CN112547029B - 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法 - Google Patents

用于含砷水体和土壤重金属修复的微球复合材料及其制备方法 Download PDF

Info

Publication number
CN112547029B
CN112547029B CN202011515476.0A CN202011515476A CN112547029B CN 112547029 B CN112547029 B CN 112547029B CN 202011515476 A CN202011515476 A CN 202011515476A CN 112547029 B CN112547029 B CN 112547029B
Authority
CN
China
Prior art keywords
mnfe
chitosan
heavy metal
composite material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011515476.0A
Other languages
English (en)
Other versions
CN112547029A (zh
Inventor
李红霞
季宏兵
崔兴兰
钟娟
袁学韬
陈勃伟
刘营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRINM Resources and Environment Technology Co Ltd
Original Assignee
GRINM Resources and Environment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRINM Resources and Environment Technology Co Ltd filed Critical GRINM Resources and Environment Technology Co Ltd
Priority to CN202011515476.0A priority Critical patent/CN112547029B/zh
Publication of CN112547029A publication Critical patent/CN112547029A/zh
Application granted granted Critical
Publication of CN112547029B publication Critical patent/CN112547029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明提供一种用于含砷水体和土壤重金属修复的微球复合材料及其制备方法。该方法在采用化学共沉淀法制备MnFe2O4纳米颗粒后,将其加入壳聚糖和双醛基聚乙二醇混合溶液中,反应后将其滴入碱性溶液中,后通过采用去离子水清洗至中性即可得到微球复合材料——交联壳聚糖负载MnFe2O4。使用该新型微球复合材料可通过直接混合于含重金属阴、阳离子的溶液中或土壤中吸附重金属阴、阳离子,可用于含重金属阴、阳离子废水和污染土壤的治理。本发明提供的微球复合材料对重金属阴、阳离子均具有较好的吸附性能,同时便于固液分离和固体间的分离,解决了吸附剂无法同时吸附重金属阴、阳离子及难回收的问题,可有效避免修复后的二次污染。

Description

用于含砷水体和土壤重金属修复的微球复合材料及其制备 方法
技术领域
本发明属于环境保护领域,涉及一种用于含砷水体和土壤重金属修复的微球复合材料及其制备方法。
背景技术
矿区重金属随地表径流汇入周围土地,并沉积在土壤或进入下游地表水和地下水,难以降解,导致土壤和水体污染。此外,矿物在开采、运输和堆放过程中会产生含有重金属的扬尘,也可通过各种途径进入环境介质或人体。长期食用受污染的饮用水和食物会导致严重的健康问题,例如皮肤病变、肾衰竭和癌症。矿区重金属污染通常为复合污染,包括重金属阴离子(例如As)和阳离子(例如Cd、Cu和Pb)。重金属阴离子和阳离子的理化性质不同,对pH和氧化还原电位的反应机制不同,尤其是As和Cd对pH和氧化还原电位的反应机制完全相反,不能通过只改变pH或氧化还原电位达到去除二者的效果。因此,研究能够去除水体和土壤中重金属阴、阳离子的修复材料是当务之急。
