WO2019221156A1 - 電気化学的酸素還元用触媒 - Google Patents

電気化学的酸素還元用触媒 Download PDF

Info

Publication number
WO2019221156A1
WO2019221156A1 PCT/JP2019/019229 JP2019019229W WO2019221156A1 WO 2019221156 A1 WO2019221156 A1 WO 2019221156A1 JP 2019019229 W JP2019019229 W JP 2019019229W WO 2019221156 A1 WO2019221156 A1 WO 2019221156A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxygen reduction
same
group
different
Prior art date
Application number
PCT/JP2019/019229
Other languages
English (en)
French (fr)
Inventor
将史 朝日
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2020519879A priority Critical patent/JP7089805B2/ja
Priority to US17/054,413 priority patent/US11962018B2/en
Priority to EP19804448.9A priority patent/EP3796440A4/en
Priority to CN201980031473.9A priority patent/CN112106241B/zh
Publication of WO2019221156A1 publication Critical patent/WO2019221156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Y is the same or different and represents a nitrogen atom or a sulfur atom.
  • R 1 to R 3 are the same or different and each represents a hydrogen atom, a hydroxy group, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted aryl group.
  • n1 represents 1 or 2, 2 when Y to which R 1 is bonded is a nitrogen atom, 1 when Y to which R 1 is bonded is a sulfur atom, and 2 R 1 when n1 is 2 May be the same or different.
  • Item 6. The electrochemical oxygen reduction catalyst according to any one of Items 1 to 5, which is supported on a conductive carrier.
  • Item 11 A metal-air battery using the air electrode according to Item 9 as a positive electrode.
  • Nanoparticles containing platinum As the nanoparticles containing platinum, a catalyst conventionally used for an air electrode for a fuel cell can be used. Examples thereof include platinum nanoparticles, platinum alloy nanoparticles, and core-shell type nanoparticles containing platinum.
  • the core part may be made of an alloy containing a metal that is cheaper than platinum, and the shell part may be made of platinum. preferable.
  • the platinum alloy described above can be adopted as the platinum alloy of the core part.
  • melamine compounds and thiocyanuric acid compounds that satisfy the above conditions include:
  • OR 9 to OR 11 may be partially or completely eliminated and crosslinked with a divalent group represented by R 4 to R 8 to form a three-dimensional network structure.
  • a melamine resin having a repeating unit represented by the above, a polymer of a thiocyanuric acid compound, or the like can be used.
  • Examples of the divalent group represented by R 4 to R 8 include an alkylene group, an alkenylene group, and an arylene group.
  • arylene group examples include arylene groups such as a phenylene group, a naphthylene group, and an anthracenylene group (particularly, an arylene group having 6 to 20 carbon atoms and further 6 to 18 carbon atoms).
  • the arylene group may have 1 to 6 (particularly 1 to 3) substituents such as a hydroxy group, the above halogen atom, and an amino group.
  • Such a polymer containing a melamine compound or a thiocyanuric acid compound as a monomer is represented by the general formula (3) as a polymer consisting only of the repeating unit represented by the general formula (2):
  • Y, R 4 to R 11 and m1 to m3 are the same as defined above.
  • k represents an integer of 2 to 1000. It can also be set as the polymer of the melamine resin represented by these, or the thiocyanuric acid compound.
  • a polymer having a melamine compound or a thiocyanuric acid compound as a monomer has a repeating unit other than the repeating unit represented by the general formula (2) (for example, OR 9 to OR 11 are partially or completely eliminated, and R It is also possible to include a structure in which a divalent group represented by 4 to R 8 is crosslinked to form a three-dimensional network structure.
  • the content of each repeating unit is within a range that does not impair the effects of the present invention (for example, the total of the repeating unit represented by the general formula (2) and other repeating units is 100 mol%,
  • the repeating unit represented by 2) is preferably 50 to 99 mol%.
  • the degree of polymerization of a polymer having a melamine compound or a thiocyanuric acid compound as a monomer is not particularly limited, From the viewpoint of performing oxygen reduction reaction at a higher potential to further improve oxygen reduction activity (reduce the overvoltage), and maintaining oxygen reduction activity and improving durability even after repeated potential cycling.
  • the average (typical) degree of polymerization is preferably 2 to 1000, more preferably 3 to 500.
  • the terminal group of the polymer which uses a melamine compound or a thiocyanuric acid compound as a monomer is not particularly limited. Usually, it can be a hydrogen atom, a hydroxy group, the alkyl group, the alkenyl group, the aryl group or the like.
  • the amount of the melamine compound, the thiocyanuric acid compound, and the polymer having the melamine compound or the thiocyanuric acid compound as a monomer there is no particular limitation on the amount of the melamine compound, the thiocyanuric acid compound, and the polymer having the melamine compound or the thiocyanuric acid compound as a monomer.
  • the amount of the melamine compound, the thiocyanuric acid compound, and the polymer having the melamine compound or the thiocyanuric acid compound as a monomer For example, with respect to 100 parts by mass of platinum-containing nanoparticles, 0.1 to 50 parts by mass, particularly 1 to 30 parts by mass of a melamine compound, a thiocyanuric acid compound, and a polymer containing a melamine compound or a thiocyanuric acid compound as a monomer are contained. (Especially, it is supported).
  • 10 to 70%, especially 20 to 50% of the electrochemically effective surface area (ECSA) of nanoparticles containing platinum evaluated from the amount of electricity resulting from hydrogen desorption from the platinum surface is melamine compounds and thiocyanuric acid. It is preferably covered with a compound and a polymer having a melamine compound or a thiocyanuric acid compound as a monomer.
  • ECSA electrochemically effective surface area
  • the conductive carrier is not particularly limited as long as it is conventionally used as a conductive carrier for a catalyst for electrochemical reduction of oxygen.
  • carbon black Ketjen black, furnace black, acetylene black
  • carbonaceous materials such as activated carbon, graphite and glassy carbon
  • conductive oxides such as tin and titanium.
  • carbon black is preferable from the viewpoint of conductivity and surface area.
  • the shape of the conductive carrier there are no particular limitations on the shape of the conductive carrier, and it is preferable that the shape be in accordance with the shape of the air electrode.
  • the shape of the electrochemical oxygen reduction catalyst of the present invention is not particularly limited, and is preferably in the shape of the air electrode.
  • Such an electrochemical oxygen reduction catalyst of the present invention has an oxygen reduction activity for reducing oxygen to water, and therefore can be suitably used as a catalyst for a battery electrode using oxygen as an active material. Specifically, it can be suitably used as an air electrode catalyst of a fuel cell (in particular, a polymer electrolyte fuel cell, a phosphoric acid fuel cell, etc.) or a metal-air battery.
  • a fuel cell in particular, a polymer electrolyte fuel cell, a phosphoric acid fuel cell, etc.
  • the production method of the electrochemical oxidation reduction catalyst of the present invention is not particularly limited.
  • At least one selected from the group consisting of nanoparticles containing platinum (particularly platinum catalyst), a melamine compound, a thiocyanuric acid compound, and a polymer containing a melamine compound or a thiocyanuric acid compound as a monomer in advance is used.
  • platinum-containing nanoparticles particularly a platinum catalyst
  • platinum-containing nanoparticles have a melamine compound, a thiocyanuric acid compound, and a melamine compound or a thiocyanuric acid compound as a monomer.
  • the resulting suspension is filtered to recover the powder, whereby the catalyst of the present invention can be obtained.
  • the catalyst of the present invention when carrying
  • a catalyst in which platinum nanoparticles are supported on a conductive carrier can also support a melamine compound, a thiocyanuric acid compound, and a polymer having a melamine compound or a thiocyanuric acid compound as a monomer in the same manner as described above. .
  • the concentration of the platinum-containing nanoparticles (particularly platinum catalyst) and the melamine compound, thiocyanuric acid compound, and at least one selected from the group consisting of polymers containing melamine compound or thiocyanuric acid monomer as the monomer is not particularly limited, It can adjust so that it may become above-mentioned usage-amount.
  • the concentration of platinum-containing nanoparticles (particularly platinum catalyst) is preferably 0.1 to 10.0 g / L, more preferably 0.5 to 5.0 g / L.
  • Air electrode and battery The air electrode of the present invention is an air for a fuel cell (particularly, a polymer electrolyte fuel cell, a phosphoric acid fuel cell, etc.) or a metal-air battery using the electrochemical oxygen reduction catalyst of the present invention described above. Is the pole.
  • Such an air electrode can be the same as the conventional air electrode except that the catalyst for electrochemical oxygen reduction of the present invention is used as a catalyst.
  • the air electrode of the present invention has an air electrode catalyst layer. Can have.
  • the thickness of the air electrode catalyst layer is not particularly limited, and can usually be about 0.1 to 100 ⁇ m. There is no particular limitation as catalyst amount, for example, be a 0.01 ⁇ 20mg / cm 2 approximately.
  • the method for forming such an air electrode catalyst layer is not particularly limited, and is a catalyst ink prepared by mixing the electrochemical oxygen reduction catalyst of the present invention and a resin solution in a gas diffusion layer, a current collector or the like.
  • the air electrode catalyst layer can be produced by a method such as applying and drying the catalyst.
  • air electrode can be the same as known air electrodes.
  • current collectors such as carbon paper, carbon cloth, metal mesh, sintered metal, foam metal plate, and metal porous body are placed on the catalyst layer side of the air electrode, and water repellent film, diffusion film, air distribution layer, etc. It can also be an arranged structure.
  • the electrochemical oxygen reduction catalyst of the present invention and the polymer electrolyte membrane can be integrated by a known method.
  • the electrochemical oxygen reduction catalyst of the present invention and an electrolyte material, a carbon material or the like dispersed in water or a solvent is applied to the electrolyte membrane, or the catalyst layer applied to the substrate is transferred to the electrolyte membrane.
  • a catalyst layer can be formed on the electrolyte membrane.
  • Polymer electrolyte membranes include perfluorocarbon, styrene-divinylbenzene copolymer, polybenzimidazole and other ion exchange resin membranes, inorganic polymer ion exchange membranes, organic-inorganic composite polymer ion exchange membranes, etc. Can be used.
  • the structure of the fuel electrode is not particularly limited, and may be the same as that of a known polymer electrolyte fuel cell.
  • the catalyst for the fuel electrode various conventionally known metals, metal alloys, metal complexes and the like can be used.
