WO2019223223A1 - 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用 - Google Patents

一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用 Download PDF

Info

Publication number
WO2019223223A1
WO2019223223A1 PCT/CN2018/110984 CN2018110984W WO2019223223A1 WO 2019223223 A1 WO2019223223 A1 WO 2019223223A1 CN 2018110984 W CN2018110984 W CN 2018110984W WO 2019223223 A1 WO2019223223 A1 WO 2019223223A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
iron
chitosan
vermiculite
composite material
Prior art date
Application number
PCT/CN2018/110984
Other languages
English (en)
French (fr)
Inventor
吴平霄
陈丽雅
王慧敏
毕颖智
党志
朱能武
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019223223A1 publication Critical patent/WO2019223223A1/zh
Priority to ZA2020/07825A priority Critical patent/ZA202007825B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the invention belongs to the technical field of water treatment, and particularly relates to an iron-modified chitosan / vermiculite composite material capable of simultaneously removing anions and cation heavy metals, and a preparation method and application thereof.
  • Chitosan as the second largest biological resource in nature, has the advantages of biodegradability, biocompatibility, and low toxicity. In addition, its structure contains a large number of active groups such as amino and hydroxyl groups. , Chitosan can effectively capture and adsorb heavy metals in solution. However, the shortcomings of chitosan are easy to dissolve under acidic conditions, the mechanical strength is not high, and the effect of pH on the adsorption of heavy metals by chitosan greatly limits the application of chitosan.
  • an object of the present invention is to provide an iron-modified chitosan / vermiculite composite material having the ability to simultaneously remove anions and cations heavy metals and a preparation method thereof.
  • vermiculite is used as a matrix, and chitosan and trivalent iron ions (Fe (III)) are supported on the vermiculite surface to prepare an iron-modified chitosan / vermiculite composite material.
  • the composite material of the invention has stable structure, wide source of raw materials, low price, good strength, high adsorption performance, and has very good effect on the removal of waste water containing both hexavalent chromium and cadmium.
  • Another object of the present invention is to provide an application of the above iron-modified chitosan / vermiculite composite material.
  • the iron-modified chitosan / vermiculite composite material of the present invention is used to remove anionic heavy metals and / or cationic heavy metals, especially anions of Cr (VI) and cations of Cd (II).
  • Hexavalent chromium is often present as an anion, such as: hydrogen chromate (HCrO 4 -) or chromate (CrO 4 2-) and the like.
  • Cadmium exists in the form of Cd 2+ .
  • a method for preparing an iron-modified chitosan / vermiculite composite material which simultaneously removes anions and cations heavy metals includes the following steps:
  • the primary product and the crosslinking agent are cross-linked twice in an alkaline solution, aged, washed, and dried to obtain an iron-modified chitosan / vermiculite composite material.
  • the acid solution in step (1) is a weakly acidic solution, preferably an acetic acid solution, a formic acid solution or a benzoic acid solution; the concentration of the chitosan solution is 25 to 35 g / L;
  • the volume concentration of the acid solution in step (1) is 1% to 3% (v / v);
  • the trivalent iron salt in step (2) is one or more of ferric sulfate, ferric chloride or ferric nitrate; the trivalent iron salt is a soluble iron salt;
  • the concentration of iron sulfate in the mixture solution in step (2) is 0.008 to 0.15 mol / L, preferably 0.008 to 0.13 mol / L; the concentration of vermiculite is 10 to 60 g / L;
  • the mixing in step (2) refers to mixing and stirring and ultrasonic treatment; the stirring time is 8 to 12 hours; the ultrasonic time is 30 to 60 minutes.
  • the cross-linking agent in step (3) is one or more of epichlorohydrin, epithiochloropropane, and glutaraldehyde;
  • the volume-to-mass ratio of the crosslinking agent and the chitosan in the mixture solution in step (3) is (0.15 to 0.3) mL: (0.75 to 1.05) g;
  • the temperature of cross-linking in step (3) is 55 to 60 ° C; the time of cross-linking is 2 to 3 h.
  • the alkaline solution in step (4) is a sodium hydroxide solution, a potassium hydroxide solution, an aqueous solution containing sodium hydroxide and sodium sulfate, an aqueous solution of potassium hydroxide and potassium sulfate, and an aqueous solution of sodium hydroxide and potassium sulfate; Said washing means washing with water;
  • the concentration of sodium hydroxide in the aqueous solution containing sodium hydroxide and sodium sulfate in step (4) is 50-55 g / L, and the concentration of sodium sulfate is 40-45 g / L; hydrogen in the aqueous solution of potassium hydroxide and potassium sulfate
  • the concentration of potassium oxide is 50-55 g / L, the concentration of potassium sulfate is 40-45 g / L; the concentration of sodium hydroxide in the aqueous solution of sodium hydroxide and potassium sulfate is 50-55 g / L, and the concentration of potassium sulfate is 40- 45g / L;
  • the stirring time in step (4) is 2 to 4 hours, the temperature of the system is 55-65 ° C when stirring; the temperature of the system is 55-65 ° C when aging, and the aging time is 30 to 60min;
  • the washing refers to centrifugal washing.
  • the conditions of centrifugation are centrifugation at 3000 to 4000 rpm for 5 to 10 minutes; the number of washings is 3-5 times.
  • the volume-to-mass ratio of the cross-linking agent and the chitosan in the initial product is (0.45 to 0.6) mL: (0.75 to 1.05) g;
  • the cross-linking agent in step (5) is one or more of epichlorohydrin, epithiochloropropane, and glutaraldehyde;
  • the alkaline solution in step (5) is sodium hydroxide solution and potassium hydroxide solution ;
  • the volume ratio of the crosslinking agent to the alkaline solution in step (5) is (0.45 to 0.6) mL: (100 to 150) mL; the pH of the alkaline solution is 12 to 13; the temperature of the crosslinking is 55 to 60 ° C; The crosslinking time is 2 to 3 hours; the aging time is 8 to 12 hours.
  • the washing in step (5) refers to washing with water by centrifugation.
