WO2019227319A1 - 一种含氟聚己内酯膜及其制备方法 - Google Patents

一种含氟聚己内酯膜及其制备方法 Download PDF

Info

Publication number
WO2019227319A1
WO2019227319A1 PCT/CN2018/088911 CN2018088911W WO2019227319A1 WO 2019227319 A1 WO2019227319 A1 WO 2019227319A1 CN 2018088911 W CN2018088911 W CN 2018088911W WO 2019227319 A1 WO2019227319 A1 WO 2019227319A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycaprolactone
fluorine
reaction
terminated
hours
Prior art date
Application number
PCT/CN2018/088911
Other languages
English (en)
French (fr)
Inventor
李战雄
王海朋
李武龙
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/088911 priority Critical patent/WO2019227319A1/zh
Publication of WO2019227319A1 publication Critical patent/WO2019227319A1/zh
Priority to US17/106,144 priority patent/US11807728B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/005Producing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/22Esters containing halogen
    • C08F120/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • C08G63/6822Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the invention relates to a polymer modification technology, in particular to a fluorine-containing polycaprolactone film and a preparation method thereof.
  • Polycaprolactone is a class of linear aliphatic polyesters obtained by ring-opening polymerization of ⁇ -caprolactone monomers under the catalysis of metal organic compounds (such as tetraphenyltin). Degradability, good biocompatibility, drug permeability and mechanical properties, has obtained the US FDA certification, has been extensively researched and applied in the field of film applications.
  • Polycaprolactone (PCL) has a melting point of 59-64 ° C and a glass transition temperature of -60 ° C. Its structural repeating unit has 5 non-polar methylene-CH 2 -and one polar ester group -COO-, namely-(COOCHCH 2 CH 2 CH 2 CH 2 CH 2- ) Pn. Such a structure makes PCL It has good flexibility and processability. At the same time, this material has good biocompatibility.
  • polycaprolactone as a biomaterial is the most extensive, especially the research and application reports on the biomedical fields such as the biomaterial scaffold for human tissue repair and the sustained release of drugs.
  • the inner wall of the tube may adsorb active components in the body fluid when it contacts the body fluid, which may cause deposits to adhere to the tube wall. Sometimes it even causes the wall of the pipe to be blocked. Therefore, hydrophobic modification of polycaprolactone has been proposed.
  • polycaprolactone lacks a reactive pendant functional group on the macromolecular chain, and it is difficult to provide a hydrophobic material through modification such as chemical grafting of the side chain. Therefore, the active end group of polycaprolactone is converted into a carbon bromide bond (C-Br), and then an atom transfer radical polymerization (ATRP) method is used to obtain a block copolymer by radical polymerization of unsaturated monomers such as acrylate. It is expected to realize the chemical modification of polycaprolactone.
  • C-Br carbon bromide bond
  • ATRP atom transfer radical polymerization
  • This method has the following defects in the polymerization process: (1) Affected by the macromolecular chain, the carbon-bromo bond (C-Br) at the end of the polycaprolactone chain has poor activity, and it is difficult to effectively initiate the polymerization of unsaturated monomers to achieve reform (2) Because the fluorine-containing monomer block-modified polycaprolactone is hydrophobic and has a low polarity, it is difficult to dissolve in conventional organic solvents, and it may precipitate from the conventional organic solvent system at the initial stage of the block polymerization reaction. As a result, the fluoropolymer blocks inserted during chemical modification are short, the modification effect is not ideal, and the controllability is poor. It is difficult to use a solvent that can dissolve the block-modified polycaprolactone (such as an organic fluorine solvent). Dissolved atom transfer radical polymerization (ATRP) initiator.
  • ATRP Dissolved atom transfer radical polymerization
  • fluoropolymer materials are less difficult to degrade.
  • the fluoroalkyl chain has a carbon-fluorine bond (CF) with a bond energy of 460 kJ / mol, which is about 4 times the carbon-carbon bond (CC) bond energy. Therefore, the carbon-fluorine bond is very stable and difficult to crack, which is why.
  • Fluorine compounds are difficult to decompose, and have cumulative and biological toxicity. This chemical structural feature makes it difficult for the fluorine-containing polymer to degrade the polymer in the form of side group removal.
  • fluorine-containing materials can give polymers excellent liquid repellency, low surface energy, and low polarity, so they are not conducive to biosorption and degradation. It is precisely because of these essential properties of fluorine-containing polymer materials that it is very necessary to develop a class of fluorine-containing polymer materials with degradation ability.
  • An object of the present invention is to provide a block-modified polycaprolactone film, which is a fluorine-containing alkyl polyacrylate block-modified polycaprolactone film.
  • a method for preparing a fluorine-containing polycaprolactone film includes the following steps:
  • Fluoride-containing polycaprolactone is dissolved in an organic solvent at room temperature to prepare a solution; and then the solution is naturally dried to form a film at room temperature to prepare a fluorinated polycaprolactone film.
  • the chemical structural formula of the fluorine-containing polycaprolactone of the present invention is as follows:
  • Rf is a fluorine-containing alkyl group
  • R is H or an alkyl group
  • m is 35 to 1300
  • n is 5 to 100
  • the asterisk is derived from the raw material polycaprolactone.
  • the fluorine-containing alkyl group is nonafluoropentyl, tridecyl octyl, heptafluorodecyl, hexafluorobutyl, dodecafluoroheptyl, or octafluoropentyl (-CH 2 (CF 2 ) 3 CF 3 , -CH 2 (CF 2 ) 5 CF 3 , -CH 2 (CF 2 ) 7 CF 3 , -CF 2 CFHCF 3 , -CH 2 (CF 2 ) 4 H,-(CF 2 ) 6 H)
  • One of; the alkyl group is methyl.
  • the molecular weight of the polycaprolactone is 45,600 to 148,200; the amino alcohol compound is 6-amino-1-hexanol; the acid anhydride is succinic anhydride; the fluorine-containing alkyl acrylate is nonafluoropentyl acrylic acid. Ester, tridecyl octyl acrylate, heptafluorodecyl acrylate, hexafluorobutyl acrylate, dodecafluoroheptyl acrylate or octafluoropentyl acrylate.
  • the organic solvent is one or more of dichloromethane, tetrahydrofuran, and a fluorine-containing solvent; the concentration of the solution is 1 to 10% by weight; Can be dissolved in non-fluorine conventional solvents, thus providing a basis for the preparation of thin films.
  • the mass ratio of polycaprolactone to amino alcohol compound is 1: 0.2 to 2; the mass ratio of hydroxyl-terminated polycaprolactone to acid anhydride is (1 to 200): (0.5 to 2); bromoisobutyl
  • the mass ratio of ethylene glycol ester to fluorine-containing alkyl acrylate is (1 ⁇ 10 -6 to 5 ⁇ 10 -5 ): (0.5 to 5); carboxyl-terminated polycaprolactone and hydroxyl-terminated fluorine-containing polyacrylate
  • the mass ratio is (1 to 4): (0.05 to 10).
  • the reaction in step (1) is a room temperature reaction under nitrogen protection for 1 to 24 hours; the reaction in step (2) is a room temperature reaction under nitrogen protection for 1 to 6 hours; the reaction in step (3) is a reaction at 50 to 90 ° C 1 -24 hours; the reaction in step (4) is 30-65 ° C for 1-8 hours.
  • the reaction of step (1) is performed in an organic solvent; the reaction of step (2) is performed in an organic solvent in the presence of anhydrous potassium carbonate and 4-dimethylaminopyridine; the reaction of step (3) is performed in an organic solvent The solvent is carried out in the presence of pentamethyldiethylenetriamine and cuprous bromide; the reaction in step (4) is carried out in an organic solvent in the presence of N, N′-carbonyldiimidazole.
  • step (3) ethylene glycol bromoisobutyrate, pentamethyldiethylenetriamine, and cuprous bromide are stirred at 30 to 40 ° C for 1 to 24 hours under nitrogen; and then fluoroalkane The acrylate is reacted at 50 to 90 ° C for 1 to 24 hours to prepare a hydroxyl-terminated fluorine-containing polyacrylate.
  • step (4) the carboxyl-terminated polycaprolactone and N, N′-carbonyldiimidazole are reacted at room temperature under nitrogen for 1 to 24 hours; then, a hydroxyl-terminated fluorinated polyacrylate solution is added at 30- The reaction was performed at 65 ° C for 1 to 8 hours to prepare a fluorine-containing polycaprolactone.
  • the invention also discloses a fluorine-containing polycaprolactone film prepared by the above preparation method.
  • the invention further discloses the application of a fluorine-containing polycaprolactone film in preparing a hydrophobic material or a biodegradable material.
  • the purification reaction is completed after the above reaction is completed, which can be performed as follows:
  • Step (1) After the reaction is completed, the reaction solution is added to 10 to 300 parts of absolute ethanol to precipitate a solid. After filtration, the filter cake was washed with anhydrous ethanol for 1 to 2 portions ⁇ 3 times, and dried under vacuum at 30 to 50 ° C. for 1 to 24 hours to obtain hydroxyl-terminated polycaprolactone PCL-OH.
  • the reaction is filtered, and the filtrate is added with 0.3 to 1.0 parts of acetic acid, and the solution is added to 20 to 500 parts of deionized water to precipitate a solid.
  • the filter cake was washed with 2 to 10 parts of anhydrous ethanol 3 times, and dried under vacuum at 30 to 50 ° C for 1 to 24 hours to obtain carboxyl-terminated polycaprolactone PCL-COOH.
  • Step (3) After the reaction is completed, add 1 to 20 parts of THF and 1 to 20 parts of a fluorine-containing organic solvent and pass through a neutral alumina (200-300 mesh) column to obtain a light yellow clear solution.
  • the solution was evaporated under reduced pressure at 30 to 70 ° C, and the solvent was removed under reduced pressure.
  • the crude product was added to 5 to 30 parts of anhydrous methanol to precipitate a solid, filtered, and washed with n-hexane for 1 to 3 parts ⁇ 3 times at 30 to 100 ° C. It was vacuum-dried at 1 ° C for 1 to 24 hours to obtain a hydroxyl-terminated fluorine-containing polyacrylate.
  • Step (4) After the reaction is completed, pour the reaction solution into 5 to 200 parts of n-hexane, precipitate the crude product, filter, wash with 2 to 10 parts ⁇ 3 times with absolute ethanol, and dry under vacuum at 30 to 50 ° C. 1 ⁇ 24h, a fluorine-containing alkyl polymer block modified polycaprolactone is obtained, which is a fluorine-containing polycaprolactone film.
  • the fluorine-containing organic solvent is trifluoromethylbenzene, and one or both of 1,3-bis (trifluoromethyl) benzene is mixed in an arbitrary ratio.
  • the invention firstly hydroxylates and carboxylates high-molecular-weight polycaprolactone; then synthesizes a hydroxy-terminated fluorine-containing polyacrylate having a controllable polymerization degree by the ATRP method; Fluoropolyacrylate is esterified under mild conditions under N, N′-carbonyldiimidazole (CDI) activation to obtain fluoroalkyl polyacrylate block-modified polycaprolactone.
  • CDI N, N′-carbonyldiimidazole
  • the end group activated fluoropolymer is prepared in advance by ATRP and then connected to the PCL molecular chain. Since the fluoropolymer is obtained in a homogeneous system, it is easy to control the polymerization degree of the fluoropolymer and the modified PCL The obtained product has a narrow molecular weight distribution. At the same time, it also solves the problem that due to the change in solubility, it is difficult to directly generate the fluoropolymer chain in situ at the end of the PCL chain.
  • PCL degradable segment polycaprolactone
  • the preparation of block-modified PCL can avoid PCL degradation. Therefore, the obtained fluorinated polycaprolactone (PCL) film has a high molecular weight, simple preparation process, readily available raw materials, and easy industrial production and promotion .
  • FIG. 1 is a schematic diagram of a reaction for preparing a fluorine-containing polycaprolactone according to the present invention
  • Example 2 is a schematic structural diagram of a fluorine-containing polycaprolactone in Example 1;
  • FIG. 3 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 2;
  • Example 4 is a schematic structural diagram of a fluorine-containing polycaprolactone in Example 3.
  • FIG. 5 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 4.
  • FIG. 6 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 5.
  • Example 7 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 6;
  • Example 8 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 7.
  • FIG. 9 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 8.
  • FIG. 10 is a schematic structural diagram of a fluorine-containing polycaprolactone of Example 9;
  • Example 11 is a schematic structural diagram of a fluorine-containing polycaprolactone in Example 10.
  • FIG. 12 is a schematic structural diagram of a fluoropolycaprolactone of Comparative Example 1;
  • FIG. 13 is a test chart of water contact angle of unmodified polycaprolactone (PCL) and a fluorine-containing polycaprolactone film prepared in an example of the present invention.
  • PCL-PTFOA (2h) is a fluorinated polycaprolactone film prepared in Example 1
  • PCL-PTFOA (4h) is a fluorinated polycaprolactone film prepared in Example 2
  • PCL-PTFOA (6h) is an implementation The fluorinated polycaprolactone film prepared in Example 3
  • PCL-PTFOA (8h) was the fluorinated polycaprolactone film prepared in Example 4;
  • FIG. 14 is an infrared absorption curve of unmodified polycaprolactone (PCL) and a fluorine-containing polycaprolactone film prepared according to an embodiment of the present invention.
  • curve a is an unmodified polycaprolactone
  • curve b is a fluorine-containing polycaprolactone film prepared in Example 1
  • curve c is a fluorine-containing polycaprolactone film prepared in Example 2
  • curve d is an example 3
  • the fluorine-containing polycaprolactone film prepared, and curve e is the fluorine-containing polycaprolactone film prepared in Example 4;
  • FIG. 15 is an NMR chart of unmodified polycaprolactone (PCL) and a fluorine-containing polycaprolactone film prepared in an example of the present invention.
  • curve (1) is an unmodified polycaprolactone
  • curve (2) is a fluorine-containing polycaprolactone film prepared in Example 1
  • curve (3) is a fluorine-containing polycaprolactone film prepared in Example 2.
  • Curve (4) is a fluorine-containing polycaprolactone film prepared in Example 3
  • curve (5) is a fluorine-containing polycaprolactone film prepared in Example 4;
  • 16 is a photographic view of the degradation process of the fluorine-containing polycaprolactone film of the present invention.
  • 17 is a SEM morphology diagram of a degradation process of the fluorine-containing polycaprolactone film of the present invention.
  • FIG. 18 is a photograph of a fluorine-containing polycaprolactone solution according to the present invention, wherein (a) the solvent is dichloromethane and the solution concentration is 2% by weight; (b) the solvent is tetrahydrofuran and the solution concentration is 3% by weight; (c) the solvent is dichloride Methane, the solution concentration is 10wt%;
  • FIG. 19 is a photograph of a fluorine-containing polycaprolactone film according to the present invention, wherein (a) the solvent is dichloromethane and the solution concentration is 3% by weight; (b) the solvent is tetrahydrofuran and the solution concentration is 10% by weight.
  • the filter cake was washed with anhydrous ethanol 120 g ⁇ 3 times, and dried under vacuum at 37 ° C. for 24 h to obtain 21.5 g of the product with a yield of 86.0%.
  • the molecular weight of the product was measured to be 68,500.
  • ethylene glycol bromoisobutyrate and 642ug of pentamethyldiethylenetriamine are dissolved in 60g of 2-butanone. After dissolving, 0.4g of cuprous bromide is added, and under nitrogen protection at 40 ° C. The reaction was stirred for 15 min to obtain a catalyst. Added 63.0g 1H, 1H, 2H, 2H-tridecafluorooctyl acrylate (TFOA), heated to 80 ° C, and reacted for 2 hours.
  • TFOA pentamethyldiethylenetriamine
  • reaction solution was poured into 280 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 45 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a fluorine-containing polycaprolactone, which is a fluoroalkane.
  • Based polymer block modified polycaprolactone 6.5g, yield 86.7%.
  • the molecular weight of the product was measured to be 72,800.
  • the product structural formula is shown in Figure 2.
  • the filter cake was washed with anhydrous ethanol 120 g ⁇ 3 times, and dried under vacuum at 37 ° C. for 24 h to obtain 21.1 g of the product with a yield of 84.4%.
  • the molecular weight of the product was measured to be 67,700.
  • a fluorine-containing alkyl polymer block-modified polycaprolactone was dissolved in 10 g of tetrahydrofuran (THF) to prepare a solution having a mass concentration of 5%.
  • THF tetrahydrofuran
  • the solution was poured into a watch glass, and naturally dried to form a film at room temperature.
  • the OCAH 200 full-automatic micro-droplet wettability measuring instrument of American dataphysics company was used to test the contact angle of the polymer film to evaluate the surface wetting performance of the polymer. Water was selected as the test droplet, and the volume of the droplet was 3 ⁇ L.
  • the average contact angle of the test five times was 116.0 ⁇ 1.2 °, see FIG. 13; after undergoing the enzyme-catalyzed degradation for 72 hours, 87.9% was degraded.
  • PCL-COOH carboxy-terminated polycaprolactone
  • CDI N, N′-carbonyldiimidazole
  • Reaction 2h 0.7 g of hydroxyl-terminated poly (1H, 1H, 2H, 2H-tridecafluorooctyl acrylate) was dissolved in 40 g of trifluorotoluene to prepare a solution, and the solution was added to a three-necked flask. The reaction mixture was reacted at 51-55 ° C for 4 h.
  • reaction solution was poured into 350 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 45 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a fluoroalkyl polymer block modification.
  • Polycaprolactone 7.1g, yield 92.2%.
  • the molecular weight of the product was measured to be 787,000.
  • the product structural formula is shown in Figure 4.
  • ethylene bromoisobutyrate and 655ug of pentamethyldiethylenetriamine are dissolved in 60g of 2-butanone. After dissolving, 0.5g of cuprous bromide is added, and under nitrogen protection at 40 ° C. The reaction was stirred for 15 min to obtain a catalyst. 66.1 g of 1H, 1H, 2H, 2H-tridecylfluorooctyl acrylate (TFOA) was added, heated to 80 ° C, and reacted for 8 hours.
  • TFOA 1H, 1H, 2H, 2H-tridecylfluorooctyl acrylate
  • PCL-COOH carboxyl-terminated polycaprolactone
  • CDI N, N′-carbonyldiimidazole
  • Reaction 2h Dissolve 0.55g of hydroxyl-terminated poly (1H, 1H, 2H, 2H-tridecylfluorooctyl acrylate) in 30g of bis (trifluoromethyl) benzene to prepare a solution, and add it to a three-necked flask. The reaction was carried out at 4 ° C for 4h.
  • reaction solution was poured into 310 g of n-hexane, and the crude product was precipitated, filtered, washed with anhydrous ethanol 45 g ⁇ 3 times, and then dried under vacuum at 37 ° C for 3 h to obtain a fluoroalkyl polymer block modification.
  • the molecular weight of the product was found to be 79,900.
  • the product structural formula is shown in Figure 5.
  • the filter cake was washed with anhydrous ethanol 120 g ⁇ 3 times, and dried under vacuum at 37 ° C. for 24 h to obtain 48.8 g of the product with a yield of 78.0%.
  • the molecular weight of the product was measured to be 49,800.
  • PCL-COOH carboxyl-terminated polycaprolactone
  • CDI N, N′-carbonyldiimidazole
  • Reaction 2h 0.6 g of hydroxyl-terminated poly (1H, 1H, 3H-hexafluorobutyl methacrylate) was dissolved in 32 g of trifluoromethylbenzene to prepare a solution, and the solution was added to a three-necked flask. The reaction mixture was reacted at 50-55 ° C for 6 hours.
  • reaction solution was poured into 330 g of n-hexane, and the crude product was precipitated, filtered, washed with anhydrous ethanol 45 g ⁇ 3 times, and then dried under vacuum at 37 ° C for 3 h to obtain a fluoroalkyl polymer block modification.
  • Polycaprolactone was 42.0 g, and the yield was 92.0%.
  • the molecular weight of the product was measured to be 59,100.
  • the product structural formula is shown in Figure 6.
  • a fluorine-containing alkyl polymer block-modified polycaprolactone was dissolved in 10 g of tetrahydrofuran (THF) to prepare a solution having a mass concentration of 5%.
  • THF tetrahydrofuran
  • the solution was poured into a watch glass, and naturally dried to form a film at room temperature.
  • the OCAH 200 full-automatic micro-droplet wettability measuring instrument of American dataphysics company was used to test the contact angle of the polymer film to evaluate the surface wetting performance of the polymer. Water was selected as the test droplet.
  • the volume of the droplet was 3 ⁇ L, and the average contact angle was 59.0 ⁇ 1.0 ° after five tests.
  • PCL-COOH carboxy-terminated polycaprolactone
  • CDI N, N′-carbonyldiimidazole
  • Reaction 2h 0.4 g of hydroxyl-terminated poly (1H, 1H, 3H-hexafluorobutyl methacrylate) was dissolved in 31 g of trifluoromethylbenzene to prepare a solution, and the solution was added to a three-necked flask. The reaction mixture was reacted at 52-55 ° C for 6 hours.
  • reaction solution was poured into 320 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 45 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a fluoroalkyl polymer block modification.
  • the molecular weight of the product was measured to be 49120.
  • the product structural formula is shown in Figure 7.
  • a fluorine-containing alkyl polymer block-modified polycaprolactone was dissolved in 10 g of tetrahydrofuran (THF) to prepare a solution having a mass concentration of 5%.
  • THF tetrahydrofuran
  • the solution was poured into a watch glass, and naturally dried to form a film at room temperature.
  • the OCAH 200 full-automatic micro-droplet wettability measuring instrument of American dataphysics company was used to test the contact angle of the polymer film to evaluate the surface wetting performance of the polymer. Water was selected as the test droplet with a volume of 3 ⁇ L and the average contact angle for five tests was 106.0 ⁇ 0.8 °. After 72 hours of enzymatic degradation, 86.2% was degraded.
  • the filter cake was washed 250 g ⁇ 3 times with absolute ethanol and dried under vacuum at 37 ° C. for 24 h to obtain 18.5 g of the product with a yield of 74.1%.
  • the molecular weight of the product was measured to be 4,520.
  • reaction mixture Reaction was performed at 50 ⁇ 55 ° C for 6h. After the reaction, the reaction solution was poured into 350 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 50 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a polycaprolactone block-modified fluoroalkane.
  • Polymer (PCL4000-PTFOA) 7.1g, yield 70.3%.
  • the molecular weight of the product was measured to be 10080.
  • the product structural formula is shown in Figure 8.
  • PCL4000-PTFOA polycaprolactone block modified fluoroalkyl polymer
  • the formula for calculating the weight loss rate is as follows. This formula is also used in other embodiments and comparative examples:
  • Weight loss rate (%) (W 0 -W i ) / (W 0 )
  • W 0 is the mass before degradation of the sheet
  • W i is the average mass of the three samples after degradation.
  • the weight loss rates of PCL4000-PTFOA samples measured at 12 hours, 24 hours, 48 hours, and 72 hours were 2.1%, 22.3%, 43.5%, and 77.2%, respectively. After 72 hours of enzyme-catalyzed degradation of polycaprolactone block modified fluoroalkyl polymer products, 77.2% was degraded. The average contact angle obtained after five tests was 119.0 ⁇ 1.1 °.
  • the filter cake was washed 250 g ⁇ 3 times with absolute ethanol and dried under vacuum at 37 ° C. for 12 h to obtain 30.4 g of the product with a yield of 80.2%.
  • the molecular weight of the product was measured to be 6,700.
  • PCL-COOH carboxyl-terminated polycaprolactone
  • N, N′-carbonyldiimidazole CDI
  • Reaction 2h 5.9g of hydroxyl-terminated poly (1H, 1H, 2H, 2H-tridecylfluorooctyl acrylate) was dissolved in 65g of 1,3- (bistrifluoromethyl) benzene to prepare a solution, and the solution was added to a three-necked flask.
  • reaction mixture Reaction was performed at 50 ⁇ 55 ° C for 6h. After the reaction, the reaction solution was poured into 350 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 50 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 10 h to obtain a polycaprolactone block-modified fluoroalkane.
  • Base polymer PCL6000-PTFOA
  • the molecular weight of the product was measured as 12,110.
  • the product structural formula is shown in FIG. 9.
  • PCL6000-PTFOA polycaprolactone block modified fluoroalkyl polymer
  • PCL Hydroxyl-terminated polycaprolactone
  • PCL-OH polycaprolactone
  • succinic anhydride succinic anhydride
  • K 2 CO 3 anhydrous potassium carbonate
  • DMAP 4-dimethylaminopyridine
  • the filter cake was washed 250 g ⁇ 3 times with absolute ethanol, and dried under vacuum at 37 ° C. for 24 h to obtain 37.0 g of the product with a yield of 75.6%.
  • the molecular weight of the product was measured as 8020.
  • reaction mixture Reaction was performed at 50 ⁇ 55 ° C for 6h. After the reaction, the reaction solution was poured into 350 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 50 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a polycaprolactone block-modified fluoroalkane.
  • Base polymer PCL8000-PTFOA
  • the molecular weight of the product was measured as 15090.
  • the product structural formula is shown in FIG. 10.
  • PCL8000-PTFOA polycaprolactone block modified fluoroalkyl polymer
  • the filter cake was washed 250 g ⁇ 3 times with absolute ethanol and dried under vacuum at 37 ° C. for 24 h to obtain 245.5 g of the product with a yield of 74.6%.
  • the molecular weight of the product was measured to be 49,900.
  • the weight loss rates of PCL50000-PHFDA samples measured at 12 hours, 24 hours, 48 hours, and 72 hours were 2.2%, 23.4%, 41.2%, and 86.3%, respectively. After the polycaprolactone block modified fluoroalkyl polymer product had undergone 72-hour enzymatic degradation, 86.3% was degraded.
  • PCL Hydroxy-terminated polycaprolactone having a molecular weight of 2000, 12.4 g (PCL-OH) and 0.8 g of succinic anhydride were added to 90 g of 1,4-dioxane.
  • 1.6 g of anhydrous potassium carbonate (K 2 CO 3 ) and 2.1 g of 4-dimethylaminopyridine (DMAP) were added in this order, and the reaction was carried out at room temperature for 6 h under the protection of nitrogen. After the reaction was completed, filtration was performed, and 3 g of acetic acid was added to the filtrate. The solution was added to 200 g of deionized water to precipitate a solid.
  • the filter cake was washed with anhydrous ethanol 150 g ⁇ 3 times, and dried under vacuum at 37 ° C. for 24 h to obtain 6.3 g of the product with a yield of 51.2%.
  • the product was found to have a molecular weight of 1920.
  • PCL-COOH carboxy-terminated polycaprolactone
  • CDI N, N′-carbonyldiimidazole
  • Reaction 2h 5.5g of hydroxyl-terminated poly (1H, 1H, 2H, 2H-tridecylfluorooctyl acrylate) was dissolved in 65g of 1,3- (bistrifluoromethyl) benzene to prepare a solution, and the solution was added to a three-necked flask.
  • reaction mixture Reaction was performed at 50 ⁇ 55 ° C for 6h. After the reaction, the reaction solution was poured into 290 g of n-hexane to precipitate a crude product, which was filtered, washed with anhydrous ethanol 50 g ⁇ 3 times, and then dried under vacuum at 37 ° C. for 3 h to obtain a polycaprolactone block-modified fluoroalkane.
  • Base polymer PCL2000-PTFOA
  • yield 91.1% The molecular weight of the product was measured to be 8,150.
  • the product structural formula is shown in FIG. 12.
  • PCL2000-PTFOA polycaprolactone block modified fluoroalkyl polymer
  • the weight loss rates of PCL2000-PTFOA samples were measured at 1.5%, 5.2%, 8.0%, and 12.1% for 12 hours, 24 hours, 48 hours, and 72 hours, respectively. After 72 hours of enzymatic catalysis, the product was degraded very slowly. Tested five times The average contact angle was 98.5 ⁇ 1.3 °.
  • FIG. 14 is an infrared absorption curve of unmodified polycaprolactone (PCL) and a fluorine-containing polycaprolactone film prepared according to an embodiment of the present invention.
  • curve a is an unmodified polycaprolactone
  • curve b is a fluorine-containing polycaprolactone film prepared in Example 1
  • curve c is a fluorine-containing polycaprolactone film prepared in Example 2
  • curve d is an example The fluorine-containing polycaprolactone film prepared in 3
  • the curve e is the fluorine-containing polycaprolactone film prepared in Example 4.
  • PCL polycaprolactone
  • the characteristic absorption peak of CF appears in the PCL infrared absorption curve after fluoropolymer block modification.
  • FIG. 15 is an NMR chart of unmodified polycaprolactone (PCL) and a fluorine-containing polycaprolactone film prepared in an example of the present invention.
  • curve (1) is an unmodified polycaprolactone
  • curve (2) is a fluorine-containing polycaprolactone film prepared in Example 1
  • curve (3) is a fluorine-containing polycaprolactone film prepared in Example 2.
  • Curve (4) is a fluorine-containing polycaprolactone film prepared in Example 3
  • curve (5) is a fluorine-containing polycaprolactone film prepared in Example 4.
  • the peaks of 4.05 ppm, 2.31 ppm, 1.65 ppm, and 1.39 ppm are assigned to the peaks of -C H 2 -in the structural unit of the PCL chain, respectively.
  • the f peak at 2.42 ppm is assigned to -CH 2 C 6 F 13 Characteristic peaks.
  • FIG. 16 is a photographic view of the degradation process of the polycaprolactone-modified fluoropolymer of the present invention; in which, the polycaprolactone 2000 (PCL2000) block-modified fluoropolymer material PCL2000-PTFOA of the comparative example is slowly degraded;
  • the polycaprolactone block-modified fluoropolymers PCL6000-PTFOA and PCL8000-PTFOA prepared in Examples 8 and 9 were largely degraded after 72 hours of enzymatic treatment, and polycaprolactone 8000 (PCL8000 ) Block modified fluoropolymer materials have less residue and more complete degradation.
  • FIG. 17 is a SEM morphology diagram of the degradation process of the fluorine-containing polycaprolactone film of the present invention.
  • 1, 2, 3, and 4 respectively represent the morphology of the enzyme before catalytic degradation, 12 h, 48 h, and 72 h;
  • a is PCL4000-PTFOA prepared according to Example 7, before Morphology of 12 h, 48 h, and 72 h after degradation;
  • b is the morphology of PCL6000-PTFOA prepared according to Example 8 before enzyme-catalyzed degradation, 12 h, 48 h, and 72 h ;
  • C is the morphology of the PCL8000-PTFOA prepared in Example 9 before enzymatic degradation, 12 h, 48 h, and 72 h.
  • FIG. 18 is a photograph of a fluorine-containing polycaprolactone solution according to the present invention, wherein (a) the solvent is dichloromethane and the solution concentration is 2% by weight; (b) the solvent is tetrahydrofuran and the solution concentration is 3% by weight; Methane, the solution concentration is 10wt%; Figure 19 is a photo of the fluorine-containing polycaprolactone film of the present invention, in which (a) the solvent is dichloromethane and the solution concentration is 3wt%; %. It is shown that the fluorine-containing polycaprolactone of the present invention has good solubility and good film-forming property.
  • the preparation method of the fluorine-containing polycaprolactone film of the present invention uses the atom transfer radical polymerization (ATRP) method to synthesize a hydrophobic fluorine-containing alkyl polyacrylate, and then directly prepares a block polymer through the condensation of polymers, which belongs to polymers. Synthesis field.
  • the disclosed fluorinated polycaprolactone film and the preparation method thereof adopt mild reaction conditions in the preparation process to avoid degradation of the polycaprolactone, and the obtained modified PCL polymerization product has a controllable structure and a high molecular weight. , Good film-forming property, excellent processability.
  • modified polycaprolactone structure a structure-controllable fluorinated polyacrylate was introduced, so the hydrophobicity of the modified product was controllable; due to the introduction of biodegradable and enzymatically degradable polycaprolactone in the fluorinated polyacrylate structure Ester, so the modified product is degradable.

Abstract

含氟聚己内酯薄膜的制备方法,将聚己内酯与氨基醇反应,制备端羟基聚己内酯;端羟基聚己内酯与酸酐反应,制备端羧基聚己内酯;溴代异丁酸乙二醇酯与含氟烷基丙烯酸酯反应,制备端羟基含氟聚丙烯酸酯;端羧基聚己内酯与端羟基含氟聚丙烯酸酯反应制备含氟聚己内酯;将含氟聚己内酯配制成有机溶液,室温下干燥成膜。

Description

一种含氟聚己内酯膜及其制备方法 技术领域
本发明涉及一种高分子改性技术,具体涉及一种含氟聚己内酯膜及其制备方法。
背景技术
聚己内酯(poly-caprolactone,PCL)是由ω-己内酯单体在金属有机化合物(如四苯基锡)催化下开环聚合得到的一类线性脂肪族聚酯,具有优越的生物降解性,良好的生物相容性、药物通透性和力学性能,己获得美国FDA的认证,在薄膜应用领域己有广泛研究和应用。聚己内酯(PCL)熔点为59~64℃,玻璃化温度为-60℃。其结构重复单元上有5个非极性亚甲基-CH 2-和一个极性酯基-COO-,即-(COOCHCH 2CH 2CH 2CH 2CH 2-)Pn,这样的结构使得PCL具有很好的柔韧性和加工性,同时这种材料具有很好的生物相容性。
目前,聚己内酯作为生物材料应用的研究最为广泛,特别是以其作为人体组织修复用途的生物材料支架、用于药物缓释等生物医药领域的研究和应用报道层出不穷。在这些应用领域中,将聚己内酯用作人造神经、人造血管等与人体体液接触的组织支架时,由于管内壁在接触体液时可能吸附体液中活性成分,这可能造成管壁附着沉积物,有时甚至造成管壁堵塞。因此,人们提出对聚己内酯进行疏水改性。
然而,聚己内酯的大分子链上缺少反应性侧基官能团,难以通过侧链化学接枝等改性提供疏水材料。因此,将聚己内酯的活性端基转变成碳溴键(C-Br),再由原子转移自由基聚合(ATRP)法通过丙烯酸酯等不饱和单体发生自由基聚合得到嵌段共聚物,可望实现聚己内酯的化学改性。这一方法在聚合过程中却存在以下缺陷:(1)受大分子链的影响,聚己内酯链端碳溴键(C-Br)活性差,难以有效引发不饱和单体发生聚合实现改性;(2)由于含氟单体嵌段改性聚己内酯疏水,极性很低,难以溶解在常规有机溶解中,在嵌段聚合反应初期即可能从常规有机溶剂体系中析出。因此导致化学改性时接入的含氟聚合物嵌段短,改性效果不理想且可控性差,改为使用能溶解嵌段改性聚己内酯的溶剂(如有机氟溶剂)则难以溶解原子转移自由基聚合(ATRP)引发剂。
另外,与PCL相比,含氟高分子材料难降解。例如,氟烷基链中由于碳氟键(C-F)具有460kJ/mol的键能,是碳碳键(C-C)键能的约4倍,因此碳氟键非常稳定、难以开裂,也正因如此,含氟化合物难分解,且具有累积性和生物毒性。这一化学结构特点使得含氟高分子难以按照侧基脱除的形式使高分子发生降解。此外,含氟材料可赋予聚合物优异的拒液性能和低表面能和低极性,因此不利于生物吸附而发生降解。正是因为含氟高分子材料的这些本质属性,非常有必要研制一类具有降解能力的含氟高分子材料。
技术问题
本发明的目的在于提供一种嵌段改性聚己内酯膜,为含氟烷基聚丙烯酸酯嵌段改性聚己内酯膜。
技术解决方案
为达到上述发明目的,本发明所采用的技术方案是:
一种含氟聚己内酯膜的制备方法,包括如下步骤:
(1)将聚已内酯与氨基醇化合物反应,制备端羟基聚己内酯;
(2)将端羟基聚已内酯与酸酐反应,制备端羧基聚己内酯;
(3)将溴代异丁酸乙二醇酯与含氟烷基丙烯酸酯反应,制备端羟基含氟聚丙烯酸酯;
(4)将端羧基聚己内酯与端羟基含氟聚丙烯酸酯反应,制备含氟聚己内酯;
(5)室温下,将含氟聚己内酯溶解于有机溶剂中,配制成溶液;然后将溶液于室温下自然干燥成膜,制备含氟聚己内酯膜。
本发明的含氟聚己内酯的化学结构式如下:
Figure 813772dest_path_image001
其中,Rf 为含氟烷基;R为 H 或 烷基;m为35~1300;n为5~100;星号来自于原料聚已内酯。
优选的,所述含氟烷基为九氟戊基、十三氟辛基、十七氟癸基、六氟丁基、十二氟庚基或八氟戊基(-CH 2(CF 2) 3CF 3、-CH 2(CF 2) 5CF 3、-CH 2(CF 2) 7CF 3、-CF 2CFHCF 3、-CH 2(CF 2) 4H、-(CF 2) 6H)中的一种;所述烷基为甲基。
本发明中,所述聚已内酯的分子量为4.56万~14.82万;氨基醇化合物为6-氨基-1-己醇;酸酐为丁二酸酐;含氟烷基丙烯酸酯为九氟戊基丙烯酸酯、十三氟辛基丙烯酸酯、十七氟癸基丙烯酸酯、六氟丁基丙烯酸酯、十二氟庚基丙烯酸酯或八氟戊基丙烯酸酯中的一种。
本发明中,所述有机溶剂为二氯甲烷、四氢呋喃、含氟溶剂中的一种或几种;所述溶液的浓度为1~10wt%;本发明的含氟聚己内酯溶解性好,可以溶解于非氟常规溶剂,从而为制备薄膜提供基础。
本发明中,聚已内酯与氨基醇化合物的质量比为1∶0.2~2;端羟基聚已内酯与酸酐的质量比为(1~200)∶(0.5~2);溴代异丁酸乙二醇酯与含氟烷基丙烯酸酯的质量比为(1×10 -6~5×10 -5)∶(0.5~5);端羧基聚己内酯与端羟基含氟聚丙烯酸酯的质量比为(1~4)∶(0.05~10)。
本发明中,步骤(1)的反应为氮气保护下室温反应1~24小时;步骤(2)的反应为氮气保护下室温反应1~6h;步骤(3)的反应为50~90℃反应1~24h;步骤(4)的反应为30~65℃反应1~8h。
本发明中,步骤(1)的反应在有机溶剂中进行;步骤(2)的反应在有机溶剂中、无水碳酸钾和4-二甲氨基吡啶存在下进行;步骤(3)的反应在有机溶剂中、五甲基二乙烯三胺和溴化亚铜存在下进行;步骤(4)的反应在有机溶剂中、N,N′-羰基二咪唑存在下进行。
本发明中,步骤(3)中,将溴代异丁酸乙二醇酯、五甲基二乙烯三胺和溴化亚铜在氮气下30~40℃搅拌1~24h;然后加入含氟烷基丙烯酸酯50~90℃反应1~24h,制备端羟基含氟聚丙烯酸酯。
本发明中,步骤(4)中,将端羧基聚己内酯与N,N′-羰基二咪唑在氮气下室温反应1~24小时;然后加入端羟基含氟聚丙烯酸酯溶液,于30~65℃反应1~8h,制备含氟聚己内酯。
本发明还公开了上述制备方法制备的含氟聚己内酯膜。
本发明进一步公开了含氟聚己内酯膜在制备疏水材料或者生物降解材料中的应用。
本发明中,上述反应完成进行提纯处理,可如下进行:
步骤(1)反应结束后,将反应液加入10~300份无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤1~2份 ×3次,于30~50℃下真空干燥1~24h,得到端羟基聚己内酯PCL-OH。
步骤(2)反应结束后,过滤,滤液加入0.3~1.0份乙酸,将溶液加入20~500份去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤2~10份 ×3次,于30~50℃下真空干燥1~24h,得到端羧基聚己内酯PCL-COOH。
步骤(3)反应结束后,加入1~20份THF和1~20份含氟有机溶剂,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在30~70℃下减压旋蒸除溶剂,然后将粗产物加入5~30份无水甲醇中,析出固体,过滤,用正己烷洗涤1~3份 ×3次,在30~100℃℃下真空干燥1~24小时,得到端羟基含氟聚丙烯酸酯。
步骤(4)反应结束后,将反应液倾入5~200份正己烷中,析出粗产物,过滤,以无水乙醇洗涤2~10份×3次后,在30~50℃下真空干燥1~~24h,得到含氟烷基聚合物嵌段改性聚己内酯,为含氟聚己内酯膜。
上述含氟有机溶剂为三氟甲基苯,1,3-双(三氟甲基)苯中的一种或两者以任意比例混合。
本发明首先将高分子量聚己内酯端羟基化、羧基化;再由ATRP法合成聚合度可控的端羟基含氟聚丙烯酸酯;最后由端羧基聚己内酯与预先合成的端羟基含氟聚丙烯酸酯在N,N′-羰基二咪唑(CDI)活化下,于温和条件下进行酯化反应,得到含氟烷基聚丙烯酸酯嵌段改性聚己内酯,其反应结构式见附图1。
有益效果
与现有技术相比,本发明提供的技术方案其有益效果在于:
(1)将高分子量PCL以端羧基活化、N,N′-羰基二咪唑(CDI)活化后,与含活性羟基的有机氟聚合物可以直接缩合,反应程度高,反应条件温和。
(2)由ATRP预先制备端基活化含氟聚合物,再接入PCL分子链中,由于是在均相体系中得到含氟聚合产物,因此容易控制含氟聚合产物以及改性PCL的聚合度,得到的产品分子量分布窄。同时,还解决了由于溶解性发生转变、难以直接在PCL链端原位生成含氟聚合物链的难题。
(3)通过在含氟聚合物分子结构中引入可降解链段聚己内酯(PCL),得到了可降解的含氟高分子材料;控制接入的PCL分子量大小得到嵌段聚合物,可以得到降解性能不同的含氟高分子材料;将端羧基PCL在活化剂作用下与含活性羟基有机氟聚合物在温和的反应条件下直接缩合制备PCL嵌段改性含氟聚合物,可以避免PCL在整个制备反应过程中发生热降解。
(4)根据本发明制备嵌段改性PCL,可以避免PCL降解,因此得到的含氟聚己内酯(PCL)膜产品分子量高,且制备工艺简便、原材料易得,易于工业化生产和推广应用。
附图说明
图1是本发明含氟聚己内酯制备反应示意图;
图2为实施例1含氟聚己内酯的结构示意图;
图3为实施例2含氟聚己内酯的结构示意图;
图4为实施例3含氟聚己内酯的结构示意图;
图5为实施例4含氟聚己内酯的结构示意图;
图6为实施例5含氟聚己内酯的结构示意图;
图7为实施例6含氟聚己内酯的结构示意图;
图8为实施例7含氟聚己内酯的结构示意图;
图9为实施例8含氟聚己内酯的结构示意图;
图10为实施例9含氟聚己内酯的结构示意图;
图11为实施例10含氟聚己内酯的结构示意图;
图12为对比例1含氟聚己内酯的结构示意图;
图13是未改性聚己内酯(PCL)和本发明实施例制备的含氟聚己内酯膜的对水接触角测试图。其中,PCL-PTFOA(2h)为实施例1制备的含氟聚己内酯膜,PCL-PTFOA(4h)为实施例2制备的含氟聚己内酯膜,PCL-PTFOA(6h)为实施例3制备的含氟聚己内酯膜,PCL-PTFOA(8h)为实施例4制备的含氟聚己内酯膜;
图14是未改性聚己内酯(PCL)和本发明实施例制备的含氟聚己内酯膜的红外吸收曲线。其中,曲线a为未改性聚己内酯,曲线b为实施例1制备的含氟聚己内酯膜,曲线c为实施例2制备的含氟聚己内酯膜,曲线d为实施例3制备的含氟聚己内酯膜,曲线e为实施例4制备的含氟聚己内酯膜;
图15是未改性聚己内酯(PCL)和本发明实施例制备的含氟聚己内酯膜的核磁共振图。其中,曲线(1)为未改性聚己内酯,曲线(2)为实施例1制备的含氟聚己内酯膜,曲线(3)为实施例2制备的含氟聚己内酯膜,曲线(4)为实施例3制备的含氟聚己内酯膜,曲线(5)为实施例4制备的含氟聚己内酯膜;
图16是本发明含氟聚己内酯膜的降解过程照片图;
图17是本发明含氟聚己内酯膜的降解过程SEM形貌图;
图18为本发明含氟聚己内酯溶液照片,其中(a)溶剂为二氯甲烷,溶液浓度为2wt%;(b)溶剂为四氢呋喃,溶液浓度为3wt%;(c)溶剂为二氯甲烷,溶液浓度为10wt%;
图19为本发明含氟聚己内酯膜的照片,其中(a)溶剂为二氯甲烷,溶液浓度为3wt%;(b)溶剂为四氢呋喃,溶液浓度为10wt%。
本发明的实施方式
下面结合附图和实施例对本发明作进一步描述。
实施例1
(1)聚己内酯端羟基化
将分子量为8万的50.0g PCL在37℃下溶解于500g 1,4-二氧六环中,氮气保护下,加入51g 6-氨基-1-己醇,反应8h。反应结束后,将反应液缓慢加入不断搅拌的1000g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤100g ×3次,于37℃下真空干燥24h,得到产物39.6g,收率79.2%。测得产物分子量为69800。
(2)聚己内酯端羧基化
将上述制备的端羟基聚己内酯25.0g(PCL-OH)和28.5g丁二酸酐加入500g 1,4-二氧六环中。搅拌溶解后,依次加入9.85g 无水碳酸钾(K 2CO 3)和8.70g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应2h。反应结束后,过滤,滤液加入15g乙酸,将溶液加入1000g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤120g ×3次,于37℃下真空干燥24h,得到产物21.5g,收率86.0%。测得产物分子量为68500。
(3)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将420ug溴代异丁酸乙二醇酯和642ug 五甲基二乙烯三胺(PMDETA)溶于60g 2-丁酮中,溶解后,加入0.4g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入63.0g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至80℃,反应2小时。反应结束后,加入300gTHF和100g三氟甲苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在65℃下减压旋蒸除溶剂,然后将粗产物加入950g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯57.1g,收率为90.6%。
(4)酯化制备嵌段聚合物
将7.0g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于80g无水THF,加入4.7g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.5g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在30g三氟甲苯中配制成溶液,加入三口烧瓶中,反应混合物在53~55℃下反应3h。反应结束后,将反应液倾入280g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟聚己内酯即含氟烷基聚合物嵌段改性聚己内酯6.5g,收率86.7%。测得产物分子量为72800。产物结构式如图2所示。
(5)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g二氯甲烷中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜,为含氟聚己内酯膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为108.0±0.8°(未改性聚己内酯对水接触角为96.8±1.0°),参见附图13。
实施例2
(1)聚己内酯端羟基化
将分子量为8万的50.0g PCL在37℃下溶解于520g 1,4-二氧六环中,氮气保护下,加入49g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的1050g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤100g ×3次,于37℃下真空干燥24h,得到产物37.9g,收率75.8%。测得产物分子量为67500。
(2)聚己内酯端羧基化
将上述制备的端羟基聚己内酯25.0g(PCL-OH)和29.2g丁二酸酐加入510g 1,4-二氧六环中。搅拌溶解后,依次加入9.88g 无水碳酸钾(K 2CO 3)和8.75g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应4h。反应结束后,过滤,滤液加入15g乙酸,将溶液加入990g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤120g ×3次,于37℃下真空干燥24h,得到产物21.1g,收率84.4%。测得产物分子量为67700。
(3)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将423ug溴代异丁酸乙二醇酯和645ug 五甲基二乙烯三胺(PMDETA)溶于65g 2-丁酮中,溶解后,加入0.4g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入63.5g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至78℃,反应4小时。反应结束后,加入310gTHF和105g间-(双三氟甲基)苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在65℃下减压旋蒸除溶剂,然后将粗产物加入960g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯56.2g,收率为88.5%。
(4)酯化制备嵌段聚合物
将7.1g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于85g无水THF,加入4.8g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.5g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在32g间-(双三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入310g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟烷基聚合物嵌段改性聚己内酯6.8g,收率89.5%。测得产物分子量为77000。产物结构式如图3所示。
(5)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g四氢呋喃(THF)中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为116.0±1.2°,参见附图13;在经历72小时酶催化降解后,87.9%降解。
实施例3
(1)聚己内酯端羟基化和聚己内酯端羧基化操作步骤同实施例1。
(2)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将418ug溴代异丁酸乙二醇酯和620ug 五甲基二乙烯三胺(PMDETA)溶于60g 2-丁酮中,溶解后,加入0.6g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入65.6g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至80℃,反应6小时。反应结束后,加入360gTHF和120g三氟甲苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在65℃下减压旋蒸除溶剂,然后将粗产物加入1050g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯55.3g,收率为84.3%。
(3)酯化制备嵌段聚合物
将7.0g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于100g无水THF,加入5.1g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.7g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在40g三氟甲苯中配制成溶液,加入三口烧瓶中,反应混合物在51~55℃下反应4h。反应结束后,将反应液倾入350g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟烷基聚合物嵌段改性聚己内酯7.1g,收率92.2%。测得产物分子量为78700。产物结构式如图4所示。
(4)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g四氢呋喃中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为128.4±1.3°,参见附图13。
实施例4
(1)聚己内酯端羟基化和聚己内酯端羧基化反应步骤同实施例2。
(2)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将490ug溴代异丁酸乙二醇酯和655ug 五甲基二乙烯三胺(PMDETA)溶于60g 2-丁酮中,溶解后,加入0.5g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入66.1g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至80℃,反应8小时。反应结束后,加入380gTHF和155g双(三氟甲基)苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在65℃下减压旋蒸除溶剂,然后将粗产物加入1050g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯57.3g,收率为86.7%。
(3)酯化制备嵌段聚合物
将7.2g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于80g无水THF,加入4.9g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.55g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在30g双(三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~54℃下反应4h。反应结束后,将反应液倾入310g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟烷基聚合物嵌段改性聚己内酯6.3g,收率81.3%。测得产物分子量为79900。产物结构式如图5所示。
(4)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g二氯甲烷中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为127.3±0.8°,参见附图13。
实施例5
(1)聚己内酯端羟基化
将分子量为5万的125.0g PCL在37℃下溶解于850g 1,4-二氧六环中,氮气保护下,加入25g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的650g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤60g ×3次,于37℃下真空干燥24h,得到产物87.8g,收率70.2%。测得产物分子量为50500。
(2)聚己内酯端羧基化
将上述制备的端羟基聚己内酯62.5g(PCL-OH)和29.5g丁二酸酐加入620g 1,4-二氧六环中。搅拌溶解后,依次加入9.98g 无水碳酸钾(K 2CO 3)和8.97g 4-二甲氨基吡啶(DMAP),氮气保护下室温反应4h。反应结束后,过滤,滤液加入15g乙酸,将溶液加入1020g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤120g ×3次,于37℃下真空干燥24h,得到产物48.8g,收率78.0%。测得产物分子量为49800。
(3)ATRP法制备端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)
将453ug溴代异丁酸乙二醇酯和662ug 五甲基二乙烯三胺(PMDETA)溶于65g 2-丁酮中,溶解后,加入0.6g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入67.1g 1H,1H,3H-六氟丁基甲基丙烯酸酯(HFBMA),加热至80℃,反应12小时。反应结束后,加入350gTHF和115g三氟甲基苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在55℃下减压旋蒸除溶剂,然后将粗产物加入1020g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)61.8g,收率为92.1%。
(4)酯化制备嵌段聚合物
将45.1g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于255g无水THF,加入5.1g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.6g端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)溶解在32g三氟甲基苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入330g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟烷基聚合物嵌段改性聚己内酯42.0g,收率92.0%。测得产物分子量为59100。产物结构式如图6所示。
  (5)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g四氢呋喃(THF)中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为109.0±1.0°。
实施例6
(1)聚己内酯端羟基化和聚己内酯端羧基化同实施例5。
(2)ATRP法制备端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)
将450ug溴代异丁酸乙二醇酯和666ug 五甲基二乙烯三胺(PMDETA)溶于65g 2-丁酮中,溶解后,加入0.5g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入66.8g 1H,1H,3H-六氟丁基甲基丙烯酸酯(HFBMA),加热至80℃,反应5小时。反应结束后,加入345gTHF和110g三氟甲基苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在55℃下减压旋蒸除溶剂,然后将粗产物加入1010g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)58.1g,收率为87.0%。
(3)酯化制备嵌段聚合物
将45.3g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于285g无水THF,加入5.2g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将0.4g端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)溶解在31g三氟甲基苯中配制成溶液,加入三口烧瓶中,反应混合物在52~55℃下反应6h。反应结束后,将反应液倾入320g正己烷中,析出粗产物,过滤,以无水乙醇洗涤45g ×3次后,在37℃下真空干燥3h,得到含氟烷基聚合物嵌段改性聚己内酯41.4g,收率90.5%。测得产物分子量为49120。产物结构式如图7所示。
  (4)疏水性测试
室温下,将0.5g含氟烷基聚合物嵌段改性聚己内酯溶解于10g四氢呋喃(THF)中,配制成质量浓度为5%的溶液。将该溶液倒入表面皿中,室温下自然干燥成膜。采用美国 dataphysics 公司的 OCAH 200 型全自动微观液滴润湿性测量仪对聚合物膜进行接触角测试,评判聚合物的表面润湿性能。选取水作为测试液滴,液滴体积为 3 μL,测试五次得平均接触角为106.0±0.8°;在经历72小时酶催化降解后,86.2%降解。
实施例7
(1)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将210ug溴代异丁酸乙二醇酯和320ug 五甲基二乙烯三胺(PMDETA)溶于30g 1,3-双(三氟甲基)苯中,溶解后,加入0.2g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入32.5g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至80℃,反应24小时。反应结束后,加入250g1,3-(双三氟甲基)苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在75℃下减压旋蒸除溶剂,然后将粗产物加入510g无水甲醇中,析出固体,过滤,用正己烷洗涤60g ×3次,在55℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯29.6g,测得产物数均分子量为6030,收率为91.2%。
(2)聚己内酯端羧基化
将分子量为4500的125.0g PCL在37℃下溶解于850g 1,4-二氧六环中,氮气保护下,加入25g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的650g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤60g ×3次,于37℃下真空干燥24h,得到产物端羟基聚己内酯,收率76.2%。测得产物分子量为4000。
将分子量为4000的端羟基聚己内酯(PCL)25.0g(PCL-OH)和0.7g丁二酸酐加入110g 1,4-二氧六环中。搅拌溶解后,依次加入1.9g 无水碳酸钾(K 2CO 3)和2.5g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应4h。反应结束后,过滤,滤液加入4g乙酸,将溶液加入300g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤250g ×3次,于37℃下真空干燥24h,得到产物18.5g,收率74.1%。测得产物分子量为4520。
(3)酯化制备嵌段聚合物
将4.2g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于45g无水THF,加入0.3g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将5.9g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在65g 1,3-(双三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入350g正己烷中,析出粗产物,过滤,以无水乙醇洗涤50g ×3次后,在37℃下真空干燥3h,得到聚己内酯嵌段改性氟烷基聚合物(PCL4000-PTFOA)7.1g,收率70.3%。测得产物分子量为10080。产物结构式如图8所示。
(4)降解性测试
将2 g聚己内酯嵌段改性氟烷基聚合物(PCL4000-PTFOA)溶解在20mL四氢呋喃中,随后转移至表面皿中,水平放置在烘箱中,40℃下烘干24h,得到含氟聚己内酯膜。将膜剪成直径大约10mm的圆薄片,重量大约0.04g。将剪得的圆片放在乙醇中清洗,除去薄膜表面的杂质,最后将薄圆片用去离子水清洗,放置在真空烘箱中,37℃下烘干24h,得到干净的薄圆片,留待降解用。
将制好的薄片分别再次称重记录并放入有编号的培养板小孔中,然后使用移液管移取3mL 8 U/mL (0. 027 mg/mL)的米曲霉脂肪酶PBS(pH =7.2~7.4)溶液,加入相应的培养板小孔中。每一个圆片完全浸入酶溶液中,每个降解时间点都设置三个样品,以降低偶然误差。它们分别降解12 h、24 h、48 h和72 h后,取出用大量的去离子水清洗,去除表面的可溶性杂质。随后,放置在真空烘箱中,37℃下烘干24h,并称重记录。
 失重率计算公式如下,其他实施例以及对比例也用此公式:
失重率(%)=(W 0-W i)/(W 0)                     
其中W 0为薄片的降解前的质量,W i 为降解后三个样品的平均质量。
测得PCL4000-PTFOA 样品12小时、24小时、48小时和72小时的失重率分别为2.1%、22.3%、43.5%和77.2%。聚己内酯嵌段改性氟烷基聚合物产品在经历72小时酶催化降解后,77.2%降解,测试五次得平均接触角为119.0±1.1°。
实施例8
(1)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)如实施例2。
(2)聚己内酯端羧基化
将分子量为7000的125.0g PCL在37℃下溶解于850g 1,4-二氧六环中,氮气保护下,加入25g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的650g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤60g ×3次,于37℃下真空干燥24h,得到产物端羟基聚己内酯,收率73.2%。测得产物分子量为6100。
将分子量为6000的端羟基聚己内酯(PCL)38.0g(PCL-OH)和0.8g丁二酸酐加入150g 1,4-二氧六环中。搅拌溶解后,依次加入1.8g 无水碳酸钾(K 2CO 3)和2.6g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应4h。反应结束后,过滤,滤液加入5g乙酸,将溶液加入300g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤250g ×3次,于37℃下真空干燥12h,得到产物30.4g,收率80.2%。测得产物分子量为6700。
(3)酯化制备嵌段聚合物
将6.5g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于55g无水THF,加入0.4g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将5.9g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在65g 1,3-(双三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入350g正己烷中,析出粗产物,过滤,以无水乙醇洗涤50g ×3次后,在37℃下真空干燥10h,得到聚己内酯嵌段改性氟烷基聚合物(PCL6000-PTFOA)9.1g,收率73.4%。测得产物分子量为12110。产物结构式如图9所示。
(4)降解性测试
将2 g聚己内酯嵌段改性氟烷基聚合物(PCL6000-PTFOA)溶解在20mL四氢呋喃中,随后转移至表面皿中,水平放置在烘箱中,40℃下烘干24h,得到含氟聚己内酯膜。将膜剪成直径大约10mm的圆薄片,重量大约0.04g。将剪得的圆片放在乙醇中清洗,除去薄膜表面的杂质,最后将薄圆片用去离子水清洗,放置在真空烘箱中,37℃下烘干24h,得到干净的薄圆片,留待降解用。
将制好的薄片分别再次称重记录并放入有编号的培养板小孔中,然后使用移液管移取3mL 8 U/mL (0. 027 mg/mL)的米曲霉脂肪酶PBS(pH =7.2~7.4)溶液,加入相应的培养板小孔中。每一个圆片完全浸入酶溶液中,每个降解时间点都设置三个样品,以降低偶然误差。它们分别降解12 h、24 h、48 h和72 h后,取出用大量的去离子水清洗,去除表面的可溶性杂质。随后,放置在真空烘箱中,37℃下烘干24h,并称重记录。
 测得PCL6000-PTFOA 样品12小时、24小时、48小时和72小时的失重率分别为1.9%、21.8%、43.8%和80.2%。聚己内酯嵌段改性氟烷基聚合物产品在经历72小时酶催化降解后,80.2%降解,测试五次得平均接触角为123.2±1.2°。
实施例9
(1)    ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)
将220ug溴代异丁酸乙二醇酯和300ug 五甲基二乙烯三胺(PMDETA)溶于35g 1,3-双(三氟甲基)苯中,溶解后,加入0.2g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入33.1g 1H,1H,2H,2H-十三氟辛基丙烯酸酯(TFOA),加热至80℃,反应28小时。反应结束后,加入265g1,3-(双三氟甲基)苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在78℃下减压旋蒸除溶剂,然后将粗产物加入500g无水甲醇中,析出固体,过滤,用正己烷洗涤60g ×3次,在65℃下真空干燥24小时,得到端羟基含氟聚丙烯酸酯22.1g,测得产物数均分子量为6630,收率为66.7%。
(2)聚己内酯端羧基化
将分子量为9800的125.0g PCL在37℃下溶解于850g 1,4-二氧六环中,氮气保护下,加入25g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的650g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤60g ×3次,于37℃下真空干燥24h,得到产物端羟基聚己内酯,收率72.2%。测得产物分子量为8210。
将分子量为8000的端羟基聚己内酯(PCL)49.0g(PCL-OH)和0.8g丁二酸酐加入175g 1,4-二氧六环中。搅拌溶解后,依次加入1.9g 无水碳酸钾(K 2CO 3)和2.5g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应4h。反应结束后,过滤,滤液加入6g乙酸,将溶液加入300g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤250g ×3次,于37℃下真空干燥24h,得到产物37.0g,收率75.6%。测得产物分子量为8020。
(3)酯化制备嵌段聚合物
将8.4g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于75g1,3-(双三氟甲基)苯,加入0.5g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将5.8g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在70g 1,3-(双三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入350g正己烷中,析出粗产物,过滤,以无水乙醇洗涤50g ×3次后,在37℃下真空干燥3h,得到聚己内酯嵌段改性氟烷基聚合物(PCL8000-PTFOA)9.2g,收率65.0%。测得产物分子量为15090。产物结构式如图10所示。
(4)降解性测试
将2 g聚己内酯嵌段改性氟烷基聚合物(PCL8000-PTFOA)溶解在20mL四氢呋喃中,随后转移至表面皿中,水平放置在烘箱中,40℃下烘干24h。将膜剪成直径大约10mm的圆薄片,重量大约0.04g。将剪得的圆片放在乙醇中清洗,除去薄膜表面的杂质,最后将薄圆片用去离子水清洗,放置在真空烘箱中,37℃下烘干24h,得到干净的薄圆片,留待降解用。
将制好的薄片分别再次称重记录并放入有编号的培养板小孔中,然后使用移液管移取3mL 8 U/mL (0. 027 mg/mL)的米曲霉脂肪酶PBS(pH =7.2~7.4)溶液,加入相应的培养板小孔中。每一个圆片完全浸入酶溶液中,每个降解时间点都设置三个样品,以降低偶然误差。它们分别降解12 h、24 h、48 h和72 h后,取出用大量的去离子水清洗,去除表面的可溶性杂质。随后,放置在真空烘箱中,37℃下烘干24h,并称重记录。
 测得PCL8000-PTFOA 样品12小时、24小时、48小时和72小时的失重率分别为1.9%、22.9%、44.5%和84.8%。聚己内酯嵌段改性氟烷基聚合物产品在经历72小时酶催化降解后,84.8%降解。
实施例10
(1)ATRP法制备端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)
将453ug溴代异丁酸乙二醇酯和662ug 五甲基二乙烯三胺(PMDETA)溶于65g 2-丁酮中,溶解后,加入0.6g溴化亚铜,氮气保护下在40℃下搅拌反应15min,得到催化剂。加入67.1g 1H,1H,3H-六氟丁基甲基丙烯酸酯(HFBDA),加热至80℃,反应28小时。反应结束后,加入350gTHF和115g三氟甲苯,过中性氧化铝(200-300目)柱,得到淡黄色澄清溶液。溶液在55℃下减压旋蒸除溶剂,然后将粗产物加入1020g无水甲醇中,析出固体,过滤,用正己烷洗涤150g ×3次,在55℃下真空干燥24小时,得到端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)61.8g,产物分子量为3950,收率为92.1%。
(2)聚己内酯端羧基化
将分子量为50500的端羟基聚己内酯(PCL,实施例5制备)329.0g(PCL-OH)和0.8g丁二酸酐加入152g 1,4-二氧六环中。搅拌溶解后,依次加入1.9g 无水碳酸钾(K 2CO 3)和2.3g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应6h。反应结束后,过滤,滤液加入4g乙酸,将溶液加入300g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤250g ×3次,于37℃下真空干燥24h,得到产物245.5g,收率74.6%。测得产物分子量为49900。
(3)酯化制备嵌段聚合物
将50.1g 分子量为49900的端羧基聚己内酯室温下在三口烧瓶中溶解于550g1,3-(双三氟甲基)苯,加入0.5g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将5.8g端羟基聚(1H,1H,3H-六氟丁基甲基丙烯酸酯)溶解在71g三氟甲苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入860g正己烷中,析出粗产物,过滤,以无水乙醇洗涤200g ×3次后,在37℃下真空干燥3h,得到聚己内酯嵌段改性氟烷基聚合物(PCL50000-PHFDA)79.8g,收率80.1%。测得产物分子量为50230。产物结构式如图11所示。
(4)降解性测试同实施例7
测得PCL50000-PHFDA 样品12小时、24小时、48小时和72小时的失重率分别为2.2%、23.4%、41.2%和86.3%。聚己内酯嵌段改性氟烷基聚合物产品在经历72小时酶催化降解后,86.3%降解。
对比例:
(1)ATRP法制备端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)同实施例7。
(2)聚己内酯端羧基化
将分子量为2300的125.0g PCL在37℃下溶解于850g 1,4-二氧六环中,氮气保护下,加入25g 6-氨基-1-己醇,反应12h。反应结束后,将反应液缓慢加入不断搅拌的650g无水乙醇中,析出固体。过滤,滤饼以无水乙醇洗涤60g ×3次,于37℃下真空干燥24h,得到产物端羟基聚己内酯,收率75.6%。测得产物分子量为2000。
将分子量为2000的端羟基聚己内酯(PCL)12.4g(PCL-OH)和0.8g丁二酸酐加入90g 1,4-二氧六环中。搅拌溶解后,依次加入1.6g 无水碳酸钾(K 2CO 3)和2.1g  4-二甲氨基吡啶(DMAP),氮气保护下室温反应6h。反应结束后,过滤,滤液加入3g乙酸,将溶液加入200g去离子水中,析出固体。过滤,滤饼以无水乙醇洗涤150g ×3次,于37℃下真空干燥24h,得到产物6.3g,收率51.2%。测得产物分子量为1920。
(3)酯化制备嵌段聚合物
将2.0g 端羧基聚己内酯(PCL-COOH)室温下在三口烧瓶中溶解于35g无水THF,加入0.3g N,N′-羰基二咪唑(CDI),在氮气保护下于30℃下反应2h。将5.5g端羟基聚(1H,1H,2H,2H-十三氟辛基丙烯酸酯)溶解在65g 1,3-(双三氟甲基)苯中配制成溶液,加入三口烧瓶中,反应混合物在50~55℃下反应6h。反应结束后,将反应液倾入290g正己烷中,析出粗产物,过滤,以无水乙醇洗涤50g ×3次后,在37℃下真空干燥3h,得到聚己内酯嵌段改性氟烷基聚合物(PCL2000-PTFOA)6.8g,收率91.1%。测得产物分子量为8150。产物结构式如图12所示。
(4)降解性测试
将2 g聚己内酯嵌段改性氟烷基聚合物(PCL2000-PTFOA)溶解在20mL四氢呋喃中,随后转移至表面皿中,水平放置在烘箱中,40℃下烘干24h。将膜剪成直径大约10mm的圆薄片,重量大约0.04g。将剪得的圆片放在乙醇中清洗,除去薄膜表面的杂质,最后将薄圆片用去离子水清洗,放置在真空烘箱中,37℃下烘干24h,得到干净的薄圆片,留待降解用。
将制好的薄片分别再次称重记录并放入有编号的培养板小孔中,然后使用移液管移取3mL 8 U/mL (0. 027 mg/mL)的米曲霉脂肪酶PBS(pH =7.2~7.4)溶液,加入相应的培养板小孔中。每一个圆片完全浸入酶溶液中,每个降解时间点都设置三个样品,以降低偶然误差。它们分别降解12 h、24 h、48 h和72 h后,取出用大量的去离子水清洗,去除表面的可溶性杂质。随后,放置在真空烘箱中,37℃下烘干24h,并称重记录。
 测得PCL2000-PTFOA 样品12小时、24小时、48小时和72小时的失重率分别为1.5%、5.2%、8.0%和12.1%,产物在酶催化作用72小时以后,降解非常缓慢,测试五次得平均接触角为98.5±1.3°。
图14是未改性聚己内酯(PCL)和本发明实施例制备的含氟聚己内酯膜的红外吸收曲线。其中,曲线a为未改性聚己内酯,曲线b为实施例1制备的含氟聚己内酯膜,曲线c为实施例2制备的含氟聚己内酯膜,曲线d为实施例3制备的含氟聚己内酯膜,曲线e为实施例4制备的含氟聚己内酯膜。图14中,2950.4 cm -1和2866.8 cm -1处的吸收峰归属于-CH的对称和反对称伸缩振动峰,1728.0 cm -1 归属于C=O的伸缩振动吸收峰, 在1237.1 cm -1、1190.1 cm -1、1145.1 cm -1、1082.3 cm -1处的峰归属于C-F的特征吸收峰,且在1237.1 cm -1、1190.1 cm -1处峰与C=O的特征吸收峰重叠。与未改性PCL红外吸收曲线a对比,可以很明显的看出,含氟聚合物嵌段改性后的PCL红外吸收曲线中,出现了C-F的特征吸收峰。
图15是未改性聚己内酯(PCL)和本发明实施例制备的含氟聚己内酯膜的核磁共振图。其中,曲线(1)为未改性聚己内酯,曲线(2)为实施例1制备的含氟聚己内酯膜,曲线(3)为实施例2制备的含氟聚己内酯膜,曲线(4)为实施例3制备的含氟聚己内酯膜,曲线(5)为实施例4制备的含氟聚己内酯膜。图15中,4.05 ppm、2.31 ppm、1.65 ppm和1.39 ppm的峰分别归属于PCL链结构单元中-C H 2-的峰。另外,在曲线(2)、(3)、(4)、(5)中, 4.31 ppm的e峰归属为O=COC H 2的峰,2.42 ppm的f峰为-CH 2C 6F 13的特征峰。
图16是本发明聚己内酯改性含氟聚合物的降解过程照片图;其中,对比例的聚己内酯2000(PCL2000)嵌段改性的含氟高分子材料PCL2000-PTFOA降解缓慢;实施例8和实施例9制备的聚己内酯嵌段改性的含氟高分子材料PCL6000-PTFOA和PCL8000-PTFOA在经72小时酶处理以后,大部分降解,且聚己内酯8000(PCL8000)嵌段改性的含氟高分子材料残留少、降解更彻底。
图17是本发明的含氟聚己内酯膜的降解过程SEM形貌图。其中,1、2、3、4分别表示酶催化降解前、降解12 h、降解48 h、降解72 h后的形貌图;a为按照实施例7制备的PCL4000-PTFOA在酶催化降解前、降解12 h、降解48 h、降解72 h后的形貌图;b为按照实施例8制备的PCL6000-PTFOA在酶催化降解前、降解12 h、降解48 h、降解72 h后的形貌图;c为实施例9制备的PCL8000-PTFOA在酶催化降解前、降解12 h、降解48 h、降解72 h后的形貌图。
图18为本发明含氟聚己内酯溶液照片,其中(a)溶剂为二氯甲烷,溶液浓度为2wt%;(b)溶剂为四氢呋喃,溶液浓度为3wt%;(c)溶剂为二氯甲烷,溶液浓度为10wt%;图19为本发明含氟聚己内酯膜的照片,其中(a)溶剂为二氯甲烷,溶液浓度为3wt%;(b)溶剂为四氢呋喃,溶液浓度为10wt%。显示本发明的含氟聚己内酯溶解性好、成膜性好。
本发明的含氟聚己内酯膜的制备方法利用原子转移自由基聚合(ATRP)方法合成疏水的含氟烷基聚丙烯酸酯,再通过高分子互相缩合直接制备嵌段聚合物,属于高分子合成领域。本发明公开的含氟聚己内酯膜及其制备方法,由于在制备过程中采用了温和的反应条件,避免了聚己内酯发生降解,得到的改性PCL聚合产物结构可控且分子量高,成膜性好,加工性能优异。改性聚己内酯结构中引入了结构可控的含氟聚丙烯酸酯,因此改性产物的疏水性可调控;由于含氟聚丙烯酸酯结构中引入了可生物降解和酶降解的聚己内酯,因此改性产物可降解。

Claims (10)

  1. 一种含氟聚己内酯膜的制备方法,其特征在于,包括如下步骤:
    (1)将聚已内酯与氨基醇化合物反应,制备端羟基聚己内酯;
    (2)将端羟基聚已内酯与酸酐反应,制备端羧基聚己内酯;
    (3)将溴代异丁酸乙二醇酯与含氟烷基丙烯酸酯反应,制备端羟基含氟聚丙烯酸酯;
    (4)将端羧基聚己内酯与端羟基含氟聚丙烯酸酯反应,制备含氟聚己内酯;
    (5)室温下,将含氟聚己内酯溶解于有机溶剂中,配制成溶液;然后将溶液于室温下自然干燥成膜,制备含氟聚己内酯膜。
  2. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于,所述含氟聚己内酯的化学结构式如下:
    Figure 985496dest_path_image001
    其中,Rf 为含氟烷基;R为 H 或甲基;m为35~1300;n为5~100;所述含氟烷基为九氟戊基、十三氟辛基、十七氟癸基、六氟丁基、十二氟庚基或八氟戊基中的一种。
  3. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于,所述有机溶剂为二氯甲烷、四氢呋喃、含氟溶剂中的一种或几种;所述溶液的浓度为1~10wt%。
  4. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于:所述聚已内酯的分子量为4.56万~14.82万;氨基醇化合物为6-氨基-1-己醇;酸酐为丁二酸酐;含氟烷基丙烯酸酯为九氟戊基丙烯酸酯、十三氟辛基丙烯酸酯、十七氟癸基丙烯酸酯、六氟丁基丙烯酸酯、十二氟庚基丙烯酸酯或八氟戊基丙烯酸酯中的一种。
  5. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于:聚已内酯与氨基醇化合物的质量比为1∶0.2~2;端羟基聚已内酯与酸酐的质量比为(1~200)∶(0.5~2);溴代异丁酸乙二醇酯与含氟烷基丙烯酸酯的质量比为(1×10 -6~5×10 -5)∶(0.5~5);端羧基聚己内酯与端羟基含氟聚丙烯酸酯的质量比为(1~4)∶(0.05~10)。
  6. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于:步骤(1)的反应为氮气保护下室温反应1~24小时;步骤(2)的反应为氮气保护下室温反应1~6h;步骤(3)的反应为50~90℃反应1~24h;步骤(4)的反应为30~65℃反应1~8h。
  7. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于:步骤(1)的反应在有机溶剂中进行;步骤(2)的反应在有机溶剂中、无水碳酸钾和4-二甲氨基吡啶存在下进行;步骤(3)的反应在有机溶剂中、五甲基二乙烯三胺和溴化亚铜存在下进行;步骤(4)的反应在有机溶剂中、N,N′-羰基二咪唑存在下进行。
  8. 如权利要求1所述含氟聚己内酯膜的制备方法,其特征在于:步骤(4)中,将端羧基聚己内酯与N,N′-羰基二咪唑在氮气下室温反应1~24小时;然后加入端羟基含氟聚丙烯酸酯溶液,于30~65℃反应1~8h,制备含氟聚己内酯。
  9. 如权利要求1所述含氟聚己内酯膜的制备方法制备的含氟聚己内酯膜。
  10. 权利要求9所述含氟聚己内酯膜在制备疏水材料或者生物降解材料中的应用。
PCT/CN2018/088911 2018-05-29 2018-05-29 一种含氟聚己内酯膜及其制备方法 WO2019227319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/088911 WO2019227319A1 (zh) 2018-05-29 2018-05-29 一种含氟聚己内酯膜及其制备方法
US17/106,144 US11807728B2 (en) 2018-05-29 2020-11-29 Fluorine-containing polycaprolactone film and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088911 WO2019227319A1 (zh) 2018-05-29 2018-05-29 一种含氟聚己内酯膜及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/106,144 Continuation US11807728B2 (en) 2018-05-29 2020-11-29 Fluorine-containing polycaprolactone film and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2019227319A1 true WO2019227319A1 (zh) 2019-12-05

Family

ID=68697719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088911 WO2019227319A1 (zh) 2018-05-29 2018-05-29 一种含氟聚己内酯膜及其制备方法

Country Status (2)

Country Link
US (1) US11807728B2 (zh)
WO (1) WO2019227319A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447422A (zh) * 2022-01-24 2022-05-06 中国地质大学(武汉) 一种基于聚己内酯自修复的高功率复合固态电解质及其制备方法
CN114960223B (zh) * 2022-04-07 2023-11-10 苏州大学 一种高机械稳定性以及服用性疏水织物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129797A1 (en) * 2010-11-23 2012-05-24 Akala Emmanuel Biodegradable stealth polymeric particles fabricated using the macromonomer approach by free radical dispersion polymerization
JP2013501560A (ja) * 2009-08-14 2013-01-17 ザ・ユニバーシティ・オブ・マンチェスター 生体適合材料
CN103059314A (zh) * 2012-12-31 2013-04-24 中科院广州化学有限公司 具有温敏性的含氟嵌段接枝聚合物及其制备方法与应用
CN105754122A (zh) * 2016-04-25 2016-07-13 苏州大学张家港工业技术研究院 一种亲水性聚己内酯薄膜的制备方法
CN105754107A (zh) * 2016-04-25 2016-07-13 苏州大学 一种亲水性聚(ω-己内酯)及其制备方法
US20170120342A1 (en) * 2014-03-27 2017-05-04 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN108409993A (zh) * 2018-04-19 2018-08-17 南通纺织丝绸产业技术研究院 一种含氟聚己内酯膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083333A (ja) * 1994-06-22 1996-01-09 Tokuyama Corp 生分解性脂肪族ポリエステルの溶融押出フィルムおよびそれからなる袋
JP4872247B2 (ja) * 2005-06-16 2012-02-08 Basfコーティングスジャパン株式会社 熱硬化性塗料組成物
JPWO2016117398A1 (ja) * 2015-01-19 2017-11-09 株式会社日立製作所 樹脂組成物、塗料、電子部品、モールド変圧器、モータコイル、ケーブル
CN108159477B (zh) * 2017-12-25 2020-10-02 中国人民解放军陆军军医大学第一附属医院 抗凝血抗粘附的聚七氟丁基丙烯酸酯-聚已内酯嵌段聚合物纳米纤维膜的制备方法及应用
CN108611861B (zh) * 2018-05-17 2020-11-17 苏州大学 一种超疏水微球及其制备方法与由该微球制备的超疏水织物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501560A (ja) * 2009-08-14 2013-01-17 ザ・ユニバーシティ・オブ・マンチェスター 生体適合材料
US20120129797A1 (en) * 2010-11-23 2012-05-24 Akala Emmanuel Biodegradable stealth polymeric particles fabricated using the macromonomer approach by free radical dispersion polymerization
CN103059314A (zh) * 2012-12-31 2013-04-24 中科院广州化学有限公司 具有温敏性的含氟嵌段接枝聚合物及其制备方法与应用
US20170120342A1 (en) * 2014-03-27 2017-05-04 Kyocera Corporation Cutting insert, cutting tool, and method for manufacturing machined product
CN105754122A (zh) * 2016-04-25 2016-07-13 苏州大学张家港工业技术研究院 一种亲水性聚己内酯薄膜的制备方法
CN105754107A (zh) * 2016-04-25 2016-07-13 苏州大学 一种亲水性聚(ω-己内酯)及其制备方法
CN108409993A (zh) * 2018-04-19 2018-08-17 南通纺织丝绸产业技术研究院 一种含氟聚己内酯膜及其制备方法

Also Published As

Publication number Publication date
US11807728B2 (en) 2023-11-07
US20210079184A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN108409993B (zh) 一种含氟聚己内酯膜及其制备方法
EP2094738B1 (en) Functional hydrocarbon polymers and process for producing same
US11807728B2 (en) Fluorine-containing polycaprolactone film and preparation method therefor
Zhang et al. Synthesis of functional polycaprolactones via passerini multicomponent polymerization of 6-oxohexanoic acid and isocyanides
CA2306640A1 (en) End-functionalized polymers by controlled free-radical polymerization process and polymers made therefrom
ITMI970799A1 (it) Polimeri idrogenati modificati
KR101512390B1 (ko) 사슬 말단 부근에 수분-경화성 관능기 클러스터를 갖는 경화성 조성물
US10577456B2 (en) Halogenated cyclic diesters, related polymers, and methods for their preparation and use
JP2000313721A (ja) 新規ヒドロキシル基含有共重合体とその製造方法
CN110577648B (zh) 一种疏水型聚己内酯的制备方法
CN108586762A (zh) 一种膦腈碱催化的羟基与双键的点击化学聚合反应
JP2012232909A (ja) 新規トリメチレンカーボネート誘導体および該ポリマー
CN103626979A (zh) 交联型液态聚己内酯及其制备方法和用途
Jiang et al. Syntheses and self-assembly of novel polyurethane–itaconic acid copolymer hydrogels
JP4054967B2 (ja) 第3級水酸基を有するビニル重合性モノマーとその重合体
CN104876823A (zh) 可聚合全氟聚醚单体合成方法
CN107298673A (zh) ε-己内酯衍生物及其制备方法和应用
CN112898497A (zh) 一种聚乳酸基大分子单体及其制备方法和应用
KR102109359B1 (ko) 리그닌과 식물유 기반 열가소성 탄성체 및 그의 제조방법, 리그닌과 식물유 기반 열가소성 탄성체로 제조되는 성형체
Levenfeld et al. Polymers with pharmacological activity: 2. Synthesis and free radical polymerization of an acrylic derivative of phenacetin
KR101836967B1 (ko) 자가치유 폴리에테르 화합물 및 이의 제조방법
JP2008063360A (ja) ポリフェニルアセチレン系ポリマーおよびその製造方法、並びにフェニルアセチレン誘導体
KR20210008398A (ko) 제어된 구조를 가진 비닐 방향족 폴리머를 합성하기 위한 중합 방법
CN113121784B (zh) 单全氟支化醚链氧杂环丁烷系列含氟聚合物及其制备方法
EP0982334B1 (en) A process for producing polycondensable macromonomer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921208

Country of ref document: EP

Kind code of ref document: A1