在众多的除重金属方法中,存在仅对重金属阳离子或阴离子具有效果、产生二次污染以及修复材料不能回收等缺点。例如中国专利申请号为201811209125.X的发明专利公开了一种用于场地土壤重金属修复的改良剂,其不足之处在于:关于场地使用的局限性太高,只对重金属阳离子具有钝化效果,限制了该方法的使用场景。中国专利申请号为201911278973.0的发明专利公开了一种重金属复合稳定剂及其制备方法和应用,其不足之处在于:需要定期处理该稳定剂在土壤环境中的存放问题,同时若使用该技术处理,土壤稳定剂将对土壤母质产生影响,进而影响土壤自身的生态系统稳定性。
针对修复材料无法同时去除重金属阴、阳离子和产生二次污染等问题,在本发明中,将MnFe2O4纳米颗粒负载在交联壳聚糖上,制备了一种新型微球复合材料。该材料具有网络结构和丰富的表面官能团,对水体和土壤中的As、Cd、Cu、Pb具有高效的去除效率。更重要的是,交联工艺使得该微球复合材料不溶于水,因此可以通过筛分从土壤中回收出来避免长时间后重金属被再次释放,而单独使用壳聚糖或MnFe2O4纳米颗粒则会出现溶于水而无法回收的现象。本发明为重金属阴、阳离子复合污染水体和土壤的修复提供了一条途径,具有广阔的应用前景。
发明内容
为了解决上述问题,本发明的目的在于提供一种用于含砷水体和土壤重金属修复的微球复合材料的制备方法。
本发明的另一目的在于提供一种上述用于含砷水体和土壤重金属修复的微球复合材料。
为了实现上述目的,本发明提供一种用于含砷水体和土壤重金属修复的微球复合材料的制备方法,具体包括以下步骤:
(1)将聚乙二醇溶于二甲基亚砜和氯仿混合溶液,加入醋酸酐氧化得到双醛基聚乙二醇;
(2)通过化学共沉淀法将FeCl3·6H2O和Mn(NO3)2·4H2O合成MnFe2O4纳米颗粒;
(3)将壳聚糖溶于2%乙酸溶液中得到酸性壳聚糖溶液,向酸性壳聚糖溶液中加入步骤(1)制备的双醛基聚乙二醇、步骤(2)制备的MnFe2O4纳米颗粒并搅拌,逐滴加入NaBH4继续搅拌,得到交联壳聚糖负载MnFe2O4纳米颗粒溶液;
(4)将所述交联壳聚糖负载MnFe2O4纳米颗粒溶液逐滴加入到碱性溶液中并搅拌30min,得到碱性交联壳聚糖颗粒负载MnFe2O4微球复合材料;
(5)将碱性交联壳聚糖颗粒负载MnFe2O4微球复合材料滤出,用去离子水清洗至中性,在60℃的真空条件下干燥12h,即得交联壳聚糖负载MnFe2O4微球复合材料。
优选地,所述步骤(1)中,聚乙二醇的分子量为1400~2000g/mol;聚乙二醇与醋酸酐的摩尔比为1:10~16;二甲基亚砜-氯仿混合溶液中二甲基亚砜与氯仿的体积比为1:8,聚乙二醇与二甲基亚砜-氯仿混合溶液的质量体积比g/mL为40:27,反应时间为30h。
优选地,所述步骤(2)中,所述化学共沉淀法具体过程为:向无氧去离子水中依次加入FeCl3·6H2O和Mn(NO3)2·4H2O;然后在50℃、氮气保护条件下,将上述混合液逐滴滴入到1.5mol/L NaOH溶液中,待反应20min后,磁性分离沉淀物,并用去离子水洗涤沉淀物3次以去除未反应的化合物,得到MnFe2O4纳米颗粒。
优选地,所述无氧去离子水为通过向去离子水中通入30分钟氮气制得。
优选地,所述步骤(2)中,FeCl3·6H2O、Mn(NO3)2·4H2O和NaOH加入量的摩尔比为n(Fe(III)):n(Mn(II)):NaOH=2~8:2:25。
优选地,所述步骤(3)中,壳聚糖分子量为100000~120000;酸性壳聚糖溶液浓度为0.01~0.03g/mL;壳聚糖、双醛基聚乙二醇和MnFe2O4的摩尔比为1:50~70:15~20。
优选地,所述步骤(3)中,NaBH4溶液浓度为0.1~0.2g/mL,NaBH4与双醛基聚乙二醇的摩尔比为10~12:1,搅拌温度为25℃,搅拌速度为300rpm,搅拌时间为18h。
优选地,所述步骤(4)中,碱性溶液为2~4mol/L的NaOH;搅拌速度为250~300rpm。
优选地,所述步骤(5)中,去离子水清洗至中性的pH值为6.8~7.2;真空度为-0.1MPa。
本发明还提供一种根据上述的制备方法制备的用于含砷水体和土壤重金属修复的微球复合材料。
本发明的原理为:
本发明中壳聚糖的交联是通过交联剂实现的,壳聚糖分子的氨基与双醛基聚乙二醇的醛基发生缩合反应生成希夫碱,后被氧化成稳定的碳氮单键。该吸附材料的骨架为壳聚糖交联聚乙二醇,骨架上负载有MnFe2O4,因此吸附材料为具有网络结构的微球,同时具有丰富的功能性表面基团,提高了应用于重金属阴、阳离子污染水体和土壤的可行性,但避免了修复后的二次污染。MnFe2O4纳米颗粒主要对As和Pb具有优异的吸附性能,其中部分As(III)先被氧化成As(Ⅴ)后发生配位反应,Pb通过离子交换和静电吸引途径被吸附;壳聚糖主要对Cd和Cu具有优异的吸附性能,吸附途径为配位反应。
本发明的有益效果为:
本发明提供一种用于含砷水体和土壤重金属修复的微球复合材料及其制备方法,微球复合材料对重金属阴、阳离子均具有较好的吸附性能,同时便于固液分离和固体间的分离,可有效避免修复后的二次污染。
附图说明
图1为本发明制备的交联壳聚糖负载MnFe2O4微球复合材料的(a)外部和(b)内部形貌图。
图2为本发明制备的交联壳聚糖负载MnFe2O4微球复合材料的红外谱图。
图3为交联壳聚糖负载MnFe2O4微球复合材料对水体中重金属阴、阳离子的吸附效果图。
图4为交联壳聚糖负载MnFe2O4微球复合材料对土壤中重金属阴、阳离子的去除效果图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中所采用的壳聚糖购自国药集团化学试剂有限公司。
实施例1制备交联壳聚糖负载MnFe2O4微球复合材料
(1)在常温条件下,将40g PEG2000溶于3mL二甲基亚砜和24mL氯仿并加入30mL醋酸酐氧化30h,得到双醛基聚乙二醇。
(2)向50mL无氧去离子水(充氮气30分钟)中依次加入16.20g FeCl3·6H2O和5.07gMn(NO3)2·4H2O;在50℃、氮气保护条件下,将上述混合液逐滴滴入到100mL 1.5mol/L NaOH溶液中。待反应20min后,磁性分离沉淀物,并用去离子水洗涤3次以去除未反应的化合物。
(3)在常温条件下,将0.000025mol壳聚糖(分子量为120000)溶于160mL2%乙酸得到酸性壳聚糖溶液,向酸性壳聚糖溶液中加入上述0.0015mol双醛基聚乙二醇、0.00042molMnFe2O4纳米颗粒并以300rpm的速度搅拌形成均一的混合溶液,逐滴加入10mL 1.5mol/LNaBH4溶液继续搅拌,得到交联壳聚糖负载MnFe2O4纳米颗粒溶液;
(4)将所述交联壳聚糖负载MnFe2O4纳米颗粒溶液以8秒/滴的速度逐滴加入到500mL 2mol/L的NaOH溶液,并以250rpm的速度搅拌30min,得到碱性交联壳聚糖负载MnFe2O4微球复合材料;
(5)将碱性交联壳聚糖负载MnFe2O4微球复合材料滤出,用去离子水清洗至中性,在60℃的真空条件下(-0.1MPa)干燥12h,即得交联壳聚糖负载MnFe2O4微球复合材料。其形貌图如图1所示,红外谱图如图2所示。
由图1可知,交联壳聚糖负载MnFe2O4微球复合材料(CPM)为球形、孔隙结构,其中(a)为交联壳聚糖负载MnFe2O4微球复合材料的外观,(b)为交联壳聚糖负载MnFe2O4微球复合材料的扫描电镜图。由图2可知,双醛基聚乙二醇(PEG-双醛)在1738cm-1处出现新的吸收峰C=O键,表明聚乙二醇(PEG)被氧化为双醛基聚乙二醇。CPM在1568cm-1处的吸收峰相比壳聚糖在1599cm-1处的特征峰发生偏移,说明壳聚糖的氨基和双醛基聚乙二醇的醛基形成了碳氮单键,表明了壳聚糖的成功交联。
实验例2废水中重金属的去除
配制含有重金属As(III)10mg/L、Cd(Ⅱ)5mg/L、Cu(Ⅱ)20mg/L、Pb(Ⅱ)20mg/L的混合溶液模拟水体污染情况。
准确量取25mL的混合溶液及本发明实施例1制备得到的60mg交联壳聚糖负载MnFe2O4微球复合材料(CPM)置于锥形瓶中,设置温度为25℃,震荡速度为150rpm,作为实验组。另准确量取25mL的混合溶液于锥形瓶中,然后将同样规格的纯粹的交联壳聚糖(CP)置于上述溶液中,设置温度为25℃,震荡速度为150rpm,作为对照组,比较负载MnFe2O4前后对重金属去除效果的影响。
对实验组和对照组,分别在0.5、1、2、3、4、5、6、8、12小时进行取样,测定重金属的含量,结果如图3所示。
由图3可以看出,未负载MnFe2O4的交联壳聚糖微球(CP)对水体中重金属阴、阳离子的吸附效果较弱(除Cu(Ⅱ)外,负载MnFe2O4对Cu(Ⅱ)的去除率几乎无影响),在720分钟后,其去除率仅达到As(III)23.92%、Cd(Ⅱ)16.29%、Pb(Ⅱ)18.16%。而当负载MnFe2O4之后的交联壳聚糖微球(CPM)对水体中重金属的吸附效果具有明显的提升,去除率达到As(III)71.78%、Cd(Ⅱ)22.11%、Pb(Ⅱ)65.85%。说明本发明交联壳聚糖负载MnFe2O4微球复合材料的吸附性能好,这与MnFe2O4的吸附性能好是密不可分的。
实验例3污染土壤中重金属的去除
选取某煤矿区重金属含量超标的农田土壤(As:28.31mg/kg,Cd:0.75mg/kg,Cu:162.0mg/kg,Pb:58.9mg/kg),称取土样100g,将实施例1制备得到的交联壳聚糖负载MnFe2O4微球复合材料按0、1%、5%、10%、15%的比例添加到土壤中混合均匀,置于250mL培养瓶中。按持水量50%添加去离子水到培养瓶中,在培养30d后取出培养瓶中土壤样品,自然风干后测试重金属含量。
由图4可知,随着交联壳聚糖负载MnFe2O4微球复合材料添加量的增加,重金属去除率不断得到提高,当添加量为15%时,As、Cd、Cu和Pb去除率分别达到38.10%、34.05%、44.53%和30.26%,修复后土壤重金属含量均能达到土壤环境质量二级标准(GB 15618-2018),且吸附重金属后的交联壳聚糖负载MnFe2O4微球复合材料可从污染土壤中通过筛分回收出来。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种用于含砷水体和土壤重金属修复的微球复合材料的制备方法,其特征在于:包括如下步骤:
(1)将聚乙二醇溶于二甲基亚砜-氯仿混合溶液,加入醋酸酐氧化得到双醛基聚乙二醇;
(2)通过化学共沉淀法将FeCl3·6H2O和Mn(NO3)2·4H2O合成MnFe2O4纳米颗粒;
(3)将壳聚糖溶于2%乙酸溶液中得到酸性壳聚糖溶液,向酸性壳聚糖溶液中加入步骤(1)制备的双醛基聚乙二醇、步骤(2)制备的MnFe2O4纳米颗粒并搅拌,逐滴加入NaBH4继续搅拌,得到交联壳聚糖负载MnFe2O4纳米颗粒溶液;
(4)将所述交联壳聚糖负载MnFe2O4纳米颗粒溶液逐滴加入到碱性溶液中并搅拌30min,得到碱性交联壳聚糖颗粒负载MnFe2O4微球复合材料;
(5)将碱性交联壳聚糖颗粒负载MnFe2O4微球复合材料滤出,用去离子水清洗至中性,在60℃的真空条件下干燥12h,即得交联壳聚糖负载MnFe2O4微球复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中,聚乙二醇的分子量为1400~2000g/mol;聚乙二醇与醋酸酐的摩尔比为1:10~16;二甲基亚砜-氯仿混合溶液中二甲基亚砜与氯仿的体积比为1:8,聚乙二醇与二甲基亚砜-氯仿混合溶液的质量体积比g/mL为40:27,反应时间为30h。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中,所述化学共沉淀法具体过程为:向无氧去离子水中依次加入FeCl3·6H2O和Mn(NO3)2·4H2O;然后在50℃、氮气保护条件下,将上述混合液逐滴滴入到1.5mol/L NaOH溶液中,待反应20min后,磁性分离沉淀物,并用去离子水洗涤沉淀物3次以去除未反应的化合物,得到MnFe2O4纳米颗粒。
4.根据权利要求3所述的制备方法,其特征在于:所述无氧去离子水为通过向去离子水中通入30分钟氮气制得。
5.根据权利要求3所述的制备方法,其特征在于:所述步骤(2)中,FeCl3·6H2O、Mn(NO3)2·4H2O和NaOH加入量的摩尔比为n(Fe(III)):n(Mn(II)):NaOH=2~8:2:25。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中,壳聚糖分子量为100000~120000;酸性壳聚糖溶液浓度为0.01~0.03g/mL;壳聚糖、双醛基聚乙二醇和MnFe2O4的摩尔比为1:50~70:15~20。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中,NaBH4溶液浓度为0.1~0.2g/mL,NaBH4与双醛基聚乙二醇的摩尔比为10~12:1,搅拌温度为25℃,搅拌速度为300rpm,搅拌时间为18h。
8.根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中,碱性溶液为2~4mol/L的NaOH;搅拌速度为250~300rpm。
9.根据权利要求1所述的制备方法,其特征在于:所述步骤(5)中,去离子水清洗至中性的pH值为6.8~7.2;真空度为-0.1MPa。
10.一种根据如权利要求1至9任一项所述的制备方法制备的用于含砷水体和土壤重金属修复的微球复合材料。
CN202011515476.0A 2020-12-21 2020-12-21 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法 Active CN112547029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011515476.0A CN112547029B (zh) 2020-12-21 2020-12-21 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011515476.0A CN112547029B (zh) 2020-12-21 2020-12-21 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112547029A CN112547029A (zh) 2021-03-26
CN112547029B true CN112547029B (zh) 2023-01-06

Family

ID=75031224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011515476.0A Active CN112547029B (zh) 2020-12-21 2020-12-21 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112547029B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160110B (zh) * 2021-11-30 2023-02-10 广州康盛生物科技股份有限公司 一种预活化的多糖微球及其制备方法、应用
CN115920833A (zh) * 2022-12-12 2023-04-07 安徽格派锂电循环科技有限公司 一种表面活性剂改性MnFe2O4复合材料的制备对水中Cd、As吸附的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034327A2 (ko) * 2009-09-15 2011-03-24 한밭대학교 산학협력단 키토산을 함유하는 수처리용 흡착제 및 이의 제조방법
CN105289560A (zh) * 2015-10-16 2016-02-03 南京大学 一种可协同高效去除重金属阴阳离子的壳聚糖基复合吸附剂及其制备方法
CN108620033A (zh) * 2018-05-22 2018-10-09 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用
CN108905984A (zh) * 2018-07-23 2018-11-30 山东建筑大学 一种铜镉污染河道水体及底泥的磁性微球修复方法
CN110252267A (zh) * 2019-06-24 2019-09-20 浙江海洋大学 纳米杂化材料的制备及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034327A2 (ko) * 2009-09-15 2011-03-24 한밭대학교 산학협력단 키토산을 함유하는 수처리용 흡착제 및 이의 제조방법
CN105289560A (zh) * 2015-10-16 2016-02-03 南京大学 一种可协同高效去除重金属阴阳离子的壳聚糖基复合吸附剂及其制备方法
CN108620033A (zh) * 2018-05-22 2018-10-09 华南理工大学 一种同时去除阴阳离子重金属的铁修饰壳聚糖/蛭石复合材料及其制备与应用
CN108905984A (zh) * 2018-07-23 2018-11-30 山东建筑大学 一种铜镉污染河道水体及底泥的磁性微球修复方法
CN110252267A (zh) * 2019-06-24 2019-09-20 浙江海洋大学 纳米杂化材料的制备及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity;Akbar Esmaeili et al.;《International Journal of Pharmaceutics》;20160330;第501卷;第326-330页 *
磁性微/纳米材料处理水溶液中金属离子研究进展;杜雪岩等;《材料导报》;20131210(第23期);第70-74页 *

Also Published As

Publication number Publication date
CN112547029A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Feng et al. Magnetic natural composite Fe3O4-chitosan@ bentonite for removal of heavy metals from acid mine drainage
Mehdinia et al. Synthesis and characterization of reduced graphene oxide-Fe3O4@ polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies
Wang et al. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin
Wang et al. Halloysite nanotube@ carbon with rich carboxyl groups as a multifunctional adsorbent for the efficient removal of cationic Pb (ii), anionic Cr (vi) and methylene blue (MB)
Li et al. Coadsorption of Cu (II) and tylosin/sulfamethoxazole on biochar stabilized by nano-hydroxyapatite in aqueous environment
CN107999033B (zh) 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
Liu et al. Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution
Ding et al. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
Liu et al. Recent advances in removal techniques of vanadium from water: A comprehensive review
CN112547029B (zh) 用于含砷水体和土壤重金属修复的微球复合材料及其制备方法
Xiong et al. Facile synthesis of magnetic nanocomposites of cellulose@ ultrasmall iron oxide nanoparticles for water treatment
CN110732307B (zh) 一种edta改性磁性纳米复合材料的制备方法及应用
WO2016110189A1 (zh) 一种移除土壤重金属污染的磁选净化治理工艺
Feng et al. An environmental-friendly magnetic bio-adsorbent for high-efficiency Pb (Ⅱ) removal: Preparation, characterization and its adsorption performance
Wang et al. Selective and fast removal and determination of β-lactam antibiotics in aqueous solution using multiple templates imprinted polymers based on magnetic hybrid carbon material
CN106745317A (zh) 一步法制备多孔四氧化三铁磁性纳米微球的方法及其应用
Chen et al. Assessment of a novel aminated magnetic adsorbent with excellent adsorption capacity for dyes and drugs
CN103007887A (zh) 碳纳米管负载多级纳米四氧化三铁吸附剂及其制备方法与应用
CN106622104B (zh) 一种利用高铁粉煤灰处理重金属离子污水的方法
Yang et al. Electro-adsorption and reduction of Uranium (VI) by Fe3O4@ COFs electrode with enhanced removal performance
CN112076727A (zh) 一种重金属污染修复剂及制备方法
Zhao et al. Efficient removal of cationic and anionic dyes by surfactant modified Fe3O4 nanoparticles
Kamrani et al. Co-transport and remobilization of Cu and Pb in quartz column by carbon dots
Gopika et al. A review on current progress of graphene-based ternary nanocomposites in the removal of anionic and cationic inorganic pollutants
Wei et al. Synthesis of a green ALG@ KLN adsorbent for high-efficient recovery of rare earth elements from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant