
1)利用金属有机化学气相沉积设备在所选用的衬底上生长出成核层;
2) 在成核层上继续外延生长包含高阻 AlxGa uN异质结的多量子阱层 , 所述包含高阻 AlxGa i-xN异质结的多量子阱层中, 至少一个多量子 阱周期中包含高
Figure imgf000023_0001
3) 在包含高阻 AlxGa N异质结的多量子阱层上生长高阻的 GaN缓冲 层。
[权利要求 20] 一种 GaN基外延结构, 其特征在于: 包括由下至上层叠设置的: 衬底 、 A1N成核层、 极化掺杂超晶格结构、 高阻 GaN缓冲层、 GaN沟道层 、 AlzGa i-zN势垒层;
所述极化掺杂超晶格的周期个数为 10-100个, 其中至少一个超晶格周 期中包含层叠设置的 A1组分逐渐降低的极化 p-型掺杂 A1 xGa
N层, A1组分逐渐增加的极化 n-型掺杂
Figure imgf000024_0001
[权利要求 21] 一种权利要求 20所述的 GaN基外延结构的制备方法, 包括以下步骤:
1) 利用金属有机化学气相沉积设备在衬底上高温外延生长 A1N成核 层;
2) 在 A1N成核层上生长 A1组分逐渐降低的极化 p-型掺杂 A1 xGa N层 , 接着生长 A1组分逐渐增加的极化 n-型掺杂 A1 yGa H
N层; 重复生长10-100个周期的上述极化 -型掺杂 1 & 1-!4
N层和极化 n-型掺杂 A1 yGa
Figure imgf000024_0002
层, 从而形成极化掺杂超晶格结构;
3) 根据极化掺杂超晶格的层数重复步骤 2;
4) 在所述极化掺杂超晶格上生长高阻 GaN缓冲层;
5) 在高阻 GaN缓冲层上生长高质量 GaN沟道层;
6) 在 GaN沟道层上生长 Al zGa i-zN势垒层。
[权利要求 22] 一种 GaN基外延结构, 其特征在于包括: 由下至上依次层叠设置的衬 底、 成核层、 具有单边渐变多量子阱氮化镓基高阻缓冲层和 GaN缓冲 层:
所述具有单边渐变多量子阱氮化镓基高阻缓冲层包含多个多量子阱应 力传递层, 所述多个多量子阱应力传递层中 A1的含量由下至上依次减 少;
所述多量子阱应力传递层中包括多个多量子阱周期, 所述多量子周期 的个数为 3-100, 其中至少一个多量子阱周期中进一步包括 A1组分渐 变的 A1 uGa uN渐变过渡层以及高 A1组分 A1 aGa N势垒层和 /低 A1组 分 Al bGa ,_bN势阱层, 使得所述多量子周期中每一层中 A1组分含量单 边递增或递减。
[权利要求 23] 根据权利要求 22所述的 GaN基外延结构, 其特征在于: 每一个多量子 阱周期中进一步包括由下至上层叠设置的高 A1组分 A1 aGa hN势垒层 、 A1组分递减 A1 uGa uN渐变过渡层和低 A1组分 A1 bGa uN势阱层。
[权利要求 24] 根据权利要求 22所述的 GaN基外延结构, 其特征在于: 所述高 A1组分 A1 aGa N势垒层的厚度为 l-5nm、 A1组分递减 A1 uGa i_uN渐变过渡层 的厚度为 3-100nm、 低 A1组分 A1 bGa i_bN势阱层的厚度为 3-100nm。
[权利要求 25] 一种权利要求 22所述的 GaN基外延结构的制备方法, 包括如下步骤:
1)在衬底上生长成核层;
2) 在成核层上生长具有单边渐变多量子阱氮化镓基高阻缓冲层, 所 述具有单边渐变多量子阱氮化镓基高阻缓冲层包含多个多量子阱应力 传递层, 所述多个多量子阱应力传递层中 A1的含量由下至上依次减少 所述多量子阱应力传递层中包括多个多量子阱周期, 所述多量子周期 的个数为 3-100,至少一个多量子阱周期中进一步包括 A1组分渐变的 A1 uGa nN渐变过渡层以及高 A1组分 A1 aGa N势垒层和 /低 A1组分 A1 bGa uN势阱层, 使得所述多量子周期中每一层中 A1组分含量单边递增或 递减;
3) 在具有单边渐变多量子阱氮化镓基高阻缓冲层上生长高阻 GaN缓 冲层。
[权利要求 26] 一种 GaN基外延结构, 其特征在于包括由下至上层叠设置的衬底、 成 核层、 具有纳米台阶的高阻 Al xGa N缓冲层和高阻 GaN缓冲层: 所述具有纳米台阶的高阻 A1 xGa N缓冲层包含多个 A1 xGa N纳米台 阶组, 其中一个或者多个所述 Al xGa N纳米台阶组的台阶中 A1的含 量由最下层至最上层依次递变, 相邻两个 Al xGa N纳米台阶中 A1组 分的差值范围为 2%-50%。
[权利要求 27] 根据权利要求 26所述的 GaN基外延结构, 其特征在于: 所述 Al xGa i-x
N纳米台阶中, 纳米台阶两侧的高 A1层中 A1的组分含量为 5%-100%, 纳米台阶两侧的低 A1层中 A1的组分含量为 0%-90%。
[权利要求 28] 根据权利要 26所述的 GaN基外延结构, 其特征在于: 每一个 Al xGa i-x
N纳米台阶的厚度为 l-10nm。
[权利要求 29] 一种权利要求 26所述的 GaN基缓冲层外延结构的制备方法, 其特征在 于包括如下步骤: 1)在衬底上生长成核层;
2) 在成核层上通过阶梯式改变生长参数, 生长出具有纳米台阶的高
Figure imgf000026_0001
缓冲层;
3) 在具有纳米台阶的高阻 Al xGa uN缓冲层上生长高阻 GaN缓冲层。
PCT/CN2019/089116 2018-05-30 2019-05-29 GaN基外延结构及其制备方法 WO2019228424A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810541107.5 2018-05-30
CN201810541107.5A CN108899365B (zh) 2018-05-30 2018-05-30 高阻GaN基缓冲层外延结构及其制备方法
CN201811405399.6A CN109742140B (zh) 2018-11-23 2018-11-23 具有单边渐变多量子阱的高阻氮化镓基缓冲层及制备方法
CN201811405798.2A CN109830535B (zh) 2018-11-23 2018-11-23 具有纳米台阶递变层的高阻氮化镓基缓冲层及制备方法
CN201811405798.2 2018-11-23
CN201811405399.6 2018-11-23

Publications (1)

Publication Number Publication Date
WO2019228424A1 true WO2019228424A1 (zh) 2019-12-05

Family

ID=68698721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089116 WO2019228424A1 (zh) 2018-05-30 2019-05-29 GaN基外延结构及其制备方法

Country Status (1)

Country Link
WO (1) WO2019228424A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008647A1 (en) * 2007-07-06 2009-01-08 Sharp Laboratories Of America Inc. Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
CN103258844A (zh) * 2012-02-17 2013-08-21 台积固态照明股份有限公司 在硅衬底上生长高品质的iii-v族化合物层的方法
CN104126223A (zh) * 2012-02-23 2014-10-29 日本碍子株式会社 半导体元件及半导体元件的制造方法
CN107845565A (zh) * 2017-09-22 2018-03-27 叶顺闵 一种提高氮化镓器件电子迁移率及外延层质量方法
CN107910244A (zh) * 2017-11-01 2018-04-13 大连芯冠科技有限公司 采用硅图形衬底生长氮化镓外延方法
CN108899365A (zh) * 2018-05-30 2018-11-27 厦门市三安集成电路有限公司 高阻GaN基缓冲层外延结构及其制备方法
CN109742140A (zh) * 2018-11-23 2019-05-10 厦门市三安集成电路有限公司 具有单边渐变多量子阱的高阻氮化镓基缓冲层及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008647A1 (en) * 2007-07-06 2009-01-08 Sharp Laboratories Of America Inc. Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers
CN103258844A (zh) * 2012-02-17 2013-08-21 台积固态照明股份有限公司 在硅衬底上生长高品质的iii-v族化合物层的方法
CN104126223A (zh) * 2012-02-23 2014-10-29 日本碍子株式会社 半导体元件及半导体元件的制造方法
CN107845565A (zh) * 2017-09-22 2018-03-27 叶顺闵 一种提高氮化镓器件电子迁移率及外延层质量方法
CN107910244A (zh) * 2017-11-01 2018-04-13 大连芯冠科技有限公司 采用硅图形衬底生长氮化镓外延方法
CN108899365A (zh) * 2018-05-30 2018-11-27 厦门市三安集成电路有限公司 高阻GaN基缓冲层外延结构及其制备方法
CN109742140A (zh) * 2018-11-23 2019-05-10 厦门市三安集成电路有限公司 具有单边渐变多量子阱的高阻氮化镓基缓冲层及制备方法

Similar Documents

Publication Publication Date Title
CN107331745B (zh) 一种发光二极管的外延片及其制备方法
JP4249184B2 (ja) 窒化物半導体成長用基板
WO2019144915A1 (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
CN108899365B (zh) 高阻GaN基缓冲层外延结构及其制备方法
CN109742140B (zh) 具有单边渐变多量子阱的高阻氮化镓基缓冲层及制备方法
CN116314278B (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
CN112701160A (zh) 氮化镓基高电子迁移率晶体管外延片及其制备方法
WO2019106843A1 (ja) 半導体装置の製造方法、半導体装置
CN107731974A (zh) 一种GaN基发光二极管外延片及其生长方法
CN115842042B (zh) 一种外延层结构及其制备方法和应用
WO2023231566A1 (zh) 半导体外延结构及其制备方法、半导体器件
US9099383B2 (en) Semiconductor substrate and semiconductor device, and manufacturing method of semiconductor substrate
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
CN114551593A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
CN106876530B (zh) 一种氮化镓基发光二极管的外延片及其制作方法
CN110429128B (zh) 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法
JP6652042B2 (ja) Iii−v族窒化物半導体エピタキシャルウェハの製造方法
CN109830535B (zh) 具有纳米台阶递变层的高阻氮化镓基缓冲层及制备方法
CN116646248B (zh) 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN110047924B (zh) 利用GaN基窄阱多量子阱结构的高阻缓冲层及制备方法
CN104966767B (zh) 一种GaN基发光二极管外延片的生长方法
CN114613847B (zh) 硅基AlGaN/GaN HEMT外延薄膜及其生长方法
WO2019228424A1 (zh) GaN基外延结构及其制备方法
CN111009579A (zh) 半导体异质结构及半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812408

Country of ref document: EP

Kind code of ref document: A1