WO2019225161A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2019225161A1
WO2019225161A1 PCT/JP2019/014500 JP2019014500W WO2019225161A1 WO 2019225161 A1 WO2019225161 A1 WO 2019225161A1 JP 2019014500 W JP2019014500 W JP 2019014500W WO 2019225161 A1 WO2019225161 A1 WO 2019225161A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
maximum value
region
lead
electrode material
Prior art date
Application number
PCT/JP2019/014500
Other languages
English (en)
French (fr)
Inventor
宏樹 籠橋
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to AU2019273941A priority Critical patent/AU2019273941B2/en
Priority to CN201980033853.6A priority patent/CN112154556A/zh
Priority to JP2020521067A priority patent/JP7207408B2/ja
Priority to EP19806521.1A priority patent/EP3780173A4/en
Priority to US17/049,830 priority patent/US11367906B2/en
Publication of WO2019225161A1 publication Critical patent/WO2019225161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery.
  • the lead acid battery includes an electrode plate group in which a positive electrode plate and a negative electrode plate are alternately stacked via separators.
  • the positive electrode plate includes a positive electrode current collector and a positive electrode material
  • the negative electrode plate includes a negative electrode current collector and a negative electrode material.
  • Patent Document 1 discloses a method for reducing the amount of active material used for a negative electrode without reducing the charge / discharge characteristics of a sealed lead-acid battery and reducing the weight of the battery. It has been proposed that the pore size volume is 0.02 to 0.15 ml / g, and the pore size volume of 1 to 6 ⁇ m is 0.01 to 0.03 ml / g.
  • Patent Document 2 shows a pore size distribution having two peaks when the pore volume of the negative electrode active material is around 1.2 ⁇ m and 1.7 ⁇ m, respectively.
  • the low-temperature HR discharge characteristics of the lead-acid battery may decrease or the amount of liquid reduction may increase significantly.
  • One aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolyte solution, and the negative electrode plate includes a negative electrode current collector and a negative electrode material, and Log differential pores of the negative electrode material
  • the Log differential pore volume distribution of the negative electrode material has a peak p corresponding to the maximum value P in the P region and a peak q corresponding to the maximum value Q in the Q region, and the maximum
  • the present invention relates to a lead storage battery in which the value P and the maximum value Q satisfy 0.25 ⁇ P / (P + Q) ⁇ 0.63.
  • the low temperature HR discharge characteristics of the lead-acid battery are well maintained even after a light load life test at a high temperature, and an increase in the amount of liquid reduction is also suppressed.
  • the lead acid battery which concerns on embodiment of this invention is equipped with a negative electrode plate, a positive electrode plate, and electrolyte solution, and a negative electrode plate is equipped with a negative electrode collector and negative electrode material.
  • the log differential pore volume distribution of the negative electrode material after 1220 cycles of the following “75 ° C. 1′-10 ′ light load life test” has the following characteristics.
  • the Log differential pore volume distribution has a peak p corresponding to the maximum value P in the P region and a peak q corresponding to the maximum value Q in the Q region.
  • the number of peaks present in the P region and the Q region is not limited to one, and may be two or more. That is, the P region only needs to have at least a peak corresponding to the maximum value P, and the Q region only needs to have at least a peak corresponding to the maximum value Q.
  • the lead storage battery after 1220 cycles in the 75 ° C. 1′-10 ′ light load life test corresponds to a lead storage battery in use.
  • the lead storage battery in use is a lead storage battery before reaching the end of its life and can be used continuously thereafter.
  • lead storage batteries are used repeatedly over a long period of time, it is difficult to achieve a sufficiently long life simply by controlling the electrode structure in the initial state. Even a lead-acid battery having good performance in the initial cycle may easily deteriorate after use for a certain period. On the other hand, when controlling the electrode structure of the lead storage battery in use, the performance of the lead storage battery can be maintained satisfactorily with high probability even in the latter half of the cycle.
  • a lead storage battery after 1220 cycles in the 75 ° C. 1′-10 ′ light load life test or in use can be rephrased as a lead storage battery after initial deterioration.
  • a lead-acid battery has a characteristic that it deteriorates to a certain level in the initial stage of use and then becomes stable. This initial deterioration is caused by the change in the surface area of the active material of the electrode material, which can be confirmed by measuring the low temperature HR discharge duration of the battery.
  • 1′-10 ′ light load test is repeated 100 cycles, the low temperature HR discharge duration is measured every 100 cycles, and the reduction rate of the discharge duration at that time is (100 It can be judged that the initial deterioration has occurred when it becomes 3% or less (relative to the discharge duration before the cycle). Even if the battery history is unknown and it is unknown whether it is new or after initial deterioration, for example, the 75 ° C. 1′-10 ′ light load test is repeated 100 cycles, and the reduction rate of the low temperature HR discharge duration at that time is 3 If it is less than or equal to%, it can be determined that the battery has undergone initial deterioration. The battery after 1220 cycles in the 75 ° C.
  • 1′-10 ′ light load life test clearly corresponds to after the initial deterioration, so it is not necessary to determine whether the battery is after the initial deterioration. Judgment can be made. Moreover, it can be judged whether it corresponds to invention by evaluating the battery after a test.
  • P-region pores having a pore diameter of 1 to 3 ⁇ m are considered to have an effect of improving low-temperature HR discharge characteristics and charge acceptability.
  • lead sulfate crystals grow during discharge.
  • the negative electrode material has pores with a small pore size in the P region, lead sulfate crystal growth proceeds rapidly. Within the small pores, the travel distance until the lead ions (Pb 2+ ) generated by the discharge reach the lead sulfate crystals is small. Therefore, the resistance during discharge is reduced, and good low-temperature HR discharge characteristics are easily exhibited.
  • the moving distance until lead ions (Pb 2+ ) are reduced to Pb is reduced, and the charge acceptability is improved.
  • the pores in the P region having a pore diameter of 1 to 3 ⁇ m are resistant to high temperatures in that the low temperature HR discharge characteristics are maintained well after a 1′-10 ′ light load life test at a high temperature of 75 ° C. It can be said that it improves.
  • the pores in the Q region having a pore diameter of 6 to 15 ⁇ m are considered to have an action of suppressing the reduction of the electrolyte solution.
  • the surface area of the negative electrode material tends to be small.
  • the amount of liquid reduction due to electrolysis of water is closely related to the surface area of the negative electrode material. It is considered that liquid reduction is suppressed by reducing the surface area. That is, by satisfying the condition A and the condition B, the charge acceptability of the lead storage battery is well maintained even after the light load life test at a high temperature, and the increase in the liquid reduction amount is also suppressed.
  • the state where 0.25 ⁇ R1220 ⁇ 0.63 is satisfied means that the negative electrode material used in the latter cycle is It means having a plurality of fine pores each having a unique action and effect in a well-balanced manner. From the viewpoint of realizing a more excellent pore structure, 0.3 ⁇ R1220 ⁇ 0.6 is preferable, and 0.4 ⁇ R1220 ⁇ 0.6 may be satisfied.
  • R1220 may be 0.30 or more, 0.25 or more, 0.63 or less, or 0.60 or less, and these upper and lower limits may be combined in any way.
  • a state where 0.25 ⁇ P / (P + Q) ⁇ 0.63 is satisfied is that the negative electrode material used in the latter cycle has a plurality of pores each having its own function and effect. Means having a good balance. From the viewpoint of realizing a more excellent pore structure, 0.3 ⁇ P / (P + Q) ⁇ 0.6 is preferable, and 0.4 ⁇ P / (P + Q) ⁇ 0.6 may be satisfied.
  • P / (P + Q) may be 0.30 or more, 0.25 or more, 0.63 or less, or 0.60 or less, and these upper and lower limits may be combined in any way.
  • the above embodiment is particularly useful in a liquid type (bent type) lead storage battery in which a reduction in the amount of liquid reduction is desired.
  • the said embodiment is useful also in a control valve type (sealed type) lead acid battery.
  • the amount of overcharge current during float charging is suppressed, and the corrosion reaction (Pb ⁇ PbO 2 ) of the positive electrode current collector can be reduced along with the electrolysis of water.
  • the maximum value P and the maximum value Q do not need to correspond to the maximum peak in each region.
  • 0.7 ⁇ R0 is preferably satisfied, and 0.9 ⁇ R0 is more satisfied. preferable.
  • 0.7 ⁇ P / (P + Q) is preferably satisfied, and 0.9 ⁇ P / (P + Q) is more preferable.
  • 0.7 ⁇ P / (P + Q) is preferably satisfied, and 0.9 ⁇ P / (P + Q) is more preferable.
  • the pore structure of the negative electrode material after chemical conversion can be designed by controlling the physical properties of the negative electrode paste that is the raw material of the negative electrode material. Specifically, by controlling the particle size of the lead powder of the raw material, the amount of water mixed with the lead powder, the amount of sulfuric acid aqueous solution mixed with the lead powder, the concentration of sulfuric acid aqueous solution, the amount of sulfuric acid aqueous solution mixed in the lead powder, etc. Good.
  • the barium sulfate added to the negative electrode material affects the Log differential pore volume distribution of the negative electrode material after chemical conversion.
  • Barium sulfate can be a crystal nucleus of lead sulfate. Crystals centered on barium sulfate can form a different pore structure than other lead sulfates. The amount of barium sulfate added also affects the pore structure of the electrode material after conversion.
  • the organic shrinkage agent added to the negative electrode material greatly affects the Log differential pore volume distribution of the negative electrode material after chemical conversion.
  • R1220 can be controlled comparatively easily by including in the negative electrode material the first organic shrinkage agent and the second organic shrinkage agent different from the first organic shrinkage agent.
  • Organic shrinking agents tend to form a pore structure with a unique pore size depending on the type. Depending on the type of organic shrinking agent, there is a difference in the change in pore structure due to the deterioration of the negative electrode material. Accordingly, when a plurality of different organic shrinking agents are used in combination, a plurality of peaks are likely to appear in the Log differential pore volume distribution of the negative electrode material after 1220 cycles in the 75 ° C. 1′-10 ′ light load life test.
  • a sample cell X of 2V is produced.
  • a sample cell X may be produced by cutting out a 2V cell from the lead storage battery.
  • the test cell X was discharged at a constant current of 25 A for 1 minute, and charged and discharged at a constant voltage of 2.47 V and an upper limit current of 25 A for 10 minutes.
  • a sample cell Y is produced with two positive plates and one negative plate housed in a bag-like separator.
  • any positive electrode plate having a sufficiently large capacity relative to the negative electrode plate may be used.
  • the rated capacity is 0.6 times the negative electrode theoretical capacity, and the fully charged sample cell Y is discharged for 30 minutes with a current 0.2 times the rated capacity.
  • the sample cell Y after discharge is left for 12 hours. Thereafter, a potential of ⁇ 0.3 V is applied to the negative electrode plate with respect to the reference electrode, and the amount of electricity up to 10 seconds is measured. [Pb
  • the negative electrode plate of the lead storage battery includes a negative electrode current collector and a negative electrode material, and may include an adhesive member as necessary.
  • the negative electrode material is obtained by removing the negative electrode current collector and the pasting member from the negative electrode plate.
  • the affixing member refers to a member such as a mat or pasting paper that is arbitrarily affixed to the negative electrode plate.
  • the attaching member that is attached to the negative electrode plate and used as an integral part of the negative electrode plate is included in the negative electrode plate.
  • the sticking member is stuck on the separator, the sticking member is included in the separator.
  • a Pb—Ca alloy, a Pb—Ca—Sn alloy, lead having a purity of three nines or more is preferably used. These lead or lead alloy may further contain Ba, Ag, Al, Bi, As, Se, Cu and the like as additive elements.
  • the negative electrode current collector may have a plurality of lead alloy layers having different compositions.
  • the negative electrode material includes a negative electrode active material (lead) that develops capacity by an oxidation reaction as an essential component, and may include additives such as a carbonaceous material, barium sulfate, and an organic anti-shrink agent.
  • the negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually produced using lead powder.
  • carbon black As the carbonaceous material contained in the negative electrode material, carbon black, graphite, hard carbon, soft carbon, or the like can be used. Examples of carbon black include acetylene black, ketjen black, furnace black, and lamp black.
  • the graphite may be any carbon material including a graphite-type crystal structure, and may be any of artificial graphite and natural graphite.
  • the content of the carbonaceous material in the negative electrode material is preferably 0.05% by mass or more, and more preferably 0.2% by mass or more. On the other hand, 4.0 mass% or less is preferable, 3 mass% or less is more preferable, and 2 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of barium sulfate in the negative electrode material is, for example, preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 1.3% by mass or more. On the other hand, 3.0 mass% or less is preferable, 2.5 mass% or less is more preferable, and 2 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the organic shrinking agent is an organic polymer containing elemental sulfur, and generally contains one or more, preferably a plurality of aromatic rings in the molecule, and elemental sulfur as a sulfur-containing group.
  • a sulfur-containing group a sulfonic acid group or a sulfonyl group which is a stable form is preferable.
  • the sulfonic acid group may exist in an acid form, or may exist in a salt form such as a Na salt.
  • a first organic shrinking agent having a sulfur element content of 1000 ⁇ mol / g or less, more preferably 900 ⁇ mol / g or less, and a second element having a sulfur element content of 4000 ⁇ mol / g or more, further 5000 ⁇ mol / g or more.
  • An organic anti-shrink agent is used in combination.
  • Use of such two kinds of organic shrinkage agents is not a sufficient condition, but it is advantageous for forming a negative electrode material that satisfies the conditions A and B.
  • the content of elemental sulfur in the organic shrinking agent is X ⁇ mol / g means that the content of elemental sulfur contained in 1 g of the organic shrinking agent is X ⁇ mol.
  • the first organic shrinking agent for example, at least one selected from the group consisting of lignin, lignin sulfonic acid and lignin sulfonate (hereinafter collectively referred to as lignin-based shrinkage agent) can be used.
  • the content of elemental sulfur contained in the lignin-based anti-shrink agent is usually 250 to 650 ⁇ mol / g.
  • the second organic shrinking agent for example, a condensate of an aldehyde compound of a compound having a sulfur-containing group and an aromatic ring can be used.
  • the compound having an aromatic ring at least one selected from the group consisting of phenol compounds (including bisphenol compounds), biphenyl compounds and naphthalene compounds can be used. Of these, compounds having two or more aromatic rings are preferred.
  • the content of the elemental sulfur in the second organic shrinking agent is preferably 10,000 ⁇ mol / g or less, and more preferably 9000 ⁇ mol / g or less.
  • the phenol compound, biphenyl compound and naphthalene compound having two or more aromatic rings are generic names of compounds having a bisphenol skeleton, a biphenyl skeleton and a naphthalene skeleton, respectively, and each may have a substituent. These may be contained alone in the second organic shrinking agent, or a plurality of types may be contained.
  • bisphenol bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, bisphenol S has a sulfonyl group (—SO 2 —) in the bisphenol skeleton, so that it is easy to increase the content of elemental sulfur.
  • the sulfur-containing group may be directly bonded to an aromatic ring such as a bisphenol compound, a biphenyl compound, or a naphthalene compound.
  • the sulfur-containing group may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group.
  • a monocyclic aromatic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with a compound having two or more aromatic rings.
  • the content of the organic shrinking agent contained in the negative electrode material does not greatly affect the action of the organic shrinking agent as long as it is within a general range.
  • the content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more.
  • 1.0 mass% or less is preferable, 0.8 mass% or less is more preferable, and 0.3 mass% or less is still more preferable.
  • the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from a lead-acid battery in a fully formed state.
  • the negative electrode plate can be obtained by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unformed negative electrode plate, and then chemical conversion.
  • the negative electrode paste is prepared by adding and kneading water and sulfuric acid to lead powder and various additives. In the aging step, it is preferable to age the unformed negative electrode plate at room temperature or higher temperature and high humidity.
  • the chemical conversion can be performed by charging the electrode plate group in a state where the electrode plate group including the unformed negative electrode plate is immersed in an electrolytic solution containing sulfuric acid in the battery case of the lead storage battery.
  • the chemical conversion may be performed before the assembly of the lead storage battery or the electrode plate group. Sponge-like lead is generated by chemical conversion.
  • the density of the negative electrode material may be a 2.5 ⁇ 4.0g / cm 3, may be 2.5 ⁇ 3.8g / cm 3 or 2.5 ⁇ 3.5g / cm 3.
  • the negative electrode plate to be analyzed is obtained by disassembling a fully charged lead storage battery after it is fully charged. Except when measuring the Log differential pore volume distribution of the negative electrode material after 1220 cycles of the 75 ° C 1'-10 'light load life test, the lead-acid battery may be in a fully charged state immediately after formation, and the time has elapsed since formation. The battery may be fully charged later. For example, a lead storage battery that is in use (preferably in the initial stage of use) after chemical conversion may be fully charged. The battery at the beginning of use refers to a battery that has not deteriorated so much after the start of use.
  • the obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate, and an unground initial sample is obtained.
  • the pore diameter is 5.5 nm or more and 333 ⁇ m or less by mercury porosimetry at a pressure of 0.05 psia or more and 30000 psia or less ( ⁇ 0.345 kPa or more and 20700 kPa or less).
  • the Log differential pore volume distribution of the region is measured.
  • the density of the electrode material means the value of the bulk density of the electrode material in the fully formed state, and is measured as follows. After putting an unground sample into a measurement container and evacuating it, it is filled with mercury at a pressure of 0.5 psia or more and 0.55 psia or less ( ⁇ 3.45 kPa or more and 3.79 kPa or less) to reduce the bulk volume of the electrode material.
  • the bulk density of the electrode material is determined by measuring and dividing the mass of the measurement sample by the bulk volume. The volume obtained by subtracting the injection volume of mercury from the volume of the measurement container is defined as the bulk volume.
  • the determination method of the organic shrinkage agent, the carbonaceous material, and barium sulfate contained in the negative electrode material will be described.
  • the formed lead-acid battery Prior to quantitative analysis, the formed lead-acid battery is fully charged and then disassembled to obtain the negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate, and an unground initial sample is obtained.
  • Analysis of organic shrinkage agent The unpulverized initial sample is pulverized, and the pulverized initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic antishrink agent. Insoluble components are removed by filtration from the aqueous NaOH solution containing the extracted organic shrinking agent.
  • the obtained filtrate (hereinafter also referred to as “analyte filtrate”) is desalted, concentrated and dried to obtain an organic shrunk agent powder (hereinafter also referred to as “analyte powder”). Desalting may be performed by placing the filtrate in a dialysis tube and immersing it in distilled water.
  • the ultraviolet visible absorption spectrum of the filtrate to be analyzed is measured.
