WO2019225051A1 - 害虫発生抑制方法 - Google Patents

害虫発生抑制方法 Download PDF

Info

Publication number
WO2019225051A1
WO2019225051A1 PCT/JP2019/000510 JP2019000510W WO2019225051A1 WO 2019225051 A1 WO2019225051 A1 WO 2019225051A1 JP 2019000510 W JP2019000510 W JP 2019000510W WO 2019225051 A1 WO2019225051 A1 WO 2019225051A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
titanium oxide
composite
calcium phosphate
composite particles
Prior art date
Application number
PCT/JP2019/000510
Other languages
English (en)
French (fr)
Inventor
成実 岡崎
Original Assignee
Dr.C医薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr.C医薬株式会社 filed Critical Dr.C医薬株式会社
Priority to BR112020020589-3A priority Critical patent/BR112020020589B1/pt
Priority to US17/058,293 priority patent/US20210368802A1/en
Priority to JP2020521009A priority patent/JP6835381B2/ja
Priority to CN201980048181.6A priority patent/CN112469280B/zh
Priority to EP19808244.8A priority patent/EP3808180A4/en
Priority to MYPI2020004947A priority patent/MY195688A/en
Publication of WO2019225051A1 publication Critical patent/WO2019225051A1/ja
Priority to PH12020551455A priority patent/PH12020551455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides
    • A01P7/04Insecticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for suppressing the occurrence of pests. Specifically, the present invention relates to a method for suppressing the generation of pests using composite particles comprising titanium oxide particles, metal particles, and calcium phosphate particles.
  • Patent Document 1 As a method for controlling mosquitoes, for example, the method of Patent Document 1 is known as a method for controlling mosquito larvae by exposing young adult hormone-like active compounds to insects as insect growth regulators and laying eggs at the waterside. It has been. However, juvenile hormone-like active compounds used in this method are concerned about the impact on the ecosystem.
  • Patent Document 2 is known as a method for preventing the occurrence of mosquitoes.
  • This method is equipped with a water storage part with the upper surface open to the atmosphere and a drain port at the bottom, a drain valve that opens and closes the drain port, and a drive control means for the drain valve.
  • the present invention relates to an apparatus for preventing mosquito generation, characterized in that a drain valve is driven after a lapse of time to drain water from a reservoir.
  • this method requires a driving device, has a complicated configuration, and is not practical in a wide area where mosquitoes are generated.
  • spraying insecticides and applying insect repellents such as repellents to the skin are common, but temporary, and in many cases, organic compounds that are active ingredients Continuous use is not desirable from a health and environmental perspective.
  • Earth Plus is a powder of a composite material in which titanium oxide, silver and hydroxyapatite are combined, and includes one or more titanium oxide particles, one or more silver particles, and one or more hydroxyapatite particles. Containing composite particles.
  • the one or more titanium oxide particles, the one or more silver particles, and the one or more hydroxyapatite particles are three-dimensionally and randomly arranged, and at least one silver particle is at least one It is fixed to the titanium oxide particles.
  • Earth plus exhibits a bactericidal action based on the photocatalytic action of titanium oxide particles, the bactericidal action of silver particles, and the adsorbing action of hydroxyapatite particles. That is, Earth Plus adsorbs microorganisms by the action of adsorbing hydroxyapatite particles, and exerts a bactericidal action against the microorganisms by the photocatalytic action of titanium oxide particles and the bactericidal action of silver particles.
  • no attention has been paid to the action on pests such as mosquitoes, and there is no disclosure or suggestion.
  • the present invention has an object to provide a method for preventing the generation of harmful insects that has little influence on the environment and is easy to handle.
  • the present inventors have been able to effectively kill insects by bringing the composite particles comprising titanium oxide particles, metal particles, and calcium phosphate particles into contact with or in close proximity to the insects and insect eggs.
  • the inventors have found that it can be suppressed and have completed the present invention. That is, the present invention has the following configuration.
  • a pest control method comprising a step of bringing a composite particle comprising titanium oxide particles, metal particles and calcium phosphate particles into contact with or in close proximity to a pest or a pest egg.
  • the pest is a pest that mediates zoonotic diseases.
  • the method according to (2), wherein the pest that mediates zoonotic disease is a mosquito.
  • a pest control member comprising composite particles comprising titanium oxide particles, metal particles and calcium phosphate particles on the member surface.
  • a pest control paint comprising composite particles comprising titanium oxide particles, metal particles, and calcium phosphate particles.
  • a pest control agent comprising composite particles comprising titanium oxide particles, metal particles and calcium phosphate particles.
  • pests can be controlled.
  • the hatching of mosquito eggs can be suppressed, and the insects that are mosquito larvae can be killed. Therefore, the spread of mosquito-borne infection can be effectively prevented.
  • the method for inhibiting egg hatching of mosquitoes with the composite particles of the present invention is a pest control method that has little environmental impact and is easy to handle. This method can control insects by killing insects and suppressing hatching of insect eggs including sanitary insects and mites. Examples of the control target include pests including sanitary insects that mediate zoonotic diseases, and specifically include mosquitoes, moths, daphnia, ticks, and eggs and larvae thereof.
  • Common zoonotic diseases include anthrax, plague, tuberculosis, pseudotuberculosis, pasteurellosis, salmonellosis, listeriosis, campylobacterosis, leptospirosis, Lyme disease, swine erysipelas, bacterial dysentery, Yersinia enterocolitica infection, Bacterial zoonotic diseases such as savage disease, bite bites, brucellosis, influenza, SARS, rabies, West Nile fever, Ebola hemorrhagic fever, Marburg fever, B virus infection, Newcastle disease, Japanese encephalitis, tick encephalitis, nephropathy Hemorrhagic fever, Hantavirus lung syndrome, viral zoonosis such as monkey fistula, Q fever, Tsutsugamushi disease, cat scratch disease, etc.
  • Protozoan zoonotic diseases such as infectious diseases, echinococcosis, Japanese schistosomiasis, pulmonary fluke, trichinosis, liver fluke, liver cirrhosis, anisakiasis and other zoonotic parasitic diseases, cryptococcosis, candida Diseases, fungal zoonotic diseases such as aspergillosis and dermatomycosis, and prion diseases such as mutant Creutzfeldt-Jakob disease.
  • the composite particles used in the present invention comprise one or more titanium oxide particles, one or more metal particles, and one or more calcium phosphate particles.
  • the number of titanium oxide particles per composite particle may be one, or two or more.
  • the number of titanium oxide particles per composite particle is usually 2 or more.
  • the form of the titanium oxide particles contained in the composite particles is not particularly limited, and examples thereof include a spherical shape, a granular shape, a needle shape, a flake shape, and an indefinite shape.
  • the composite particles may include two or more titanium oxide particles having different forms.
  • the particle diameter of the titanium oxide particles contained in the composite particles is not particularly limited as long as it is smaller than the particle diameter of the composite particles, and can be appropriately adjusted according to the particle diameter of the composite particles.
  • the titanium oxide particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • Examples of the crystal structure of titanium oxide constituting the titanium oxide particles include an anatase type, a rutile type, a brookite type, and the like, among which the anatase type is preferable.
  • the number of metal particles per composite particle may be one or two or more.
  • the number of metal particles per composite particle is usually 2 or more.
  • the form of the metal particles contained in the composite particles is not particularly limited, and examples thereof include a spherical shape, a granular shape, a needle shape, a flake shape, and an indefinite shape.
  • the composite particle may include two or more metal particles having different forms.
  • the particle diameter of the metal particles contained in the composite particles is not particularly limited as long as it is smaller than the particle diameter of the composite particles, and can be appropriately adjusted according to the particle diameter of the composite particles.
  • the metal particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • the metal particles contained in the composite particles are selected from the group consisting of silver particles, gold particles, platinum particles and copper particles, for example.
  • the metal particles contained in the composite particles are preferably silver particles.
  • the composite particles may include two or more different types of metal particles.
  • the number of calcium phosphate particles per composite particle may be one or two or more.
  • the number of calcium phosphate particles per composite particle is usually 2 or more.
  • the form of the calcium phosphate particles contained in the composite particles is not particularly limited, and examples thereof include spherical shapes, granular shapes, needle shapes, flake shapes, and irregular shapes.
  • the composite particles may include two or more calcium phosphate particles having different morphologies.
  • the particle diameter of the calcium phosphate particles contained in the composite particles is not particularly limited as long as it is smaller than the particle diameter of the composite particles, and can be appropriately adjusted according to the particle diameter of the composite particles.
  • the calcium phosphate particles contained in the composite particles are, for example, nanoparticles or submicron particles.
  • Examples of calcium phosphate constituting the calcium phosphate particles include apatite (apatite), tricalcium phosphate, octacalcium phosphate and the like, and among these, apatite is preferable.
  • Examples of the apatite include hydroxyapatite, fluorinated apatite, carbonate apatite and the like. Of these, hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) is preferable.
  • the content of titanium oxide particles, metal particles and calcium phosphate particles per composite particle is not particularly limited, but the lower limit of the content of titanium oxide particles is usually 10 parts by mass with respect to 1 part by mass of metal particles, Preferably it is 20 parts by mass, more preferably 25 parts by mass, and even more preferably 30 parts by mass.
  • the upper limit of the content of titanium oxide particles is usually 300 parts by mass, preferably 1 part by mass of metal particles. 250 parts by mass, more preferably 200 parts by mass, and still more preferably 180 parts by mass.
  • the lower limit of the content of calcium phosphate particles is usually 1 part by mass, preferably 2 parts by mass, more preferably 3 parts by mass with respect to 1 part by mass of the metal particles
  • the upper limit of the content of calcium phosphate particles is The amount is usually 100 parts by mass, preferably 80 parts by mass, more preferably 60 parts by mass, and still more preferably 50 parts by mass.
  • the particle diameter of the composite particles measured by the dynamic light scattering method is preferably 100 to 600 nm, more preferably 200 to 500 nm, and still more preferably 250 to 350 nm.
  • the particle size is measured by the dynamic light scattering method.
  • a commercially available dynamic light scattering particle size distribution measuring device preferably a dynamic light scattering nanotrack particle size distribution measuring device “UPA-EX150” (manufactured by Nikkiso Co., Ltd.) Measured by
  • the one or more titanium oxide particles, the one or more metal particles, and the one or more calcium phosphate particles are preferably arranged three-dimensionally and randomly.
  • At least one metal particle is affixed to at least one titanium oxide particle.
  • one particle (one particle selected from titanium oxide particles, metal particles, and calcium phosphate particles) is surrounded by another particle (titanium oxide).
  • one particle may be adjacent to one or more particles of the same type, or one or more particles of different types may be adjacent to each other. It is preferable that adjacent particles are bonded to each other and fixed. Examples of the combination of adjacent particles include titanium oxide particles, metal particles, calcium phosphate particles, titanium oxide particles and metal particles, titanium oxide particles and calcium phosphate particles, metal particles and calcium phosphate particles, and the like.
  • a part of at least one particle selected from titanium oxide particles, metal particles, and calcium phosphate particles is exposed on the surface of the composite particles.
  • a portion of at least one titanium oxide particle, a portion of at least one metal particle, and a portion of at least one calcium phosphate particle are exposed on the surface of the composite particle. doing.
  • At least one particle selected from titanium oxide particles, metal particles, and calcium phosphate particles is present inside the composite particle without being exposed on the surface of the composite particle. Yes.
  • At least one particle selected from titanium oxide particles, metal particles, and calcium phosphate particles has a film-like form and is present on at least a part of the surface of the composite particle. ing.
  • two or more particles selected from titanium oxide particles, metal particles, and calcium phosphate particles have a film-like form in an integrated or continuous manner, and the surface of the composite particles Present in at least some of the.
  • one particle has a particle form, a film-like form, or a film-like form integrally or continuously with one or more other particles is a composite particle It may be influenced by the compounding ratio of the particles when manufacturing the. Depending on the blending ratio, a single particle may no longer maintain the particle morphology and may take the form of a film that exists on at least a part of the surface of the composite particle. For example, in the case of performing particle composite by a mechanical method such as a bead mill or a ball mill, particles (for example, silver particles) made of a material having a lower hardness than other particles take such a film-like form. obtain. Two or more of the above-described embodiments relating to a three-dimensional and random arrangement may be combined.
  • the composite particles for example, powders of composite materials sold by Shinshu Ceramics Co., Ltd. under the trade name “earthplus” can be used.
  • Earth Plus is a powder of a composite material in which titanium oxide, silver and hydroxyapatite are combined, and includes one or more titanium oxide particles, one or more silver particles, and one or more hydroxyapatite particles. Containing composite particles.
  • the one or more titanium oxide particles, the one or more silver particles, and the one or more hydroxyapatite particles are three-dimensionally and randomly arranged, and at least one silver particle is at least one It is fixed to the titanium oxide particles.
  • a part of at least one titanium oxide particle, a part of at least one silver particle, and a part of at least one hydroxyapatite particle are exposed on the surface of the composite particle. Conceivable.
  • the composite particles are, for example, mixed with a titanium oxide powder, a metal powder and a calcium phosphate powder in a liquid using a wet mill, and one or more titanium oxide particles contained in the titanium oxide powder and 1 contained in the metal powder. It can be produced by compounding one or more metal particles and one or more calcium phosphate particles contained in the calcium phosphate powder.
  • the composite particles thus produced are used in the present invention without being sintered thereafter.
  • the titanium oxide content (purity) in the titanium oxide powder is preferably 90% by weight or more, more preferably 95% by weight or more, and still more preferably 98% or more.
  • the upper limit value is 99%, for example.
  • the particle diameter of the titanium oxide particles (primary particles) contained in the titanium oxide powder is not particularly limited, but is, for example, 0.03 to 0.1 ⁇ m. Since the wet mill can disperse the particle aggregates into individual particles, the titanium oxide powder may contain aggregates (secondary particles) of titanium oxide particles. The particle diameter of the aggregate of titanium oxide particles is, for example, 1 to 2 ⁇ m. The particle diameter of the titanium oxide particles or aggregates thereof is measured using, for example, a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the metal content (purity) in the metal powder is preferably 80% by weight or more, more preferably 95% by weight or more, and still more preferably 98% or more.
  • the upper limit is 99.9%, for example.
  • the particle diameter of the metal particles (primary particles) contained in the metal powder is not particularly limited, but is, for example, 1.1 to 1.9 ⁇ m. Since the wet mill can disperse particle aggregates into individual particles, the metal powder may contain aggregates (secondary particles) of metal particles. In addition, aggregation of the metal particle contained in a metal powder can be suppressed by freezing and storing a metal powder until use.
  • the particle diameter of the metal particles or aggregates thereof is calculated based on the specific surface area, for example.
  • the calcium phosphate content (purity) in the calcium phosphate powder is preferably 90% by weight or more, more preferably 95% by weight or more, and still more preferably 98% or more.
  • the particle diameter of the calcium phosphate particles (primary particles) contained in the calcium phosphate powder is not particularly limited, but is, for example, 0.1 to 0.2 ⁇ m. Since the wet mill can disperse particle aggregates into individual particles, the calcium phosphate powder may contain aggregates (secondary particles) of calcium phosphate particles. The particle diameter of the aggregate of calcium phosphate particles is, for example, 4 to 5 ⁇ m. The particle diameter of the calcium phosphate particles or aggregates thereof is measured by, for example, a laser diffraction / scattering method.
  • the wet mill is composed of one or more titanium oxide particles, one or more metal particles, and one or more calcium phosphates while dispersing and pulverizing particles contained in the titanium oxide powder, metal powder, and calcium phosphate powder in a liquid.
  • the particles can be combined.
  • the wet mill include a bead mill and a ball mill. Among these, a bead mill is preferable.
  • the material for the grinding media such as beads and balls used in a mill such as a bead mill and a ball mill include alumina, zircon, zirconia, steel, and glass. Among these, zirconia is preferable.
  • the size (diameter) of the pulverizing media can be appropriately adjusted according to the particle diameter of the composite particles to be produced, but is usually 0.05 to 3.0 mm, preferably 0.1 to 0.5 mm.
  • the grinding media for example, beads or balls having a size of about 0.1 mm and a mass of about 0.004 mg can be used.
  • the liquid used for mixing is an aqueous medium such as water.
  • the total amount of titanium oxide powder, metal powder and calcium phosphate powder is usually 25 to 45 parts by mass, preferably 30 to 40 parts by mass with respect to 65 parts by mass of water. It is adjusted to become a part.
  • various conditions for example, total addition amount of raw material powder, liquid flow rate, peripheral speed of blade in cylinder, stirring temperature, stirring Time etc. can be suitably adjusted according to the particle diameter etc. of the composite particle which should be manufactured.
  • the total addition amount of the raw material powder is, for example, 4 kg or more
  • the cylinder volume is, for example, 0.5-4 L
  • the liquid flow rate is, for example, 0.5-3 L / min.
  • the peripheral speed of the blade is, for example, 300 to 900 m / min
  • the liquid temperature is, for example, 20 to 60 ° C.
  • the mixing time per kg of the raw material powder is, for example, 0.5 to 2 hours.
  • the upper limit of the total amount of raw material powder can be adjusted as appropriate according to the cylinder volume and the like.
  • the mixing time can be appropriately adjusted according to the total amount of the raw material powder added.
  • a dispersant In addition to titanium oxide powder, metal powder, calcium phosphate powder and liquid, it is preferable to add a dispersant to the raw material.
  • the dispersant include a polymer dispersant, a low molecular dispersant, an inorganic dispersant, and the like, and can be appropriately selected according to the type of liquid used in the wet mixing.
  • the liquid used for mixing is an aqueous medium such as water
  • the dispersant for example, an anionic polymer type dispersant, a nonionic polymer type dispersant, and the like can be used.
  • Examples of the ionic polymer type dispersant include a polycarboxylic acid type dispersant, a naphthalene sulfonic acid formalin condensation type dispersant, and the like.
  • Examples of the nonionic polymer type dispersant include polyethylene glycol. .
  • the amount of the dispersant added can be adjusted as appropriate, but is, for example, 0.1 to 3% by mass, preferably about 0.1% by mass with respect to 35 parts by mass of the total amount of the titanium oxide powder, metal powder and calcium phosphate powder. 3 to 1% by mass.
  • a suspension (slurry) of composite particles can be produced by combining one or more calcium phosphate particles contained in the calcium phosphate powder. Thereafter, an aggregate of the composite particles (dry powder) can be produced by removing the solvent in the suspension by evaporation or the like. An aggregate (dry powder) of composite particles can also be produced from a suspension (slurry) of composite particles by a known granulation method such as spray drying granulation.
  • the particle diameter of the aggregate of composite particles measured by the dynamic light scattering method is, for example, 100 to 600 nm, preferably 200 to 500 nm.
  • the median diameter (d50) of the aggregate of composite particles measured by the dynamic light scattering method on a volume basis is, for example, 250 to 350 nm, preferably about 300 nm.
  • a commercially available dynamic light scattering type particle size distribution measuring device preferably a dynamic light scattering type nanotrack particle size distribution measuring device “UPA-EX150” (manufactured by Nikkiso Co., Ltd.). Measured.
  • the produced composite particles can be used in the present invention as they are, but the particle diameter may be adjusted before being used in the present invention.
  • the particle diameter can be adjusted, for example, by sieving the composite particles in a powder state or a suspension state.
  • the number of titanium oxide particles, metal particles, and calcium phosphate particles per composite particle may be the same or different between the composite particles.
  • the aggregate of composite particles is used for producing the composite particles.
  • Other particles that may be by-produced may be mixed. Examples of other particles include single titanium oxide particles, single metal particles, single calcium phosphate particles, a combination of titanium oxide particles (not including metal particles and calcium phosphate particles), and a combination of metal particles (oxidation).
  • Titanium particles and calcium phosphate particles are not included), calcium phosphate particles combined (not including titanium oxide particles and metal particles), titanium oxide particles and metal particles combined (not including calcium phosphate particles), titanium oxide particles Examples include a conjugate of calcium phosphate particles (not including metal particles), a conjugate of metal particles and calcium phosphate particles (not including titanium oxide particles), and the like.
  • any method may be used as long as the composite particles of the present invention are present in the habitat of the pests and the eggs of the pests.
  • the method of mounting is mentioned.
  • any member can be used as long as it can hold the composite particles of the present invention, such as a breathable sheet member such as a nonwoven fabric, a wall of a building, particularly an outer wall, a drainage channel, a rainwater tank, a manhole, Examples thereof include a lid, a U-shaped groove, a construction member, a building material, gravel, a filter medium, a resin such as polystyrene foam dropped into a puddle, and paper.
  • the pests and the pest eggs are indirectly contacted via the medium by approaching the vicinity even if they are not in contact.
  • the degree of proximity is preferably 5 cm or less, more preferably 3 cm or less, still more preferably 1 cm or less, and most preferably 5 mm or less. That is, the pest control member containing the composite particles of the present invention is preferably used in combination with water or in water.
  • the mechanism of action is not necessarily clear, but the living body is not able to be used in some way due to the action derived from the particles when the pest or the egg of the pest comes in contact with or close to the composite particles, or the interaction between the particles and the living body. It seems that the damage, egg laying suppression, and egg hatching suppression are performed by taking damage.
  • Examples of a method for applying the composite particles of the present invention to each member include a method of attaching the composite particle to a completed member later and a method of manufacturing a member by including it in a raw material of the member.
  • a method in which composite particles are mixed with a binder resin or the like and adhered to a member can be mentioned.
  • the method of coating concrete as binder resin is mentioned.
  • the material of the member may be any material as long as the composite particles can be immobilized, and among these, a porous body is desirable.
  • the pore diameter of the porous body is preferably several to several tens of micrometers, and it is desirable that the water permeation speed is not so fast.
  • the material of the member include resins such as concrete, asphalt, ceramics, sponge, non-woven fabric, and polystyrene foam, and paper.
  • a member can be used for all mentioned above. After supplying the liquid mixture containing the composite particles and the binder resin to the air-permeable sheet member, or after immersing the air-permeable sheet member in the liquid mixture containing the composite particles and the binder resin, the air-permeable sheet member is dried. Thus, a breathable sheet member to which the composite particles are attached via the binder resin can be manufactured.
  • the air-permeable sheet member to which the composite particles are adhered via the binder resin can be produced by drying the air-permeable sheet material and then cutting out the air-permeable sheet member from the air-permeable sheet material.
  • the amount of the binder resin contained in the mixed solution is preferably 20 to 90 parts by mass, more preferably 30 to 85 parts by mass, and still more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the composite particles. The same applies to the amount of binder resin contained in the breathable sheet member.
  • the total adhesion amount of the composite particles and the binder resin per unit area of the breathable sheet member is not particularly limited, but the lower limit value of the total adhesion amount is usually 2 g / m 2 , preferably 3 g / m 2 , more preferably 4 g. / M 2 , still more preferably 5 g / m 2 , and even more preferably 6 g / m 2.
  • the upper limit of the total adhesion amount is usually 30 g / m 2 , preferably 25 g / m 2 , more preferably 20 g / m 2 . m 2 , still more preferably 15 g / m 2 .
  • This adhesion amount can mention the same adhesion amount as a preferable range also when apply
  • binder resin known resins having adhesiveness can be used singly or in combination of two or more.
  • the binder resin include natural glues or natural resins such as gelatin, gum arabic, shellac, dammar, elemi, sandalac; semisynthetic glues or semisynthetics such as methylcellulose, ethylcellulose, nitrocellulose, carboxymethylcellulose, and acetate.
  • a urethane-based resin formed by a reaction of a polyester derivative, an isocyanurate derivative and a polyol such as polyester polyol, polyether polyol, acryloylol, phenolic polyol; halogenated polymer such as polyvinyl chloride or polyvinylidene chloride; Acetal resins such as vinyl acetate, ethylene-vinyl acetate copolymer, vinyl
  • urethane resins and silicone resins are preferable, and urethane resins are particularly preferable.
  • urethane resins are particularly preferable.
  • an acrylic copolymer resin is preferable, and Tonan Bond (manufactured by Tonan Bond Co., Ltd.) can be exemplified.
  • the inorganic binder may be used alone or in combination of two or more.
  • the inorganic binder include alkyl silicates, silicon halides, products obtained by decomposing hydrolyzable silicon compounds such as partial hydrolysates thereof, organic polysiloxane compounds and polycondensates thereof, silica, colloidal silica.
  • water glass silicon compounds, phosphates such as zinc phosphate, metal oxides such as zinc oxide and zirconium oxide, heavy phosphates, cement, gypsum, lime, and enamel frits.
  • the pest control agent containing the composite particles comprising the titanium oxide particles, metal particles and calcium phosphate particles of the present invention as an active ingredient may be the composite particles themselves or other within the range not impairing the pest control action of the present invention.
  • Known ingredients can be included.
  • Other known components include other insecticidal components. Of course, it can be used in combination with other known pest control methods and pest control methods.
  • the pest control agent of the present invention can be applied to other mosquito-repelling tools.
  • mosquitoes prefer water and carbon dioxide, it is also effective to combine with the carbon dioxide generation method or with the presence of water as in the test examples described later.
  • Production Example 1 Production of Composite Particles
  • titanium oxide powder, silver powder and hydroxyapatite powder are used as raw material powders, and one or more titanium oxide particles, one or more silver particles and one or more hydroxy particles are used.
  • Composite particles comprising apatite particles were produced.
  • the composite particles M1 and M2 differ in terms of the content ratio of titanium oxide, silver, and hydroxyapatite.
  • the composite particles M1 and M2 were manufactured in the same manner as “earthplus” (trademark) manufactured and sold by Shinshu Ceramics Co., Ltd. Production of the composite particles M1 and M2 was outsourced to Shinshu Ceramics Co., Ltd.
  • the raw material powder shown in Table 1 was prepared.
  • the particle diameter of the titanium oxide powder is a value measured using a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the particle diameter of the silver powder is a value calculated based on the specific surface area.
  • the particle diameter of the hydroxyapatite powder is a value measured by a laser diffraction / scattering method. Since the silver powder was stored frozen until use, aggregation of silver particles contained in the silver powder was suppressed.
  • titanium oxide powder, silver powder, hydroxyapatite powder, and polycarboxylic acid dispersant are mixed in water to obtain titanium oxide powder.
  • 1 or more of the titanium oxide particles contained in the powder, one or more silver particles contained in the silver powder, and one or more hydroxyapatite particles contained in the hydroxyapatite powder are combined to form a suspension of composite particles ( Slurry).
  • the wet bead mill used is finely pulverized while dispersing titanium oxide particles, silver particles and hydroxyapatite particles contained in the raw material powder, and can be made into nanoparticles or sub-micron particles.
  • the conditions for particle composite using a wet bead mill are as follows. Total added amount of raw material powder: 4kg or more Cylinder volume: 3.3L Beads: Zirconia beads (diameter 0.5 mm, mass 0.37 mg) Liquid flow rate: 2 L / min Peripheral speed of blades in the cylinder: 540 m / min Liquid temperature: 35 to 45 ° C Mixing time per kg of raw material powder: 30 to 40 minutes (about 36 minutes)
  • the total amount of titanium oxide powder, silver powder and hydroxyapatite powder was adjusted to 35 parts by mass with respect to 65 parts by mass of water.
  • group dispersing agent was adjusted to 0.5 mass part with respect to 35 mass parts of total compounding quantities of a titanium oxide powder, a silver powder, and a hydroxyapatite powder.
  • the amount of titanium oxide powder is adjusted to about 160 parts by mass (155 to 165 parts by mass) with respect to 1 part by mass of silver powder, and the amount of hydroxyapatite powder is 1 mass by mass of silver powder. To 40 parts by weight (39 to 41 parts by weight).
  • the blending amount of the titanium oxide powder is adjusted to about 30 parts by mass (29 to 31 parts by mass) with respect to 1 part by mass of the silver powder, and the blending amount of the hydroxyapatite powder is 1 mass by mass of the silver powder. To 3 parts by weight (2.5 to 3.5 parts by weight).
  • Composite particles M1 and M2 were produced by drying a suspension (slurry) of composite particles.
  • the particle size of the composite particles M1 and M2 measured by the dynamic light scattering method was 200 to 500 nm.
  • the median diameter (d50) of the composite particles M1 and M2 measured on the volume basis by the dynamic light scattering method was about 300 nm.
  • the particle size determined by the dynamic light scattering method is a commercially available dynamic light scattering particle size distribution measuring device, specifically, a dynamic light scattering nanotrack particle size distribution measuring device “UPA-EX150” (manufactured by Nikkiso Co., Ltd.). ).
  • Test Example 1 Inhibition test of mosquito eggs by the composite particles of the present invention
  • mosquito eggs were laid on the filter paper treated with the composite particles of the present invention, and the number of hatching was compared with an untreated control group.
  • Test method 1-1 Material (1) Egg-laying container (i) Test area 50 mL of Milli-Q water and 20 ⁇ L of the M1 particle solution were added to a 250 mL plastic container (diameter 12 cm, height 7 cm) (final concentration of M1 particles 0.014%). .
  • a filter paper for egg laying (height 4 cm, length 9 cm) was attached to the inner wall surface of the plastic container to obtain a test section (FIG. 1A).
  • the filter paper for egg-laying is 1 cm in height under the surface of the water, and 3 cm in the air is in the air but wet.
  • eggs were laid on the damp filter paper at the boundary between the water layer and the air layer (ie, at the water's edge).
  • Control Group A control group was prepared in the same manner as the test group except that 50 mL of MilliQ water not containing the composite particles of the present invention was added into a 250 mL plastic container (FIG. 1 (B)).
  • Mosquitoes 150 adults of Aedes albopictus that have been passaged in the laboratory from adults in the first house of Shinjuku-ku, Tokyo, and 150 adults of Aedes aegypti that have been distributed by the University of Notre Dame, USA Using.
  • Infectious diseases transmitted by Aedes albopictus are Zika virus infection, dengue fever, chikungunya fever, West Nile fever, Japanese encephalitis and the like.
  • the West Nile fever vector mosquito is Culex pipiens, Cx. P. Molestus, Cx. P. Pallense, which has a blood-feeding preference from birds, but the human mosquito is also a bridge vector. It is known to be involved in the disease.
  • the main vector mosquito of Japanese encephalitis is Culex tritaeniorhyncus, but it is known that human mosquitoes are also experimentally infected.
  • Infectious diseases transmitted by Aedes aegypti are zika virus infection, dengue fever, chikungunya fever, yellow fever and the like.
  • Test procedure (1) Mosquito blood sucking Aedes aegypti and Aedes albopictus were placed in separate cloth adult cages (20 ⁇ 20 ⁇ 30 cm), respectively, and heparin-containing whole blood was sucked through an artificial membrane by an artificial blood sucking device manufactured by Hemotek. . The adult gauge was placed in a humidifier at 37 ° C.
  • test results For the human striped mosquito, the number of eggs born on the egg-laying filter paper treated with the composite particles of the present invention in the test section was 250, of which 45 were hatched (the hatching rate was 18%). On the other hand, in the control group, the number of eggs laid on the untreated egg-laying filter paper was 170, and the number of eggs hatched was 148 (hatching rate 87%). The odds ratio was 0.033 (95% confidence interval: 0.019, 0.057). As for Aedes aegypti, the number of eggs born on the egg-laying filter paper treated with the composite particles of the present invention in the test area was 75, of which 12 were hatched (the hatching rate was 16%). .
  • the composite particles of the present invention can significantly suppress the hatching rate of mosquitoes regardless of the type of mosquito.
  • the micro organisms, Daphnia magna, Kaiko Daphnia, and Bohula were collected from a private pond in Aso-ku, Kanagawa Prefecture. 1-2.
  • Test Zone 1 The pond water was placed in the test culture vessel, and 15 Tamaidina and 3 Giraffe were introduced.
  • Test area 2 Pond water was placed in a test culture vessel, and thirty fleas, eight daphnids and eight bow flares were added. All the above tests were performed at room temperature (about 26 ° C.).
  • Test results (1) Control group All daphnia were swimming well even after 10 days from the start of the test. (2) Test Zone 1 3 hours after the start of the test, all the starfishes died, and all the daphnids died one day later. (3) Test area 2 Four hours after the start of the test, all the giant clams died, one day later, all fawns died 15 days later, six bow flares died 15 days later, and all died 28 days later. From the above, it was found that the composite particles of the present invention have an insecticidal effect against Daphnia and Bowfra.
  • Test method 1-1 Pest control test using the composite particles of the present invention (outdoors) In this test, water was poured into a container coated with a binder containing the composite particles of the present invention outdoors in Indonesia, and the effect of suppressing the generation of cedar and mosquitoes by the composite particles of the present invention was examined over a long period of time. 1. Test method 1-1.
  • Container Concrete container in test section 1 A cylindrical concrete container (inner diameter: 45 cm, height: 19 cm, inner volume: about 30 L) with an open top, 30 ml of the following composite particle solution (i) of the present invention, Paint (apply) about 25 ml of the mixed solution of 30 ml of binder solution (ii) and 30 ml of water to the height of about 15 cm on the entire inner surface of a cylindrical concrete container with a brush, and leave it at room temperature for 3 days to dry. Thus, a test container was prepared.
  • Test method 24L of tap water is placed in one concrete container in the control zone, three concrete containers in the test zone 1, and six concrete containers in the test zone 2, and left under a vinyl sheet tent for about one year for 4 months. From the eyes, the number of bow flares generated every month was counted. All water was replaced after the 7th month. The tent was in a state where only the roof was exposed and the side surface was exposed to the outside air, and a wooden sword about 5 cm high was laid on the lower surface of the container so that the container did not touch the ground directly.
  • Test Example 4 Manufacture of a pest control member
  • the effect was confirmed in a filter paper soaked with the composite particle solution of the present invention, and in Test Example 2 and Test Example 3, the composite particles were coated with a binder. .
  • the same effect can be expected with non-woven fabric and polystyrene foam in which hydrosilver titanium is fixed. 1.
  • Manufacture of a composite particle-attached nonwoven fabric After a binder resin is added to the suspension (slurry) of the composite particles M1 obtained in Production Example 1, a mixed solution is prepared. The mixture was impregnated. After immersion, the nonwoven fabric was taken out from the mixed solution and pressed with a roller to squeeze out the excess mixed solution.
  • the nonwoven fabric was dried at about 130 ° C. for about 1 minute to produce a composite particle-attached nonwoven fabric N1.
  • a urethane-based resin (C 3 H 7 NO 2 / NH 2 COOC 2 H 5 ) was used.
  • the total adhesion amount (total fixed amount) of the composite particles M1 and the binder resin per unit area of the composite particle-adhered nonwoven fabric N1 is 4 g / m 2 , 6 g. / M 2 , 8 g / m 2 or 10 g / m 2 .
  • a composite particle-attached nonwoven fabric N2 was produced in the same manner as described above except that the suspension of the composite particle M2 was used instead of the suspension of the composite particle M1.
  • the total adhesion amount (total fixed amount) of the composite particles M2 and the binder resin per unit area of the composite particle-adhered nonwoven fabric N2 is 13.5 g / m 2. Adjusted.
  • composite particles M1 or M2 of the present invention were mixed with the raw material of the foam polystyrene to produce the composite particle-attached foam polystyrene and the polystyrene beads.
  • Method of use Coating the inner wall surface of the non-woven fabric on the inner wall surface of the container containing water.
  • the non-woven fabric N1 or N2 is stretched and installed so that the lower part is immersed in water.
  • Many mosquitoes lay eggs on the wall near the water surface, so they will lay eggs on the non-woven fabric near the water surface stretched around the inner wall. Therefore, hatching is suppressed by contacting eggs with the composite particles in the nonwoven fabric.
  • Nonwoven fabric N1 or N2 is randomly rolled and immersed. As a result, the mosquitoes lay eggs on the non-woven fabric near the water surface. Therefore, hatching is suppressed by contacting eggs with the composite particles in the nonwoven fabric.
  • the expanded polystyrene sheet or expanded polystyrene beads are floated on the water surface. Float polystyrene foam sheets or polystyrene beads.
  • mosquitoes anopheles that transmit malaria are known to lay eggs upright on the surface of the water. Accordingly, such mosquito eggs can be efficiently inhibited from hatching by contacting with the expanded polystyrene sheet or the expanded polystyrene beads floating on the water surface.
  • pests can be controlled.
  • hatching of mosquito eggs can be suppressed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

【課題】本発明は、環境への影響が少なく、扱いが容易な害虫発生防止方法の提供を課題とする。 【解決手段】本発明者らは、鋭意検討した結果、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子と害虫や害虫の卵を接触あるいは近接させることで効果的に殺虫でき、害虫の発生を抑制できることを見出した。

Description

害虫発生抑制方法
 本発明は害虫発生抑制方法に関する。詳しくは、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を用いて害虫の発生を抑制する方法に関する。
 世界の熱帯から温帯地域にかけて、未だに年間約7億2千万人の人々が蚊を媒介とする感染症に罹患して、その内200万から400万人が亡くなっていると推定されている。
 これら多くの感染症に有効なワウチンおよび抗ウイルス薬は未だに開発途上である。このような現状では、媒介蚊を制御する方法の開発が感染症を抑制する唯一の方法であり期待がかかっている。しかし、マラリアが蚊によって媒介されることがわかって、100年以上経過した現在も蚊に有効な方法は見出されていない。
 蚊の駆除方法として、例えば幼若ホルモン様の活性化合物などを昆虫成長制御剤として成虫に暴露し、その成虫が水際に産卵することにより蚊の幼虫を駆除する方法として特許文献1の方法が知られている。しかし本方法で使用される、幼若ホルモン様の活性化合物は生態系への影響が懸念される。
 また、蚊の発生そのものを防止する方法として、特許文献2が知られている。本方法は、上面を大気に開放し、底部に排水口を設けた貯水部と排水口を開閉する排水弁と、排水弁の駆動制御手段とを備え、貯水部に水を貯えた日、一定時間経過後に排水弁を駆動して貯水部の水を排水することを特徴とする蚊の発生防止装置に関する。しかし、本方法は駆動装置を要し、複雑な構成であり、広範囲な蚊の発生地域では現実的ではない。
 また、このほかに殺虫剤を散布したり、忌避剤などの防虫剤を皮膚に塗布する方法も一般的ではあるが、一時的なものであり、また多くの場合の有効成分である有機化合物の継続的な使用は健康上からも環境への影響からも望ましいとは言えない。
 ところで、非特許文献1には、株式会社信州セラミックス(日本国長野県)が製造及び販売する「アースプラス(earthplus)」(商標)が、黄色ブドウ球菌、大腸菌及び緑膿菌に対して殺菌作用を有することが記載されている。アースプラスは、酸化チタン、銀及びハイドロキシアパタイトが複合化された複合材料の粉末であり、1個以上の酸化チタン粒子と、1個以上の銀粒子と、1個以上のハイドロキシアパタイト粒子とを含んでなる複合粒子を含有する。当該複合粒子において、1個以上の酸化チタン粒子、1個以上の銀粒子及び1個以上のハイドロキシアパタイト粒子は、三次元かつランダムに配置されており、少なくとも1個の銀粒子は、少なくとも1個の酸化チタン粒子に固着されている。アースプラスは、酸化チタン粒子の光触媒作用、銀粒子の殺菌作用及びハイドロキシアパタイト粒子の吸着作用に基づいて、殺菌作用を発揮する。すなわち、アースプラスは、ハイドロキシアパタイト粒子の吸着作用により、微生物を吸着し、酸化チタン粒子の光触媒作用及び銀粒子の殺菌作用により、微生物に対して殺菌作用を発揮する。
 しかし、蚊などの害虫に対する作用についてはなんら着目されておらず、開示も示唆もない。
特開平5-320001号公報 特開2003-144031号公報
Eriko Kasuga et al., Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic noncomposite "Earth-plus", International Journal of Nanomedicine, 2011:6, pp.1937-1943
 本発明は、環境への影響が少なく、扱いが容易な害虫発生防止方法の提供を課題とする。
 本発明者らは、鋭意検討した結果、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子と害虫や害虫の卵を接触あるいは近接させることで効果的に殺虫でき、害虫の発生を抑制できることを見出し本発明を完成するに至った。すなわち、本発明は以下の構成を有する。
(1)酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子と害虫又は害虫の卵を接触あるいは近接させる工程を含む害虫防除方法。
(2)害虫が人獣共通感染症の媒介をする害虫である(1)に記載の方法。
(3)人獣共通感染症の媒介をする害虫が蚊である(2)に記載の方法。
(4)接触あるいは近接させる工程が水中で行われる請求項1~3のいずれかに記載の方法。
(5)酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を部材表面に含む、害虫防除用部材。
(6)部材が不織布、容器、マンホール、雨水枡、コンクリート製品から選ばれるいずれか1つである(4)に記載の害虫防除用部材。
(7)水と組み合わせて、あるいは水中で用いられる(5)又は(6)に記載の害虫防除用部材。
(8)酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を含む、害虫防除用塗料。
(9)酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を含む害虫防除剤。
 本発明によれば、害虫を防除することができる。特に、蚊の卵の孵化を抑制でき、また、蚊の幼虫であるボウフラを殺虫することができる。したがって、蚊を媒介とする感染症の拡大を効果的に防ぐことができる。
試験例1の蚊の産卵容器を示す写真と説明図である。(A)試験区の産卵容器(B)対照区の産卵容器
(対象生物)
 本発明の複合粒子による蚊の卵孵化抑制法は環境への影響が少なく、扱いが容易な害虫防除方法である。本方法は害虫を殺虫し、また衛生昆虫・ダニを含む害虫の卵の孵化を抑制することによりそれら害虫を防除することができる。防除の対象としては、人獣共通感染症を媒介する衛生昆虫を含む害虫が挙げられ、具体的には、蚊、蛾、ミジンコ、ダニ、及びこれらの卵や幼虫が挙げられる。
 人獣共通感染症としては、炭疽 、ペスト 、 結核 、仮性結核 、パスツレラ症 、サルモネラ症、リステリア症、カンピロバクター症、レプトスピラ病、ライム病、豚丹毒、細菌性赤痢、エルシニア・エンテロコリティカ感染症、野兎病、鼠咬症、ブルセラ症等の細菌性人獣共通感染症、インフルエンザ、SARS 、狂犬病、ウエストナイル熱、エボラ出血熱、マールブルグ熱、Bウイルス感染症、ニューカッスル病、日本脳炎、ダニ脳炎、腎症候性出血熱 、ハンタウイルス肺症候群、サル痘等のウイルス性人獣共通感染症、Q熱、ツツガムシ病 、猫ひっかき病等のリケッチア・コクシエラ・バルトネラ性人獣共通感染症 、オウム病等のクラミジア性人獣共通感染症 、睡眠病、シャーガス病、リーシュマニア症、クリプトスポリジウム感染症等の原虫性人獣共通感染症、エキノコックス症、日本住血吸虫症、肺吸虫症、旋毛虫症、肝吸虫症、肝蛭症、アニサキス症等の人獣共通寄生虫症、クリプトコッカス症、カンジダ症、アスペルギルス症、皮膚真菌症等の真菌性人獣共通感染症、変異型クロイツフェルト・ヤコブ病等のプリオン病 が挙げられる。
(複合粒子)
 本発明で使用される複合粒子は、1個以上の酸化チタン粒子と、1個以上の金属粒子と、1個以上のリン酸カルシウム粒子とを含んでなる。
 複合粒子1個あたりの酸化チタン粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりの酸化チタン粒子の個数は、通常2個以上である。
 複合粒子に含まれる酸化チタン粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上の酸化チタン粒子を含んでいてもよい。
 複合粒子に含まれる酸化チタン粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれる酸化チタン粒子は、例えば、ナノ粒子又はサブミクロン粒子である。
 酸化チタン粒子を構成する酸化チタンの結晶構造としては、例えば、アナターゼ型、ルチル型、ブルッカイト型等が挙げられ、これのうち、アナターゼ型が好ましい。
 複合粒子1個あたりの金属粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりの金属粒子の個数は、通常2個以上である。
 複合粒子に含まれる金属粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上の金属粒子を含んでいてもよい。
 複合粒子に含まれる金属粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれる金属粒子は、例えば、ナノ粒子又はサブミクロン粒子である。
 複合粒子に含まれる金属粒子は、例えば、銀粒子、金粒子、白金粒子及び銅粒子からなる群から選択される。複合粒子に含まれる金属粒子は、好ましくは、銀粒子である。複合粒子は、異なる種類の2個以上の金属粒子を含んでいてもよい。
 複合粒子1個あたりのリン酸カルシウム粒子の個数は、1個であってもよいし、2個以上であってもよい。複合粒子1個あたりのリン酸カルシウム粒子の個数は、通常2個以上である。
 複合粒子に含まれるリン酸カルシウム粒子の形態は、特に限定されるものではなく、例えば、球状、粒状、針状、薄片状、不定形状等が挙げられる。複合粒子は、異なる形態を有する2個以上のリン酸カルシウム粒子を含んでいてもよい。
 複合粒子に含まれるリン酸カルシウム粒子の粒子径は、複合粒子の粒子径よりも小さい限り特に限定されるものではなく、複合粒子の粒子径に応じて適宜調整することができる。複合粒子に含まれるリン酸カルシウム粒子は、例えば、ナノ粒子又はサブミクロン粒子である。
 リン酸カルシウム粒子を構成するリン酸カルシウムとしては、例えば、アパタイト(リン灰石)、リン酸三カルシウム、リン酸八カルシウム等が挙げられ、これらのうち、アパタイトが好ましい。アパタイトとしては、例えば、ハイドロキシアパタイト、フッ化アパタイト、炭酸アパタイト等が挙げられ、これらのうち、ハイドロキシアパタイト(Ca10(PO46(OH)2)が好ましい。
 複合粒子1個あたりの酸化チタン粒子、金属粒子及びリン酸カルシウム粒子の含有量は、特に限定されないが、酸化チタン粒子の含有量の下限値は、金属粒子1質量部に対して、通常10質量部、好ましくは20質量部、さらに好ましくは25質量部、さらに一層好ましくは30質量部であり、酸化チタン粒子の含有量の上限値は、金属粒子1質量部に対して、通常300質量部、好ましくは250質量部、さらに好ましくは200質量部、さらに一層好ましくは180質量部である。また、リン酸カルシウム粒子の含有量の下限値は、金属粒子1質量部に対して、通常1質量部、好ましくは2質量部、さらに好ましくは3質量部であり、リン酸カルシウム粒子の含有量の上限値は、通常100質量部、好ましくは80質量部、さらに好ましくは60質量部、さらに一層好ましくは50質量部である。
 動的光散乱法により測定される複合粒子の粒子径は、好ましくは100~600nm、さらに好ましくは200~500nm、さらに一層好ましくは250~350nmである。動的光散乱法による粒子径の測定は、市販の動的光散乱式粒子径分布測定装置、好ましくは動的光散乱式ナノトラック粒子径分布測定装置「UPA-EX150」(日機装株式会社製)により測定される。
 複合粒子において、1個以上の酸化チタン粒子、1個以上の金属粒子及び1個以上のリン酸カルシウム粒子は、三次元かつランダムに配置されていることが好ましい。
 三次元かつランダムな配置の一実施形態では、少なくとも1個の金属粒子が、少なくとも1個の酸化チタン粒子に固着されている。
 三次元かつランダムな配置の一実施形態では、ある1個の粒子(酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される1個の粒子)の周囲に、別の1個以上の粒子(酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される1個以上の粒子)が存在している。この実施形態において、ある1個の粒子には、同種の1個以上の粒子が隣接していてもよいし、異種の1個以上の粒子が隣接していてもよい。隣接する粒子は互いに結合し、固着していることが好ましい。隣接する粒子の組み合わせとしては、酸化チタン粒子同士、金属粒子同士、リン酸カルシウム粒子同士、酸化チタン粒子と金属粒子、酸化チタン粒子とリン酸カルシウム粒子、金属粒子とリン酸カルシウム粒子等が挙げられる。
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される少なくとも1個の粒子の一部が、複合粒子の表面に露出している。
 三次元かつランダムな配置の一実施形態では、少なくとも1個の酸化チタン粒子の一部、少なくとも1個の金属粒子の一部及び少なくとも1個のリン酸カルシウム粒子の一部が、複合粒子の表面に露出している。
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される少なくとも1個の粒子が、複合粒子の表面に露出することなく、複合粒子の内部に存在している。
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される少なくとも1個の粒子が膜状の形態を有し、複合粒子の表面の少なくとも一部に存在している。
 三次元かつランダムな配置の一実施形態では、酸化チタン粒子、金属粒子及びリン酸カルシウム粒子から選択される2個以上の粒子が一体となって又は連なって膜状の形態を有し、複合粒子の表面の少なくとも一部に存在している。
 ある1個の粒子が粒子形態を有するか、あるいは、膜状の形態を有するか、あるいは、別の1個以上の粒子と一体となって又は連なって膜状の形態を有するかは、複合粒子を製造する際の粒子の配合比等の影響を受け得る。配合比によっては、ある1個の粒子が、もはや粒子形態を維持せず、複合粒子の表面の少なくとも一部に存在する膜状の形態をとり得る。例えば、ビーズミル、ボールミル等の機械的手法により粒子複合化を実施する場合、その他の粒子よりも硬度が低い材料で構成される粒子(例えば、銀粒子)は、このような膜状の形態をとり得る。
 三次元かつランダムな配置に関する上記実施形態のうち2種以上が組み合わせられてもよい。
 複合粒子としては、例えば、株式会社信州セラミックスから、商品名「アースプラス(earthplus)」の下で販売されている複合材料の粉末を使用することができる。アースプラスは、酸化チタン、銀及びハイドロキシアパタイトが複合化された複合材料の粉末であり、1個以上の酸化チタン粒子と、1個以上の銀粒子と、1個以上のハイドロキシアパタイト粒子とを含んでなる複合粒子を含有する。当該複合粒子において、1個以上の酸化チタン粒子、1個以上の銀粒子及び1個以上のハイドロキシアパタイト粒子は、三次元かつランダムに配置されており、少なくとも1個の銀粒子は、少なくとも1個の酸化チタン粒子に固着されている。また、当該複合粒子において、少なくとも1個の酸化チタン粒子の一部、少なくとも1個の銀粒子の一部及び少なくとも1個のハイドロキシアパタイト粒子の一部は、複合粒子の表面に露出していると考えられる。
 複合粒子は、例えば、湿式ミルを使用して、酸化チタン粉末、金属粉末及びリン酸カルシウム粉末を液体中で混合し、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、金属粉末に含まれる1個以上の金属粒子と、リン酸カルシウム粉末に含まれる1個以上のリン酸カルシウム粒子とを複合化することにより製造することができる。なお、こうして製造された複合粒子は、その後、焼結されずに、本発明において使用される。
 酸化チタン粉末における酸化チタン含量(純度)は、好ましくは90重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。上限値は、例えば、99%である。
 酸化チタン粉末に含まれる酸化チタン粒子(一次粒子)の粒子径は、特に限定されないが、例えば、0.03~0.1μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、酸化チタン粉末には、酸化チタン粒子の凝集体(二次粒子)が含まれていてもよい。酸化チタン粒子の凝集体の粒子径は、例えば、1~2μmである。酸化チタン粒子又はその凝集体の粒子径は、例えば、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を使用して測定される。
 金属粉末における金属含量(純度)は、好ましくは80重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。上限値は、例えば、99.9%である。
 金属粉末に含まれる金属粒子(一次粒子)の粒子径は、特に限定されないが、例えば、1.1~1.9μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、金属粉末には、金属粒子の凝集体(二次粒子)が含まれていてもよい。なお、金属粉末を使用まで冷凍保存しておくことにより、金属粉末に含まれる金属粒子の凝集を抑制することができる。金属粒子又はその凝集体の粒子径は、例えば、比表面積に基づいて算出される。
 リン酸カルシウム粉末におけるリン酸カルシウム含量(純度)は、好ましくは90重量%以上、さらに好ましくは95重量%以上、さらに一層好ましくは98%以上である。
 リン酸カルシウム粉末に含まれるリン酸カルシウム粒子(一次粒子)の粒子径は、特に限定されないが、例えば、0.1~0.2μmである。湿式ミルは、粒子凝集体を個々の粒子に分散させることができるので、リン酸カルシウム粉末には、リン酸カルシウム粒子の凝集体(二次粒子)が含まれていてもよい。リン酸カルシウム粒子の凝集体の粒子径は、例えば、4~5μmである。リン酸カルシウム粒子又はその凝集体の粒子径は、例えば、レーザー回折・散乱法によって測定される。
 湿式ミルは、酸化チタン粉末、金属粉末及びリン酸カルシウム粉末に含まれる粒子を液体中で分散及び微粉砕しながら、1個以上の酸化チタン粒子と、1個以上の金属粒子と、1個以上のリン酸カルシウム粒子とを複合化することができる。湿式ミルとしては、例えば、ビーズミル、ボールミル等が挙げられ、これらのうち、ビーズミルが好ましい。ビーズミル、ボールミル等のミルで使用されるビーズ、ボール等の粉砕メディアの材質としては、例えば、アルミナ、ジルコン、ジルコニア、スチール、ガラス等が挙げられ、これらのうち、ジルコニアが好ましい。粉砕メディアのサイズ(直径)は、製造すべき複合粒子の粒子径等に応じて適宜調整することができるが、通常0.05~3.0mm、好ましくは0.1~0.5mmである。粉砕メディアとしては、例えば、サイズが約0.1mm、質量が約0.004mgのビーズ又はボールを使用することができる。
 混合の際に使用される液体は、例えば、水等の水性媒体である。混合の際に使用される液体が水である場合、酸化チタン粉末、金属粉末及びリン酸カルシウム粉末の合計配合量は、水65質量部に対して、通常25~45質量部、好ましくは30~40質量部となるように調整される。
 酸化チタン粉末、金属粉末、リン酸カルシウム粉末及び液体を含む原料を湿式ミルで混合する際、各種条件、例えば、原料粉末の合計添加量、液の流量、シリンダー内の羽根の周速、攪拌温度、攪拌時間等は、製造すべき複合粒子の粒子径等に応じて適宜調整することができる。原料粉末(酸化チタン粉末、金属粉末及びリン酸カルシウム粉末)の合計添加量は、例えば4kg以上であり、シリンダー容積は、例えば0.5~4L、液の流量は、例えば0.5~3L/分であり、羽根の周速は、例えば300~900m/分であり、液温は、例えば20~60℃であり、原料粉末1kgあたりの混合時間は、例えば0.5~2時間である。原料粉末の合計添加量の上限値は、シリンダー容積等に応じて適宜調整可能である。混合時間は、原料粉末の合計添加量等に応じて適宜調整可能である。
 原料には、酸化チタン粉末、金属粉末、リン酸カルシウム粉末及び液体に加えて、分散剤を添加することが好ましい。分散剤としては、例えば、高分子型分散剤、低分子型分散剤、無機型分散剤等が挙げられ、湿式混合で使用される液体の種類に応じて適宜選択することができる。混合の際に使用される液体が水等の水性媒体である場合、分散剤としては、例えば、アニオン性高分子型分散剤、非イオン性高分子型分散剤等を使用することができ、アニオン性高分子型分散剤としては、例えば、ポリカルボン酸系分散剤、ナフタリンスルホン酸ホルマリン縮合系分散剤等が挙げられ、非イオン性高分子型分散剤としては、例えば、ポリエチレングリコール等が挙げられる。分散剤の添加量は、適宜調整することができるが、酸化チタン粉末、金属粉末及びリン酸カルシウム粉末の合計配合量35質量部に対して、例えば、0.1~3質量%、好ましくは、0.3~1質量%である。
 湿式ミルを使用して、酸化チタン粉末、金属粉末及びリン酸カルシウム粉末を液体中で混合し、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、金属粉末に含まれる1個以上の金属粒子と、リン酸カルシウム粉末に含まれる1個以上のリン酸カルシウム粒子とを複合化することにより、複合粒子の懸濁液(スラリー)を製造することができる。その後、懸濁液中の溶媒を蒸発等により除去することにより、複合粒子の集合体(乾燥粉末)を製造することができる。噴霧乾燥造粒法等の公知の造粒法により、複合粒子の懸濁液(スラリー)から、複合粒子の集合体(乾燥粉末)を製造することもできる。
 動的光散乱法により測定される複合粒子の集合体の粒子径は、例えば100~600nm、好ましくは200~500nmである。動的光散乱法により体積基準で測定される複合粒子の集合体のメディアン径(d50)は、例えば250~350nm、好ましくは約300nmである。動的光散乱法による粒子径は、市販の動的光散乱式粒子径分布測定装置、好ましくは動的光散乱式ナノトラック粒子径分布測定装置「UPA-EX150」(日機装株式会社製)を使用して測定される。
 製造された複合粒子は、そのまま、本発明において使用することができるが、本発明において使用する前に、粒子径の調整を行ってもよい。粒子径の調整は、例えば、粉末の状態又は懸濁液の状態の複合粒子を篩化することにより行うことができる。
 複合粒子の集合体において、複合粒子1個あたりの酸化チタン粒子、金属粒子及びリン酸カルシウム粒子のそれぞれの個数は、複合粒子の間で同一であってもよいし、異なっていてもよい。
 複合粒子の集合体には、1個以上の酸化チタン粒子と、1個以上の金属粒子と、1個以上のリン酸カルシウム粒子とを含んでなる複合粒子に加えて、該複合粒子を製造する際に副生され得るその他の粒子が混在していてもよい。その他の粒子としては、例えば、単独の酸化チタン粒子、単独の金属粒子、単独のリン酸カルシウム粒子、酸化チタン粒子同士の結合体(金属粒子及びリン酸カルシウム粒子を含まない)、金属粒子同士の結合体(酸化チタン粒子及びリン酸カルシウム粒子を含まない)、リン酸カルシウム粒子同士の結合体(酸化チタン粒子及び金属粒子を含まない)、酸化チタン粒子と金属粒子との結合体(リン酸カルシウム粒子を含まない)、酸化チタン粒子とリン酸カルシウム粒子との結合体(金属粒子を含まない)、金属粒子とリン酸カルシウム粒子との結合体(酸化チタン粒子を含まない)等が挙げられる。
(複合粒子と害虫の接触あるいは近接させる方法)
 本発明の複合粒子と害虫の接触方法としては、害虫や害虫の卵の生息域に本発明の複合粒子を存在させる方法であればいずれでもよく、生息域に存在させる方法としては生息域に部材として載置する方法が挙げられる。また、生息域にすでに存在する部材に塗布、接着、付着、固定化させることにより存在させる方法がある。
 部材の種類としては、本発明の複合粒子を保持できる形態のものであればいずれでもよく、不織布などの通気性シート部材、建築物の壁、特に外壁、排水路、雨水桝、マンホールの内部や蓋、U字溝、建設部材、建築資材、砂利、濾材、水たまりへ投下発泡スチロール等の樹脂、紙などが挙げられる。
 また、害虫や害虫の卵はこれらの部材に直に接触することのほかに、非接触であっても近傍に接近することにより媒体を介して間接的に接触することも本発明に含まれる。近接させる例としては、水中に本発明の複合粒子を付着した部材を設置した場合にボウフラやミジンコなどの水中生物が遊泳して複合粒子に近接することをいう。この場合、水中生物は水媒体を介して部材に接することになる。近接の程度は、好ましくは5cm以下、より好ましくは3cm以下、さらに好ましくは1cm以下、最もこのましくは5mm以下である。すなわち、本発明の複合粒子を含む害虫防除用部材は、水と組み合わせて、あるいは水中で用いることも好ましい。
 本発明によれば、その作用機序は必ずしも明らかではないが、害虫や害虫の卵が複合粒子と接触・近接することで粒子から派生する作用、粒子と生体との相互作用により、生体が何らかのダメージを受けることで死滅、産卵抑制、卵の孵化抑制が行われるものと思われる。
 本発明の複合粒子の各部材への適用方法としては、完成した部材に後から付着させる方法や部材の原料に含ませて部材を製造する方法が挙げられる。付着の方法としては、複合粒子をバインダー樹脂等と混合し、部材に付着する方法が挙げられる。コンクリートに付着させる例としては、コンクリートにバインダー樹脂として塗装する方法が挙げられる。
 部材の材質としては、複合粒子が固定化されうるものであればいずれでもよく、このうちでも多孔体が望ましい。多孔体の孔径は、数マイクロから数十マイクロが好ましく、透水スピードはあまり速くないものの方が望ましい。
 部材の素材としては、コンクリート、アスファルト、セラミックス、スポンジ、不織布、発泡スチロールなどの樹脂、紙等が挙げられる。
 以下、代表例としてバインダ樹脂を介して通気性シート部材に本発明の複合粒子を付着させる例について説明するが、部材は上述したいずれにも使用することができる。
 複合粒子及びバインダ樹脂を含有する混合液を通気性シート部材に供給した後、あるいは、複合粒子及びバインダ樹脂を含有する混合液中に通気性シート部材を浸漬した後、通気性シート部材を乾燥することにより、複合粒子がバインダ樹脂を介して付着した通気性シート部材を製造することができる。また、複合粒子及びバインダ樹脂を含有する混合液を通気性シートの原反に供給した後、あるいは、複合粒子及びバインダ樹脂を含有する混合液中に通気性シートの原反を浸漬した後、通気性シートの原反を乾燥し、次いで、通気性シートの原反から通気性シート部材を切り出すことにより、複合粒子がバインダ樹脂を介して付着した通気性シート部材を製造することができる。
 混合液に含有されるバインダ樹脂の量は、複合粒子100質量部に対して、好ましくは20~90質量部、さらに好ましくは30~85質量部、さらに一層好ましくは40~80質量部である。通気性シート部材に含有されるバインダ樹脂の量も同様である。
 通気性シート部材の単位面積あたりの複合粒子及びバインダ樹脂の合計付着量は、特に限定されないが、合計付着量の下限値は、通常2g/m2、好ましくは3g/m2、さらに好ましくは4g/m2、さらに一層好ましくは5g/m2、さらに一層好ましくは6g/m2であり、合計付着量の上限値は、通常30g/m2、好ましくは25g/m2、さらに好ましくは20g/m2、さらに一層好ましくは15g/m2である。
 本付着量は、コンクリートなどの他の部材に塗布する際にも同様の付着量を好ましい範囲として挙げることができる。
 バインダ樹脂としては、接着性を有する公知の樹脂を1種単独で又は2種以上組み合わせて使用することができる。バインダ樹脂としては、例えば、ゼラチン、アラビアゴム、シェラック、ダンマル、エレミー、サンダラック等の天然糊料あるいは天然樹脂類;メチルセルロース、エチルセルロース、ニトロセルロース、カルボキシメチルセルロース、アセテート等の半合成糊料又は半合成樹脂類;イソフタル酸系、テレフタル酸系、ビスフェノール系、ビニルエステル系のポリエステル樹脂;エチレンーアクリル酸、エチレンーアクリル酸エステル、アクリルエステルービニル、メタクリル酸エステルービニル等のアクリル系共重合樹脂;トリレンジシソシアネート、4,4‘-ジフェニルメタンジイソシアネート、リジンエステルトリイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、トリレンジイソシアネート等のイソシアネート誘導体又はイソシアヌレート誘導体と、ポリエステルポリオール、ポリエーテルポリオール、アクリルロイルオール、フェノーリックポリオール等のポリオールとの反応により形成されるウレタン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のハロゲン化ポリマー;ポリ酢酸ビニル、エチレンー酢酸ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、ポリアクリルエステル、ポリスチレン、ポリビニルアセタール等のアセタール系樹脂;ポリカーボネート系樹脂;セルロースアセテート等のセルロース系樹脂;ポリオレフィン系樹脂;尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂等の合成糊料あるいは合成樹脂類;ポリアルキルシロキサン、ポリアルキル水素シロキサン、ポリアルキルアルケニルシロキサン、ポリアルキルシリコネート、ポリアルカリアルキルシリコネート、ポリアルキルフェニルシロキサン等のシリコーン樹脂をはじめ、エポキシ変性、アミノ変性、ウレタン変性、アルキド変性、アクリル変性等の変性体、共重合体等を含むシリコーン樹脂;あるいは、テトラフルオロエチレン、フッ化ビニリデン等の重合体、これらのモノマーと他種モノマーとの共重合体等のフッ素樹脂等が挙げられる。これらのうち、接着性等の観点から、ウレタン系樹脂、シリコーン樹脂が好ましく、ウレタン系樹脂が特に好ましい。また、コンクリートに適用するバインダ樹脂としては、アクリル系共重合樹脂が好ましく、トナンボンド(トナンボンド株式会社製)を例示することができる。
 バインダ樹脂に代えて又はバインダ樹脂と組み合わせて、無機バインダを1種単独で又は2種以上組み合わせて使用してもよい。無機バインダとしては、例えば、アルキルシリケート、ハロゲン化ケイ素、これらの部分加水分解物等の加水分解性ケイ素化合物を分解して得られる生成物、有機ポリシロキサン化合物とその重縮合物、シリカ、コロイダルシリカ、水ガラス、ケイ素化合物、リン酸亜鉛等のリン酸塩、酸化亜鉛、酸化ジルコニウム等の金属酸化物、重リン酸塩、セメント、石膏、石灰、ほうろう用フリット等が挙げられる。
 本発明の酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を有効成分として含む害虫防除剤は、前記複合粒子そのものでもよいし、本発明の害虫防除作用を損なわない範囲で他の公知の成分を含むことができる。他の公知の成分としては、他の殺虫成分などが挙げられる。また、他の公知の害虫駆除方法や害虫防除方法と組み合わせて用いることももちろん可能である。例えば、他の蚊取り用具に本発明の害虫防除剤を塗布することも可能である。また、蚊は水のあるところや二酸化炭素を好むことから、二酸化炭素発生方法との組み合わせや、後述する試験例のように水の存在と組み合わせることも効果的である。
 以下、製造例及び試験例に基づいて本発明をさらに詳細に説明する。但し、本発明の範囲は、これらの製造例及び試験例によって限定されるものではない。
製造例1:複合粒子の製造
 本製造例では、酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末を原料粉末として使用し、1個以上の酸化チタン粒子、1個以上の銀粒子及び1個以上のハイドロキシアパタイト粒子を含んでなる複合粒子を製造した。
 本製造例では、2種類の複合粒子M1及びM2を製造した。複合粒子M1及びM2は、酸化チタン、銀及びハイドロキシアパタイトの含有比の点で異なる。複合粒子M1及びM2は、株式会社信州セラミックスが製造及び販売する「アースプラス(earthplus)」(商標)と同様にして製造した。複合粒子M1及びM2の製造は、株式会社信州セラミックスに委託した。
 表1に示す原料粉末を準備した。酸化チタン粉末の粒子径は、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を使用して測定された値であり、銀粉末の粒子径は、比表面積に基づいて算出された値であり、ハイドロキシアパタイト粉末の粒子径は、レーザー回折・散乱法によって測定された値である。銀粉末は使用まで冷凍保存しておいたので、銀粉末に含まれる銀粒子の凝集は抑制されていた。
Figure JPOXMLDOC01-appb-T000001
 市販の湿式ビーズミル(アシザワ・ファインテック株式会社製「スターミルLME」)を使用して、酸化チタン粉末、銀粉末、ハイドロキシアパタイト粉末及びポリカルボン酸系分散剤を水中で混合することにより、酸化チタン粉末に含まれる1個以上の酸化チタン粒子と、銀粉末に含まれる1個以上の銀粒子と、ハイドロキシアパタイト粉末に含まれる1個以上のハイドロキシアパタイト粒子とを複合化し、複合粒子の懸濁液(スラリー)を製造した。使用した湿式ビーズミルは、原料粉末に含まれる酸化チタン粒子、銀粒子及びハイドロキシアパタイト粒子を分散させながら微粉砕し、ナノ粒子又はサブミクロン粒子まで微粒子化することができるとともに、微粒子化した粒子を複合化することができる。
 湿式ビーズミルを使用した粒子複合化の条件は、次の通りである。
 原料粉末の合計添加量:4kg以上
 シリンダー容積:3.3L
 ビーズ:ジルコニア製ビーズ(直径0.5mm、質量0.37mg)
 液の流量:2L/分
 シリンダー内の羽根の周速:540m/分
 液温:35~45℃
 原料粉末1kgあたりの混合時間:30~40分(約36分)
 酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末の合計配合量は、水65質量部に対して、35質量部に調整した。ポリカルボン酸系分散剤の配合量は、酸化チタン粉末、銀粉末及びハイドロキシアパタイト粉末の合計配合量35質量部に対して、0.5質量部に調整した。
 複合粒子M1の製造では、酸化チタン粉末の配合量を、銀粉末1質量部に対して約160質量部(155~165質量部)に調整し、ハイドロキシアパタイト粉末の配合量を、銀粉末1質量部に対して約40質量部(39~41質量部)に調整した。
 複合粒子M2の製造では、酸化チタン粉末の配合量を、銀粉末1質量部に対して約30質量部(29~31質量部)に調整し、ハイドロキシアパタイト粉末の配合量を、銀粉末1質量部に対して約3質量部(2.5~3.5質量部)に調整した。
 複合粒子の懸濁液(スラリー)を乾燥することにより、複合粒子M1及びM2を製造した。動的光散乱法により測定された複合粒子M1及びM2の粒子径は、200~500nmであった。動的光散乱法により体積基準で測定された複合粒子M1及びM2のメディアン径(d50)は、約300nmであった。動的光散乱法による粒子径は、市販の動的光散乱式粒子径分布測定装置、具体的には、動的光散乱式ナノトラック粒子径分布測定装置「UPA-EX150」(日機装株式会社製)を使用して測定した。
[試験例1]本発明の複合粒子による蚊の卵の孵化抑制試験
 本試験では、本発明の複合粒子で処理した濾紙上で蚊に卵を産ませ、孵化数を未処理の対照区と比較することで本発明の複合粒子による蚊の卵の孵化に対する影響を調べた。
1.試験方法
1-1.材料
(1)産卵容器
 (i)試験区
 250mLプラスチック容器内(直径12cm、高さ7cm)に50mLのMilli-Q水と前記M1粒子溶液20μLを加えた(M1粒子の最終濃度0.014%)。次に、産卵用濾紙(高さ4cm、長さ9cm)を前記プラスチック容器の内璧面に貼り付け、試験区とした(図1(A))。産卵用濾紙の高さ1cm分は水面下にあり、3cm分は空気中にあるが湿っている状態である。そして水層と空気層の境界(つまり水際)のより湿った濾紙部分に卵が産み付けられるようにした。
 (ii)対照区
 本発明の複合粒子を含まないMiliQ水50mLを250mLプラスチック容器内に添加した以外は試験区と同様にしたものを対照区とした(図1(B)。
(2)蚊
 東京都新宿区初台の人家内で採集した成虫を実験室内で継代したヒトスジシマカ(Aedes albopictus)成虫150個体と米国ノートルダム大学より分与されたネッタイシマカ(Aedes aegypti)成虫150個体を用いた。ヒトスジシマカが媒介する感染症はジカウイルス感染症、デング熱、チクングニア熱、ウエストナイル熱、日本脳炎等である。なお、ウエストナイル熱の媒介蚊は鳥類からの吸血嗜好性をもつアカイエカ類(Culex pipiens, Cx. p. molestus, Cx. p. pallense)であるが、ヒトスジシマカも橋渡し媒介蚊(bridge vector)として本症に関与することが知られている。また、日本脳炎の主な媒介蚊はコガタアカイエカ(Culex tritaeniorhyncus)であるが、ヒトスジシマカも実験的に感染することが知られている。ネッタイシマカが媒介する感染症は、ジカウイルス感染症、デング熱、チクングニア熱、黄熱等である。
1-2.試験手順
(1)蚊の吸血
 ネッタイシマカとヒトスジシマカをそれぞれ別の布製成虫ケージ(20×20×30cm)に入れ、Hemotek社製の人工吸血装置により人工膜を介してヘパリン含馬全血を吸血させた。成虫ゲージは37℃の加湿器内に設置された。
(2)蚊の産卵
 吸血直後、成虫ケージ内に、試験区と対照区の産卵容器を設置した。その後、24℃の恒温槽(1日の照明時間は16時間、暗黒は8時間)で成虫が湿った濾紙に卵を産むのを待った。
(3)産下卵の処理 (図4)
 吸血6日後には、試験区と対照区それぞれの産卵容器の湿った産卵用濾紙上に卵が確認されたため、容器を成虫ケージ内から取り出して、蓋をして3日間、24℃に静置した。
 その後、卵が生みつけられた濾紙を同じ産卵容器内の水中に浸漬した。幼虫の餌としては、CE-2粉末飼料(クレア社製)を適量の水で溶いて与えた。
(4)孵化幼虫数と卵のカウント
 幼虫の孵化を確認するために、約2週間孵化の有無を観察し、孵化した幼虫の数をカウントした。産卵用濾紙上の卵の数は、試験終了の際にカウントした。
 検定はフィッシャーの正確確率検定(Fisher’s exact test)を採用した。
2.試験結果
 ヒトスジシマカについては、試験区の本発明の複合粒子で処理された産卵用濾紙に生まれた卵の数は250個であり、そのうち孵化した数は45個(孵化率18%)であった。これに対して、対照区では、無処理の産卵用濾紙に産まれた卵の数は、170個であり、そのうち孵化した数は148個(孵化率87%)であった。オッズ比は、0.033(95%信頼性区間:0.019、0.057)であった。
 また、ネッタイシマカについては、試験区の本発明の複合粒子で処理された産卵用濾紙に生まれた卵の数は75個であり、このうち孵化した数は12個(孵化率16%)であった。これに対して、対照区では、無処理の産卵用濾紙に生まれた卵の数は、51個であり、そのうち孵化した数は32(孵化率62.7%)であった。オッズ比は、0.113(95%信頼性区間:0.049、0.262)であった。
 以上より、本発明の複合粒子は蚊の種類を問わず、蚊の孵化率を有意に抑制できることがわかった。
Figure JPOXMLDOC01-appb-T000002
[試験例2]本発明の複合粒子による害虫防除試験(室内)
 本試験では、本発明の複合粒子を含むバインダーで塗装処理した培養容器中に微小生物を泳がせ、本発明の複合粒子による生存への影響を調べた。
1.試験方法
1-1.材料
(1)培養容器
 素焼きの培養容器(容量30~50ml)に本発明の複合粒子M1:バインダー(製品名トナンボンド):水=1:1:1で混合したスラリーを筆で一様に塗布し、常温で12時間放置して乾燥することにより試験用の培養容器を作製した。
 また、バインダー:水=1:1のスラリーを素焼きの培養容器に同様に塗布してコントロール用培養容器を作製した。
(2)微小生物
タマミジンコ、カイミジンコ、ボウフラは、神奈川県麻生区の民家の池より採取した。
1-2.試験方法
(1)コントロール区
 コントロール用培養容器に池の水を入れタマミジンコ4匹とカイミジンコ4匹を投入した。
(2)試験区1
 試験用培養容器に池の水を入れタマミジンコ15匹、カイミジンコ3匹を投入した。
(3)試験区2
 試験用培養容器に池の水を入れタマミジンコ30匹、カイミジンコ8匹、ボウフラ8匹を投入した。
 上記試験はすべて室温(約26℃)で行った。
2.試験結果
(1)コントロール区
 試験開始後10日間経過してもミジンコは全て元気に泳ぎ回っていた。
(2)試験区1
 試験開始後3時間でタマミジンコ全て死亡、カイミジンコは1日後に全て死亡した。
 (3)試験区2
 試験開始後4時間でタマミジンコが全て死亡、1日後にカイミジンコが全て死亡、15日後にボウフラは6匹が死亡、28日後には全て死亡した。
 以上より、本発明の複合粒子はミジンコ類及びボウフラに対して殺虫効果があることがわかった。
〔試験例3〕本発明の複合粒子による害虫防除試験(屋外)
 本試験では、インドネシアの屋外にて、本発明の複合粒子を含むバインダーで塗装処理した容器に水を入れ、本発明の複合粒子によるボウフラ、蚊の発生抑制効果を長期間にわたって調べた。
1.試験方法
1-1.材料
(1)容器
(a)試験区1のコンクリート容器
 上部が開放された円柱型のコンクリート容器(内径45cm、高さ19cm、内容量約30L)に本発明の下記複合粒子溶液(i)30ml、バインダー溶液(ii)30ml、水30mlの混合溶液90mlのうち、約25mlを刷毛で円柱型のコンクリート容器内側全面に高さ15cmくらいまで塗装(塗布)し、常温で3日間放置して乾燥することにより試験用の容器を作製した。
(i)複合粒子溶液;本発明の複合粒子M1を35重量%含む水溶液
(ii)バインダー溶液;製品名トナンボンド(トナンボンド株式会社製)をごく少量の水に溶かしたもの
(b)試験区2のコンクリート容器
コンクリート容器に塗布した混合溶液を、上記(i)の複合粒子溶液30ml、(ii)のバインダー溶液30ml、水120mlの混合溶液180mlとした以外は試験区1のコンクリート容器と同様に作製した。
(c)対照区のコンクリート容器
上記(ii)のバインダー溶液30ml、水30mlの混合溶液60mlを用いた以外は試験区1のコンクリート製の容器と同様に作製した。
1-2.試験方法
 対照区のコンクリート容器1個、試験区1のコンクリート容器3個、試験区2のコンクリート容器6個に水道水を24L入れ、ビニールシートのテントの下に約1年間放置して、4ヶ月目から約1ヶ月毎のボウフラの発生個数をカウントした。7ヶ月目のカウント後に水を全部入れ替えた。テントは屋根のみで側面は外気にさらされている状態であり、容器の下面には木製の高さ5cmほどのスノコを敷き、直接地面に容器が触れないようにした。
1-3.試験場所
 神奈川県秦野市戸川
1-4.試験期間
 2018年12月5日より1年間。試験期間中の気温は3℃~35℃であった。
2.試験結果
 結果を表3に示す。本発明の複合粒子を含むバインダーを塗布した試験区1、試験区2では1年間にわたりほとんどボウフラが発生しなかった。これに対して本発明の複合粒子を塗布しなかった対照区では80匹もボウフラが発生した。
 以上より、本発明の複合粒子は蚊の産卵を抑制し、ボウフラの発生を有意に抑制する効果があることがわかった。
Figure JPOXMLDOC01-appb-T000003
[試験例4]害虫防除用部材の製造
 上記試験例1では本発明の複合粒子溶液をしみこませた濾紙、試験例2、試験例3では複合粒子をバインダーで塗装処理した容器で効果を確認した。このほかに、ハイドロ銀チタンを固定化した不織布や発泡スチロールでも同様の効果が期待できる。
1.複合粒子付着不織布の製造
 製造例1で得られた複合粒子M1の懸濁液(スラリー)にバインダ樹脂を加えて混合液を調製した後、ポリエステル製スパンポンド不織布を混合液に浸漬し、不織布に混合液を含浸させた。浸漬後、混合液から不織布を取り出し、ローラーでプレスして余剰の混合液を絞り出した。プレス後、不織布を約130℃で約1分間乾燥して、複合粒子付着不織布N1を製造した。バインダ樹脂としては、ウレタン系樹脂(C37NO2/NH2COOC25)を使用した。
 混合液中の複合粒子M1及びバインダ樹脂の濃度を調整することにより、複合粒子付着不織布N1の単位面積あたりの複合粒子M1及びバインダ樹脂の合計付着量(合計固定量)を4g/m2、6g/m2、8g/m2又は10g/m2に調整した。
 4g/m2の内訳は、酸化チタン2.27g/m2、ハイドロキシアパタイト0.571g/m2、銀0.014g/m2、バインダ樹脂1.14g/m2であった。
 6g/m2の内訳は、酸化チタン3.41g/m2、ハイドロキシアパタイト0.857g/m2、銀0.021g/m2、バインダ樹脂1.71g/m2であった。
 8g/m2の内訳は、酸化チタン4.54g/m2、ハイドロキシアパタイト1.143g/m2、銀0.029g/m2、バインダ樹脂2.29g/m2であった。
 10g/m2の内訳は、酸化チタン5.68g/m2、ハイドロキシアパタイト1.428g/m2、銀0.036g/m2、バインダ樹脂2.86g/m2であった。
 複合粒子M1の懸濁液に代えて複合粒子M2の懸濁液を使用した点を除き、上記と同様にして、複合粒子付着不織布N2を製造した。
 混合液中の複合粒子M2及びバインダ樹脂の濃度を調整することにより、複合粒子付着不織布N2の単位面積あたりの複合粒子M2及びバインダ樹脂の合計付着量(合計固定量)を13.5g/m2に調整した。
 13.5g/m2の内訳は、酸化チタン6.525g/m2、ハイドロキシアパタイト0.750g/m2、銀0.225g/m2、バインダ樹脂6.00g/m2であった。
2.複合粒子付着発泡スチロールシートまたは発泡スチロールビーズの製造
 発泡スチロールの原材料に本発明の複合粒子M1又はM2を混ぜて複合粒子付着発泡スチロール及び発泡スチロールビーズを製造した。
3.利用方法
(1)不織布を容器内壁面に被覆する
 水を入れた容器の内壁面に前記1.の不織布N1又はN2を張り巡らせ、下部が水に浸るように設置する。蚊の多くは水面近くの壁に卵を産み付けるため、内壁に張り巡らされた水面付近の不織布に卵を産み付けることになる。したがって、卵は不織布中の複合粒子と接触することで孵化が抑制される。
(2)不織布を水中にランダムに挿入する
 水を入れた容器の水中に前記1.の不織布N1又はN2をランダムに丸めて浸漬する。これにより水面近くの不織布を壁面として蚊は卵を産み付ける。したがって、卵は不織布中の複合粒子と接触することで孵化が抑制される。
(3)発泡スチロールシートまたは発泡スチロールビーズを水面に浮かせる
 水を入れた容器の水面に前記2.の発泡スチロールシートまたは発泡スチロールビーズを浮かせる。蚊のうちでもマラリアを媒介するハマダラカは水面に直立するように卵を産むことが知られている。したがって、このような蚊の卵は水面に浮いている発泡スチロールシートや発泡スチロールビーズと接触することで効率的に孵化を抑制することができる。
 本発明によれば、害虫を防除することができる。特に蚊の卵の孵化を抑制することができる。また、蚊の幼虫であるボウフラを殺虫することができる。したがって、蚊を媒介とする感染症の拡大を効果的に防ぐことができる。

Claims (9)

  1.  酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子と害虫又は害虫の卵を接触あるいは近接させる工程を含む害虫防除方法。
  2.  害虫が人獣共通感染症の媒介をする害虫である請求項1に記載の方法。
  3.  人獣共通感染症の媒介をする害虫が蚊である請求項1又は2に記載の方法。
  4.  接触あるいは近接させる工程が水中で行われる請求項1~3のいずれかに記載の方法。
  5.  酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を部材表面に含む、害虫防除用部材。
  6.  部材が不織布、容器、マンホール、雨水枡、コンクリート製品から選ばれるいずれか1つである請求項4に記載の害虫防除用部材。
  7.  水と組み合わせて、あるいは水中で用いられる請求項5又は6に記載の害虫防除用部材。
  8.  酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を含む、害虫防除用塗料。
  9.  酸化チタン粒子、金属粒子及びリン酸カルシウム粒子とを含んでなる複合粒子を含む害虫防除剤。
PCT/JP2019/000510 2018-05-25 2019-01-10 害虫発生抑制方法 WO2019225051A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112020020589-3A BR112020020589B1 (pt) 2018-05-25 2019-01-10 Método de controle de inseto nocivo, membro de controle de inseto nocivo, material de revestimento de controle de inseto nocivo, e, agente de controle de inseto nocivo
US17/058,293 US20210368802A1 (en) 2018-05-25 2019-01-10 Method for controlling harmful insects
JP2020521009A JP6835381B2 (ja) 2018-05-25 2019-01-10 害虫発生抑制方法
CN201980048181.6A CN112469280B (zh) 2018-05-25 2019-01-10 用于防治有害昆虫的方法
EP19808244.8A EP3808180A4 (en) 2018-05-25 2019-01-10 METHOD FOR CONTROLLING PESTS
MYPI2020004947A MY195688A (en) 2018-05-25 2019-01-10 Method for Controlling Harmful Insects
PH12020551455A PH12020551455A1 (en) 2018-05-25 2020-09-10 Method for controlling harmful insects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100516 2018-05-25
JP2018100516 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225051A1 true WO2019225051A1 (ja) 2019-11-28

Family

ID=68616618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000510 WO2019225051A1 (ja) 2018-05-25 2019-01-10 害虫発生抑制方法

Country Status (8)

Country Link
US (1) US20210368802A1 (ja)
EP (1) EP3808180A4 (ja)
JP (2) JP6835381B2 (ja)
CN (1) CN112469280B (ja)
BR (1) BR112020020589B1 (ja)
MY (1) MY195688A (ja)
PH (1) PH12020551455A1 (ja)
WO (1) WO2019225051A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320001A (ja) 1992-05-20 1993-12-03 Sumitomo Chem Co Ltd 蚊の駆除方法
JP2003144031A (ja) 2001-11-12 2003-05-20 Tsuyoshi Yamada 蚊発生防止装置
JP2008037816A (ja) * 2006-08-08 2008-02-21 Saruta Shiki Nosan Kk 農薬
JP2014040416A (ja) * 2012-08-10 2014-03-06 Tsukasa Sakurada 殺菌および脱臭剤およびその製造方法ならびにその使用方法
WO2014162856A1 (ja) * 2013-04-01 2014-10-09 Inoue Naofumi シロアリ防除剤および該防除剤を含有した製剤
WO2016186027A1 (ja) * 2015-05-15 2016-11-24 株式会社石橋 有害動物の駆除方法と駆除具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731741B2 (ja) * 2001-06-25 2011-07-27 アース製薬株式会社 害虫防除用毒餌剤
JP2003206208A (ja) * 2002-01-10 2003-07-22 Nippon Kankyo Bika Kyokai:Kk 光触媒複合二酸化チタンによるチャタテムシ防除工法
JP4321865B2 (ja) * 2005-07-21 2009-08-26 猿田志岐農産有限会社 高分散性二酸化チタン粉末
CN100336450C (zh) * 2005-09-22 2007-09-12 上海交通大学 纳米复合载银羟基磷灰石/二氧化钛消毒材料的制备方法
CN100361583C (zh) * 2005-09-23 2008-01-16 南京海泰纳米材料有限公司 一种复合纳米抗菌材料及其制备方法
JP5340573B2 (ja) * 2007-09-21 2013-11-13 武人 前島 ゴキブリ忌避剤およびゴキブリ忌避方法
CN101779627A (zh) * 2009-01-16 2010-07-21 岑绍辉 隐身防蚊驱蚊组合物
JP5634857B2 (ja) * 2010-12-27 2014-12-03 アロン化成株式会社 ボウフラ防除剤を備えた貯排水設備
KR20120114856A (ko) * 2011-04-08 2012-10-17 한근식 모기 물림 방지용 원단 및 그 제조방법
KR101989444B1 (ko) * 2011-04-21 2019-06-14 스티번 돕슨 모기 퇴치 방법
WO2013007289A1 (en) * 2011-07-08 2013-01-17 Cardpool Silver containing antimicrobial material and uses thereof
CN102989515A (zh) * 2012-12-17 2013-03-27 江南大学 一种二氧化钛/杂多酸复合光催化剂的制备方法
JP2014193818A (ja) * 2013-03-28 2014-10-09 Dainippon Printing Co Ltd 医療用粘着製品
US20170135349A1 (en) * 2015-11-17 2017-05-18 VectorBlock LLC Composition with pest resistant properties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320001A (ja) 1992-05-20 1993-12-03 Sumitomo Chem Co Ltd 蚊の駆除方法
JP2003144031A (ja) 2001-11-12 2003-05-20 Tsuyoshi Yamada 蚊発生防止装置
JP2008037816A (ja) * 2006-08-08 2008-02-21 Saruta Shiki Nosan Kk 農薬
JP2014040416A (ja) * 2012-08-10 2014-03-06 Tsukasa Sakurada 殺菌および脱臭剤およびその製造方法ならびにその使用方法
WO2014162856A1 (ja) * 2013-04-01 2014-10-09 Inoue Naofumi シロアリ防除剤および該防除剤を含有した製剤
WO2016186027A1 (ja) * 2015-05-15 2016-11-24 株式会社石橋 有害動物の駆除方法と駆除具

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERIKO KASUGA ET AL.: "Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic noncomposite ''Earthplus", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 6, 2011, pages 1937 - 1943
KASUGA, E. ET AL.: "Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite ''Earth-plus", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 6, 2011, pages 1937 - 1943, XP055655317, ISSN: 1178-2013 *
UDAYABHANU, J. ET AL.: "Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity", JOURNAL OF PHOTOCHEMISTRY & PHOTOBIOLOGY, B: BIOLOGY, vol. 178, 6 December 2017 (2017-12-06), pages 496 - 504, XP085337337, ISSN: 1011-1344, DOI: 10.1016/j.jphotobiol.2017.12.005 *

Also Published As

Publication number Publication date
JP6835381B2 (ja) 2021-02-24
JP2021066738A (ja) 2021-04-30
JP7264512B2 (ja) 2023-04-25
BR112020020589B1 (pt) 2021-10-19
BR112020020589A2 (pt) 2021-01-12
MY195688A (en) 2023-02-03
EP3808180A1 (en) 2021-04-21
JPWO2019225051A1 (ja) 2020-12-10
CN112469280A (zh) 2021-03-09
PH12020551455A1 (en) 2021-07-19
US20210368802A1 (en) 2021-12-02
CN112469280B (zh) 2022-04-29
EP3808180A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US20130219771A1 (en) Bed Bug Monitoring Device
US4971796A (en) Slow release pest control granule composition
US4732762A (en) Timed release pest control composition and means
TWI738826B (zh) 包含無機/有機混成化合物之抗微生物、抗病毒及/或防藻材料以及其製造方法
WO2019225051A1 (ja) 害虫発生抑制方法
BRPI0608705A2 (pt) suspensão aquosa parasiticida, método para controlar o desenvolvimento de parasitas em animais criados em construções, e, uso de uma suspensão aquosa
KR20120112968A (ko) 아파타이트를 복합한 항균성 폴리우레탄 필름의 제조방법
OA20421A (en) Method for controlling harmful insects.
CN100379343C (zh) 杀寄生物的水悬浮液
AU635921B2 (en) Method and medium for packaging entomogenous nematodes
WO1999020105A1 (fr) Article a tendance poreuse permettant d'eliminer des micro-organismes nuisibles et procede de fabrication dudit article
JP3563492B2 (ja) 養魚用水処理剤及びその製造方法
JP2008050275A (ja) 病原の感染防止方法
Shammari Efficacy of filter water with nanosilver-coated natural zeolite in controlling water molds infection on Bunnei (Barbus Sharpeyi) eggs
ES2847154T3 (es) Composición de revestimiento con actividad antisalina y antimicrobiana, y procedimiento de preparación de la misma
JP3539675B2 (ja) 床下調湿剤
JP2008133230A (ja) 衛生害虫忌避剤およびその製造方法
JP2007143449A (ja) ダニ誘導壁システム
CN109082167A (zh) 物理杀虫涂料、制备方法及应用
TW202316970A (zh) 抗病毒劑、賦予抗病毒性的方法、具有抗病毒性的物品、抗菌劑、具有抗菌性的物品、抗真菌劑及具有抗真菌性的物品
ES2821420A1 (es) Sistema de encapsulación y liberación controlada de piretroides de prolongada eficacia en el tiempo contra moscas de la fruta
KR101214915B1 (ko) 방충용 황토 조성물 및 그 조성물로 제조된 황토벽돌
JP2004250420A (ja) 高残留性昆虫成長制御剤組成物
JPH10296022A (ja) 水用バイオフィルター
WO1997015194A1 (fr) Procede de production d'un nematode entomoparasite, et preparation et procede de conservation dudit nematode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808244

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2020521009

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020020589

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020020589

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201007

ENP Entry into the national phase

Ref document number: 2019808244

Country of ref document: EP

Effective date: 20210111