  • the centrifugation is performed at 3000 to 4000 rpm for 5 to 10 minutes; the number of washings is 3-5 times; and the drying temperature is 55-65 ° C.
  • the mass ratio of chitosan to vermiculite in the iron-modified chitosan / vermiculite composite material of the present invention is (1.75 to 2.5): 1.
  • the present invention modifies chitosan through cross-linking, complexation, etc., and loads chitosan and iron ions on vermiculite.
  • the obtained composite material has high specific surface area and mechanical stability, and can remove both cationic metals and cations.
  • Anion metal, and in wastewater containing both anion and cation heavy metals, the removal effect of anion and cation metal is better than a single pollution system (ie, a system containing only cationic heavy metals or a system containing only anion heavy metals).
  • the removal effect of cationic heavy metals is better than that of wastewater containing only cationic heavy metals, and the removal effect of anionic heavy metals is better than that of wastewater containing only anionic heavy metals.
  • the present invention has the following advantages and beneficial effects:
  • the composite material of the present invention has a wide range of raw materials and low prices.
  • the prepared composite material has high specific surface area and mechanical stability. It can remove both cationic and anionic metals, has good adsorption performance, and is in water containing both anion and cation heavy metals.
  • the removal effect of anionic and cationic metals is better than that of a single pollution system (that is, a system containing only cationic heavy metals or a system containing only anionic heavy metals).
  • FIG. 1 is an SEM image of a chitosan / iron / vermiculite composite material (CTS-Fe-VMT) prepared in Example 1.
  • CTS-Fe-VMT chitosan / iron / vermiculite composite material
  • CTS-Fe-VMT chitosan / iron / vermiculite composite material
  • CTS-Fe-VMT chitosan / iron / vermiculite composite material
  • FIG. 4 shows vermiculite (VMT) and the chitosan / iron / vermiculite composites prepared in Examples 1 to 4 containing both hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II) ) Removal effect of heavy metal wastewater;
  • (a) is the removal effect of Cr (VI) of each material in Cr (VI) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater
  • VMT (0) is vermiculite;
  • FIG. 5 is a chitosan / iron / vermiculite composite pair prepared in Example 1, Example 5 to Example 8 containing both hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II)) heavy metals Wastewater removal effect diagram; (a) is the removal effect diagram of each material in Cr (VI) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater, and (b) is each Removal of Cd (II) in Cd (II) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater; VMT (0) is vermiculite;
  • Fig. 6 shows the waste water containing hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II)) at different pH values for the chitosan / iron / vermiculite composite prepared by vermiculite and Example 1.
  • VMT in (a) -Cr represents the removal effect of vermiculite in wastewater containing Cr (VI)
  • VMT-Cr-Cd represents the removal effect of vermiculite in wastewater containing Cr (VI) and Cd (II)
  • CTS-Fe-VMT -Cr represents the removal effect of composite materials in wastewater containing Cr (VI)
  • CTS-Fe-VMT-Cr-Cd represents the removal effect of composite materials in wastewater containing Cr (VI) and Cd (II)
  • VMT-Cd indicates the removal effect of vermiculite in wastewater containing Cd (II), VMT-Cd
  • a method for preparing a chitosan / iron / vermiculite composite material (iron-modified chitosan / vermiculite composite material) having the ability to simultaneously remove anions and cations heavy metals includes the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.067 mol / L.
  • the SEM image of the chitosan / iron / vermiculite composite material (iron-modified chitosan / vermiculite composite) prepared in this example is shown in FIG. 1.
  • the SEM image of the chitosan / iron / vermiculite composite material (iron-modified chitosan / vermiculite composite) prepared in this example is shown in FIG. 1.
  • the X-ray diffraction (XRD) pattern of the chitosan / iron / vermiculite composite material (iron-modified chitosan / vermiculite composite) prepared in this example is shown in FIG. 2.
  • the results in FIG. 2 show that the chitosan and Ferric ions do not intercalate into the interlayer of vermiculite.
  • the infrared spectrum (FT-IR) of the chitosan / iron / vermiculite composite material (iron-modified chitosan / vermiculite composite) prepared in this example is shown in FIG. 3, and the results show that chitosan and three Valence iron ions were successfully loaded on the surface of vermiculite.
  • a method for preparing a chitosan / iron / vermiculite composite material with simultaneous removal of anion and cation heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.067 mol / L.
  • a method for preparing a chitosan / iron / vermiculite composite material with simultaneous removal of anion and cation heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.067 mol / L.
  • a method for preparing a chitosan / iron / vermiculite composite material with simultaneous removal of anion and cation heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.067 mol / L.
  • a method for preparing a chitosan / iron / vermiculite composite material with simultaneous removal of anion and cation heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.033 mol / L.
  • a method for preparing a chitosan / iron / vermiculite composite material with the ability to simultaneously remove anions and cations heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.1 mol / L.
  • a method for preparing a chitosan / iron / vermiculite composite material with simultaneous removal of anion and cation heavy metals including the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.13 mol / L.
  • a preparation method of chitosan / iron / vermiculite composite material with the ability to simultaneously remove anions and cations heavy metals includes the following steps:
  • the molar concentration of the trivalent iron ion in the mixed solution of step (2) is 0.017 mol / L.
  • Vermiculite (VMT) and the chitosan / iron / vermiculite composites prepared in Examples 1 to 4 contain both hexavalent chromium (Cr (VI)) and cadmium (Cd (II)) heavy metals. Testing of wastewater removal effect:
  • test steps are as follows:
  • VMT vermiculite
  • chitosan / iron / vermiculite composites prepared in Examples 1 to 4 in 5 50 mL centrifuge tubes, respectively; configure Cr (VI ) 30mg / L heavy metal-containing solution; then 20mL of Cr (VI) heavy metal solution (pH (Cr (VI) heavy metal exists as anions)) with a pH of 5.0 was divided into the above five centrifuge tubes, and the centrifuge tubes Place in a constant temperature water bath shaker and shake the reaction at 30 ° C and 150 r / min. Set up three parallel samples.
  • FIG. 4 shows vermiculite (VMT) and the chitosan / iron / vermiculite composites prepared in Examples 1 to 4 containing both hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II) ) Removal effect of heavy metal wastewater; (a) is the removal effect of Cr (VI) of each material in Cr (VI) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater, (b) Removal of Cd (II) in Cd (II) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater for each material.
  • Example 5 is a chitosan / iron / vermiculite composite pair prepared in Example 1, Example 5 to Example 8 containing both hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II)) heavy metals Wastewater removal effect diagram; (a) is the removal effect diagram of each material in Cr (VI) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater, and (b) is each Removal of Cd (II) in wastewater containing Cd (II) and wastewater containing Cr (VI) and Cd (II).
  • test steps are as follows:
  • FIG. 6 shows the waste water containing hexavalent chromium (Cr (VI)) and divalent cadmium (Cd (II)) at different pH values for the chitosan / iron / vermiculite composite prepared by vermiculite and Example 1.
  • Removal effect diagram where (a) is the removal effect diagram of each material (vermiculite and composite material) in Cr (VI) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater, (b) is a diagram of the removal effect of Cd (II) by each material (vermiculite and composite materials) in Cd (II) -containing wastewater and Cr (VI) and Cd (II) -containing wastewater.
  • Fig. 6 show that when the prepared material adsorbs heavy metals, as the pH value increases, the amount of Cr (VI) adsorption gradually decreases, while the amount of Cd (II) adsorption gradually increases. This is because as the pH value increases, the degree of protonation of the amino group (-NH 2 ) in the complex decreases, and the OH - concentration in the solution gradually increases.
  • the above phenomenon indicates that the structure of the prepared composite is relatively stable under weakly acidic conditions, and it is difficult to be dissolved under weakly acidic conditions.
  • Embodiment 1 is a preferred embodiment of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments. Any other changes, modifications, substitutions, and combinations without departing from the spirit and principle of the present invention And simplification, all should be equivalent replacement methods, all of which are included in the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

属于水处理的技术领域,公开了一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用。方法为:(1)将壳聚糖溶解于酸溶液中,得到壳聚糖溶液;所述酸溶液为弱酸性溶液;(2)将三价铁盐、蛭石和壳聚糖溶液混匀,得到混合物溶液;(3)将交联剂与混合物溶液进行加热交联,得到交联产物;(4)将交联产物滴加入碱性溶液中,搅拌,老化,洗涤,得到初产物;(5)在碱性溶液中,将初产物与交联剂进行二次交联,老化,洗涤,干燥,得到铁修饰壳聚糖/蛭石复合材料。复合材料原料来源广泛,价格低廉,并具有高比表面积和机械稳定,吸附性能好,同时去除阴阳离子重金属的效果非常好,特别是六价铬和二价镉。

Description

一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用 技术领域
本发明属于水处理技术领域,具体涉及一种能够同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备方法与应用。
背景技术
随着人类社会和工业经济的发展,工业化生产产生的重金属水体污染日益严重,六价铬(Cr(VI))和镉(Cd(II))作为重金属污染的典型的类型,具有毒性大、难降解、迁移性强和可生物累积性等特点,为了保护生态环境,维护人类健康,如何有效处理重金属废水一直都是备受关注。目前国内外在处理含Cr(VI)和Cd(II)的重金属废水领域应用比较成熟的技术方法主要包括化学沉淀法、离子交换法、还原沉淀法、膜分离技术、电解法、生物法及吸附法。吸附法具有成本低、操作简单且二次污染小的优点,因此近年来吸附法一直备受广大学者的青睐。然而,低成本、高吸附性能吸附剂的制备仍然是一项具有挑战性的任务。
壳聚糖(Chitosan,简写CTS)作为自然界中储量第二大的生物资源,具有生物可降解性,生物相容性,低毒性等优点外,其结构中含有大量的氨基和羟基等活性基团,壳聚糖能有效地捕集、吸附去除溶液中的重金属。但壳聚糖易在酸性条件下溶解、机械强度不高、pH对壳聚糖吸附重金属的影响很大等缺点极大地限制了壳聚糖的应用。
而且,在现有的技术中,在处理废水中的重金属时,很难有材料能够同时去除阴阳离子重金属并获得优异的去除效果。
发明内容
为了克服现有技术中缺点和不足,本发明的目的在于提供一种具有同时去除阴阳离子重金属性能的铁修饰壳聚糖/蛭石复合材料及其制备方法。本发明以蛭石为基体,将壳聚糖和三价铁离子(Fe(III))负载在蛭石表面,制备铁修饰 的壳聚糖/蛭石复合材料。本发明的复合材料结构稳定,原料来源广泛,价格低廉,强度好,具有高的吸附性能,而且对同时含六价铬和镉重金属废水的去除具有非常好的效果。
本发明的另一目的在于提供上述铁修饰壳聚糖/蛭石复合材料的应用。本发明的铁修饰壳聚糖/蛭石复合材料用于去除阴离子重金属和/或阳离子重金属,特别是Cr(VI)的阴离子和Cd(II)的阳离子。六价铬常以阴离子的形式存在,如:氢铬酸根(HCrO 4 -)或铬酸根(CrO 4 2-)等。镉以Cd 2+形式存在。
本发明的目的通过以下技术方案实现:
一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,包括以下步骤:
(1)将壳聚糖溶解于酸溶液中,得到壳聚糖溶液;所述酸溶液为弱酸性溶液;
(2)将三价铁盐、蛭石和壳聚糖溶液混匀,得到混合物溶液;
(3)将交联剂与混合物溶液进行加热交联,得到交联产物;
(4)将交联产物滴加入碱性溶液中,搅拌,老化,洗涤,得到初产物;
(5)在碱性溶液中,将初产物与交联剂进行二次交联,老化,洗涤,干燥,得到铁修饰壳聚糖/蛭石复合材料。
步骤(1)中所述酸溶液为弱酸性溶液,优选为醋酸溶液、甲酸溶液或苯甲酸溶液;壳聚糖溶液的浓度为25~35g/L;
步骤(1)中所述酸溶液的体积浓度为1%~3%(v/v);
步骤(2)中所述三价铁盐为硫酸铁、氯化铁或硝酸铁中的一种以上;所述三价铁盐为可溶性铁盐;
步骤(2)中所述混合物溶液中硫酸铁的浓度为0.008~0.15mol/L,优选为0.008~0.13mol/L;蛭石的浓度为10~60g/L;
步骤(2)中所述混匀是指通过混合搅拌和超声处理;搅拌时间为8~12h;超声时间为30~60min。
步骤(3)中所述交联剂为环氧氯丙烷、环硫氯丙烷、戊二醛中的一种以上;
步骤(3)中所述交联剂与混合物溶液中壳聚糖的体积质量比为(0.15~0.3)mL:(0.75~1.05)g;
步骤(3)中交联的温度为55~60℃;交联的时间为2~3h。
步骤(4)中所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、含氢氧化钠和硫酸钠的水溶液、氢氧化钾和硫酸钾的水溶液、氢氧化钠和硫酸钾的水溶液;所述洗涤是指用水洗涤;
步骤(4)中所述含氢氧化钠和硫酸钠的水溶液中氢氧化钠的浓度为50~55g/L,硫酸钠的浓度为40~45g/L;氢氧化钾和硫酸钾的水溶液中氢氧化钾的浓度为50~55g/L,硫酸钾的浓度为40~45g/L;氢氧化钠和硫酸钾的水溶液中氢氧化钠的浓度为50~55g/L,硫酸钾的浓度为40~45g/L;
步骤(4)中所述搅拌的时间为2~4h,搅拌时体系的温度为55-65℃;老化时体系的温度为55-65℃,老化的时间为30~60min;
所述洗涤是指离心洗涤,离心的条件为在3000~4000rpm下离心5~10min;洗涤次数为3-5次。
步骤(5)中所述交联剂与初产物中壳聚糖的体积质量比为(0.45~0.6)mL:(0.75~1.05)g;
步骤(5)中所述交联剂为环氧氯丙烷、环硫氯丙烷、戊二醛中的一种以上;步骤(5)中所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液;又或者为含氢氧化钠和硫酸钠的水溶液、氢氧化钾和硫酸钾的水溶液、氢氧化钠和硫酸钾的水溶液;
步骤(5)中交联剂与碱性溶液的体积比为(0.45~0.6)mL:(100~150)mL;碱性溶液的pH为12~13;交联的温度为55~60℃;交联的时间为2~3h;老化的时间为8~12h。
步骤(5)中洗涤是指采用水离心洗涤,所述的离心是在3000~4000rpm下离心5~10min;洗涤次数为3-5次;干燥温度为55-65℃。
本发明的铁修饰壳聚糖/蛭石复合材料中壳聚糖与蛭石的质量比为(1.75~2.5):1。
本发明的铁修饰壳聚糖/蛭石复合材料在同时含六价铬的阴离子和二价镉阳离子的重金属废水中的应用,去除阴阳离子重金属。
本发明通过交联、络合等作用对壳聚糖进行改性,将壳聚糖和铁离子负载在蛭石上,所获得复合材料具有高比表面积和机械稳定,既能去除阳离子金属 又能去除阴离子金属,而且在同时含有阴阳离子重金属的废水中,对阴阳离子金属的去除效果优于单一污染的体系(即只含阳离子重金属的体系或只含阴离子重金属体系)。在同时含有阴阳离子重金属的废水中,对阳离子重金属去除效果优于废水中只含有阳离子重金属的去除效果,对阴离子重金属去除效果优于废水中只含有阴离子重金属的去除效果。
与现有技术相比,本发明具有以下优点及有益效果:
本发明的复合材料中原料来源广泛,价格低廉,所制备的复合材料具有高比表面积和机械稳定,既能去除阳离子金属又能去除阴离子金属,吸附性能好,而且在同时含有阴阳离子重金属的水中,对阴阳离子金属的去除效果优于单一污染的体系(即只含阳离子重金属的体系或只含阴离子重金属体系)。
附图说明
图1为实施例1制备的壳聚糖/铁/蛭石复合材料(CTS-Fe-VMT)的SEM图;其中(a)为蛭石(VMT)的SEM图,(b)为实施例1制备的复合材料(CTS-Fe-VMT)的SEM图;
图2为实施例1制备的壳聚糖/铁/蛭石复合材料(CTS-Fe-VMT)的XRD图;其中VMT为蛭石的XRD曲线,CTS-Fe-VMT为实施例1制备的复合材料的XRD曲线;
图3为实施例1制备的壳聚糖/铁/蛭石复合材料(CTS-Fe-VMT)的红外光谱图;其中CTS为壳聚糖,CTS-Fe-VMT为实施例1制备的复合材料,VMT为蛭石;
图4为蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料在含Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除效果图;VMT(0)为蛭石;
图5为实施例1、实施例5~实施例8所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料在含Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除 效果图;VMT(0)为蛭石;
图6为蛭石和实施例1所制备的壳聚糖/铁/蛭石复合材料在不同pH值中对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料(蛭石和复合材料)在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料(蛭石和复合材料)在含Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除效果图;(a)中VMT-Cr表示蛭石在含Cr(VI)的废水中去除效果,VMT-Cr-Cd表示蛭石在含Cr(VI)和Cd(II)废水中Cr(VI)去除效果,CTS-Fe-VMT-Cr表示复合材料在含Cr(VI)的废水中去除效果,CTS-Fe-VMT-Cr-Cd表示复合材料在含Cr(VI)和Cd(II)废水中Cr(VI)去除效果;(b)中VMT-Cd表示蛭石在含Cd(II)的废水中去除效果,VMT-Cr-Cd表示蛭石在含Cr(VI)和Cd(II)废水中Cd(II)去除效果,CTS-Fe-VMT-Cd表示复合材料在含Cd(II)的废水中去除效果,CTS-Fe-VMT-Cr-Cd表示复合材料在含Cr(VI)和Cd(II)废水中Cd(II)去除效果。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料(铁修饰壳聚糖/蛭石复合材料)的制备方法,包括以下步骤:
(1)将0.9g壳聚糖粉末与30mL醋酸溶液(2%,v/v),经过充分的磁力搅拌和超声处理(总共约12h),使得壳聚糖在溶液中分散均匀,得到壳聚糖溶液;
(2)将0.400g硫酸铁和0.45g蛭石加入到壳聚糖溶液中混合搅拌10h、超声30min,混合均匀,得到混合液;
(3)向壳聚糖、硫酸铁和蛭石的混合液中加入0.23mL环氧氯丙烷,再转移到60℃水浴锅中,在水浴加热条件下进行初步交联,交联时间为2h,得到交联产物;
(4)将交联产物通过蠕动泵缓慢滴加(蠕动泵的滴加速度为40rpm)到含16g氢氧化钠和13g硫酸钠的300mL碱性溶液(碱性溶液是由氢氧化钠、硫酸 钠和水组成)中,搅拌2h并老化30min后(在60℃中搅拌2h后,并在此温度下老化30min),用去离子水在3000rpm离心洗涤5次,得到初产物;
(5)将初产物在含有0.5mL环氧氯丙烷的碱性溶液(pH=13的氢氧化钠溶液,碱性溶液的用量为110mL)(pH=13)中进行二次交联(交联的温度为60℃,交联的时间为2h),交联后的产物老化10h(在60℃条件下老化10h),之后用去离子水在3000rpm离心洗涤5次,60℃真空干燥12h,过筛,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.067mol/L。
本实施例制备的壳聚糖/铁/蛭石复合材料(铁修饰壳聚糖/蛭石复合材料)的SEM图如图1所示,从图中可以看出,其表面变得粗糙且呈现多空结构。本实施例制备的壳聚糖/铁/蛭石复合材料(铁修饰壳聚糖/蛭石复合材料)的X射线衍射(XRD)图如图2所示,图2的结果显示壳聚糖和三价铁离子没有插层进入到蛭石的层间。本实施例制备的壳聚糖/铁/蛭石复合材料(铁修饰壳聚糖/蛭石复合材料)的红外光谱图(FT-IR)如图3所示,其结果显示壳聚糖和三价铁离子成功地负载在蛭石的表面。
实施例2
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取蛭石的质量为0.3g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为3:1(CTS:VMT=3:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.067mol/L。
实施例3
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取蛭石的质量为0.9g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为1:1(CTS:VMT=1:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.067mol/L。
实施例4
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取蛭石的质量为1.8g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为1:2(CTS:VMT=1:2)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.067mol/L。
实施例5
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取硫酸铁的质量为0.2g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.033mol/L。
实施例6
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备 方法,包括以下步骤:
(1)与实施例1相同;
(2)称取硫酸铁的质量为0.6g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.1mol/L。
实施例7
一种具有同时去除阴阳离子重金属性能的壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取硫酸铁的质量为0.8g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.13mol/L。
实施例8
一种具有同时去除阴阳离子重金属性能壳聚糖/铁/蛭石复合材料的制备方法,包括以下步骤:
(1)与实施例1相同;
(2)称取硫酸铁的质量为0.1g,其他步骤与条件与实施例1相同;
(3)与实施例1相同;
(4)与实施例1相同;
(5)与实施例1相同,得到壳聚糖/铁/蛭石复合材料,复合材料中壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1)。
步骤(2)的混合溶液中三价铁离子的摩尔浓度为0.017mol/L。
性能测试:
1、对蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和镉(Cd(II))重金属废水去除效果的测试:
测试步骤如下:
(1)分别在5根50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料;配置Cr(VI)浓度为30mg/L的含重金属溶液;再将20mL pH为5.0的Cr(VI)重金属溶液(Cr(VI)重金属以阴离子形式存在)分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(2)分别在5根50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料;配置Cd(II)浓度为50mg/L的重金属溶液;再将20mL pH为5.0的Cd(II)重金属溶液分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(3)分别在5根50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料;配置Cr(VI)和Cd(II)浓度分别为30mg/L和50mg/L的Cr(VI)和Cd(II)混合溶液(混合溶液中Cr(VI)重金属以阴离子形式存在,Cd(II)以Cd 2+形式存在);再将20mL pH为5.0的Cr(VI)和Cd(II)混合溶液分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
上述离心管均震荡培养24小时后定时取样,测定各离心管溶液中残留的Cr(VI)和Cd(II)的浓度。用ICP对污染物进行测试,各材料对Cr(VI)和Cd(II)的去除效果如图4所示。图4为蛭石(VMT)及实施例1~实施例4所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料在含Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除效果图。
图4结果表明,Cr(VI)的去除效果随着壳聚糖质量的减少而降低,而Cd(II)随着蛭石质量的增加呈现增加的趋势。为了同时获得最佳的Cr(VI)和Cd(II)的去 除效果,壳聚糖与蛭石的质量比为2:1(CTS:VMT=2:1,即实施例1)
2、对实施例1、实施例5~实施例8所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和镉(Cd(II))重金属废水去除效果的测试:
(1)分别在4根50mL的离心管中分别准确称取0.04g的实施例1所制备的壳聚糖/铁/蛭石复合材料、实施例5~实施例7所制备的壳聚糖/铁/蛭石复合材料。配置Cr(VI)浓度为30mg/L的含重金属溶液。再将20mL pH为5.0的Cr(VI)重金属溶液分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(2)分别在4根50mL的离心管中分别准确称取0.04g的实施例1所制备的壳聚糖/铁/蛭石复合材料、实施例5~实施例7所制备的壳聚糖/铁/蛭石复合材料。配置Cd(II)浓度为50mg/L的重金属溶液。再将20mL pH为5.0的Cd(II)重金属溶液分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(3)分别在4根50mL的离心管中分别准确称取0.04g的实施例1所制备的壳聚糖/铁/蛭石复合材料、实施例5~实施例7所制备的壳聚糖/铁/蛭石复合材料。配置Cr(VI)和Cd(II)浓度分别为30mg/L和50mg/L的Cr(VI)和Cd(II)混合溶液。再将20mL pH为5.0的Cr(VI)和Cd(II)混合溶液分别分装入上述的五根离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
上述离心管均震荡培养24小时后定时取样,测定各离心管溶液中残留的Cr(VI)和Cd(II)的浓度。用ICP对污染物进行测试,其复合复合材料对Cr(VI)和Cd(II)的去除效果如图5所示。图5为实施例1、实施例5~实施例8所制备的壳聚糖/铁/蛭石复合材料对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料在含Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除效果图。
从图5的结果可知,对于所有的复合材料来说,在Cr(VI)和Cd(II)同时存在的条件,其对Cr(VI)和Cd(II)的去除效果要比Cr(VI)和Cd(II)单独存在条件下要好。此外,在Cr(VI)和Cd(II)同时存在的条件下,随着三价铁离子浓度的增大, Cr(VI)的去除性能呈现变好的趋势,而Cd(II)的去除性能变化不大明显。且在三价铁离子摩尔浓度为0.067mol/L情况下,Cd(II)的去除性能相对较好。为了获得较好的吸附性能且考虑成本的问题,可把0.067mol/L的三价铁离子浓度作为最佳的浓度,即实施例1的三价铁离子浓度。
3、对蛭石(VMT)及实施例1所制备的壳聚糖/铁/蛭石复合材料在不同pH值溶液中对同时含六价铬(Cr(VI))和镉(Cd(II))重金属废水去除效果的测试:
测试步骤如下:
(1)分别在50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1所制备的壳聚糖/铁/蛭石复合材料。配置Cr(VI)浓度为20mg/L的含重金属溶液,调节溶液的pH分别为2、3、4、5、6、7、8。再将20mL不同pH值的Cr(VI)溶液分别分装入上述的离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(2)分别在50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1所制备的壳聚糖/铁/蛭石复合材料。配置Cd(II)浓度为30mg/L的重金属溶液,调节溶液的pH分别为2、3、4、5、6、7、8。再将20mL不同pH值的Cd(II)重金属溶液分别分装入上述的离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
(3)分别在50mL的离心管中分别准确称取0.04g的蛭石(VMT)及实施例1所制备的壳聚糖/铁/蛭石复合材料。配置Cr(VI)和Cd(II)浓度分别为20mg/L和30mg/L的Cr(VI)和Cd(II)混合溶液,调节溶液的pH分别为2、3、4、5、6、7、8。再将20mL不同pH值的Cr(VI)和Cd(II)混合溶液分别分装入上述的离心管中,将离心管放入恒温水浴摇床中,于30℃、150r/min的条件震荡反应,每个样品设3个平行;
上述离心管均震荡培养24小时后定时取样,测定各离心管溶液中残留的Cr(VI)和Cd(II)的浓度。用ICP对污染物进行测试,各材料对Cr(VI)和Cd(II)的去除效果如图6所示。图6为蛭石和实施例1所制备的壳聚糖/铁/蛭石复合材料在不同pH值中对同时含六价铬(Cr(VI))和二价镉(Cd(II))重金属废水去除效果图;其中(a)为各材料(蛭石和复合材料)在含Cr(VI)的废水中和在含Cr(VI)和Cd(II)废水中对Cr(VI)的去除效果图,(b)为各材料(蛭石和复合材料)在含 Cd(II)的废水中和在含Cr(VI)和Cd(II)废水中对Cd(II)的去除效果图。
图6结果表明,所制备的材料在吸附重金属时,随着pH值的增加,Cr(VI)的吸附量逐渐降低,而Cd(II)的吸附量逐渐增加。这是由于随着pH值的增加,复合物中氨基(-NH 2)的质子化程度减弱,且溶液中OH -的浓度逐渐增加所导致的。上述现象说明所制备的复合物在弱酸性条件下结构性质较为稳定,其在弱酸性条件下不易被溶解。
上述实施例1为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:包括以下步骤:
    (1)将壳聚糖溶解于酸溶液中,得到壳聚糖溶液;所述酸溶液为弱酸性溶液;
    (2)将三价铁盐、蛭石和壳聚糖溶液混匀,得到混合物溶液;所述三价铁盐为可溶性铁盐;
    (3)将交联剂与混合物溶液进行加热交联,得到交联产物;
    (4)将交联产物滴加入碱性溶液中,搅拌,老化,洗涤,得到初产物;
    (5)在碱性溶液中,将初产物与交联剂进行二次交联,老化,洗涤,干燥,得到铁修饰壳聚糖/蛭石复合材料;
    步骤(3)中所述交联剂为环氧氯丙烷、环硫氯丙烷、戊二醛中一种以上。
  2. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(2)中所述三价铁盐为硫酸铁、氯化铁或硝酸铁中一种以上;
    步骤(2)中所述混合物溶液中硫酸铁的浓度为0.008~0.15mol/L;蛭石的浓度为10~60g/L;
    步骤(1)中壳聚糖溶液的浓度为25~35g/L。
  3. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(3)中所述交联剂与混合物溶液中壳聚糖的体积质量比为(0.15~0.3)mL:(0.75~1.05)g;
    步骤(5)中所述交联剂为环氧氯丙烷、环硫氯丙烷、戊二醛中一种以上;步骤(5)中碱性溶液的pH为12~13;
    步骤(5)中所述交联剂与初产物中壳聚糖的体积质量比为(0.45~0.6)mL:(0.75~1.05)g。
  4. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(1)中所述酸溶液为弱酸性溶液,为醋酸溶液、甲酸溶液或苯甲酸溶液;
    步骤(3)中交联的温度为55~60℃;交联的时间为2~3h;
    步骤(5)中交联的温度为55~60℃;交联的时间为2~3h;老化时间为8~12h。
  5. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(5)中所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、含氢氧化钠和硫酸钠的水溶液、氢氧化钾和硫酸钾的水溶液、氢氧化钠和硫酸钾的水溶液;
    步骤(4)中所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、含氢氧化钠和硫酸钠的水溶液、氢氧化钾和硫酸钾的水溶液、氢氧化钠和硫酸钾的水溶液。
  6. 根据权利要求5所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(4)中所述含氢氧化钠和硫酸钠的水溶液中氢氧化钠的浓度为50-55g/L,硫酸钠的浓度为40-45g/L;氢氧化钾和硫酸钾的水溶液中氢氧化钾的浓度为50-55g/L,硫酸钾的浓度为40-45g/L;氢氧化钠和硫酸钾的水溶液中氢氧化钠的浓度为50-55g/L;硫酸钾的浓度为40-45g/L。
  7. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:步骤(5)中交联剂与碱性溶液的体积比为(0.45~0.6)mL:(100~150)mL;
    步骤(4)中所述搅拌的时间为2~4h,搅拌时体系的温度为55-65℃;老化时体系的温度为55~65℃,老化的时间为30~60min。
  8. 根据权利要求1所述同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料的制备方法,其特征在于:
    步骤(1)中所述酸溶液的体积浓度为1%~3%;
    步骤(2)中所述混匀是指通过混合搅拌和超声处理;搅拌时间为8~12h;超声时间为30~60min。
  9. 一种由权利要求1~8任一项所述制备方法得到的铁修饰壳聚糖/蛭石复合材料。
  10. 根据权利要求9所述铁修饰壳聚糖/蛭石复合材料的应用,其特征在于:所述铁修饰壳聚糖/蛭石复合材料用于去除阴离子重金属和/或阳离子重金属。
PCT/CN2018/110984 2018-05-22 2018-10-19 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用 WO2019223223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/07825A ZA202007825B (en) 2018-05-22 2020-12-15 Iron-modified chitosan/vermiculite composite capable of simultaneously removing anion and cation heavy metals, and preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810493656.X 2018-05-22
CN201810493656.XA CN108620033A (zh) 2018-05-22 2018-05-22 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Publications (1)

Publication Number Publication Date
WO2019223223A1 true WO2019223223A1 (zh) 2019-11-28

Family

ID=63693948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110984 WO2019223223A1 (zh) 2018-05-22 2018-10-19 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Country Status (3)

Country Link
CN (1) CN108620033A (zh)
WO (1) WO2019223223A1 (zh)
ZA (1) ZA202007825B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298774A (zh) * 2019-12-10 2020-06-19 佛山科学技术学院 一种重金属污染地下水的纳米修复材料的制备方法
CN111871383A (zh) * 2020-08-04 2020-11-03 天津天润益康环保科技有限公司 一种用于吸附重金属的巯基修饰黏土及其制备方法
CN113181885A (zh) * 2021-06-12 2021-07-30 清华大学深圳国际研究生院 碳化锰交联海藻酸钠改性生物炭负载nZVI的制备及应用
CN113582317A (zh) * 2021-07-14 2021-11-02 武汉大学 一种阳离子功能化β-环糊精/壳聚糖复合材料及其制备方法与应用
CN114132985A (zh) * 2021-11-25 2022-03-04 哈尔滨工业大学 一种改性铁填料配合改性沸石和改性浮石用于地下水中去除多种重金属的方法
CN114988537A (zh) * 2022-07-01 2022-09-02 陕西科技大学 一种利用电容去离子技术去除水中重金属的方法
CN116589149A (zh) * 2023-07-14 2023-08-15 湖南环宏环保科技有限公司 一种垃圾压榨液的深度处理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620033A (zh) * 2018-05-22 2018-10-09 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用
CN110104751B (zh) * 2019-05-30 2021-11-16 南方科技大学 一种重金属稳定剂及其制备方法和用途
CN110643370B (zh) * 2019-10-16 2021-01-05 福建格瑞恩工程设计有限公司 一种重金属污染土壤修复剂
CN111701574A (zh) * 2020-05-21 2020-09-25 阿拉尔市中泰纺织科技有限公司 一种利用膨胀蛭石处理含有Cr3+的废水的方法
CN112480722A (zh) * 2020-11-27 2021-03-12 洪华军 一种基于石脂和蛭石提纯与改性的饰面型防火涂料
CN112547029B (zh) * 2020-12-21 2023-01-06 有研资源环境技术研究院(北京)有限公司 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法
CN112940318B (zh) * 2021-03-15 2022-11-18 深圳市通产丽星科技集团有限公司 有机-无机复合膜的制备方法和有机-无机复合膜
CN115449133B (zh) * 2022-08-19 2024-06-11 清华大学深圳国际研究生院 一种复合凝胶及其制备方法和应用
CN116283180A (zh) * 2022-12-02 2023-06-23 中交第二航务工程局有限公司 一种重金属固化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262026A1 (en) * 2004-01-07 2007-11-15 Cuero Raul G Compositions and methods for removal of toxic metals and radionuclides
CN101757886A (zh) * 2010-02-09 2010-06-30 浙江林学院 环保型壳聚糖插层复合膨润土吸附剂生产方法
CN106140115A (zh) * 2016-07-28 2016-11-23 北京桑德环境工程有限公司 一种处理含铅废水的吸附剂及其制备方法
CN107162133A (zh) * 2017-05-26 2017-09-15 贵州美瑞特环保科技有限公司 一种油气田污水用功能化壳聚糖复合絮凝剂及其制备方法
CN107213881A (zh) * 2017-06-28 2017-09-29 中国科学院新疆理化技术研究所 一种活性炭基无机‑有机复合型材料的制备方法及用途
CN108620033A (zh) * 2018-05-22 2018-10-09 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2277013C1 (ru) * 2004-12-01 2006-05-27 Николай Павлович Шапкин Способ получения сорбентов для очистки воды
CN101973618B (zh) * 2010-08-27 2012-06-27 浙江大学 利用壳聚糖-铁配合物去除和回收六价铬离子的方法
CN103127912B (zh) * 2011-11-29 2016-01-27 浙江海洋学院 一种从鱼油中去除重金属离子的吸附剂的制备方法
CN105289560A (zh) * 2015-10-16 2016-02-03 南京大学 一种可协同高效去除重金属阴阳离子的壳聚糖基复合吸附剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070262026A1 (en) * 2004-01-07 2007-11-15 Cuero Raul G Compositions and methods for removal of toxic metals and radionuclides
CN101757886A (zh) * 2010-02-09 2010-06-30 浙江林学院 环保型壳聚糖插层复合膨润土吸附剂生产方法
CN106140115A (zh) * 2016-07-28 2016-11-23 北京桑德环境工程有限公司 一种处理含铅废水的吸附剂及其制备方法
CN107162133A (zh) * 2017-05-26 2017-09-15 贵州美瑞特环保科技有限公司 一种油气田污水用功能化壳聚糖复合絮凝剂及其制备方法
CN107213881A (zh) * 2017-06-28 2017-09-29 中国科学院新疆理化技术研究所 一种活性炭基无机‑有机复合型材料的制备方法及用途
CN108620033A (zh) * 2018-05-22 2018-10-09 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, LIYA: "Preparation and characterization of the eco-friendly chito- san/vermiculite biocomposite with excellent removal capacity for cadmium and lead", APPLIED CLAY SCIENCE, vol. 159, 5 January 2018 (2018-01-05), pages 74 - 82, XP085394540, ISSN: 0169-1317, DOI: 10.1016/j.clay.2017.12.050 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111298774A (zh) * 2019-12-10 2020-06-19 佛山科学技术学院 一种重金属污染地下水的纳米修复材料的制备方法
CN111871383A (zh) * 2020-08-04 2020-11-03 天津天润益康环保科技有限公司 一种用于吸附重金属的巯基修饰黏土及其制备方法
CN113181885A (zh) * 2021-06-12 2021-07-30 清华大学深圳国际研究生院 碳化锰交联海藻酸钠改性生物炭负载nZVI的制备及应用
CN113181885B (zh) * 2021-06-12 2022-08-26 清华大学深圳国际研究生院 碳化锰交联海藻酸钠改性生物炭负载nZVI的制备及应用
CN113582317A (zh) * 2021-07-14 2021-11-02 武汉大学 一种阳离子功能化β-环糊精/壳聚糖复合材料及其制备方法与应用
CN114132985A (zh) * 2021-11-25 2022-03-04 哈尔滨工业大学 一种改性铁填料配合改性沸石和改性浮石用于地下水中去除多种重金属的方法
CN114132985B (zh) * 2021-11-25 2023-11-28 哈尔滨工业大学 一种改性铁填料配合改性沸石和改性浮石用于地下水中去除多种重金属的方法
CN114988537A (zh) * 2022-07-01 2022-09-02 陕西科技大学 一种利用电容去离子技术去除水中重金属的方法
CN116589149A (zh) * 2023-07-14 2023-08-15 湖南环宏环保科技有限公司 一种垃圾压榨液的深度处理方法
CN116589149B (zh) * 2023-07-14 2023-09-29 湖南环宏环保科技有限公司 一种垃圾压榨液的深度处理方法

Also Published As

Publication number Publication date
ZA202007825B (en) 2021-09-29
CN108620033A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2019223223A1 (zh) 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用
Zhang et al. Distinguished Cr (VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism
Gandhi et al. Preparation and characterization of La (III) encapsulated silica gel/chitosan composite and its metal uptake studies
Chen et al. Preparation, characterization and adsorption properties of a novel 3-aminopropyltriethoxysilane functionalized sodium alginate porous membrane adsorbent for Cr (III) ions
Song et al. Novel magnetic lignin composite sorbent for chromium (VI) adsorption
WO2016187796A1 (zh) 一种重金属离子吸附剂的制备方法及其应用
Alsabagh et al. Preparation and characterization of chitosan/silver nanoparticle/copper nanoparticle/carbon nanotube multifunctional nano-composite for water treatment: heavy metals removal; kinetics, isotherms and competitive studies
Zhu et al. Study of congo red adsorption onto chitosan coated magnetic iron oxide in batch mode
CN106732435A (zh) 一种Fe3O4/壳聚糖共沉淀制备磁性壳聚糖吸附剂的方法
US20220234026A1 (en) CORE-SHELL STRUCTURE POLYMER MAGNETIC NANOSPHERES WITH HIGH Cr (VI) ADSORPTION CAPACITY, PREPARATION METHOD AND APPLICATION
CN107999033A (zh) 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN109107524B (zh) 一种赤泥吸附剂及其制备方法和应用
Shahriari et al. Effective parameters for the adsorption of chromium (III) onto iron oxide magnetic nanoparticle
CN108585101A (zh) 一种重金属污水处理用无机材料杂化的多孔生物质微球的回收方法
CN103769058A (zh) 碳化壳聚糖吸附剂的制备方法、产品及应用方法
CN111001396A (zh) 一种磁性柠檬酸改性壳聚糖微球及制备方法和应用
Liu et al. An efficient adsorption of manganese oxides/activated carbon composite for lead (II) ions from aqueous solution
CN108514870A (zh) 水滑石-聚间苯二胺复合材料及其制备方法和应用
Qu et al. Characterization of modified Alternanthera philoxeroides by diethylenetriamine and its application in the adsorption of copper (II) ions in aqueous solution
JP2014020916A (ja) 放射性Cs汚染水の処理方法
Wen et al. Adsorption of congo red from solution by iron doped PVA-chitosan composite film
CN108187604A (zh) 一种同时去除水体中阴离子和硬度的方法
CN107159157A (zh) 含有重金属离子印迹交联壳聚糖纳米纤维膜及其制备方法
Samoilova et al. Chitin-based magnetic composite for the removal of contaminating substances from aqueous media
CN112661968B (zh) 一种制备mof吸附材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919800

Country of ref document: EP

Kind code of ref document: A1