  • the content of the organic shrinkage agent in the negative electrode material is quantified using the spectral intensity and a calibration curve prepared in advance. If the structural formula of the organic pre-shrinking agent to be analyzed cannot be strictly specified and the same organic pre-shrinking agent calibration curve cannot be used, the UV-visible absorption spectrum, infrared spectroscopic spectrum similar to the organic pre-shrinking agent to be analyzed, A calibration curve is prepared using an available organic polymer showing an NMR spectrum or the like.
  • the obtained solid content is dispersed in water to obtain a dispersion
  • components other than the carbonaceous material and barium sulfate for example, reinforcing material
  • the dispersion liquid is subjected to suction filtration using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C.
  • the sample separated by filtration is a mixed sample of a carbonaceous material and barium sulfate.
  • the mass (A) of the mixed sample is measured by subtracting the mass of the membrane filter from the total mass of the mixed sample and the membrane filter after drying.
  • the mixed sample after drying is put into a crucible together with a membrane filter, and ashed at 700 ° C. or higher.
  • the remaining residue is barium oxide.
  • the mass (B) of barium sulfate is determined by converting the mass of barium oxide into the mass of barium sulfate.
  • the mass of the carbonaceous material is calculated by subtracting the mass B from the mass A.
  • the fully charged state of the lead-acid battery is constant current charging in a water bath at 25 ° C. until the voltage reaches 2.5 V / cell at a current 0.2 times the value described in the rated capacity. Then, constant current charging was performed for 2 hours at a current 0.2 times the value described in the rated capacity.
  • the fully charged state of the lead-acid battery is a constant current constant voltage of 2.23 V / cell in a 25 ° C. air tank with a current 0.2 times the value described in the rated capacity.
  • the battery is charged, and charging is terminated when the charging current during constant voltage charging becomes 0.005 times the value described in the rated capacity.
  • the positive electrode plate of the lead storage battery can be classified into a paste type, a clad type and the like.
  • the paste-type positive electrode plate includes a positive electrode current collector and a positive electrode material, and may include an adhesive member as necessary.
  • the positive electrode material is held by the positive electrode current collector.
  • the positive electrode material is obtained by removing the positive electrode current collector and the sticking member from the positive electrode plate.
  • the affixing member is a member such as a mat or pasting paper that is optionally affixed to the positive electrode plate.
  • the sticking member that is attached to the positive electrode plate and used as an integral part of the positive electrode plate is included in the positive electrode plate. On the other hand, when the sticking member is stuck on the separator, the sticking member is included in the separator.
  • the lead or lead alloy used for the positive electrode current collector a Pb—Ca alloy, a Pb—Ca—Sn alloy, lead having a purity of three nines or more is preferably used.
  • the positive electrode current collector may have lead alloy layers having different compositions, and a plurality of alloy layers may be provided.
  • the clad positive electrode includes a plurality of porous tubes, a core metal inserted into each tube, a positive electrode material filled in the tube in which the core metal is inserted, and a joint that connects the plurality of tubes. It has. It is preferable to use a Pb—Sb alloy for the core metal.
  • the positive electrode material includes a positive electrode active material (lead dioxide) that develops capacity by a reduction reaction.
  • the positive electrode material may contain an additive such as tin sulfate and red lead as necessary.
  • a paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying to produce an unformed positive electrode plate, and then chemical conversion.
  • the positive electrode paste is prepared by adding water and sulfuric acid to kneading with lead powder and various additives. In the aging step, it is preferable to age the unformed positive electrode plate at room temperature or higher temperature and high humidity.
  • the clad positive electrode plate is formed by filling a porous glass tube into which a metal core is inserted with lead powder or slurry lead powder, and joining a plurality of tubes in a row.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary.
  • the specific gravity at 20 ° C. of the electrolyte in the lead-acid battery that is already formed and fully charged is, for example, 1.20 to 1.35, and preferably 1.25 to 1.32.
  • a separator is disposed between the negative electrode plate and the positive electrode plate.
  • a nonwoven fabric, a microporous film, etc. are used for a separator.
  • the nonwoven fabric is a mat in which fibers are entangled without being woven, and mainly includes fibers. For example, 60 mass% or more of the nonwoven fabric is formed of fibers.
  • the nonwoven fabric may contain components other than fibers, such as acid-resistant inorganic powder, a polymer as a binder, and the like.
  • the microporous membrane is a porous sheet mainly composed of components other than the fiber component.
  • the microporous membrane preferably has a polymer component as a main component.
  • polymer component polyolefins such as polyethylene and polypropylene are preferable.
  • FIG. 9 shows an appearance of an example of the lead storage battery according to the embodiment of the present invention.
  • the lead storage battery 1 includes a battery case 12 that houses an electrode plate group 11 and an electrolytic solution (not shown).
  • the battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13. Each cell chamber 14 accommodates one electrode group 11.
  • the opening of the battery case 12 is closed with a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid plug 18 for each cell chamber.
  • the refilling liquid is replenished by removing the liquid stopper 18.
  • the liquid spout 18 may have a function of discharging gas generated in the cell chamber 14 to the outside of the battery.
  • the electrode plate group 11 is configured by laminating a plurality of negative plates 2 and positive plates 3 with a separator 4 interposed therebetween.
  • a separator 4 which accommodates the negative electrode plate 2
  • the form of a separator is not specifically limited.
  • the negative electrode shelf 6 for connecting the ears of the plurality of negative electrode plates 2 in parallel is connected to the through-connecting body 8, and the ears of the plurality of positive electrode plates 3 are connected in parallel.
  • a positive electrode shelf 5 is connected to the positive pole 7.
  • the positive pole 7 is connected to a positive terminal 17 outside the lid 15.
  • each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of the adjacent cell chambers 14 in series.
  • FIG. 9 shows an example of a liquid battery (bent type battery), but the lead storage battery may be a control valve type battery (VRLA type).
  • the lead storage battery may be a control valve type battery (VRLA type).
  • a raw material lead powder, barium sulfate, carbon black, and a predetermined organic shrinkage agent are mixed with an appropriate amount of sulfuric acid aqueous solution to obtain a negative electrode paste.
  • the negative electrode paste is filled in a network part of an expanded lattice made of a Pb—Ca—Sn alloy, aged and dried to obtain an unformed negative electrode plate.
  • An organic shrinkage agent is blended in the negative electrode paste so that the content of the organic shrinkage agent in the negative electrode material of the lead-acid battery fully charged after chemical conversion is 0.2 mass%.
  • the density of the negative electrode material of the lead-acid battery that is fully charged after the formation is 3.3 g / cm 3
  • the Log differential pore volume distribution of the negative electrode material is P, Q, and R (R0) in Tables 1A, 2A, and 3A
  • the composition of the negative electrode paste is controlled so as to be a value.
  • the Log differential pore volume distribution of the negative electrode material was P, Q and R (R1220 in Tables 1B, 2B and 3B). ) Various organic anti-shrinking agents are used and various conditions are adjusted so as to obtain a value.
  • Table 4 shows the specifications of the organic shrinking agent.
  • LIG 600 and LIG 300 are lignin-based shrinking agents.
  • BIS 5000 and BIS 6000 are condensates of bisphenol compounds having sulfonic acid groups introduced with formaldehyde.
  • the raw material lead oxide powder is mixed with a sulfuric acid aqueous solution to obtain a positive electrode paste.
  • the positive electrode paste is filled in a network portion of an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried to obtain an unformed positive electrode plate.
  • FIG. 1B, FIG. 2B, FIG. 3B, and FIG. 4B show Log differential pore volume distributions of the negative electrode material after 1220 cycles of batteries A1, A2, A4, and A5.
  • sample cell Y A single plate cell (sample cell Y) is produced using a negative electrode plate constituting an “M-42” type lead acid battery. Specifically, a single plate cell is formed by one unformed negative electrode plate accommodated in a bag-shaped separator and two already formed positive electrode plates having a sufficiently large capacity with respect to the negative electrode plate, and an electrolytic solution ( A single cell is formed in a sulfuric acid aqueous solution having a specific gravity of 1.260 to prepare a sample cell Y.
  • BIS 2000 an organic shrinking agent
  • formaldehyde a condensate of bisphenol compounds into which sulfonic acid groups have been introduced by formaldehyde, and the sulfur element content is 2000 ⁇ mol / g.
  • Comparative batteries D1 and D2 use different types of organic shrinking agents, but do not satisfy 0.25 ⁇ R1220 ⁇ 0.63. Therefore, in battery D1, the low temperature HR discharge duration after 1220 cycles is short, and D2 has a large liquid reduction amount per cycle. Therefore, in order to maintain practical low-temperature HR discharge characteristics and suppress liquid reduction, it is not a necessary condition to use a plurality of types of organic shrinking agents, and 0.25 ⁇ R1220 ⁇ 0.63 is satisfied. Can be understood as a necessary condition.
  • Table 10 and FIG. 8 show that 0.25 ⁇ R0 ⁇ 0.63 is satisfied in the initial stage, but after 1220 cycles in the 75 ° C. 1′-10 ′ light load life test, 0.25 ⁇ R0 ⁇ 0.
  • filled is shown. From Table 11, it can be seen that in such a case, the low temperature HR discharge duration after 1220 cycles is significantly reduced.
  • the lead storage battery according to the present invention can be applied to both liquid and control valve type lead storage batteries, and is suitably used as a power source for automobiles, motorcycles, electric vehicles (forklifts, etc.), industrial power storage devices, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極板と、正極板と、電解液と、を備え、負極板は、負極集電体と、負極電極材料と、を備え、負極電極材料のLog微分細孔容積分布において、細孔直径1~3μmの領域をP領域、細孔直径6~15μmの領域をQ領域、P領域におけるLog微分細孔容積の最大値をP、ならびにQ領域におけるLog微分細孔容積の最大値をQと定義するとき、初期劣化後、使用途中、あるいは、軽負荷寿命試験における1220サイクル後において、負極電極材料のLog微分細孔容積分布が、P領域に最大値Pに対応するピークpと、Q領域に最大値Qに対応するピークqと、を有し、最大値Pおよび最大値Qが、0.25≦P/(P+Q)≦0.63を満たす、鉛蓄電池。

Description

鉛蓄電池
 本発明は、鉛蓄電池に関する。
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と負極板とが交互にセパレータを介して積層された極板群を具備する。正極板は、正極集電体と正極電極材料とを備え、負極板は、負極集電体と負極電極材料とを備える。
 特許文献1は、密閉形鉛蓄電池の充放電特性を低下させることなく負極に用いる活物質量を低減して電池の軽量化を図るために、電槽化成後の負極活物質において10μm以上の細孔径の容積を0.02~0.15ml/g、1~6μmの細孔径の容積を0.01~0.03ml/gにすることを提案している。
 特許文献2は、負極活物質の細孔容積がそれぞれ孔径1.2μm、1.7μm付近において2つのピークを有する孔径分布を示している。
特開2001-35485号公報 国際公開第2013/046499号パンフレット
 鉛蓄電池の長寿命化の観点から、高温で相当の充放電サイクルを繰り返した後にも、実用レベルの低温高率(HR)放電特性を維持することが求められる。また、サイクル当たりの減液量を低減することも求められる。
 しかし、高温下で軽負荷寿命試験を行う場合、鉛蓄電池の低温HR放電特性が低下したり、減液量が顕著に増加したりすることがある。
 本発明の一側面は、負極板と、正極板と、電解液と、を備え、前記負極板は、負極集電体と、負極電極材料と、を備え、前記負極電極材料のLog微分細孔容積分布において、
 a:細孔直径1~3μmの領域をP領域
 b:細孔直径6~15μmの領域をQ領域
 c:P領域におけるLog微分細孔容積の最大値をP
 d:Q領域におけるLog微分細孔容積の最大値をQ
と定義するとき、25Aで1分間定電流放電し、2.47V/セルかつ上限電流25Aで10分間定電圧充電する充放電を試験温度75℃で1220サイクル繰り返す軽負荷寿命試験において、1220サイクル後の前記負極電極材料のLog微分細孔容積分布が、前記P領域に前記最大値Pに対応するピークpと、前記Q領域に前記最大値Qに対応するピークqと、を有し、前記最大値Pおよび前記最大値Qが、0.25≦P/(P+Q)≦0.63を満たす、鉛蓄電池に関する。
 本発明によれば、高温下での軽負荷寿命試験後においても、鉛蓄電池の低温HR放電特性が良好に維持され、かつ減液量の増加も抑制される。
電池A1の化成直後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A1の1220サイクル後の負極電極材料のLog微分細孔径分布を示す図である。 電池A2の化成直後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A2の1220サイクル後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A4の化成直後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A4の1220サイクル後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A5の化成直後の負極電極材料のLog微分細孔容積分布を示す図である。 電池A5の1220サイクル後の負極電極材料のLog微分細孔容積分布を示す図である。 R値と低温HR放電特性との関係を示す図である。 R値とサイクル当たりの減液量との関係を示す図である。 R値と10秒目電気量との関係を示す図である。 電池Eの化成直後および1220サイクル後の負極電極材料のLog微分細孔容積分布を示す図である。 本発明の実施形態に係る鉛蓄電池の外観と内部構造を示す一部を切り欠いた斜視図である。
 本発明の実施形態に係る鉛蓄電池は、負極板と、正極板と、電解液とを備え、負極板は、負極集電体と、負極電極材料とを備える。ここで、負極電極材料のLog微分細孔容積分布において、
 a:細孔直径1~3μmの領域をP領域
 b:細孔直径6~15μmの領域をQ領域
 c:P領域におけるLog微分細孔容積の最大値をP
 d:Q領域におけるLog微分細孔容積の最大値をQ
と定義するとき、下記「75℃1’-10’軽負荷寿命試験」の1220サイクル後の負極電極材料のLog微分細孔容積分布は、以下の特徴を有する。
(条件A)
 Log微分細孔容積分布は、P領域に最大値Pに対応するピークpと、Q領域に最大値Qに対応するピークqとを有する。
(条件B)
 P領域におけるLog微分細孔容積の最大値P(ピークpに対応)およびQ領域におけるLog微分細孔容積の最大値Q(ピークqに対応)は、P/(P+Q)=R1220とするとき、式:0.25≦R1220≦0.63を満たす。
 P領域およびQ領域に存在するピークは、それぞれ1つに限られず、2つ以上であってもよい。すなわち、P領域は、少なくとも最大値Pに対応するピークを有すればよく、Q領域は、少なくとも最大値Qに対応するピークを有すればよい。
 75℃1’-10’軽負荷寿命試験における1220サイクル後の負極電極材料のLog微分細孔容積分布が条件Aおよび条件Bを満たす鉛蓄電池は、その後も継続的に良好な性能を発揮する。具体的には、低温HR放電特性が良好に維持され、かつ減液量の増加も抑制される。このような鉛蓄電池は、長寿命であり、より長期間使用可能である。
 ここで、75℃1’-10’軽負荷寿命試験における1220サイクル後の鉛蓄電池は、使用途中の鉛蓄電池に相当する。使用途中の鉛蓄電池とは、寿命に達する前の鉛蓄電池であり、その後も継続的に使用可能である。
 鉛蓄電池は、長期間にわたり繰り返し使用されるため、初期状態の電極構造を制御するだけでは、十分な長寿命化は困難である。初期サイクルで良好な性能を有する鉛蓄電池であっても、一定期間使用後に劣化が進行しやすくなる場合もある。一方、使用途中の鉛蓄電池の電極構造を制御する場合、サイクルの後期においても高い確率で鉛蓄電池の性能を良好に維持し得る。 
 75℃1’-10’軽負荷寿命試験における1220サイクル後もしくは使用途中の鉛蓄電池は、初期劣化後の鉛蓄電池と言い換えることができる。 
 鉛蓄電池は、使用中の初期に、ある一定まで劣化してその後安定するという特徴を有している。この初期における劣化は、使用により、電極材料の活物質の表面積が変化することに起因し、電池の低温HR放電持続時間を測定することでその変化を確認できる。
 新品電池を初期劣化させる例としては、75℃1’-10’軽負荷試験を100サイクル繰り返し、100サイクル毎に低温HR放電持続時間を測定し、そのときの放電持続時間の減少率が(100サイクル前の放電持続時間に対して)3%以下になった時に初期劣化したと判断できる。
 電池の履歴がわからず、新品か初期劣化後かがわからない場合であっても、例えば75℃1’-10’軽負荷試験を100サイクル繰り返し、そのときの低温HR放電持続時間の減少率が3%以下であれば、初期劣化後の電池であると判断できる。
 75℃1’-10’軽負荷寿命試験における1220サイクル後の電池であれば、明らかに初期劣化後に相当するので、上記の初期劣化後かどうかの判定をする必要なく、初期劣化後の電池と判断することができる。また、試験後の電池を評価することで発明に該当するかどうかの判定ができる。
 細孔直径1~3μmのP領域の細孔は、低温HR放電特性および充電受入性を向上させる作用を有すると考えられる。一般に、放電の際には硫酸鉛の結晶が成長する。負極電極材料がP領域の小孔径の細孔を有する場合、硫酸鉛の結晶成長が速やかに進行する。小孔径の細孔内では、放電により生じた鉛イオン(Pb2+)が硫酸鉛の結晶に到達するまでの移動距離が小さくなる。そのため、放電時の抵抗が小さくなり、良好な低温HR放電特性が発揮されやすい。同様に、充電時には鉛イオン(Pb2+)がPbに還元されるまでの移動距離が小さくなり、充電受入性が良好になると考えられる。
 なお、75℃という高温で1’-10’軽負荷寿命試験を行った後の低温HR放電特性が良好に維持される点で、細孔直径1~3μmのP領域の細孔は耐高温性を向上させるともいえる。
 細孔直径6~15μmのQ領域の細孔は、電解液の減液を抑制する作用を有すると考えられる。負極電極材料がQ領域の大孔径の細孔を有する場合、負極電極材料の表面積は小さくなる傾向がある。水の電気分解による減液量は、負極電極材料の表面積と密接に関連する。表面積が小さくなることで、減液が抑制されるものと考えられる。すなわち、条件Aおよび条件Bが満たされることで、高温下での軽負荷寿命試験後においても、鉛蓄電池の充電受入性が良好に維持され、かつ減液量の増加も抑制される。
 75℃1’-10’軽負荷寿命試験における1220サイクル後もしくは使用途中の鉛蓄電池において、0.25≦R1220≦0.63が満たされる状態とは、後期サイクルにおいて使用される負極電極材料が、それぞれ固有の作用効果を奏する複数の細孔をバランス良く有していることを意味する。より優れた細孔構造を実現する観点からは、0.3≦R1220≦0.6が好ましく、0.4≦R1220≦0.6であってもよい。 
 R1220は、0.30以上でもよく、0.25以上でもよく、0.63以下でも、0.60以下でもよく、これらの上限、下限はどのように組み合わせてもよい。
 初期劣化後の鉛蓄電池において、0.25≦P/(P+Q)≦0.63が満たされる状態とは、後期サイクルにおいて使用される負極電極材料が、それぞれ固有の作用効果を奏する複数の細孔をバランス良く有していることを意味する。より優れた細孔構造を実現する観点からは、0.3≦P/(P+Q)≦0.6が好ましく、0.4≦P/(P+Q)≦0.6であってもよい。
P/(P+Q)は、0.30以上でもよく、0.25以上でもよく、0.63以下でも、0.60以下でもよく、これらの上限、下限はどのように組み合わせてもよい。
 上記実施形態は、減液量の低減が望まれる液式(ベント式)鉛蓄電池において特に有用である。ただし、上記実施形態は、制御弁式(密閉式)鉛蓄電池においても有用である。例えばフロート充電時の過充電の電流量が抑制され、水の電気分解とともに正極集電体の腐食反応(Pb→PbO2)を低減できる。