  • the metal species that can be used include noble metals such as platinum, palladium, iridium, rhodium, ruthenium, and gold used in conventional polymer electrolyte fuel cells (PEFC), as well as nickel, silver, cobalt, iron, copper, and zinc.
  • Base metals such as are also included.
  • a single metal catalyst or metal complex selected from these metals, an alloy or a complex of metal complexes composed of any combination of two or more metals may be used. Further, it can also be used as a composite catalyst of a metal catalyst selected from the above and another metal oxide, or a supported catalyst in which catalyst fine particles are dispersed on a carrier such as a carbonaceous material or a metal oxide.
  • various separators can be used by impregnating a phosphoric acid aqueous solution as an electrolytic solution instead of a polymer electrolyte membrane.
  • Other members are the same as those of the polymer electrolyte fuel cell.
  • a metal such as zinc, aluminum, magnesium, or iron can be used as the metal negative electrode in the metal-air battery.
  • the specific structure of the metal negative electrode can be the same as that of a known metal-air battery.
  • Other members are the same as those of the polymer electrolyte fuel cell.
  • oxygen or air can be supplied or naturally diffused to the air electrode side.
  • a substance serving as a fuel can be supplied to a fuel cell (particularly, a polymer electrolyte fuel cell, a phosphoric acid fuel cell, etc.) on the fuel electrode side.
  • a fuel substance in addition to hydrogen gas, alcohols such as methanol, ethanol, isopropanol, and ethylene glycol, solutions of formic acid, borohydride salts, hydrazine, sugars, and the like can be used.
  • the operating temperature when the battery of the present invention is a fuel cell varies depending on the electrolyte used, but is usually about 0 to 250 ° C., preferably Is about 10-80 ° C.
  • Melamine is a commercially available product (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,3,5-triazine is a commercially available product (manufactured by Tokyo Chemical Industry Co., Ltd.), and diaminodiethylamino-1,3,5-triazine is commercially available.
  • Product manufactured by Tokyo Chemical Industry Co., Ltd.
  • 2,4-diamino-6-butylamino-1,3,5-triazine is a commercially available product (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • a commercially available product (manufactured by Sigma-Aldrich) was used as tris (dimethylamino) -1,3,5-triazine.
  • a commercial product (manufactured by Sigma-Aldrich, number average molecular weight 432) was used as the melamine resin raw material. This raw material was diluted to 5% by weight with 1-butanol. 27 ⁇ L of this diluted solution was dissolved in a mixed solvent of 5.14 mL of ultrapure water and 1.62 mL of 2-propanol to prepare a melamine resin coating solution. 3.6 ⁇ L of the above melamine resin coating solution is dropped onto a glassy carbon electrode (surface area: 0.0707 cm 2 ) manufactured by BAS Co., Ltd. and dried in an oven at 100 ° C. for 15 minutes to determine the degree of polymerization. Increased and secured to the electrode. The melamine resin thus obtained can be presumed to be a compound in which several monomers are bonded, and has the above-mentioned melamine resin raw material having a repeating unit represented by the above general formula (2A). .
  • a melamine-containing polyolefin resin (polymerization degree 120-240) was synthesized according to the previous report (Macromolecules 31, 371-377 (1998)).
  • Example 1 Effect of increasing the oxygen reduction activity of a platinum catalyst by melamine (immersion) 5 mg of platinum catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E; average particle size of 2 to 3 nm) is suspended in a mixed solvent of 5.14 mL of ultrapure water and 1.62 mL of 2-propanol, and 3.6 ⁇ L of this suspension is added to BA -It was dropped on a glassy carbon electrode (surface area: 0.0707 cm 2 ) manufactured by S Corp. and dried.
  • the electrode was taken out and immersed in a melamine aqueous solution (0.7 mM) for 10 minutes to adsorb the melamine to the platinum catalyst, and then the same measurement as before the immersion was performed again. Thereby, the oxygen reduction activity of the catalyst in which melamine is supported on platinum can be evaluated. At this time, the melamine coverage calculated from ECSA was 40%.
  • Fig. 1 shows a linear sweep voltammogram in an oxygen atmosphere.
  • the reduction current ( ⁇ j) in a high potential region of 0.9 V or higher was increased by immersing (supporting) melamine on platinum by immersion in a melamine aqueous solution.
  • the oxygen reduction activity is increased by immersing (supporting) melamine in platinum by immersing it in a melamine aqueous solution, the overvoltage is reduced, and the amount of platinum used can be reduced.
  • Example 2 Effect of increasing oxygen reduction activity and durability of platinum catalyst by melamine resin (drying after dropping) 5 mg of platinum catalyst (Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E; average particle size 2.5 nm) is suspended in a mixed solvent of 5.14 mL of ultrapure water and 1.62 mL of 2-propanol, and 3.6 ⁇ L of this suspension is suspended from BA It was dropped on a glassy carbon electrode (surface area: 0.0707 cm 2 ) manufactured by S. Co., Ltd. and dried.
  • the electrochemical measurement was carried out by a three-electrode system using this catalyst-modified electrode as a working electrode, a reversible hydrogen electrode as a reference electrode, and a platinum coil as a counter electrode.
  • the electrolyte used was a 0.1M perchloric acid aqueous solution.
  • the gas atmosphere was changed to oxygen, and a linear sweep voltammogram was measured from the low potential side. Thereby, the oxygen reduction activity at the time of using the catalyst which contains neither a melamine compound nor a melamine resin was evaluated.
  • the melamine resin raw material (manufactured by Sigma Aldrich) was diluted to 1% by weight with 1-butanol. 27 ⁇ L of this diluted solution was dissolved in a mixed solvent of 5.14 mL of ultrapure water and 1.62 mL of 2-propanol to prepare a melamine resin coating solution.
  • the same measurement as before the immersion was performed once again after performing a cycle by 0.05 voltammetry between 0.05 and 1.0 V in an argon atmosphere. went. Thereby, the maintenance rate (durability) of the oxygen reduction activity of the catalyst in which the melamine resin is supported on platinum can be evaluated.
  • Fig. 2 shows a linear sweep voltammogram in an oxygen atmosphere.
  • the reduction current ( ⁇ j) in a high potential region of 0.9 V or higher was increased.
  • dropping the melamine resin coating liquid to adsorb (support) the melamine resin on platinum increases the oxygen reduction activity, reduces the overvoltage, and reduces the amount of platinum used.
  • the melamine coverage calculated from ECSA was 46%.
  • Comparative Example 1 Effect of increasing oxygen reduction activity of platinum catalyst by 1,3,5-triazine (immersion) A catalyst was produced and evaluated in the same manner as in Example 1 except that an acetone solution (0.7 mM) of 1,3,5-triazine was used instead of the melamine aqueous solution.
  • Fig. 3 shows a linear sweep voltammogram in an oxygen atmosphere. Even if it is immersed in 1,3,5-triazine in acetone solution and 1,3,5-triazine is adsorbed (supported) on platinum, the reduction current (-j) in the high potential region above 0.9V changes. There wasn't. Therefore, even if 1,3,5-triazine is adsorbed (supported) by immersing it in an acetone solution of 1,3,5-triazine, the oxygen reduction activity does not increase and the overvoltage cannot be reduced. It was shown that the amount of use cannot be reduced. At this time, the coverage of 1,3,5-triazine calculated from ECSA was 6%.
  • Example 3 Effect of increasing the oxygen reduction activity of a platinum catalyst by diaminodiethylamino-1,3,5-triazine (immersion)
  • a catalyst was produced and evaluated in the same manner as in Example 1 except that an acetone solution (3 mM) of diaminodiethylamino-1,3,5-triazine was used instead of the melamine aqueous solution.
  • Fig. 4 shows a linear sweep voltammogram in an oxygen atmosphere.
  • a reduction current in a high potential region of 0.9 V or higher by immersing (supporting) diaminodiethylamino-1,3,5-triazine in platinum by immersing it in an acetone solution of diaminodiethylamino-1,3,5-triazine ( -J) increased.
  • oxygen reduction activity is increased by dipping diaminodiethylamino-1,3,5-triazine in an acetone solution and adsorbing (supporting) diaminodiethylamino-1,3,5-triazine on platinum. It was shown that the amount of platinum used can be reduced.
  • the coverage of diaminodiethylamino-1,3,5-triazine calculated from ECSA was 37%.
  • Comparative Example 2 Effect of increasing oxygen reduction activity of platinum catalyst by melamine-containing polyolefin resin (poly (2-vinyl-4,6-diamino-1,3,5-triazine)) (immersion)
  • a pyridine suspension (0.7 mM) of the melamine-containing polyolefin resin (poly (2-vinyl-4,6-diamino-1,3,5-triazine)) obtained in Synthesis Example 2 was used instead of the melamine aqueous solution. Except for the above, a catalyst was produced and evaluated in the same manner as in Example 1.
  • Fig. 5 shows a linear sweep voltammogram in an oxygen atmosphere.
  • Example 4 Effect of increasing oxygen reduction activity of platinum catalyst by thiocyanuric acid (immersion) A catalyst was produced and evaluated in the same manner as in Example 1 except that an acetone solution (3 mM) of thiocyanuric acid was used instead of the melamine aqueous solution.
  • Fig. 6 shows a linear sweep voltammogram in an oxygen atmosphere.
  • the reduction current ( ⁇ j) in a high potential region of 0.9 V or higher was increased by immersing (supporting) thiocyanuric acid on platinum by immersion in an acetone solution of thiocyanuric acid.
  • oxygen reduction activity is increased by immersing (supporting) thiocyanuric acid in platinum by immersing it in an acetone solution of thiocyanuric acid, reducing the overvoltage, and reducing the amount of platinum used.
  • the coverage of thiocyanuric acid calculated from ECSA was 34%.
  • Example 5 Effect of increasing the oxygen reduction activity of a platinum catalyst by 2,4-diamino-6-butylamino-1,3,5-triazine (immersion)
  • a catalyst was produced and evaluated in the same manner as in Example 1 except that an acetone solution (0.7 mM) of 2,4-diamino-6-butylamino-1,3,5-triazine was used instead of a melamine aqueous solution. It was.
  • Fig. 7 shows a linear sweep voltammogram in an oxygen atmosphere. Adsorption of 2,4-diamino-6-butylamino-1,3,5-triazine onto platinum by immersion in acetone solution of 2,4-diamino-6-butylamino-1,3,5-triazine As a result, the reduction current ( ⁇ j) in a high potential region of 0.9 V or more increased. Therefore, 2,4-diamino-6-butylamino-1,3,5-triazine is adsorbed on platinum by immersing it in an acetone solution of 2,4-diamino-6-butylamino-1,3,5-triazine.
  • Example 6 Effect of increasing oxygen reduction activity of platinum catalyst by 2,4,6-tris (dimethylamino) -1,3,5-triazine (immersion)
  • a catalyst was produced and evaluated in the same manner as in Example 1 except that an acetone solution (0.7 mM) of 2,4,6-tris (dimethylamino) -1,3,5-triazine was used instead of a melamine aqueous solution. went.
  • Fig. 8 shows a linear sweep voltammogram in an oxygen atmosphere. Adsorption of 2,4,6-tris (dimethylamino) -1,3,5-triazine onto platinum by immersion in acetone solution of 2,4,6-tris (dimethylamino) -1,3,5-triazine (The reduction current ( ⁇ j) in a high potential region of 0.9 V or higher was increased. For this purpose, 2,4,6-tris (dimethylamino) -1,3,5-triazine is immersed in an acetone solution of 2,4,6-tris (dimethylamino) -1,3,5-triazine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Abstract

白金を含有するナノ粒子と、メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種とを含有する、電気化学的酸素還元用触媒は、酸素還元活性の高い(過電圧の小さい)電気化学的酸素還元用触媒である。

Description

電気化学的酸素還元用触媒
 本発明は、電気化学的酸素還元用触媒に関する。
 固体高分子形燃料電池(PEFC)は、小型で効率がよく、また地球環境問題の観点からも早期の普及が期待されている。
 一般に、PEFCに使用されている高分子電解質は強酸性のカチオン交換膜であるため、電極触媒は強酸性条件下で安定に作用することが必要である。このような理由から、現在のところ、実用に耐え得る電極触媒は白金又は白金を含む合金のみである。
 このPEFCの空気極(カソード極)で起こる電極反応は酸素還元反応である。電極触媒として白金を使用した場合でさえ、この放電時の空気極反応である電気化学的酸素還元反応は過電圧が大きく、空気極におけるロスが出力の低下を招く大きな要因である。
 このような大きな過電圧を低減する方法として、白金を合金化する手法や、白金を含むコアシェルナノ粒子を使用する手法も知られている(例えば、特許文献1参照)。しかしながら、このような方法を用いてもまだ活性は十分ではなく、白金量を多くする必要性が生じることから、別の方法で過電圧を低減する方法が要望されている。
 ところで、金属空気電池は、亜鉛、鉄、アルミニウム等をはじめとする金属を負極に使用し、空気極を正極に使用した電池である。これらの電池は、正極側活物質として空気中の酸素を利用することができ、電気容量は負極容量のみで決まるため、高いエネルギー密度を実現できる。この金属空気電池においても、空気極(カソード極)側の反応は、放電時には酸素還元反応、充電時には酸素発生反応となることが知られている。したがって、金属空気電池においても、PEFC等と同様に、酸素を活物質とする空気極が使用されることから、酸素還元反応に対して高活性な触媒の開発が求められている。
特開2011-092940号公報
 本発明は、上記のような課題に鑑みてなされたものであり、酸素還元活性の高い(過電圧の小さい)電気化学的酸素還元用触媒を提供することを目的とする。
 本発明者らは、上記課題に鑑み、鋭意研究を重ねてきた。その結果、白金を含有するナノ粒子と、メラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種とを含有することで、上記課題を解決することができることを見出した。本発明は、このような知見に基づきさらに研究を重ね完成されたものである。すなわち、本発明は、以下の構成を包含する。
 項1.白金を含有するナノ粒子と、メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種とを含有する、電気化学的酸素還元用触媒。
 項2.前記白金を含有するナノ粒子の上に、前記メラミン化合物、前記チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種が担持されている、項1に記載の電気化学的酸素還元用触媒。
 項3.前記メラミン化合物及びチオシアヌル酸化合物が、一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R1~R3は同一又は異なって、水素原子、ヒドロキシ基、ハロゲン原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。n1は1又は2を示し、R1が結合するYが窒素原子の場合は2、R1が結合するYが硫黄原子の場合は1を示し、n1が2である場合は2個のR1は同一でも異なっていてもよい。n2は1又は2を示し、R2が結合するYが窒素原子の場合は2、R2が結合するYが硫黄原子の場合は1を示し、n2が2である場合は2個のR2は同一でも異なっていてもよい。n3は1又は2を示し、R3が結合するYが窒素原子の場合は2、R3が結合するYが硫黄原子の場合は1を示し、n3が2である場合は2個のR3は同一でも異なっていてもよい。n1、n2及びn3は同一でも異なっていてもよい。]
で表されるメラミン化合物及びチオシアヌル酸化合物である、項1又は2に記載の電気化学的酸素還元用触媒。
 項4.前記メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体が、一般式(2):
Figure JPOXMLDOC01-appb-C000004
[式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R4~R8は同一又は異なって、2価の基を示す。R9~R11は同一又は異なって、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。m1は1又は2を示し、R6が結合するYが窒素原子の場合は2、R6が結合するYが硫黄原子の場合は1を示し、m1が2である場合は2個のR6は同一でも異なっていてもよく、2個のR10は同一でも異なっていてもよい。m2及びm3は同一又は異なって、0又は1を示し、R7~R8が結合するYが窒素原子の場合は1、R7~R8が結合するYが硫黄原子の場合は0を示す。OR9~OR11が一部又は全部脱離し、R4~R8で示される2価の基に架橋され三次元網目構造を構成してもよい。]
で表される繰り返し単位を有する重合体である、項1~3のいずれか1項に記載の電気化学的酸素還元用触媒。
 項5.前記一般式(2)において、R4~R8がいずれも置換若しくは非置換アルキレン基、置換若しくは非置換アルケニレン基、又は置換若しくは非置換アリーレン基である、項4に記載の電気化学的酸素還元用触媒。
 項6.導電性担体上に担持されている、項1~5のいずれか1項に記載の電気化学的酸素還元用触媒。
 項7.前記導電性担体が炭素質材料である、項6に記載の電気化学的酸素還元用触媒。
 項8.燃料電池用カソード触媒である、項1~7のいずれか1項に記載の電気化学的酸素還元用触媒
 項9.項1~8のいずれか1項に記載の電気化学的酸素還元用触媒を用いた、燃料電池用又は金属空気電池用の空気極。
 項10.項9に記載の空気極を正極として用いた、燃料電池。
 項11.項9に記載の空気極を正極として用いた、金属空気電池。
 本発明によれば、酸素還元活性の高い(過電圧の小さい)電気化学的酸素還元用触媒を提供することができる。特に、メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体を使用した場合には、繰り返し電位サイクルによる酸素還元活性向上効果の低下を抑制することも可能である。
実施例1の結果(メラミン吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 実施例2の結果(メラミン樹脂吸着による酸素還元活性及びその耐久性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 比較例1の結果(1,3,5-トリアジン吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 実施例3の結果(ジアミノジエチルアミノ-1,3,5-トリアジン吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 比較例2の結果(メラミン含有ポリオレフィン樹脂吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 実施例4の結果(チオシアヌル酸吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 実施例5の結果(2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジン吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。 実施例6の結果(2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジン吸着による酸素還元活性の上昇効果)の結果を示すリニアスイープボルタモグラムである。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲をA~Bで表記する場合、A以上B以下を示す。
 1.電気化学的酸素還元用触媒
 本発明の電気化学的酸素還元用触媒は、電気化学的に酸素還元するために用いられる触媒であり、白金を含有するナノ粒子と、メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種とを含有する。より詳細には、酸素還元活性の観点から、白金を含有するナノ粒子上に、メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種が担持されていることが好ましい。本発明の電気化学的酸素還元用触媒は、当該メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体を単独で含むこともできるし、2種類以上含むこともできる。
 (1-1)白金を含有するナノ粒子
 白金を含有するナノ粒子としては、従来から燃料電池用空気極に用いられる触媒を使用することができる。例えば、白金ナノ粒子、白金合金ナノ粒子、白金を含むコアシェル型ナノ粒子等が挙げられる。
 白金合金ナノ粒子を使用する場合、例えば、鉄、ニッケル、マンガン、銅、コバルト、クロム、チタン、ルテニウム、ロジウム、パラジウム、銀、イリジウム、金等の少なくとも1種と白金との合金が好ましい。この場合、白金合金中の白金の含有量は過電圧をより低減する観点から50~95質量%が好ましい。
 白金を含むコアシェル型ナノ粒子を使用する場合、過電圧をより低減する観点及び白金使用量を低減する観点から、コア部は白金より安価な金属を含む合金からなり、シェル部が白金からなることが好ましい。コア部の白金合金としては、上記した白金合金を採用することができる。
 以上のような白金を含有するナノ粒子の平均粒子径は特に制限されない。平均粒子径の小さいナノ粒子を使用すると、活性表面積が増えるが、小さすぎる白金粒子は安定に存在できない。このような観点から、白金を含有するナノ粒子の平均粒子径は、2nm~40nmが好ましく、2.4nm~30nmがより好ましく、3nm~20nmがさらに好ましい。白金を含むコアシェル型ナノ粒子を使用する場合は、シェル部の平均厚みは1~3原子層が好ましい。
 (1-2)メラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体
 メラミン化合物及びチオシアヌル酸化合物としては、メラミン及びチオシアヌル酸の他、これらの誘導体を制限なく使用することができる。例えば、一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R1~R3は同一又は異なって、水素原子、ヒドロキシ基、ハロゲン原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。n1は1又は2を示す。ただし、R1が結合するYが硫黄原子の場合は1を示す。n1が2である場合は2個のR1は同一でも異なっていてもよい。n2は1又は2を示す。ただし、R2が結合するYが硫黄原子の場合は1を示す。n2が2である場合は2個のR2は同一でも異なっていてもよい。n3は1又は2を示す。ただし、R3が結合するYが硫黄原子の場合は1を示す。n3が2である場合は2個のR3は同一でも異なっていてもよい。n1、n2及びn3は同一でも異なっていてもよい。]
で表されるメラミン化合物及びチオシアヌル酸化合物が挙げられる。
 つまり、一般式(1A1):
Figure JPOXMLDOC01-appb-C000006
[式中、R1~R3は前記に同じである。]
で表されるメラミン化合物と、一般式(1A2):
Figure JPOXMLDOC01-appb-C000007
[式中、R1~R3は前記に同じである。]
で表されるメラミン化合物と、一般式(1B):
Figure JPOXMLDOC01-appb-C000008
[式中、R1~R3は前記に同じである。]
で表されるチオシアヌル酸化合物のいずれも採用できる。
 一般式(1)において、Yとしては、窒素原子及び硫黄原子のいずれも採用でき、より高い電位で酸素還元反応を行わせ酸素還元活性をより向上させる(過電圧をより小さくする)ことで白金の使用量をより低減する観点から、窒素原子が好ましい。同様に、n1、n2及びn3はいずれも2が好ましい。なお、n1、n2及びn3は同一でも異なっていてもよい。
 一般式(1)において、R1~R3で示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 一般式(1)において、R1~R3で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等の低級アルキル基(特に炭素数1~10、さらに1~6の直鎖又は分岐鎖アルキル基)が挙げられる。また、このアルキル基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 一般式(1)において、R1~R3で示されるアルケニル基としては、例えば、ビニル基、アリル基、2-ブテニル基、3-ブテニル基、1-メチルアリル基、2-ペンテニル基、2-ヘキセニル基等の低級アルケニル基(特に炭素数2~10、さらに炭素数2~6の直鎖又は分岐鎖アルケニル基)が挙げられる。また、このアルケニル基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 一般式(1)において、R1~R3で示されるアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基等のアリール基(特に炭素数6~20、さらに炭素数6~18のアリール基)が挙げられる。また、このアリール基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 一般式(1)において、R1~R3としては、より高い電位で酸素還元反応を行わせ酸素還元活性をより向上させる(過電圧をより小さくする)ことで白金の使用量をより低減する観点から、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基が好ましい。なお、R1~R3は、同一でもよいし異なっていてもよい。また、n1が2である場合は2個のR1は同一でも異なっていてもよいし、n2が2である場合は2個のR2は同一でも異なっていてもよいし、n3が2である場合は2個のR3は同一でも異なっていてもよい。
 上記のような条件を満たすメラミン化合物及びチオシアヌル酸化合物としては、例えば、
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
等が挙げられる。このようなメラミン化合物及びチオシアヌル酸化合物は、市販品を用いることもでき、別途合成することもできる。
 メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体としては、上記したメラミン化合物を繰り返し単位の主鎖に有するメラミン樹脂や、上記したチオシアヌル酸化合物を繰り返し単位の主鎖に有する重合体を使用することができる。例えば、一般式(2):
Figure JPOXMLDOC01-appb-C000011
[式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R4~R8は同一又は異なって、2価の基を示す。R9~R11は同一又は異なって、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。m1は1又は2を示す。ただし、R6が結合するYが硫黄原子の場合は1を示す。m1が2である場合は2個のR6は同一でも異なっていてもよく、2個のR10は同一でも異なっていてもよい。m2及びm3は同一又は異なって、0又は1を示す。ただし、R7~R8が結合するYが硫黄原子の場合は0を示す。OR9~OR11が一部又は全部脱離し、R4~R8で示される2価の基に架橋され三次元網目構造を構成してもよい。]
で表される繰り返し単位を有するメラミン樹脂やチオシアヌル酸化合物の重合体等を使用することができる。
 つまり、一般式(2A1):
Figure JPOXMLDOC01-appb-C000012
[式中、R4~R6及びR11は前記に同じである。]
で表される繰り返し単位を有するメラミン樹脂と、一般式(2A2):
Figure JPOXMLDOC01-appb-C000013
[式中、R4~R11は前記に同じである。]
で表される繰り返し単位を有するメラミン樹脂と、一般式(2B):
Figure JPOXMLDOC01-appb-C000014
[式中、R4~R6及びR10は前記に同じである。]
で表される繰り返し単位を有するチオシアヌル酸化合物の重合体のいずれも採用できる。
 一般式(2)において、Yとしては、窒素原子及び硫黄原子のいずれも採用でき、より高い電位で酸素還元反応を行わせ酸素還元活性をより向上させる(過電圧をより小さくする)ことで白金の使用量をより低減する観点から、窒素原子が好ましい。同様に、m1は2が好ましく、m2及びm3は1が好ましい。なお、m2及びm3は同一でも異なっていてもよい。
 R4~R8で示される2価の基としては、例えば、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。
 アルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基等の低級アルキレン基(特に炭素数1~10、さらに1~6の直鎖又は分岐鎖アルキレン基)が挙げられる。また、このアルキレン基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 アルケニレン基としては、例えば、ビニレン基、アリレン基、ブテニレン基等の低級アルケニレン基(特に炭素数2~10、さらに2~6のアルケニレン基)が挙げられる。また、このアルケニレン基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 アリーレン基としては、例えば、フェニレン基、ナフチレン基、アントラセニレン基等のアリーレン基(特に炭素数6~20、さらに炭素数6~18のアリーレン基)が挙げられる。また、このアリーレン基は、例えば、ヒドロキシ基、上記ハロゲン原子、アミノ基等の置換基を1~6個(特に1~3個)有することもできる。
 一般式(2)において、R4~R8としては、より高い電位で酸素還元反応を行わせ酸素還元活性をより向上させる(過電圧をより小さくする)ことで白金の使用量をより低減する観点から、置換若しくは非置換アルキレン基、又は置換若しくは非置換アリーレン基が好ましい。なお、R4~R8は、同一でもよいし異なっていてもよい。また、m1が2である場合は2個のR6は同一でも異なっていてもよいし、2個のR10は同一でも異なっていてもよい。
 一般式(2)において、R9~R11で示されるアルキル基、アルケニル基及びアリール基としては、上記したものを採用できる。置換基の種類及び数も同様である。
 上記のような条件を満たす繰り返し単位としては、例えば、
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。
 このようなメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体は、一般式(2)で表される繰り返し単位のみからなる重合体として、一般式(3):
Figure JPOXMLDOC01-appb-C000017
[式中、Y、R4~R11、m1~m3は前記に同じである。kは2~1000の整数を示す。]
で表されるメラミン樹脂、又はチオシアヌル酸化合物の重合体とすることもできる。
 また、メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体は、一般式(2)で表される繰り返し単位以外の他の繰り返し単位(例えば、OR9~OR11が一部又は全部脱離し、R4~R8で示される2価の基に架橋され三次元網目構造になった構造)を含むことも可能である。この場合、各繰り返し単位の含有割合は、本発明の効果を損なわない範囲(例えば、一般式(2)で表される繰り返し単位と他の繰り返し単位との合計を100モル%として、一般式(2)で表される繰り返し単位が50~99モル%)とすることが好ましい。
 メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体の重合度(一般式(3)で表されるメラミン樹脂やチオシアヌル酸化合物の重合体の場合はkに相当する)は、特に限定はないが、より高い電位で酸素還元反応を行わせ酸素還元活性をより向上させる(過電圧をより小さくする)とともに、繰返し電位サイクルした際にも酸素還元活性をより維持し耐久性をより向上させる観点から、その平均的(代表的)重合度は2~1000が好ましく、3~500がより好ましい。
 なお、メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体の末端基は特に制限されない。通常、水素原子、ヒドロキシ基、上記アルキル基、上記アルケニル基、上記アリール基等とすることができる。
 メラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体の量については、特に限定はない。例えば、白金を含有するナノ粒子100質量部に対して、メラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体を0.1~50質量部、特に1~30質量部含有する(特に担持させる)ことが好ましい。また、白金表面からの水素脱着に起因する電気量から評価される、白金を含有するナノ粒子の電気化学的有効表面積(ECSA)の10~70%、特に20~50%がメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体で覆われていることが好ましい。なお、メラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体のうち複数使用する場合は、その総量が上記範囲となるように調整することが好ましい。
 (1-3)導電性担体
 上記の白金ナノ粒子は導電性担体に担持させることにより、導電性をより向上させることができ、且つ、白金使用量を減少させることができる。導電性担体としては、従来から酸素を電気化学的に還元するための触媒の導電性担体に使用されるものであれば特に制限はなく、例えば、カーボンブラック(ケッチェンブラック、ファーネスブラック、アセチレンブラック等)、活性炭、黒鉛、グラッシーカーボン等の炭素質材料やスズやチタン等の導電性酸化物を挙げることができる。これらのなかでは、導電性と表面積の観点から、カーボンブラックが好ましい。
 導電性担体の形状等については特に限定はなく、空気極の形状に沿った形状とすることが好ましい。
 (1-4)電気化学的酸素還元用触媒
 本発明の電気化学的酸素還元用触媒の形状は特に制限はなく、空気極の形状に沿った形状とすることが好ましい。
 このような本発明の電気化学的酸素還元用触媒は、酸素を水に還元する酸素還元活性を有するため、酸素を活物質として使用する電池の電極用触媒として好適に使用され得る。具体的には、燃料電池(特に固体高分子形燃料電池、リン酸形燃料電池等)又は金属空気電池の空気極触媒として好適に使用され得る。
 2.電気化学的酸素還元用触媒の製造方法
 本発明の電気化学的酸化還元用触媒の製造方法は特に制限されない。例えば、溶解乾燥法、気相法等の方法により、白金を含有するナノ粒子上にメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種を担持させることができる。
 例えば、溶解乾燥法では、白金を含有するナノ粒子(特に白金触媒)とメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種をあらかじめ溶媒に溶解又は分散(懸濁)させ、必要に応じて撹拌することにより、白金を含有するナノ粒子(特に白金触媒)にメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種を吸着させた後、得られた懸濁液をろ過して粉末を回収することにより、本発明の触媒を得ることができる。なお、白金を含有するナノ粒子を導電性担体上に担持させる場合には、常法により担持させることができる。また、導電性担体上に白金ナノ粒子が担持された触媒にも、上記と同様の手法でメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体を担持することができる。
 上記の溶媒としては、白金を含有するナノ粒子とメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体とを溶解又は分散(懸濁)できるものであれば、特に限定なく使用できる。例えば、アセトン、トルエン、メタノール、エタノール、1-プロパノール、2-プロパノール、ジクロロメタン、テトラヒドロフラン、アセトニトリル、ジメチルホルムアミド等の有機溶媒や水を好適に用いることができる。これらの有機溶媒及び水は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 白金を含有するナノ粒子(特に白金触媒)とメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種との濃度は特に制限されず、上記した使用量となるように調整することができる。例えば、仕込み量として、白金を含有するナノ粒子(特に白金触媒)の濃度は0.1~10.0g/Lが好ましく、0.5~5.0g/Lがより好ましい。また、仕込み量として、溶媒中のメラミン化合物、チオシアヌル酸化合物、並びにメラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体の濃度は、0.05~3.0g/Lが好ましく、0.15~1.5g/Lがより好ましい。
 3.空気極及び電池
 本発明の空気極は、上記した本発明の電気化学的酸素還元用触媒を用いた燃料電池(特に固体高分子形燃料電池、リン酸形燃料電池等)又は金属空気電池用空気極である。
 このような空気極は、触媒として本発明の電気化学的酸素還元用触媒を用いること以外は従来の空気極と同様とすることができるが、例えば、本発明の空気極は、空気極触媒層を有し得る。
 空気極触媒層の厚さについては特に限定的ではなく、通常、0.1~100μm程度とすることができる。また、触媒量としても特に制限はなく、例えば、0.01~20mg/cm2程度とすることができる。
 このような空気極触媒層の形成方法としては、特に制限されず、ガス拡散層、集電体等に、本発明の電気化学的酸素還元用触媒と樹脂溶液とを混合して作製した触媒インクを塗布及び乾燥する方法等によって空気極触媒層を作製し得る。
 その他の空気極の構成については公知の空気極と同様にし得る。例えば、空気極の触媒層側にカーボンペーパー、カーボンクロス、金属メッシュ、金属焼結体、発泡金属板、金属多孔体等の集電材を配置し、撥水性膜、拡散膜、空気分配層等を配置した構造ともし得る。
 電解質としては、本発明の電気化学的酸素還元用触媒と高分子電解質膜とを公知の方法により一体化させて使用することができる。本発明の電気化学的酸素還元用触媒と電解質材料、炭素材料等を水や溶剤等で分散させたものを、電解質膜に塗布したり、基材に塗布した触媒層を電解質膜に転写させたり等により電解質膜に触媒層を形成したりすることもできる。
 高分子電解質膜としては、パーフルオロカーボン系、スチレン-ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする各種イオン交換樹脂膜、無機高分子イオン交換膜、有機-無機複合体高分子イオン交換膜等を使用することができる。
 燃料極の構造についても特に限定はなく、公知の固体高分子形燃料電池の構造と同様とすることができる。燃料極用の触媒としても、従来から知られている種々の金属、金属合金、金属錯体等を使用することができる。使用できる金属種としては、従来の固体高分子形燃料電池(PEFC)で使用される白金、パラジウム、イリジウム、ロジウム、ルテニウム、金等の貴金属の他、ニッケル、銀、コバルト、鉄、銅、亜鉛等の卑金属等も挙げられる。これらの金属のなかから選ばれた単一の金属触媒若しくは金属錯体、二種以上の金属の任意の組合せからなる合金若しくは金属錯体の複合体を使用し得る。また、上記から選ばれる金属触媒と別の金属酸化物との複合触媒、触媒微粒子を炭素質材料、金属酸化物等の担体上に分散させた担持触媒として使用することもできる。
 得られた膜-電極接合体の両面をカーボンペーパー、カーボンクロス等の集電体で挟んでセルに組み込むことによって、固体高分子形燃料電池セルを作製することも可能である。
 一方、固体高分子形燃料電池ではなく、リン酸形燃料電池に適用する場合は、高分子電解質膜ではなく、電解液としてリン酸水溶液を各種セパレータに含浸させて用いることができる。その他の部材については上記固体高分子形燃料電池と同様である。
 また、本発明の電気化学的酸素還元用触媒を金属空気電池の空気極に用いる場合は、金属空気電池における金属負極としては、亜鉛、アルミニウム、マグネシウム、鉄等の金属を使用し得る。具体的な金属負極の構造は、公知の金属空気電池と同様とすることができる。その他の部材は固体高分子形燃料電池と同様である。
 上記した構造の電池では、いずれの場合においても、空気極側には酸素又は空気を供給又は自然拡散させ得る。また、燃料電池(特に固体高分子形燃料電池、リン酸形燃料電池等)には、燃料極側に燃料となる物質を供給し得る。燃料物質としては、水素ガスの他、メタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類、ギ酸、水素化ホウ素塩、ヒドラジン、糖等の溶液を使用し得る。
 なお、本発明の電池が燃料電池(特に固体高分子形燃料電池、リン酸形燃料電池等)である場合の作動温度は、使用する電解質によって異なるが、通常0~250℃程度であり、好ましくは10~80℃程度である。
 以下に実施例及び比較例を挙げて、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。なお、メラミンは市販品(東京化成工業株式会社製)を用い、1,3,5-トリアジンは市販品(東京化成工業株式会社製)を用い、ジアミノジエチルアミノ-1,3,5-トリアジンは市販品(東京化成工業株式会社製)を用い、2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンは市販品(東京化成工業株式会社製)を用い、2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンは市販品(シグマアルドリッチ製)を用いた。
 合成例1:メラミン樹脂
Figure JPOXMLDOC01-appb-C000018
 メラミン樹脂原料は市販品(シグマアルドリッチ製、数平均分子量432)を用いた。この原料を、1-ブタノールを用いて5重量%に希釈した。この希釈液27μLを超純水5.14mLと2-プロパノール1.62mLの混合溶媒に溶解し、メラミン樹脂被覆用液を作成した。上記メラミン樹脂被覆用液3.6μLをビー・エー・エス(株)製のグラッシーカーボン電極(表面積: 0.0707cm2)上に滴下して、100℃のオーブンで15分かけて乾燥させて重合度を増加させ、電極に固着させた。このようにして得られたメラミン樹脂は、数個のモノマーが結合した化合物であると推測することができ、上記したメラミン樹脂原料上記一般式(2A)で表される繰り返し単位を有するものである。
 合成例2:メラミン含有ポリオレフィン樹脂
Figure JPOXMLDOC01-appb-C000019
 既報(Macromolecules 31, 371-377 (1998))にしたがい、メラミン含有ポリオレフィン樹脂(重合度120~240)を合成した。
 実施例1:メラミンによる白金触媒の酸素還元活性の上昇効果(浸漬)
 白金触媒(田中貴金属工業(株)製, TEC10E50E; 平均粒子径2~3nm)5mgを超純水5.14mLと2-プロパノール1.62mLの混合溶媒に懸濁し、この懸濁液3.6μLをビー・エー・エス(株)製のグラッシーカーボン電極(表面積: 0.0707cm2)に滴下して、乾燥させた。
 この触媒修飾電極を作用極とし、可逆水素電極を参照極、白金コイルを対極として三電極式で電気化学測定を行った。電解液は0.1Mの過塩素酸水溶液を用いた。まず、アルゴン雰囲気下でサイクリックボルタモグラムの測定を行った後、ガス雰囲気を酸素に変えて、低電位側からリニアスイープボルタモグラムの測定を行った。これにより、メラミン化合物及びメラミン樹脂をいずれも含まない触媒を用いた場合の酸素還元活性を評価した。
 次に、電極を取り出し、メラミン水溶液(0.7mM)に10分間浸漬させて白金触媒にメラミンを吸着させた後に、もう一度、浸漬前と同じ測定を行った。これにより、白金にメラミンが担持した触媒の酸素還元活性が評価できる。この時、ECSAから算出されるメラミンの被覆率は40%であった。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図1に示す。メラミン水溶液に浸漬して白金にメラミンを吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、メラミン水溶液に浸漬して白金にメラミンを吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。
 実施例2:メラミン樹脂による白金触媒の酸素還元活性及びその耐久性の上昇効果(滴下後乾燥)
 白金触媒(田中貴金属工業(株)製, TEC10E50E; 平均粒子径2.5nm)5mgを超純水5.14mLと2-プロパノール1.62mLの混合溶媒に懸濁し、この懸濁液3.6μLをビー・エー・エス(株)製のグラッシーカーボン電極(表面積: 0.0707cm2)に滴下して、乾燥させた。
 この触媒修飾電極を作用極とし、可逆水素電極を参照極、白金コイルを対極として三電極式で電気化学測定を行った。電解液は0.1Mの過塩素酸水溶液を用いた。まず、アルゴン雰囲気下でサイクリックボルタモグラムの測定を行った後、ガス雰囲気を酸素に変えて、低電位側からリニアスイープボルタモグラムの測定を行った。これにより、メラミン化合物及びメラミン樹脂をいずれも含まない触媒を用いた場合の酸素還元活性を評価した。
 次に、メラミン樹脂原料(シグマアルドリッチ製)を1-ブタノールを用いて5重量%に希釈した。この希釈液27μLを超純水5.14mLと2-プロパノール1.62mLの混合溶媒に溶解し、メラミン樹脂被覆用液を作成した。
 次に、電極を取り出し、上記メラミン樹脂被覆用液3.6μLを電極に滴下して、100℃で15分かけて乾燥させて白金触媒にメラミン樹脂を固着させた後に、もう一度、被覆前と同じ測定を行った。これにより、白金にメラミン樹脂が担持した触媒の酸素還元活性が評価できる。
 さらに、上記の白金触媒にメラミン樹脂を吸着させた触媒について、アルゴン雰囲気下で0.05 V-1.0 Vの間で150回サイクリックボルタンメトリによるサイクルを行った後に、もう一度、浸漬前と同じ測定を行った。これにより、白金にメラミン樹脂が担持した触媒の酸素還元活性の維持率(耐久性)が評価できる。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図2に示す。メラミン樹脂被覆液を滴下して白金にメラミン樹脂を吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、メラミン樹脂被覆液を滴下して白金にメラミン樹脂を吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。この時、ECSAから算出されるメラミンの被覆率は46%であった。
 さらに、電位サイクル試験を繰り返した後にも、0.9V以上の高い電位領域における還元電流(-j)はほとんど変わらなかった。このことから、電位サイクルを繰り返した後にも、酸素還元活性を維持し耐久性に優れることが示されている。なお、実施例1の触媒を用いて同様の試験を行った場合は、浸漬前と同等の結果となることから、メラミンに対するメラミン樹脂の優位性が示されている。
 比較例1:1,3,5-トリアジンによる白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、1,3,5-トリアジンのアセトン溶液(0.7mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図3に示す。1,3,5-トリアジンのアセトン溶液に浸漬して白金に1,3,5-トリアジンを吸着(担持)させても、0.9V以上の高い電位領域における還元電流(-j)は変化しなかった。このため、1,3,5-トリアジンのアセトン溶液に浸漬して白金に1,3,5-トリアジンを吸着(担持)させたとしても酸素還元活性は上昇せず、過電圧が小さくできず、白金の使用量を低減できないことが示された。この時、ECSAから算出される1,3,5-トリアジンの被覆率は6%であった。なお、1,3,5-トリアジンの濃度を3mMに上昇させて同様の試験を行った場合にも、0.9V以上の高い電位領域における還元電流(-j)は変化せず、酸素還元活性は上昇せず、過電圧が小さくできず、白金の使用量を低減できなかった。
 実施例3:ジアミノジエチルアミノ-1,3,5-トリアジンによる白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、ジアミノジエチルアミノ-1,3,5-トリアジンのアセトン溶液(3mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図4に示す。ジアミノジエチルアミノ-1,3,5-トリアジンのアセトン溶液に浸漬して白金にジアミノジエチルアミノ-1,3,5-トリアジンを吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、ジアミノジエチルアミノ-1,3,5-トリアジンのアセトン溶液に浸漬して白金にジアミノジエチルアミノ-1,3,5-トリアジンを吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。なお、ECSAから算出されるジアミノジエチルアミノ-1,3,5-トリアジンの被覆率は37%であった。
 比較例2:メラミン含有ポリオレフィン樹脂(ポリ(2-ビニル-4,6-ジアミノ-1,3,5-トリアジン))による白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、合成例2で得たメラミン含有ポリオレフィン樹脂(ポリ(2-ビニル-4,6-ジアミノ-1,3,5-トリアジン))のピリジン懸濁液(0.7mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図5に示す。メラミン含有ポリオレフィン樹脂のピリジン溶液に浸漬して白金にメラミン含有ポリオレフィン樹脂を吸着(担持)させても、0.9V以上の高い電位領域における還元電流(-j)は変化しなかった。このため、メラミン含有ポリオレフィン樹脂のピリジン溶液に浸漬して白金にメラミン含有ポリオレフィン樹脂を吸着(担持)させたとしても酸素還元活性は上昇せず、過電圧が小さくできず、白金の使用量を低減できないことが示された。なお、ECSAから算出されるメラミン含有ポリオレフィン樹脂の被覆率は62%であった。
 実施例4:チオシアヌル酸による白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、チオシアヌル酸のアセトン溶液(3mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図6に示す。チオシアヌル酸のアセトン溶液に浸漬して白金にチオシアヌル酸を吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、チオシアヌル酸のアセトン溶液に浸漬して白金にチオシアヌル酸を吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。なお、ECSAから算出されるチオシアヌル酸の被覆率は34%であった。
 実施例5:2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンによる白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンのアセトン溶液(0.7mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図7に示す。2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンのアセトン溶液に浸漬して白金に2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンを吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンのアセトン溶液に浸漬して白金に2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンを吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。なお、ECSAから算出される2,4-ジアミノ-6-ブチルアミノ-1,3,5-トリアジンの被覆率は28%であった。
 実施例6:2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンによる白金触媒の酸素還元活性の上昇効果(浸漬)
 メラミン水溶液ではなく、2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンのアセトン溶液(0.7mM)を使用したこと以外は実施例1と同様に触媒を製造し、評価を行った。
 酸素雰囲気下におけるリニアスイープボルタモグラムを図8に示す。2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンのアセトン溶液に浸漬して白金に2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンを吸着(担持)させることにより、0.9V以上の高い電位領域における還元電流(-j)が増加した。このため、2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンのアセトン溶液に浸漬して白金に2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンを吸着(担持)させることで酸素還元活性が上昇し、過電圧が小さくなり、白金の使用量を低減できることが示された。なお、ECSAから算出される2,4,6-トリス(ジメチルアミノ)-1,3,5-トリアジンの被覆率は23%であった。
 本発明の電気化学的酸素還元用触媒は、例えば、燃料電池、金属空気電池等の空気極(カソード極)に利用することができる。

Claims (11)

  1. 白金を含有するナノ粒子と、メラミン化合物、チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種とを含有する、電気化学的酸素還元用触媒。
  2. 前記白金を含有するナノ粒子の上に、前記メラミン化合物、前記チオシアヌル酸化合物、並びに前記メラミン化合物若しくは前記チオシアヌル酸化合物をモノマーとする重合体よりなる群から選ばれる少なくとも1種が担持されている、請求項1に記載の電気化学的酸素還元用触媒。
  3. 前記メラミン化合物及びチオシアヌル酸化合物が、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R1~R3は同一又は異なって、水素原子、ヒドロキシ基、ハロゲン原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。n1は1又は2を示す。ただし、R1が結合するYが硫黄原子の場合は1を示し、n1が2である場合は2個のR1は同一でも異なっていてもよい。n2は1又は2を示す。ただし、R2が結合するYが硫黄原子の場合は1を示す。n2が2である場合は2個のR2は同一でも異なっていてもよい。n3は1又は2を示す。ただし、R3が結合するYが硫黄原子の場合は1を示す。n3が2である場合は2個のR3は同一でも異なっていてもよい。n1、n2及びn3は同一でも異なっていてもよい。]
    で表されるメラミン化合物及びチオシアヌル酸化合物である、請求項1又は2に記載の電気化学的酸素還元用触媒。
  4. 前記メラミン化合物若しくはチオシアヌル酸化合物をモノマーとする重合体が、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Yは同一又は異なって、窒素原子又は硫黄原子を示す。R4~R8は同一又は異なって、2価の基を示す。R9~R11は同一又は異なって、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換アルケニル基、又は置換若しくは非置換アリール基を示す。m1は1又は2を示す。ただし、R6が結合するYが硫黄原子の場合は1を示す。m1が2である場合は2個のR6は同一でも異なっていてもよく、2個のR10は同一でも異なっていてもよい。m2及びm3は同一又は異なって、0又は1を示す。ただし、R7~R8が結合するYが硫黄原子の場合は0を示す。OR9~OR11が一部又は全部脱離し、R4~R8で示される2価の基に架橋され三次元網目構造を構成してもよい。]
    で表される繰り返し単位を有する重合体である、請求項1~3のいずれか1項に記載の電気化学的酸素還元用触媒。
  5. 前記一般式(2)において、R4~R8がいずれも置換若しくは非置換アルキレン基、置換若しくは非置換アルケニレン基、又は置換若しくは非置換アリーレン基である、請求項4に記載の電気化学的酸素還元用触媒。
  6. 導電性担体上に担持されている、請求項1~5のいずれか1項に記載の電気化学的酸素還元用触媒。
  7. 前記導電性担体が炭素質材料である、請求項6に記載の電気化学的酸素還元用触媒。
  8. 燃料電池用カソード触媒である、請求項1~7のいずれか1項に記載の電気化学的酸素還元用触媒。
  9. 請求項1~8のいずれか1項に記載の電気化学的酸素還元用触媒を用いた、燃料電池用又は金属空気電池用の空気極。
  10. 請求項9に記載の空気極を正極として用いた、燃料電池。
  11. 請求項9に記載の空気極を正極として用いた、金属空気電池。
PCT/JP2019/019229 2018-05-15 2019-05-15 電気化学的酸素還元用触媒 WO2019221156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020519879A JP7089805B2 (ja) 2018-05-15 2019-05-15 電気化学的酸素還元用触媒
US17/054,413 US11962018B2 (en) 2018-05-15 2019-05-15 Electrochemical oxygen reduction catalyst
EP19804448.9A EP3796440A4 (en) 2018-05-15 2019-05-15 ELECTROCHEMICAL OXYGEN REDUCTION CATALYST
CN201980031473.9A CN112106241B (zh) 2018-05-15 2019-05-15 电化学氧还原催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094138 2018-05-15
JP2018094138 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019221156A1 true WO2019221156A1 (ja) 2019-11-21

Family

ID=68539786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019229 WO2019221156A1 (ja) 2018-05-15 2019-05-15 電気化学的酸素還元用触媒

Country Status (5)

Country Link
US (1) US11962018B2 (ja)
EP (1) EP3796440A4 (ja)
JP (1) JP7089805B2 (ja)
CN (1) CN112106241B (ja)
WO (1) WO2019221156A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090746A1 (ja) * 2019-11-08 2021-05-14 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒
WO2021177431A1 (ja) * 2020-03-06 2021-09-10 日産化学株式会社 新規触媒組成物並びに窒素含有基を有する炭素材料
DE102023103876A1 (de) 2022-03-28 2023-09-28 Toyota Jidosha Kabushiki Kaisha Elektrochemischer sauerstoffreduktionskatalysator, luftelektrode, brennstoffzelle und metall-luft-zelle
DE102023101928A1 (de) 2022-03-28 2023-09-28 Toyota Jidosha Kabushiki Kaisha Elektrochemischer sauerstoffreduktionskatalysator, luftelektrode, brennstoffzelle, und metall-luft-zelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015531A2 (en) * 2022-07-13 2024-01-18 University Of Kentucky Research Foundation Triazine lipids, lipid synthesis, and methods for inhibiting canonical nf kb transcriptional activity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175578A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Corp 燃料電池電極用触媒
JP2011092940A (ja) 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The 燃料電池用カソード電極触媒及びこれを用いた燃料電池
JP2013208597A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 酸素還元触媒と酸素還元触媒を用いた電気化学セル
US20130280419A1 (en) * 2008-08-21 2013-10-24 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
CN106784888A (zh) * 2016-12-09 2017-05-31 新乡医学院 一种金属空气燃料电池氧还原催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214762B1 (en) 2000-11-21 2007-05-08 Japan Science And Technology Agency Redox-active polymer and electrode comprising the same
MXPA04007623A (es) 2002-02-07 2004-12-07 Fuji Jukogyo Kabushiki Kaisya Electrodo reversible activo de reduccion oxidacion y bateria novedosa que utiliza el mismo.
KR100439854B1 (ko) * 2002-03-13 2004-07-12 한국과학기술연구원 에어로젤형 백금-루테늄-탄소 촉매, 그 제조방법 및 상기촉매를 이용한 직접메탄올 연료전지
GB201111819D0 (en) * 2011-07-11 2011-08-24 Johnson Matthey Plc Catalyst and method for its preparation
EP2742999A4 (en) * 2011-08-08 2015-04-08 Showa Denko Kk PROCESS FOR PREPARING A REDOX CATALYST AND USE OF THE REDOX CATALYST
CN105312087B (zh) * 2014-07-29 2017-11-10 北京大学 纳米复合催化剂及其制备方法与应用
JP6967761B2 (ja) * 2016-11-24 2021-11-17 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒
KR20210078497A (ko) * 2018-09-28 2021-06-28 덴마크스 텍니스케 유니버시테트 합금 나노입자 생산 공정
CN111644189B (zh) * 2020-05-07 2022-10-18 广东邦普循环科技有限公司 利用废旧电池负极石墨的氧还原催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175578A (ja) * 2005-12-27 2007-07-12 Asahi Kasei Corp 燃料電池電極用触媒
US20130280419A1 (en) * 2008-08-21 2013-10-24 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
JP2011092940A (ja) 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The 燃料電池用カソード電極触媒及びこれを用いた燃料電池
JP2013208597A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 酸素還元触媒と酸素還元触媒を用いた電気化学セル
CN106784888A (zh) * 2016-12-09 2017-05-31 新乡医学院 一种金属空气燃料电池氧还原催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 31, 1998, pages 371 - 377
See also references of EP3796440A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090746A1 (ja) * 2019-11-08 2021-05-14 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒
JPWO2021090746A1 (ja) * 2019-11-08 2021-05-14
JP7265292B2 (ja) 2019-11-08 2023-04-26 国立研究開発法人産業技術総合研究所 電気化学的酸素還元用触媒
WO2021177431A1 (ja) * 2020-03-06 2021-09-10 日産化学株式会社 新規触媒組成物並びに窒素含有基を有する炭素材料
DE102023103876A1 (de) 2022-03-28 2023-09-28 Toyota Jidosha Kabushiki Kaisha Elektrochemischer sauerstoffreduktionskatalysator, luftelektrode, brennstoffzelle und metall-luft-zelle
DE102023101928A1 (de) 2022-03-28 2023-09-28 Toyota Jidosha Kabushiki Kaisha Elektrochemischer sauerstoffreduktionskatalysator, luftelektrode, brennstoffzelle, und metall-luft-zelle

Also Published As

Publication number Publication date
CN112106241B (zh) 2022-08-30
US11962018B2 (en) 2024-04-16
EP3796440A4 (en) 2022-02-16
JPWO2019221156A1 (ja) 2021-06-24
EP3796440A1 (en) 2021-03-24
JP7089805B2 (ja) 2022-06-23
US20210384524A1 (en) 2021-12-09
CN112106241A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
JP7089805B2 (ja) 電気化学的酸素還元用触媒
US9882223B2 (en) Catalysts and electrodes for fuel cells
US7229942B2 (en) Supported catalyst and method for preparing the same
US11682773B2 (en) Electrocatalyst
JP6967761B2 (ja) 電気化学的酸素還元用触媒
WO2006002228A2 (en) Catalyst support for an electrochemical fuel cell
KR20120125636A (ko) 에너지 저장 및 발생 시스템
Duan et al. Investigation of carbon-supported Ni@ Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride
JP5813627B2 (ja) 燃料電池
Yang et al. Electrocatalyst composed of platinum nanoparticles deposited on doubly polymer-coated carbon nanotubes shows a high CO-tolerance in methanol oxidation reaction
Maumau et al. Electro-oxidation of alcohols using carbon supported gold, palladium catalysts in alkaline media
JP4472943B2 (ja) 膜電極接合体
JP7265292B2 (ja) 電気化学的酸素還元用触媒
JP6607487B2 (ja) 電気化学的酸素還元用触媒
JP2009231049A (ja) 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池
JP2019029304A (ja) 電極触媒
JPWO2009051111A1 (ja) 燃料電池用担持触媒及び燃料電池
WO2023120421A1 (ja) 電解質
JP2024121487A (ja) 電気化学的酸素還元用触媒
JP2022138904A (ja) 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019804448

Country of ref document: EP

Effective date: 20201215