 次に、75℃1’-10’軽負荷寿命試験の前においては、0.7≦P/(P+Q)が満たれることが好ましく、0.9≦P/(P+Q)が満たれることがより好ましい。ここでは、最大値Pおよび最大値Qは、各領域における最大ピークに対応している必要はない。75℃1’-10’軽負荷寿命試験の前とは、通常使用においては、初期サイクルの期間を意味する。初期サイクルにおいては、鉛蓄電池が高出力であることが重要視され、特に低温HR放電特性が重要である。よって、75℃1’-10’軽負荷寿命試験の前におけるP/(P+Q)=R0とするとき、0.7≦R0が満たれることが好ましく、0.9≦R0が満たれることがより好ましい。 
 使用前においては、0.7≦P/(P+Q)が満たれることが好ましく、0.9≦P/(P+Q)が満たれることがより好ましい。
 初期劣化前においては、0.7≦P/(P+Q)が満たれることが好ましく、0.9≦P/(P+Q)が満たれることがより好ましい。
 条件Aおよび条件Bを満たす負極電極材料を得る方法としては、様々な手法があり得る。
 第一に、負極電極材料の原料である負極ペーストの物性を制御することにより、化成後の負極電極材料の細孔構造を設計し得る。具体的には、原料の鉛粉の粒径、鉛粉と混合する水量、鉛粉と混合する硫酸水溶液量、硫酸水溶液濃度、鉛粉への硫酸水溶液の時間あたりの配合量等を制御すればよい。
 第二に、負極電極材料に添加される硫酸バリウムは、化成後の負極電極材料のLog微分細孔容積分布に影響する。硫酸バリウムは、硫酸鉛の結晶核となり得る。硫酸バリウムを核とする結晶は、そうでない硫酸鉛とは異なる細孔構造を形成し得る。硫酸バリウムの添加量も化成後の電極材料の細孔構造に影響を与える。
 第三に、負極電極材料に添加される有機防縮剤は、化成後の負極電極材料のLog微分細孔容積分布に大きく影響する。中でも、負極電極材料に、第1有機防縮剤と、第1有機防縮剤とは異なる第2有機防縮剤とを含ませることで、R1220を比較的容易に制御し得る。有機防縮剤は、その種類に応じて固有の細孔径を有する細孔構造を形成する傾向がある。有機防縮剤の種類により、負極電極材料の劣化による細孔構造の変化にも違いが生じる。よって、複数種の異なる有機防縮剤を併用する場合、75℃1’-10’軽負荷寿命試験における1220サイクル後の負極電極材料のLog微分細孔容積分布に複数のピークが表れやすい。
 次に、鉛蓄電池の評価方法について説明する。
<75℃1’-10’軽負荷寿命試験>
 2Vの試供セルXを作製する。複数のセル室を有する完成された鉛蓄電池を評価する場合には、その鉛蓄電池から2Vセルを切出して試供セルXを作製すればよい。試供セルXを、25Aで1分間定電流放電し、2.47Vかつ上限電流25Aで10分間定電圧充電する充放電を試験温度75℃でサイクルを繰り返す。
<1220サイクル後の低温HR放電特性>
 75℃1’-10’軽負荷寿命試験において試供セルXの充放電を1220サイクル繰り返した後、低温HR放電持続時間を測定する。具体的には、満充電状態の試供セルXを、試験温度-15℃で5時間率定格容量に記載の数値の5倍の電流で終止電圧1.0Vまで定電流放電し、放電持続時間を測定する。
<サイクル当たりの減液量>
 75℃1’-10’軽負荷寿命試験における試供セルXの充放電サイクル数と減液量との関係を示す近似直線を求める。近似直線の傾きからサイクル当たりの減液量を求める。
<10秒目電気量>
 正極板2枚と、袋状セパレータに収容された負極板1枚とで試供セルYを作製する。2枚の正極板には、負極板に対して十分に大きな容量を有する任意の正極板を用いればよい。負極理論容量の0.6倍を定格容量とし、定格容量の0.2倍の電流で満充電状態の試供セルYを30分間放電する。放電後の試供セルYを12時間放置する。その後、負極板に参照電極に対して-0.3Vの電位を印加し、10秒目までの電気量を測定する。参照電極には、[Pb|PbSO|HSO(s.g.1.30)]を用いる。
 以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
 (負極板)
 鉛蓄電池の負極板は、負極集電体と、負極電極材料とを具備し、必要に応じて貼付部材を具備し得る。負極電極材料は、負極板から負極集電体および貼付部材を除いたものである。貼付部材とは、負極板に任意に貼り付けられるマット、ペースティングペーパなどの部材をいう。負極板に貼り付けられ、負極板と一体として使用される貼付部材は、負極板に含まれるものとする。一方、セパレータに貼付部材が貼り付けられている場合、貼付部材は、セパレータに含まれるものとする。
 負極集電体に用いる鉛もしくは鉛合金としては、Pb-Ca系合金、Pb-Ca-Sn系、スリーナイン以上の純度の鉛などが好ましく用いられる。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなど含んでもよい。負極集電体は、組成の異なる複数の鉛合金層を有してもよい。
 負極電極材料は、酸化反応により容量を発現する負極活物質(鉛)を必須成分として含み、炭素質材料、硫酸バリウム、有機防縮剤などの添加剤を含み得る。充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。
 負極電極材料中に含まれる炭素質材料としては、カーボンブラック、黒鉛、ハードカーボン、ソフトカーボンなどを用いることができる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラックなどが例示される。黒鉛は、黒鉛型の結晶構造を含む炭素材料であればよく、人造黒鉛および天然黒鉛のいずれであってもよい。
 負極電極材料中の炭素質材料の含有量は、例えば0.05質量%以上が好ましく、0.2質量%以上が更に好ましい。一方、4.0質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極電極材料中の硫酸バリウムの含有量は、例えば0.5質量%以上が好ましく、1質量%以上がより好ましく、1.3質量%以上が更に好ましい。一方、3.0質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。
 有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に1つ以上、好ましくは複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。
 好ましい一実施形態においては、例えば、硫黄元素含有量1000μmol/g以下、更には900μmol/g以下の第1有機防縮剤と、硫黄元素含有量4000μmol/g以上、更には5000μmol/g以上の第2有機防縮剤とが併用される。このような2種の有機防縮剤を用いることは、十分条件ではないが、条件Aおよび条件Bを満たす負極電極材料の形成に有利となる。硫黄元素含有量に大きな差異を設けることで、各有機防縮剤が細孔構造に与える影響にも大きな差異が生じやすくなる。よって、軽負荷寿命試験後の負極電極材料のLog微分細孔容積分布に複数ピークが表れ、かつ複数ピークが明確に分離しやすくなるものと考えられる。
 ここで、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。
 第1有機防縮剤としては、例えば、リグニン、リグニンスルホン酸およびリグニンスルホン酸塩よりなる群から選択される少なくとも1種(以下、リグニン系防縮剤と総称する。)を用い得る。リグニン系防縮剤中に含まれる硫黄元素の含有量は、通常、250~650μmol/gである。
 第2有機防縮剤としては、例えば、硫黄含有基を有するとともに芳香環を有する化合物のアルデヒド化合物による縮合物を用い得る。ここで、芳香環を有する化合物としては、フェノール化合物(ビスフェノール化合物を含む)、ビフェニル化合物およびナフタレン化合物よりなる群から選択される少なくとも1種を用い得る。中でも、2つ以上の芳香環を有する化合物が好ましい。
 有機防縮剤中の硫黄元素の含有量を大きくするには限界がある。よって、第2有機防縮剤中の硫黄元素の含有量は、10000μmol/g以下が好ましく、9000μmol/g以下がより好ましい。
 2つ以上の芳香環を有するフェノール化合物、ビフェニル化合物およびナフタレン化合物とは、それぞれビスフェノール骨格、ビフェニル骨格およびナフタレン骨格を有する化合物の総称であり、それぞれが置換基を有してもよい。これらは、第2有機防縮剤中に単独で含まれてもよく、複数種が含まれてもよい。ビスフェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、ビスフェノール骨格内にスルホニル基(-SO2-)を有するため、硫黄元素の含有量を大きくすることが容易である。
 硫黄含有基は、ビスフェノール化合物、ビフェニル化合物、ナフタレン化合物などの芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、例えばアミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の芳香族化合物を、2つ以上の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。
 ビスフェノール化合物の縮合物およびナフタレンスルホン酸の縮合物ならびにリグニンスルホン酸の中でも硫黄含有量の比較的高い化合物は、常温よりも高温の環境を経験後の鉛蓄電池が低温HR放電特性を維持するのに有利な細孔構造を形成するのに適している。一方、硫黄含有量の比較的低い化合物は、耐減液性に優れた細孔構造を形成するのに適している。
 負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。これらの下限値と上限値とは任意に組み合わせることができる。
 負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、化成することで得られる。負極ペーストは、鉛粉と各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温もしくはより高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。
 負極電極材料の密度は、例えば2.5~4.0g/cm3であればよく、2.5~3.8g/cm3もしくは2.5~3.5g/cm3であってもよい。
 次に、負極板の物性の分析方法について説明する。
[初期試料]
 分析対象の負極板は、化成後の鉛蓄電池を満充電してから解体して入手する。75℃1’-10’軽負荷寿命試験の1220サイクル後の負極電極材料のLog微分細孔容積分布を測定する場合を除き、鉛蓄電池は、化成直後の満充電状態でもよく、化成から時間経過後に満充電した状態でもよい。例えば、化成後で使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい。使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池をいう。入手した負極板に水洗と乾燥とを施して負極板中の電解液を除く。次に、負極板から負極電極材料を分離して未粉砕の初期試料を入手する。
[Log微分細孔容積分布]
 未粉砕の測定試料を測定容器に投入し、真空排気した後、0.05psia以上30000psia以下(≒0.345kPa以上20700kPa以下)の圧力で水銀圧入法により、細孔径5.5nm以上、333μm以下の領域のLog微分細孔容積分布を測定する。
[かさ密度の測定]
 電極材料の密度は、既化成の満充電状態の電極材料のかさ密度の値を意味し、以下のようにして測定する。未粉砕の測定試料を測定容器に投入し、真空排気した後、0.5psia以上0.55psia以下(≒3.45kPa以上3.79kPa以下)の圧力で水銀を満たして、電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
 以下、負極電極材料に含まれる有機防縮剤、炭素質材料および硫酸バリウムの定量方法について記載する。定量分析に先立ち、化成後の鉛蓄電池を満充電してから解体して分析対象の負極板を入手する。入手した負極板に水洗と乾燥とを施して負極板中の電解液を除く。次に、負極板から負極電極材料を分離して未粉砕の初期試料を入手する。
[有機防縮剤の分析]
 未粉砕の初期試料を粉砕し、粉砕された初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で除く。得られた濾液(以下、分析対象濾液とも称する。)を脱塩した後、濃縮し、乾燥すれば、有機防縮剤の粉末(以下、分析対象粉末とも称する。)が得られる。脱塩は、濾液を透析チューブに入れて蒸留水中に浸して行えばよい。
 分析対象粉末の赤外分光スペクトル、分析対象粉末を蒸留水等に溶解して得られる溶液の紫外可視吸収スペクトル、分析対象粉末を重水等の溶媒に溶解して得られる溶液のNMRスペクトルなどから情報を得ることで、有機防縮剤を特定する。
[有機防縮剤の含有量]
 上記分析対象濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量する。分析対象の有機防縮剤の構造式の厳密な特定ができず、同一の有機防縮剤の検量線を使用できない場合は、分析対象の有機防縮剤と類似の紫外可視吸収スペクトル、赤外分光スペクトル、NMRスペクトルなどを示す、入手可能な有機高分子を使用して検量線を作成する。
[硫黄元素の含有量]
 酸素燃焼フラスコ法によって有機防縮剤中の硫黄元素を硫酸に変換し、有機防縮剤中の硫黄元素の含有量を定量する。吸着液を入れたフラスコ内で、上記分析対象粉末0.1gを燃焼させ、硫酸イオンが吸着液に溶け込んだ溶出液を調製する。トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
[炭素質材料と硫酸バリウム]
 未粉砕の初期試料を粉砕し、粉砕された初期試料10gに対し、(1+2)硝酸を50ml加え、約20分加熱し、鉛成分を硝酸鉛として溶解させる。次に、硝酸鉛を含む溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から炭素質材料および硫酸バリウム以外の成分(例えば補強材)を除去する。次に、分散液に対し、予め質量を測定したメンブレンフィルターを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルターを110℃の乾燥器で乾燥する。濾別された試料は、炭素質材料と硫酸バリウムとの混合試料である。乾燥後の混合試料とメンブレンフィルターとの合計質量からメンブレンフィルターの質量を差し引いて、混合試料の質量(A)を測定する。その後、乾燥後の混合試料をメンブレンフィルターとともに坩堝に入れ、700℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量(B)を求める。質量Aから質量Bを差し引いて炭素質材料の質量を算出する。
 なお、液式の電池の場合、鉛蓄電池の満充電状態とは、25℃の水槽中で、定格容量に記載の数値の0.2倍の電流で2.5V/セルに達するまで定電流充電を行った後、さらに定格容量に記載の数値の0.2倍の電流で2時間、定電流充電を行った状態である。
 制御弁式の電池の場合、鉛蓄電池の満充電状態とは、25℃の気槽中で、定格容量に記載の数値の0.2倍の電流で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が定格容量に記載の数値の0.005倍になった時点で充電を終了した状態である。
 (正極板)
 鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。ペースト式正極板は、正極集電体と、正極電極材料とを具備し、必要に応じて貼付部材を具備し得る。正極電極材料は、正極集電体に保持されている。正極電極材料は、正極板から正極集電体および貼付部材を除いたものである。貼付部材は、正極板に任意に貼り付けられるマット、ペースティングペーパなどの部材である。正極板に貼り付けられ、正極板と一体として使用される貼付部材は、正極板に含まれるものとする。一方、セパレータに貼付部材が貼り付けられている場合、貼付部材は、セパレータに含まれるものとする。
 正極集電体に用いる鉛もしくは鉛合金としては、Pb-Ca系合金、Pb-Ca-Sn系、スリーナイン以上の純度の鉛などが好ましく用いられる。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。クラッド式正極は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。芯金には、Pb-Sb系合金を用いることが好ましい。
 正極電極材料は、還元反応により容量を発現する正極活物質(二酸化鉛)を含む。正極電極材料は、正極活物質に加え、必要に応じて、硫酸スズ、鉛丹などの添加剤を含んでもよい。
 ペースト式正極板は、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより未化成の正極板を作製し、その後、化成することで得られる。正極ペーストは、鉛粉と各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温もしくはより高温かつ高湿度で、未化成の正極板を熟成させることが好ましい。クラッド式正極板は、芯金が挿入された多孔質なガラスチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。
 (電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。既化成で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.20~1.35であり、1.25~1.32であることが好ましい。
 (セパレータ)
 負極板と正極板との間には、通常、セパレータが配置される。セパレータには、不織布、微多孔膜などが用いられる。不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする。例えば、不織布の60質量%以上が繊維で形成されている。繊維としては、ガラス繊維、ポリマー繊維、パルプ繊維などを用いることができる。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末、オイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。微多孔膜は、ポリマー成分を主体とするものが好ましい。ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
 図9に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2の耳を並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3の耳を並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。
 図9には、液式電池(ベント型電池)の例を示したが、鉛蓄電池は、制御弁式電池(VRLA型)でもよい。
 以下、本発明を実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実験1》
(1)負極板の作製
 複数種の有機防縮剤を併用することにより、条件Aおよび条件Bを満たす負極電極材料を調製する。
 原料の鉛粉と、硫酸バリウムと、カーボンブラックと、所定の有機防縮剤とを、適量の硫酸水溶液と混合して負極ペーストを得る。負極ペーストを、Pb-Ca-Sn合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の負極板を得る。
 化成後に満充電した鉛蓄電池の負極電極材料における有機防縮剤の含有量が0.2質量%になるように、負極ペーストに有機防縮剤を配合する。化成後に満充電した鉛蓄電池の負極電極材料の密度が3.3g/cm3となり、負極電極材料のLog微分細孔容積分布
が表1A、表2Aおよび表3AのP、QおよびR(R0)値となるように、負極ペーストの配合を制御する。
 また、75℃1’-10’軽負荷寿命試験において充放電を1220サイクル繰り返した後、負極電極材料のLog微分細孔容積分布が表1B、表2Bおよび表3BのP、QおよびR(R1220)値となるように、各種有機防縮剤を用いるとともに諸条件を調整する。
 有機防縮剤の諸元を表4に示す。有機防縮剤のうち、LIG600およびLIG300はリグニン系防縮剤である。また、BIS5000およびBIS6000は、スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(2)正極板の作製
 原料の酸化鉛粉を硫酸水溶液と混合して、正極ペーストを得る。正極ペーストを、Pb-Ca-Sn合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得る。
(3)電池A1~A5、B1~B5およびC1~C5
[評価1]
(i)電池A1~A5、B1~B5およびC1~C5の試供セルXの作製
 「M-42」タイプの鉛蓄電池に準拠した2Vセルを作製する。ここでは、袋状セパレータに収容された未化成の負極板7枚と、未化成の正極板7枚とで電極群を形成する。電極群をポリプロピレン製の電槽に電解液(比重1.210の硫酸水溶液)とともに収容し、電槽内で化成を施し、試供セルX(2V、定格5時間率容量30Ah)を作製する。なお、正極板および負極板の枚数等のセル構成は上記に限定されるものではなく、複数のセル室を有する完成された鉛蓄電池から任意の構成の2Vセルを切出してもよい。
(ii)初期のLog微分細孔容積分布の測定
 化成後に満充電された直後の試供セルXを解体し、入手した負極板に、水洗と乾燥とを施すことにより、負極板中の電解液を除く。次に、負極板から負極電極材料を分離して、未粉砕の測定試料を入手し、測定試料の細孔径5.5nm以上、333μm以下の領域のLog微分細孔容積分布を水銀圧入法により測定する。測定装置には、株式会社島津製作所製の自動ポロシメータ(オートポアIV9505)を用いる。図1A、図2A、図3Aよび図4Aに、電池A1、A2、A4およびA5の化成直後の負極電極材料のLog微分細孔容積分布を示す。
(iii)75℃1’-10’軽負荷寿命試験
 化成後の満充電された試供セルXを、25Aで1分間定電流放電し、2.47Vかつ上限電流25Aで10分間定電圧充電する充放電を試験温度75℃で1220サイクル繰り返す。
(iv)1220サイクル後のLog微分細孔容積分布の測定
 1220サイクル後の満充電状態の試供セルXを解体し、入手した負極板に、水洗と乾燥とを施すことにより、負極板中の電解液を除く。次に、負極板から負極電極材料を分離して、未粉砕の測定試料を入手し、上記(2)と同様に、測定試料の細孔径5.5nm以上、333μm以下の領域のLog微分細孔容積分布を水銀圧入法により測定する。図1B、図2B、図3Bおよび図4Bに、電池A1、A2、A4およびA5の1220サイクル後の負極電極材料のLog微分細孔容積分布を示す。
[評価2]
 75℃1’-10’軽負荷寿命試験において試供セルXの充放電を1220サイクル繰り返した後、低温HR放電持続時間を測定する。具体的には、満充電状態の試供セルXを、試験温度-15℃で5時間率定格容量に記載の数値の5倍の電流(150A)で終止電圧1.0Vまで定電流放電し、放電持続時間を測定する。結果を表5~7および図5に示す。
[評価3]
 75℃1’-10’軽負荷寿命試験における試供セルXの充放電サイクル数と減液量との関係を示す近似直線を求める。近似直線の傾きからサイクル当たりの減液量を求める。結果を表5~7および図6に示す。
[評価4]
(i)電池A1~A5、B1~B5およびC1~C5の試供セルYの作製
 「M-42」タイプの鉛蓄電池を構成する負極板を用いて単板セル(試供セルY)を作製する。具体的には、袋状セパレータに収容された未化成の負極板1枚と負極板に対して十分に大きな容量を有する既化成の正極板2枚とで単板セルを形成し、電解液(比重1.260の硫酸水溶液)中で単板セルに化成を施し、試供セルYを作製する。
(ii)10秒目電気量の測定
 試供セルYの負極理論容量(10.3Ah)の0.6倍を定格容量(6.18Ah)とし、その0.2倍の電流(1.24A)で試供セルYを30分間放電する。次に、放電後の試供セルYを12時間放置する。その後、負極板に、参照電極に対して-0.3Vの電位を印加し、10秒目までの電気量を測定する。結果を表5~7および図7に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(5)考察
 表1A、表2Aおよび表3Aを参照すると、75℃1’-10’軽負荷寿命試験前の初期におけるR0は、いずれも1に近く、0.9を超えている。一方、表1B、表2Bおよび表3Bを参照すると、75℃1’-10’軽負荷寿命試験における1220サイクル後のR1220は、いずれもより小さい値である。
 表1Bおよび図1Bによれば、R1220が0.25未満の場合は、ピークpが非常に小さく、ピークqが非常に大きいことがわかる。一方、表1Bおよび図4Bを参照すると、R1220が0.63超の場合、ピークpが非常に大きく、ピークqが非常に小さい。すなわちR1220<0.3または0.6<R1220の場合、事実上、ピークq単独またはピークp単独の分布が得られることがわかる。
 これに対し、表1B、図2B、図3Bおよび図4Bが示すように、0.25≦R1220≦0.63を満たす場合、明確にピークpおよびピークqの2ピークを含む分布が観測されることがわかる。
 次に、表5~7および図5~7によれば、以下のことが理解できる。図5では、初期の低温HR放電持続時間とR1220との間に明確な相関関係は見られない。一方、1220サイクル後には、低温HR放電持続時間とR1220との間に明確な相関関係が見られ、R1220が大きいほど、低温HR放電持続時間が長くなることがわかる。
 図6によれば、R1220が小さい領域では、サイクル当たりの減液量に差異は見られない。しかし、R1220が0.63を超えると、サイクル当たりの減液量が大きく増加し始めることがわかる。すなわち、低温HR放電持続時間が長くなる領域では、減液量が大きくなり、減液量が少ない領域では、低温HR放電持続時間が短くなるという相反関係が見られる。
 以上の傾向を踏まえると、実用的な低温HR放電特性を維持するとともに、減液を抑制する観点からは、0.25≦R1220≦0.63を満たすことが重要となる。
 更に、図7によれば、10秒目電気量はR=0.5付近でピークとなり、0.25≦R1220≦0.63の範囲で特に良好であることがわかる。以上より、0.25≦R1220≦0.63を満たす細孔構造によれば、充電受入性が良好に維持されるという予想外の効果も得られることがわかる。
《実験2》
<比較電池D1~D2>
 以下の点以外、上記と同様に、比較電池D1~D2の試供セルX、Yを組み立てる。ここでは、75℃1’-10’軽負荷寿命試験において充放電を1220サイクル繰り返した後、負極電極材料のLog微分細孔容積分布が表8のP、QおよびR値となるように、各種有機防縮剤を用いるとともに諸条件を調整する。75℃1’-10’軽負荷寿命試験における1220サイクル後の低温HR放電持続時間を測定し、サイクル当たりの減液量を求める。結果を表9に示す。
 有機防縮剤のBIS2000は、スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物であり、硫黄元素含有量は2000μmol/gである。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 比較電池D1およびD2は、いずれも種類の異なる複数種の有機防縮剤を用いているが、0.25≦R1220≦0.63を満たしていない。そのため、電池D1では、1220サイクル後の低温HR放電持続時間が短く、D2はサイクル当たりの減液量が大きくなっている。このことから、実用的な低温HR放電特性を維持するとともに、減液を抑制するには、複数種の有機防縮剤を用いることが必要条件ではなく、0.25≦R1220≦0.63を満たすことが必要条件となることが理解できる。
《実験3》
<比較電池E>
 以下の点以外、上記と同様に、比較電池Eの試供セルX、Yを組み立てる。ここでは、初期および75℃1’-10’軽負荷寿命試験において充放電を1220サイクル繰り返した後、負極電極材料のLog微分細孔容積分布が表10のP、QおよびR値となるように諸条件を調整する。ここでは、有機防縮剤として、LIG600を単独で用いるとともに
、化成後に満充電した鉛蓄電池の負極電極材料の密度が2.5g/cm3になるように負
極ペーストの配合を制御する。
 初期および75℃1’-10’軽負荷寿命試験における1220サイクル後の比較電池Eの低温HR放電持続時間を測定する。結果を表11および図8に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表10および図8は、初期には、0.25≦R0≦0.63が満たされる一方、75℃1’-10’軽負荷寿命試験における1220サイクル後には、0.25≦R0≦0.63が満たされない場合を示している。表11より、このような場合には、1220サイクル後の低温HR放電持続時間が顕著に減少することが理解できる。
 本発明に係る鉛蓄電池は、液式および制御弁式のいずれの鉛蓄電池にも適用可能であり、自動車、バイク、電動車両(フォークリフトなど)、産業用蓄電装置などの電源として好適に用いられる。
 1:鉛蓄電池、2:負極板、3:正極板、4:セパレータ、5:正極棚部、6:負極棚部、7:正極柱、8:貫通接続体、9:負極柱、11:極板群、12:電槽、13:隔壁、14:セル室、15:蓋、16:負極端子、17:正極端子、18:液口栓

Claims (15)

  1.  負極板と、正極板と、電解液と、を備え、
     前記負極板は、負極集電体と、負極電極材料と、を備え、
     前記負極電極材料のLog微分細孔容積分布において、
     a:細孔直径1~3μmの領域をP領域
     b:細孔直径6~15μmの領域をQ領域
     c:P領域におけるLog微分細孔容積の最大値をP
     d:Q領域におけるLog微分細孔容積の最大値をQ
    と定義するとき、
     25Aで1分間定電流放電し、2.47V/セルかつ上限電流25Aで10分間定電圧充電する充放電を試験温度75℃で繰り返す軽負荷寿命試験において、1220サイクル後の前記負極電極材料のLog微分細孔容積分布が、前記P領域に前記最大値Pに対応するピークpと、前記Q領域に前記最大値Qに対応するピークqと、を有し、前記最大値Pおよび前記最大値Qが、0.25≦P/(P+Q)≦0.63を満たす、鉛蓄電池。
  2.  前記軽負荷寿命試験前において、0.7≦P/(P+Q)を満たす、請求項1に記載の鉛蓄電池。
  3.  前記負極電極材料は、第1有機防縮剤と、前記第1有機防縮剤とは異なる第2有機防縮剤と、を含む、請求項1または2に記載の鉛蓄電池。
  4.  前記第1有機防縮剤の硫黄元素含有量は1000μmol/g以下であり、
     前記第2有機防縮剤の硫黄元素含有量は4000μmol/g以上である、請求項3に記載の鉛蓄電池。
  5.  前記第1有機防縮剤は、リグニン、リグニンスルホン酸およびリグニンスルホン酸塩よりなる群から選択される少なくとも1種である、請求項4に記載の鉛蓄電池。
  6.  前記第2有機防縮剤は、芳香環を有する化合物のアルデヒド化合物による縮合物であり、
     前記芳香環を有する化合物が、フェノール化合物、ビフェニル化合物およびナフタレン化合物よりなる群から選択される少なくとも1種である、請求項4または5に記載の鉛蓄電池。
  7.  負極板と、正極板と、電解液と、を備え、
     前記負極板は、負極集電体と、負極電極材料と、を備え、
     前記負極電極材料のLog微分細孔容積分布において、
     a:細孔直径1~3μmの領域をP領域
     b:細孔直径6~15μmの領域をQ領域
     c:P領域におけるLog微分細孔容積の最大値をP
     d:Q領域におけるLog微分細孔容積の最大値をQ
    と定義するとき、
     使用途中の前記負極電極材料のLog微分細孔容積分布が、前記P領域に前記最大値Pに対応するピークpと、前記Q領域に前記最大値Qに対応するピークqと、を有し、前記最大値Pおよび前記最大値Qが、0.25≦P/(P+Q)≦0.63を満たす、鉛蓄電池。
  8.  負極板と、正極板と、電解液と、を備え、
     前記負極板は、負極集電体と、負極電極材料と、を備え、
     前記負極電極材料のLog微分細孔容積分布において、
     a:細孔直径1~3μmの領域をP領域
     b:細孔直径6~15μmの領域をQ領域
     c:P領域におけるLog微分細孔容積の最大値をP
     d:Q領域におけるLog微分細孔容積の最大値をQ
    と定義するとき、
     初期劣化後の前記負極電極材料のLog微分細孔容積分布が、前記P領域に前記最大値Pに対応するピークpと、前記Q領域に前記最大値Qに対応するピークqと、を有し、前記最大値Pおよび前記最大値Qが、0.25≦P/(P+Q)≦0.63を満たす、鉛蓄電池。
  9. 前記最大値Pおよび前記最大値Qが、0.30≦P/(P+Q)≦0.63を満たす、請求項1、7、8のそれぞれに記載の鉛蓄電池。
  10. 前記最大値Pおよび前記最大値Qが、0.25≦P/(P+Q)≦0.60を満たす、請求項1、7、8のそれぞれに記載の鉛蓄電池。
  11. 前記最大値Pおよび前記最大値Qが、0.40≦P/(P+Q)≦0.63を満たす、請求項1、7、8のそれぞれに記載の鉛蓄電池。
  12. 前記最大値Pおよび前記最大値Qが、0.40≦P/(P+Q)≦0.60を満たす、請求項1、7、8のそれぞれに記載の鉛蓄電池。
  13.  前記軽負荷寿命試験前において、0.9≦P/(P+Q)を満たす、請求項1に記載の鉛蓄電池。
  14.  前記初期劣化前において、0.7≦P/(P+Q)を満たす、請求項8に記載の鉛蓄電池。
  15.  前記初期劣化前において、0.9≦P/(P+Q)を満たす、請求項8に記載の鉛蓄電池。
     
     
     
PCT/JP2019/014500 2018-05-23 2019-04-01 鉛蓄電池 WO2019225161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2019273941A AU2019273941B2 (en) 2018-05-23 2019-04-01 Lead-acid battery
CN201980033853.6A CN112154556A (zh) 2018-05-23 2019-04-01 铅蓄电池
JP2020521067A JP7207408B2 (ja) 2018-05-23 2019-04-01 鉛蓄電池
EP19806521.1A EP3780173A4 (en) 2018-05-23 2019-04-01 LEAD-ACID BATTERY
US17/049,830 US11367906B2 (en) 2018-05-23 2019-04-01 Lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-098890 2018-05-23
JP2018098890 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225161A1 true WO2019225161A1 (ja) 2019-11-28

Family

ID=68617111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014500 WO2019225161A1 (ja) 2018-05-23 2019-04-01 鉛蓄電池

Country Status (6)

Country Link
US (1) US11367906B2 (ja)
EP (1) EP3780173A4 (ja)
JP (1) JP7207408B2 (ja)
CN (1) CN112154556A (ja)
AU (1) AU2019273941B2 (ja)
WO (1) WO2019225161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475384B2 (ja) 2022-03-11 2024-04-26 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035485A (ja) 1999-07-19 2001-02-09 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
WO2013046499A1 (ja) 2011-09-30 2013-04-04 パナソニック株式会社 エネルギー貯蔵用鉛蓄電池
WO2015181865A1 (ja) * 2014-05-26 2015-12-03 株式会社Gsユアサ 鉛蓄電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126161A (ja) 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JP3468492B2 (ja) 1996-08-28 2003-11-17 松下電器産業株式会社 鉛蓄電池用極板
US8637183B2 (en) 2007-06-06 2014-01-28 Hammond Group, Inc. Expanders for lead-acid batteries
JP5780106B2 (ja) 2011-10-19 2015-09-16 株式会社Gsユアサ 鉛蓄電池及びその製造方法
JP6015427B2 (ja) 2012-12-21 2016-10-26 株式会社Gsユアサ 鉛蓄電池用負極板及びその製造方法
WO2020051368A1 (en) * 2018-09-05 2020-03-12 Basf Se Carbon materials for improving performance of lead acid batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035485A (ja) 1999-07-19 2001-02-09 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
WO2013046499A1 (ja) 2011-09-30 2013-04-04 パナソニック株式会社 エネルギー貯蔵用鉛蓄電池
WO2015181865A1 (ja) * 2014-05-26 2015-12-03 株式会社Gsユアサ 鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780173A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475384B2 (ja) 2022-03-11 2024-04-26 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
AU2019273941A1 (en) 2020-11-19
EP3780173A4 (en) 2021-05-19
US20210249699A1 (en) 2021-08-12
EP3780173A1 (en) 2021-02-17
JP7207408B2 (ja) 2023-01-18
US11367906B2 (en) 2022-06-21
JPWO2019225161A1 (ja) 2021-05-27
CN112154556A (zh) 2020-12-29
AU2019273941B2 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2013046499A1 (ja) エネルギー貯蔵用鉛蓄電池
WO2019188056A1 (ja) 鉛蓄電池
JP6756182B2 (ja) 鉛蓄電池
JP6766504B2 (ja) 鉛蓄電池
WO2019225161A1 (ja) 鉛蓄電池
JP6954353B2 (ja) 鉛蓄電池
JP5578123B2 (ja) 液式鉛蓄電池
CN110603671B (zh) 铅蓄电池
JP7331856B2 (ja) 鉛蓄電池
EP3588639B1 (en) Lead acid battery
JP7099452B2 (ja) 鉛蓄電池
JP7124828B2 (ja) 鉛蓄電池
JP2018018800A (ja) 鉛蓄電池
JP7099451B2 (ja) 鉛蓄電池
JP7127529B2 (ja) 鉛蓄電池
JP7363288B2 (ja) 鉛蓄電池用負極板および鉛蓄電池、ならびに鉛蓄電池用負極板の製造方法
WO2023210635A1 (ja) 鉛蓄電池
JP2024029809A (ja) 鉛蓄電池
JP2024029810A (ja) 鉛蓄電池
JP6750376B2 (ja) 鉛蓄電池
JP6756181B2 (ja) 鉛蓄電池
CN111971823A (zh) 铅蓄电池用负极板和铅蓄电池
JP2022187783A (ja) 制御弁式鉛蓄電池およびその製造方法、ならびに制御弁式鉛蓄電池を備える蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019806521

Country of ref document: EP

Effective date: 20201026

ENP Entry into the national phase

Ref document number: 2019273941

Country of ref document: AU

Date of ref document: 20190401

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE