WO2019219098A1 - 一种人参二醇苷衍生物及其制备方法和应用 - Google Patents

一种人参二醇苷衍生物及其制备方法和应用 Download PDF

Info

Publication number
WO2019219098A1
WO2019219098A1 PCT/CN2019/095992 CN2019095992W WO2019219098A1 WO 2019219098 A1 WO2019219098 A1 WO 2019219098A1 CN 2019095992 W CN2019095992 W CN 2019095992W WO 2019219098 A1 WO2019219098 A1 WO 2019219098A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
pharmaceutically acceptable
mmol
nmr
Prior art date
Application number
PCT/CN2019/095992
Other languages
English (en)
French (fr)
Inventor
刘全海
张军
Original Assignee
苏州济尔生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州济尔生物医药有限公司 filed Critical 苏州济尔生物医药有限公司
Priority to US16/764,090 priority Critical patent/US11866458B2/en
Priority to JP2020524671A priority patent/JP7083394B2/ja
Publication of WO2019219098A1 publication Critical patent/WO2019219098A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0005Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring the nitrogen atom being directly linked to the cyclopenta(a)hydro phenanthrene skeleton
    • C07J41/0016Oximes

Definitions

  • the present invention relates to a ginsenoside derivative, in particular to a ginseng diol glycoside derivative, and to a process for the preparation and use of the compound.
  • Asthma also known as bronchial asthma, is a heterogeneous disease characterized by chronic inflammation of the airways involved in various cellular and cellular components such as eosinophils, mast cells, T lymphocytes, neutrophils, and airway epithelial cells. This chronic inflammation is associated with high airway response, and its clinical manifestations are recurrent wheezing, shortness of breath, chest tightness and/or cough.
  • Asthma is a common respiratory disease. It is one of the four major chronic diseases recognized by the medical profession. It can be life-threatening in severe cases and is listed as one of the top ten causes of death. According to the survey, there are 25 million people in China, and about 300 million people in the world suffer from asthma. The global asthma death rate is about 1/100,000. The average annual rate of 250,000 people worldwide is due to asthma, and the rising trend is very fast.
  • the mechanism of tracheal inflammation in addition to the above-mentioned cells (such as eosinophils, mast cells, T lymphocytes, neutrophils) In addition to cells, airway epithelial cells, etc., it also includes mediators including prostaglandins, active neuropeptides, and IL-4, IL-5, IL-12, IL-13 and interferon, and granule-mono-column colony-stimulating factors.
  • mediators including prostaglandins, active neuropeptides, and IL-4, IL-5, IL-12, IL-13 and interferon, and granule-mono-column colony-stimulating factors.
  • Immune response and allergic mechanisms such as elevated total IgE and specific IgE in serum.
  • the neural receptor regulation mechanism in the airway, adrenergic nerve, cholinergic nerve and asthma are closely related. 4. Th1/Th2 cell imbalance. 5. The second messenger cAMP/cGMP is out of balance. 6, other mechanisms related to asthma, such as genetic inheritance, airway remodeling.
  • antiasthmatic drugs which in general can be divided into anti-inflammatory asthma drugs, anti-allergic asthma drugs and bronchodilators. More specifically, it can be divided into the following categories:
  • the release agent of allergic medium is selective stability, the cell membrane of mast cells, reducing the release of allergic media by degranulation, reducing the sensitivity to various non-specific stimuli and the high reactivity of the airway, reducing bronchospasm.
  • the main drugs are sodium cromoglycate, ketotifen and nedocromil.
  • Sodium cromoglycate is safe, but its efficacy is not ideal; ketotifen has preventive effects on endogenous, exogenous and mixed, with certain central inhibition and anticholinergic effects; nedocromil is currently more A strong anti-allergic inflammatory antiasthmatic drug for inhalation with few adverse reactions.
  • bronchodilators these drugs are commonly used asthma drugs, occupy an important position.
  • the drugs can be further divided into ⁇ 2 receptor agonists, theophylline and cholinergic receptor blockers.
  • ⁇ 2 receptor agonist is a bronchodilator, ⁇ 2 receptor is distributed in different effector cells of airway and lung tissue, which activates adenylate cyclase by stimulating G protein to make bronchial smooth muscle cells
  • the level of cAMP is increased, which makes the bronchial smooth muscle relax, increases ciliary movement and mucus elimination function, reduces exudation, reduces airway edema, and inhibits inflammatory cell mediators.
  • Rapid, long-lasting action such as Formoterol inhaler
  • slow onset long duration of action
  • slow onset and short duration of action such as oral drug Tallin, salbutamol, formoterol
  • rapid onset short duration of action, such as inhaled terbutaline or salbutamol.
  • Theophylline a derivative of methylxanthine, also a commonly used bronchodilator. Its mechanism of relaxing airway smooth muscle is multi-link. It is not recommended for patients who have been taking sustained-release theophylline for a long time.
  • anticholinergic drugs M choline receptor blockers: There are three subtypes of M choline receptors in the respiratory tract. Most commonly used anticholinergics are non-selective M choline receptor blockers, because M2 receptors are blocked. The inhibitory feedback regulation of this receptor has been abolished, thereby enhancing the contractile response of the airway. Therefore, anticholinergic drugs for the treatment of asthma are currently devoted to the blocking agent of M3 cholinergic receptors, but have not yet broken through.
  • inhalants such as ipratropium bromide and tiotropium bromide are commonly used.
  • ipratropium bromide has good selectivity to M3 receptor
  • tiotropium bromide is a long-acting anticholinergic drug
  • others have oxygenated products and taiwutropine. Because these drugs block M choline receptors, thereby inhibiting guanylate reductase, thereby reducing the concentration of intracellular cGMP to relax bronchial smooth muscle, but slower onset, often used as second-line drugs.
  • Immunotherapeutics and others In recent years, due to the development of immunology, the immune processes of immune mediators and antibodies have been clearly explained, so monoclonal antibodies, receptor blockers and DNA vaccines can regulate Th1. /Th2 balance, antigen-specific IgG blocks the immune damage of antigen-specific IgE, and plays a direct role in the inhibition of immune effector cells, mainly IgE monoclonal antibody, TNF- ⁇ , IL-5, IL-4 and IL -13 and so on. Most of the current research is on the efficacy and safety of the drug. In addition, there is magnesium sulfate for the treatment of acute severe asthma, because magnesium ions are natural calcium antagonists.
  • anti-inflammatory asthma drugs 4.1 leukotrienes, anti-tri-element drugs can be used alone, long-acting drugs to control asthma, can also be used as an alternative medicine for mild asthma and combination drugs for moderate to severe asthma, but The effect is not as good as hormones, such as montelukast, zafirluk and zileuton.
  • Anti-leukotriene drugs can improve lung function, reduce asthma symptoms, and reduce hormone dose. These drugs have certain side effects to be noted.
  • 4.2 Glucocorticoids Chronic inflammation of the airways is the main cause of asthma. Corticosteroids are currently the most effective drugs for controlling airway inflammation. Its mechanism of action is multifaceted.
  • Glucocorticoids can directly contract blood vessels and inhibit vasodilation and fluid exudation.
  • PG prostaglandins
  • LTs leukotrienes
  • IL-1 IL-2
  • IL-3 IL-4
  • IL-5 IL-6
  • IL-8 TNF ⁇
  • GM-csf GM-csf
  • Glucocorticoids These drugs can be administered by oral, inhalation or intravenous administration. Depending on the duration of the asthma attack, different administration methods and different drugs can be used. In general, inhalation administration is preferred. Because of the small dose of inhalation, it directly acts on the respiratory tract, exerts local anti-inflammatory effects, reduces airway reactivity, and reduces the frequency and extent of seizures. It is more commonly used such as fluticasone propionate, budesonide and ciclesonide. For patients with severe illness and intractable treatment, systemic administration may be considered, but systemic adverse reactions are strong, and systemic adverse reactions should be noted to minimize systemic administration. Oral is better than injection.
  • prednisone, prednisone and methylprednisone can be used orally because they have little effect on corticosteroids, and have a relatively short half-life. They can be treated every other day. The pine can be gradually reduced after the disease is controlled and given to the inhalant, because these drugs may produce side effects of corticosteroids, which can spread the infection and aggravate the ulcer. Gastrointestinal bleeding, high blood pressure, elevated blood sugar, sodium retention, and hypokalemia.
  • Glucocorticoids have a wide range of effects in lung and tracheal inflammation, and they are very effective, but glucocorticoids can cause diabetes, osteoporosis and other side effects in long-term applications, causing many restrictions in clinical applications, in order to improve this class.
  • Many people use the principle of prodrugs or soft drugs for drug design, and can also be structurally modified around the nucleus of the corpus callosum.
  • the above mentioned ciclesonide is activated by esterification after inhalation into the lungs. Active metabolites are produced to exert a local anti-inflammatory effect, and because of its low bioavailability in vivo (less than 1%), ciclesonide causes fewer adverse reactions.
  • a class of drugs currently under investigation is a regulator of selective glucocorticoid receptors, which separates its anti-inflammatory effects and side effects, which has become an important direction for new drug research.
  • Glucocorticoids enter the cytoplasm through the cell membrane and bind to specific unactivated glucocorticoid receptors in the cytoplasm, resulting in conformational changes in the receptor, and heat shock proteins (HSP90) dissociate to form hormones (Gc) and receptors ( The GR) complex is transferred to the nucleus, and the GR is activated, and the DNA is unbound to a DNA-binding type, thereby binding to a specific DNA on the target gene.
  • This sequence is involved in the activation of GR, called guicocorticoid responsive elements, which exert transcriptional repression or transcriptional activation on downstream genes, thereby inducing or inhibiting the synthesis of active proteins or cytokines.
  • transcriptional repression refers to ligand-activated-transcriptional regulation of transcription factors such as nuclear factor NF-Rb and activator-1 (AP-1), which inhibit pro-inflammatory transcription by protein-protein interactions, thereby producing resistance Inflammation effect.
  • AP-1 nuclear factor NF-Rb and activator-1
  • GC induces the production of an anti-inflammatory peptide lipocortin, which inhibits phospholipase and thus inhibits arachidonic acid production, thereby inhibiting prostaglandins (PGs) leukotrienes and platelet activating factors ( Inflammatory factors such as PAF), GC can also induce an anti-inflammatory protein that inhibits the inflammatory response caused by histamine and serotonin.
  • PGs prostaglandins
  • Inflammatory factors such as PAF
  • transcriptional activation means that ligand-activated GR binds to the glucocorticoid response element of the target gene promoter/enhancer region in a dimeric form to induce gene transcription, which is currently considered to be the main mechanism of glucocorticoid side effects. Therefore, many scientists in the medical field are currently studying the separation of transcriptional activation and transcriptional repression, the so-called selective glucocorticoid modulator, which has been used as a drug for chronic obstructive pulmonary disease (COPD). Report. Therefore, a large number of literature on selective glucocorticoids show that scientists and medical researchers all over the world attach great importance to this new method, and many well-known pharmaceutical companies have invested a lot of manpower and resources in this aspect, hoping to have some breakthrough.
  • COPD chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • Airflow obstruction is usually progressive, associated with increased chronic inflammatory response to toxic particles or gases in the airways and lungs.
  • the occurrence of comorbidities affects the severity of the overall condition of the patient.
  • the 2017 Global Initiative for Chronic Obstructive Pulmonary Disease (GOLP Guidelines) raises respiratory symptoms to the same position as airway obstruction, highlighting the importance of symptoms in the prevention and treatment of this disease, especially the abnormalities of airways and lung tissue, blocked Played a role in the disease.
  • COPD chronic obstructive pulmonary disease
  • COPD chronic lung obstruction
  • asthma and COPD overlap in symptoms and overlap in treatment methods so it is especially called ACO (Asthma-COPD Overlap).
  • ACO Asthma-COPD Overlap
  • Ginsenoside is a traditional Chinese medicine with a wide range of functions. Its chemical structure belongs to tetracyclic triterpenoids, and its chemical structure is similar to glucocorticoids. An important pharmacological feature is that it has the function of adapting to the original state, that is, its pharmacological action often exhibits a two-way effect due to different functional states of the body.
  • the pituitary-adrenal cortex system can prevent adrenal hypertrophy caused by adrenocorticotropic hormone (ACTH) and prevent adrenal atrophy caused by cortisone, and the results of various ginsenosides on corticosteroids in rats prove that The effect of ginsenoside Rd is the strongest, and it is proved that ginsenoside stimulates the adrenal cortex, which increases the secretion of corticosteroids, and proves that it is not caused by the adrenergic nervous system or the excited H1 receptor. Therefore, it has also been shown that the effects of different ginsenosides on corticosteroids are inconsistent. In fact, some ginsenosides have been shown to have agonistic effects on corticosteroid receptors in recent years, and some of the effects of ginsenosides are similar to those of selective glucocorticoids.
  • ACTH adrenocorticotropic hormone
  • Ginseng saponin coumpound K is the main metabolite of ginseng ginseng diol saponin in human intestinal tract, belonging to rare ginsenosides.
  • the unique biological activity of ginsenoside CK has attracted widespread attention, and scientific research on it has also increased.
  • the present invention has studied a series of compounds from ginsengdiol glycosides and found that the compounds exhibit strong anti-inflammatory effects in vitro and animal model experiments, especially for the treatment of asthma and COPD.
  • a first aspect of the invention relates to a ginseng diol glycoside derivative or a pharmaceutically acceptable salt thereof, which has the structure of the formula (I) shown below:
  • R 1 is selected from a hydroxy or non-glucose pyranosyl group or
  • R 4 and R 6 are bonded to each other, and R 5 and R 7 are independently selected from hydrogen, C 1-6 alkoxy, hydroxy, cyano, C 1-6 ester, or saccharide;
  • R 4 , R 5 , R 6 and R 7 are independently selected from the group consisting of hydrogen, C 1-6 alkoxy, hydroxy, cyano, C 1-6 ester, sugar;
  • R 8 is selected from hydrogen or C 1-6 alkyl.
  • R 2 and R 3 together represent N-OH.
  • R 6 and R 7 together represent N-OR 8 ; and R 8 represents hydrogen or methyl.
  • R 5 is selected from a glycosyl group; and R 1 represents a hydroxyl group.
  • the C 1-6 alkoxy group is preferably an unsubstituted methoxy group or ethoxy group.
  • the non-glucose pyranosyl group refers to: rhamnosyl, fucosyl, arabinose, xylosyl, ribosyl, quinolyl, galactosyl, glucosyl, 6-deoxy- 6-Glucosyl, lactosyl and cellobiose groups.
  • the glycosyl group refers to a sugar moiety which provides a hemiacetal hydroxyl group in the glycoside molecule
  • the glycosyl group according to the present invention is preferably a deoxyglycosyl group or a pentose group, and specific examples thereof include a ribulose group, a rhamnosyl group, and a rock. Alginose, arabinose, xylosyl, ribosyl, quinolyl, glucosyl, galactosyl, glucosyl, 6-deoxy-6-glucosyl, lactosyl and cellobiose groups.
  • the invention relates to the following compounds:
  • the pharmaceutically acceptable salt is preferably an acid addition salt obtained by reacting a compound of the present invention with a pharmaceutically acceptable acid, or a compound having an acidic group and a basic compound therein.
  • the acid is preferably selected from the group consisting of inorganic acids (such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid), and organic acids (such as oxalic acid, maleic acid, fumaric acid, malic acid, tartaric acid, citric acid or
  • the benzoic acid or the like is preferably selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium hydrogencarbonate, aqueous ammonia or ammonium hydrogencarbonate.
  • the above pharmaceutically acceptable salts are easily separated and can be purified by conventional separation methods such as solvent extraction, dilution, recrystallization, column chromatography, and preparative thin layer chromatography.
  • Another aspect of the invention relates to a method of synthesizing a compound of formula (I), in particular to a reaction comprising:
  • the selective acylation treatment refers to: dissolving 20(S)-ginsengdiol glycoside (PPD) in an organic solvent, adding 3 ⁇ 7 equivalents of an acylating agent after heating, and heating the reaction. .
  • the acylating agent may be selected from one of an acid anhydride, an active ester or an acid chloride; preferably acetic anhydride, benzoyl chloride.
  • the catalyst is selected from one or a combination of dimethylaminopyridine, triethylamine, pyridine, diisopropylethylamine or N,N,N,N-tetramethylethylenediamine. Preference is given to dimethylaminopyridine and triethylamine.
  • the organic base is preferably a monovalent alkali metal compound; more preferably one of sodium methoxide, sodium ethoxide, sodium hydroxide, potassium hydroxide, lithium hydroxide or a combination thereof
  • the reaction is preferably carried out in the presence of an organic solvent selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, methanol, ethanol, propanol, butanol, acetonitrile, THF, DMF, DMSO, pyridine. , benzene, toluene, xylene, diethyl ether or a mixture thereof.
  • an organic solvent selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, methanol, ethanol, propanol, butanol, acetonitrile, THF, DMF, DMSO, pyridine.
  • benzene, toluene, xylene, diethyl ether or a mixture thereof selected from the group consisting of dichloromethane, chloroform, carbon tetrachloride, methanol, ethanol, propanol, butanol, acetonit
  • the substituted 20(S)-ginsengdiol glycoside is combined with a glycosyl donor, a Lewis acid catalyst and a molecular sieve under an inert gas to carry out a glycosidation reaction in the glycoside treatment solution, and a quencher is added to quench the reaction at the end of the reaction. Finally, purification by column chromatography or recrystallization is carried out to obtain a 20-O-glycosylation reaction purification product.
  • the molar ratio of the disubstituted 20(S)-ginsengdiol glycoside, the glycosyl donor and the Lewis acid catalyst is 1: (1.0 to 5.0): (0.01 to 0.5), and the disubstituted 20 ( S) - the mass ratio of ginseng diol glycoside to molecular sieve is from 1:0.1 to 7:1.
  • the Lewis acid catalyst refers to a C 3 -C 9 haloamide, a C 1 -C 6 fluorohydrocarbylsulfonic acid, a C 2 -C 8 silylfluorohydrocarbylsulfonate, a C 1 -C 6
  • the glycoside treatment liquid refers to one of C 1 -C 4 chloroalkanes, toluene or diethyl ether or a combination thereof.
  • the quencher is one or a combination of trimethylamine, triethylamine or sodium thiosulfate.
  • the eluent used in the column chromatography purification is: a mixture of petroleum ether, dichloromethane, ethyl acetate, chloroform, methanol, n-hexane or cyclohexane.
  • the crystallization solvent used in the recrystallization purification is: chloroform, C 1 -C 4 alkyl alcohol, ethyl acetate, acetone, n-hexane, petroleum ether, cyclohexane, dichloromethane or water. Or a combination thereof.
  • the organic solvent is one of dichloromethane, chloroform, pyridine, dichloroethane or a mixture thereof.
  • the glycosidation reaction product can be produced by a selective deprotection reaction or a complete deprotection reaction under conditions similar to the step 2).
  • the polar solvent is one of tetrahydrofuran, methanol, ethanol, dichloromethane or water or a combination thereof.
  • the hydroxyl group at positions 3 and 12 of the 20(S)-ginsengdiol glycoside derivative can be oxidized in the presence of an oxidizing agent to give a corresponding oxo derivative.
  • the oxidizing agent is one of dichromate dichromate, pyridine chromic anhydride, potassium dichromate, sodium dichromate, Dess-Martin oxidant or chromium trioxide or a mixture thereof.
  • the oxidation reaction is preferably carried out by heating in the presence of an organic solvent.
  • the double bond in the 20(S)-ginseng diol glycoside derivative can be reduced with hydrogen under the action of a hydrogenation catalyst to give the corresponding hydrogenated product.
  • the hydrogenation catalyst may be selected from Pd/C or other known hydrogenation catalysts.
  • the reaction is preferably carried out in the presence of a polar solvent, preferably methanol or ethanol.
  • the 20(S)-hydroxydadamane-3-hydroxy-24-en-12-one is reacted with an acid chloride under basic conditions, and then heated with lithium bromide and lithium carbonate in DMF to obtain the target compound.
  • the acid chloride may be selected from the group consisting of benzenesulfonyl chloride and p-toluenesulfonyl chloride.
  • the PPD is reacted with the active acid chloride in an organic solvent in the presence of an organic base at a low temperature to introduce an acyl group at the 12 position of the PPD.
  • the acyl-substituted PPD is reacted at room temperature in an organic solvent in the presence of PDC and acetic anhydride to oxidize the hydroxyl group at the 3-position of the compound to a carbonyl group. It is then removed from the acyl group at position 12 in the presence of a sodium alkoxide/alcohol to give the target compound.
  • the 20(S)-dammarane-3,12-dioxo-24-ene compound is reacted with hydroxylamine hydrochloride under basic conditions to obtain the corresponding hydroxyimine compound.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the above-described ginseng diol glycoside derivative of the present invention or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable adjuvant.
  • the pharmaceutical composition can be formulated into various types of dosage unit dosage forms, such as tablets, pills, powders, liquids, suspensions, emulsions, granules, capsules, suppositories, and injections (solutions and suspensions), etc., depending on the purpose of the treatment. .
  • any excipient known and widely used in the art can be used.
  • carriers such as lactose, white sugar, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, and silicic acid; binders such as water, ethanol, propanol, ordinary syrup, dextrose solution, starch Solution, gelatin solution, carboxymethyl cellulose, shellac, methyl cellulose and potassium phosphate, polyvinylpyrrolidone, etc.
  • disintegrating agents such as dry starch, sodium alginate, agar powder and kelp powder, sodium bicarbonate, carbonic acid Fatty acid esters of calcium, polyethylene sorbitan, sodium lauryl sulfate, monoglyceride stearate, starch and lactose; disintegration inhibitors such as white sugar, glyceryl tristearate, coconut oil and hydrogenation Oil, etc.
  • adsorption promoters such as
  • any excipient known and widely used in the art may be used, for example, carriers such as lactose, starch, coconut oil, hardened vegetable oil, kaolin and talc, etc.; Such as gum arabic powder, tragacanth powder, gelatin and ethanol, etc.; disintegrating agents, such as agar and kelp powder.
  • any excipient known and widely used in the art can be used, for example, polyethylene glycol, coconut oil, higher alcohols, esters of higher alcohols, gelatin and semi-synthetic glycerides. Wait.
  • the solution and suspension may be sterilized, and an appropriate amount of sodium chloride, glucose or glycerin or the like is preferably added to prepare an injection which is isotonic with blood.
  • Any of the commonly used carriers in the art can also be used in the preparation of the injection.
  • water, ethanol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, and fatty acid esters of polyethylene sorbitan can be used.
  • solubilizers, buffers, analgesics, and the like can be added.
  • the content of the compound of the formula I and the pharmaceutically acceptable salt thereof of the present invention in the pharmaceutical composition is not particularly limited and can be selected within a wide range, and is usually from 1 to 70% by mass. Good is 1-30% by mass.
  • the administration method of the pharmaceutical composition is not particularly limited.
  • the formulation of the appropriate dosage form can be selected for administration according to the age, sex and other conditions and symptoms of the patient. For example, tablets, pills, solutions, suspensions, emulsions, granules, and capsules are administered orally; injections can be administered alone or in combination with injectable solutions (eg, glucose solutions and amino acid solutions), if any It is necessary to use a single injection for intramuscular, intradermal, subcutaneous or intraperitoneal injection; suppositories are administered to the rectum.
  • injectable solutions eg, glucose solutions and amino acid solutions
  • the reaction was terminated by the addition of Et 3 N, and the mixture was returned to room temperature, and the molecular sieve was removed by suction filtration, and the reaction mixture was concentrated to a solid.
  • the reaction was completed, the reaction mixture was neutralized by adding a cationic resin, concentrated by filtration, and subjected to column chromatography. A white solid IA (6.7 g, a two-step yield of 81.0%) was obtained.
  • ginseng diol glycoside derivatives linked to different glycosyl groups were prepared according to the same method as above.
  • the reaction mixture was neutralized with a cation resin, concentrated by filtration, and purified by column chromatography to give pale yellow solid I-4 (14.1 g, 96.2%).
  • PPD (40.0, 86.82 mmol) was dissolved in dry 500.0 mL of dichloromethane, PDC (98.0 g, 260.46 mmol) and acetic anhydride (32.8 mL, 347.28 mmol) were added to react at room temperature for about 5.0 h, and insolubles were removed by suction filtration.
  • GR derivative ginseng diol glycoside derivative
  • CK ginsenoside CK
  • Drug preparation Take the corresponding amount of test sample, place it in a mortar and grind it, and then use 0.5% CMCNa to prepare the corresponding volume by equal multiplication.
  • This series is oral, choose dexamethasone acetate tablets (production unit: Shanghai Xinyi Pharmaceutical Co., Ltd., batch number, specification: 015150901, 0.75mg) as a positive drug.
  • Ginsenoside CK (Production unit: Shanghai Standard Biotech Co. Ltd, batch number, specification: 3690/20548, 5000.0 mg, purity: 92%)
  • OVA ovalalbumin
  • Preparation of aluminum hydroxide adjuvant Take 250 mL of 5% aluminum sulfate solution, add 100 mL of 5% sodium hydroxide solution under vigorous stirring, and wash the precipitate twice with physiological saline, and then suspend the precipitate into physiological saline to make 250 mL.
  • Atomizer Model: 403C household air compression atomizer, manufacturer: Yuyue Medical.
  • mice Female, weighing 18-20 g, were divided into blank group, model group, dexamethasone 0.6 mg/kg group, CK group, GR derivative, 5 rats in each group, orally.
  • mice Female, weighing 18-20 g, were divided into blank group, model group, dexamethasone 0.6 mg/kg group, CK group, GR derivative, 5 rats in each group, orally.
  • mice were sensitized (20 ⁇ g OVA/mice) by intraperitoneal injection of OVA on days 0 and 14, and injected intraperitoneally.
  • OVA aerosol administration challenge was performed on days 21-25. 24 hours after the last challenge, blood was collected from the eyes of the mice, serum was taken, and IgE levels in the serum were measured using an ELISA kit.
  • sample ID, IH, IK, IL can significantly reduce the serum IgE content in mice, and 0.6mg/kg dexamethasone can significantly reduce the serum IgE content in mice.
  • ID, IH, IK, and IL have obvious therapeutic effects on OVA-induced bronchial asthma.
  • a total of 144 BALB/C mice (18-20 g) at 6 weeks of age were divided into 24 groups. Divided into: control group, placebo group, dexamethasone group (3mg/kg), and the other administration groups. 6 in each group. The control group was given normal saline, and no treatment was done except this.
  • All the other groups were sensitized, intraperitoneal injection of 20 ⁇ g OVA and aluminum hydroxide 200 ⁇ l PBC (2 mg emulsion), and each animal was sensitized at 0 and 14 days by sensitization by inhalation of atomized 3% OVA for 30 minutes at 21, 22, 23
  • Oral therapeutic agent ie, the positive control group was administered with 3 mg/kg dexamethasone and the administration group was orally administered from 17 to 23 days, the control group and the placebo group were given PBS, and the control group was given PBS (without OVA).
  • the physiological saline was atomized for 30 minutes at 0 days and 14 days to remove aluminum hydroxide for 30 minutes. See Table 2 for 21, 22 and 23 days.
  • Atomizer Model: 403C household air compression atomizer, manufacturer: Yuyue Medical.
  • Passive smoking animal exposure system Model: PAB-S200. Manufacturer: Beijing Beilanbo Technology Co., Ltd.
  • the cigarette was placed in a smoke generator (20/times), and the rat was placed in an atomizing suction box.
  • the size of the atomization box was 60 cm ⁇ 60 cm ⁇ 80 cm.
  • the syringe was automatically The aspiration effect injects the smoke into the poisoning box and burns out in five minutes. Every morning and evening, 30 minutes each time, more than 4 hours interval, 180 consecutive days.
  • the budesonide preparation was diluted with physiological saline and then administered into an atomization cup.
  • concentration of the atomized solution in the 0.25 mg/mL group was 0.25 mg/mL, 4 ml each time.
  • Each aerosol was administered for 30 minutes.
  • mice Thirty-three ICR mice were randomly divided into 11 groups, namely saline group, 1.8 mg/kg dexamethasone acetate group (Dex), 225 mg of CK, IB, IC, ID, IVA, IH, IJ, IK and IL. /kg. The mice were intragastrically administered for 6 consecutive days, and a sufficient blood test was taken 1 hour after the last administration.
  • Dex dexamethasone acetate group
  • Hematology data showed that the percentage of lymphocytes in the dexamethasone 1.8 mg/kg group decreased significantly, the percentage of neutrophils increased significantly, the white blood cell count decreased significantly, and the percentage of monocytes increased significantly compared with the blank control; Neither hematologically relevant changes were caused by the GR derivatives.
  • mice Thirty-three ICR mice were randomly divided into 11 groups, namely saline group, 1.8 mg/kg dexamethasone acetate group (Dex), 225 mg of CK, IB, IC, ID, IVA, IH, IJ, IK and IL. /kg.
  • the mice were intragastrically administered for 6 consecutive days. The fasting began at about 8:00 am on the sixth day, and the tail vein blood glucose was measured at around 4:00 the next day.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

公开了一种人参二醇苷衍生物及其制备方法和应用。该类化合物在体外和动物模型实验中体现出很强的抗炎作用,因此可以用于制备抗炎的药物,尤其是可以用于治疗哮喘和COPD。在实验中,上述化合物对哮喘和COPD的作用明显,高剂量组疗效优于地塞米松和布地奈德。在远超过有效治疗剂量下,对血常规和血糖也未产生明显的影响,在抗炎药物,尤其是治疗哮喘和COPD领域具有很高的应用前景。

Description

一种人参二醇苷衍生物及其制备方法和应用 技术领域
本发明涉及一种人参皂苷衍生物,尤其涉及一种人参二醇苷衍生物,以及,本发明还涉及所述化合物的制备方法和应用。
背景技术
哮喘,又名支气管哮喘,是嗜酸性粒细胞,肥大细胞,T淋巴细胞,中性粒细胞,气道上皮细胞等多种细胞和细胞组分参与的气道慢性炎症为特征的异质性疾病,这种慢性炎症与气道高反应有关,其临床上主要表现为反复发作的喘息、气促、胸闷和(或)咳喘症状。
哮喘是一种常见的呼吸道疾病,医学界公认的四大顽症之一,严重时可危及生命,被列为十大死亡原因之一。按调查我国有2500万人,全世界约有3亿人患有哮喘,全球哮喘病死率约为1/10万,全世界每年平均有25万人死于哮喘,而且上升的势头很快。
哮喘不但严重危害人们的身心健康,减弱劳动力,降低生活质量,而且难于根治。它易于反复发作,WHO报道哮喘相关的经济消费比肺结核和艾滋病的消费总数还要高。
由于哮喘发病机制非常复杂,至今尚未完全阐明,目前认可的机制可以概括为以下几点:1、气管炎症机制,除了上述的细胞(如嗜酸性粒细胞,肥大细胞,T淋巴细胞,中性粒细胞,气道上皮细胞等)外,还包括包括前列腺素,活性神经肽等介质以及IL-4、IL-5、IL-12、IL-13及干扰素,粒-单系集落刺激因子等。2、免疫反应和变态反应机制,如血清中总的IgE和特异性IgE升高。3、气道中的神经受体调节机制、肾上腺素能神经,胆碱能神经与哮喘关系密切。4、Th1/Th2的细胞失衡。5、第二信使cAMP/cGMP失衡。6、其它一些有关哮喘发病的机制,例如基因遗传、气道重塑等。
根据哮喘的病理生理,研究者开发了许多平喘药,总的说来是可以分为抗炎性平喘药、抗过敏性平喘药和支气管扩张药等。更具体地,可以分为以下几类:
1、过敏介质的阻释药,作用机制为选择性稳定,肥大细胞的细胞膜,减少其脱颗粒释放过敏介质,降低对各种非特异性刺激的敏感性和气道的高反应性,减少支气管痉挛的发作,主要药物有色甘酸钠、酮替芬和奈多罗米等。色甘酸钠安全性好,但疗效不够理想;酮替芬对内源性、外源性和混合性均有预防发作,有一定的中枢抑制作用和抗胆碱能作用;奈多罗米是目前较强的抗过敏性炎症的平喘药,用于吸入剂,不良反应极少。
2、支气管扩张药,该类药物是常用的平喘药,占有重要的地位。该类药物又可分为β2受体激动剂、茶碱类和胆碱能受体阻断药。2.1、β2受体激动药:是支气管的扩张药,β2受体分布于气道和肺组织的不同的效应细胞上,其要通过激动G蛋白继而活化腺苷酸环化酶,使支气管平滑肌细胞内cAMP水平升高,从而使松弛支气管平滑肌,增加纤毛运动和粘液消除功能,减少渗出、减轻气道水肿、抑制炎症细胞介质,按其作用情况可分为四类:(1)、起效迅速,作用时间长,例如福莫特罗吸入剂;(2)、起效缓慢,作用持续时间长,例如沙美特洛;(3)、起效缓慢,作用时间也短,例如口服药特布他林、沙丁胺醇、福莫特罗;(4)、起效迅速,作用时间也短,例如吸入型特布他林或沙丁胺醇。2.2茶碱类:为甲基黄嘌呤类的衍生物,也是一种常用的支气管扩张药,它的松弛呼吸道平滑肌作用机制是多环节的,不推荐已经长期服用缓释型茶碱的患者使用短效茶碱,多索茶碱与氨茶碱相比疗效显著,不良反应低,患者耐受性好,茶碱类药物有一定的副作用,监测血药浓度、调节给药量是必要的。2.3抗胆碱药(M胆碱受体阻断药):呼吸道上M胆碱受体有三个亚型,目前常用的抗胆碱药多是非选择性的M胆碱受体的阻断药,由于M2受体被阻断取消了该受体的抑制性反馈调节作用,从而加强了气道的收缩反应,所以用于治疗哮喘的抗胆碱药目前致力于M3胆碱能受体的阻断药,但是至今尚未突破。目前常用的有异丙托溴铵、噻托溴铵等吸入剂。其中异丙托溴铵对M3受体有较好的选择性,噻托溴铵为长效抗胆碱药物,其他尚有氧托品、泰乌托品等。由于这类药是阻断了M胆碱受体,从而抑制鸟苷酸还原酶,进而减少细胞内cGMP的浓度达到松弛支气管平滑肌作用,但是起效较慢,常被用作二线用药。
3、免疫治疗剂及其他:近年来,由于免疫学的发展,免疫介质和抗体等的免疫过程已经阐述清楚,所以单克隆抗体,受体阻滞剂及DNA疫苗,该类药物可以通过调节Th1/Th2平衡,抗原特异性的IgG阻断抗原特异性IgE的免疫损伤,对免疫效应细胞的直接抑制作用而发挥作用,主要有IgE单抗、TNF-α、IL-5、IL-4和IL-13等。目前大部分都在对药效和安全性进一步研究中。此外尚有硫酸镁对于急性重症型哮喘治疗等,因为镁离子是天然的钙拮抗剂。
4、抗炎平喘药:4.1白三烯类,抗三白烯药可单独应用,控制哮喘的长效药物,也可作为替代药物用于轻度哮喘和联合用药用于中重度哮喘,但是效果不如激素类代表药物,本类药物有孟鲁司特,扎鲁司特和齐留通等。抗白三烯药物可以改善肺功能,减轻哮喘症状,减少激素剂量,该类药物有一定的副作用需注意。4.2糖皮质激素类药物:气道慢性炎症是哮喘的主要原因,皮质激素是目前最有效的控制气道炎症的药。它的作用机制是多方面的,它的抗炎作用涉及它对血管炎症细胞及炎症介质的作用:(1)、糖皮质激素可直接收缩血管,抑制血管扩张和液体渗出。(2)、抑制白细胞在炎症区域聚集,抑制炎症细胞在气道粘膜的迁移和聚集。(3)、骨髓单核细胞的释放减少,中性粒细胞的释放增加,并抑制能引起组织损伤的毒性氧自由基从中性粒细胞和巨嗜细胞释放。(4)、抑制纤维母细胞的功能,并因此抑制胶原和氨基多糖的生成。(5)、抑制与炎症相关的细胞因子和介质的生成。例如抑制前列腺素类(PG)白三烯类(LTs),IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-8、TNFα、GM-csf等的生成。(6)、降低血浆中补体成分的浓度。(7)、抑制嗜碱性白细胞释放组织胺。(8)、减少IgG的生成。(9)、抑制NOA和黏附分子的生成。(10)、增加β2受体的反应性,抗过敏作用。长期临床研究已经显示上述药物可以改善肺功能,降低气道反应性,减少症状,降低发作频率和程度,改善生活质量。
糖皮质激素该类药可采用口服、吸入和静脉注射等多种给药途径,根据哮喘发作的轻重持续时间长短,可采用不同的给药方式,不同的药物。一般说来,吸入给药为首选。因为吸入给药剂量小,直接作用于呼吸道,发挥局部抗炎作用,气道反应性降低,发作频率和程度减少,以丙酸氟替卡松、布地奈德和环索奈德(Ciclesonide)等较为常用。对于病情严重,吸入治疗难以控制的患者可以考虑全身给药,但其全身性不良反应强,应该注意全身不良反应,尽量减少全身给药。口服优于注射,口服可采用泼尼松、泼尼松尤及甲基泼尼松尤,因为它们对皮质激素的作用小,半衰期相对较短,可用隔日治疗,而病情严重者可采用氢化可的松,病情控制后可逐渐减量并给予吸入剂维持,因为这类药可能会产生皮质激素的副作用,可产生感染扩散,溃疡病加重。消化道出血,高血压,血糖升高,水钠储留,血钾降低等不良反应。
糖皮质激素在肺和气管炎症方面有着广泛作用,而且作用很强大,但是糖皮质激素类药物在长期应用中会产生糖尿病,骨质疏松等副作用,在临床应用造成了许多限制,为了提高该类要的治疗指数,许多人采用了前药或者软药的原则进行药物设计,也可围绕甾体母核进行结构修饰,例如上面提到的环索奈德在吸入肺部后,被酯解活化产生活性代谢产物而发挥局部抗炎作用,由于它在体内生物利用度低(小于1%),所以环索奈德引起的不良反应较少。
目前在研的一类药物即是选择性糖皮质激素受体的调节剂,使它的抗炎作用和副作用相分离,这已成为新药研究的重要方向。
糖皮质激素通过细胞膜进入细胞浆后,与细胞浆内特异性未活化型的糖皮质激素受体结合,导致受体构象改变,热休克蛋白(HSP90)解离形成激素(Gc)和受体(GR)复合物转移至细胞核,GR活化,由DNA非结合型转变为DNA结合型,进而与靶基因上的特异性DNA结合。该序列参与GR活化称作糖皮质激素反应成分(GRE,giucocorticoid responsive elements),对下游基因发挥转录抑制或转录活化作用,进而诱导或抑制活性蛋白质或细胞因子的合成。其中,转录抑制是指配体激活的-通过蛋白-蛋白相互作用抑制促炎症转录的转录因子如核因子NF-Rb和激活蛋白-1(AP-1)等的-转录调节作用,从而产生抗炎症效果。另外,GC可诱导产生一种抗炎多肽脂皮素(lipocortin LC),可抑制磷脂酶,并因此抑制花生四烯酸生成,并进而抑制前列腺素类(PGs)白三烯和血小板活化因子(PAF)等炎症因子,GC还可诱导一种抗炎蛋白,可抑制组织胺和5-羟色胺引起炎症反应。另一方面,转录活化是指配体激活的GR以二聚体形式与靶基因启动子/增强子区域的糖皮质激素应答元件结合诱导基因转录,目前认为是糖皮质激素副作用的主要机制。因此,目前医药界许多科学家都在研究能使转录活化和转录抑制分离,即所谓选择性糖皮质激素的调节剂,其作为慢性阻塞性肺疾病(COPD)的药物,目前都已经有化合物进入临床的报道。因此,大量的关于选择性糖皮质激素的文献表明,全世界的科学家和医药研究人员对这一新方法高度重视,而且许多知名医药公司在这一方面也投入了大量的人力物力,希望有所突破。
慢阻肺(COPD)是一种常见的以持续性气流阻塞为特征的可以预防和治疗的疾病,气流受阻通常为进展性的,与气道和肺脏对有毒颗粒或者气体的慢性炎症反应增加有关,其和合并症的发生影响患者整体病症的严重程度。2017年慢性阻塞性肺病全球倡议(GOLP指南)中把呼吸道症状提高到气道阻塞同样的地位,突出了症状在本疾病防治中的重要性,特别是强调了气道和肺组织的异常,受阻在该疾病中起到了一定的作用。
COPD在全球都是常见疾病,严重影响患者的生命质量,病残率和病死率较高。目前已是全球第五大死亡原因,预计在2020年后将成为全球第三大死亡原因,COPD发病率的增加与烟草使用密切相关。
同时,COPD对患者及家庭以及对社会的经济负担很重,我国部分地区调查显示,40岁的人群中慢肺阻的患病率高达8.2%,全世界调查有4-6亿人患COPD。
尽管有些争议,但是目前大多数学者都认为肺功能是诊断的金指标,1秒用力呼气量/用力呼气量(FFV0.2/FVC)的比值下降提示气流受阻。
目前认为哮喘和COPD在症状上有交叠,在治疗方法上也有重叠,所以特别称为ACO(Asthma-COPD Overlap),这些患者生活质量低,肺功能迅速下降,病情经常加重,经济上负担加重,特别地,这二者之间的因果关系非常的清楚,治疗上有些药物对二者都是有意义的,所以引起各方面的重视。
人参皂苷是传统中药,作用非常广泛,其化学结构属于四环三萜类,化学结构类似糖皮质激素。其药理上一个重要的特点是具有适应原样作用,即其药理作用常因机体功能状态不同呈现双向作用。如对垂体-肾上腺皮质系统,既能阻止促肾上腺皮质激素(ACTH)引起的肾上腺肥大,又可阻止可的松引起的肾上腺萎缩,而且多种人参皂苷对大鼠皮质激素的影响研究结果证明,人参皂苷Rd的作用最强,并证明人参皂苷刺激肾上腺皮质,增加了分泌皮质激素的作用,而且证明不是通过肾上腺素能神经系统或兴奋H1受体所致。因此也显示不同的人参皂苷对皮质激素样的作用是不一致的。事实上,近年来已经证明一些人参皂苷对皮质激素受体有激动作用,而且人参皂苷中的一些作用类似于选择性糖皮质激素的修饰剂。
人参皂苷coumpound K(CK)是人参中原人参二醇型皂苷在人体肠道内的主要代谢产物,属于稀有人参皂苷。人参皂苷CK独特的生物活性已经引起了人们广泛关注,针对它的科学研究也日益增多。
发明内容
本发明从人参二醇苷苷出发研究了一系列化合物,发现该类化合物在体外和动物模型实验中体现出很强的抗炎作用,尤其可以用于治疗哮喘和COPD。
具体而言,本发明的第一个方面涉及一种人参二醇苷衍生物或其药学上可接受的盐,所述人参二醇苷衍生物具有如下所示的通式(I)的结构:
Figure PCTCN2019095992-appb-000001
其中,R 1选自羟基或非葡萄糖的吡喃糖基或
Figure PCTCN2019095992-appb-000002
R 2和R 3一起表示=O或=N-OR 8
或R 2为氢且R3为羟基;
R 4和R 6结合成键,且R 5和R 7独立选自氢、C 1-6烷氧基、羟基、氰基、C 1-6酯基、糖基;
或R 6和R 7一起表示=O或=N-OH,且R 5和R 4独立选自氢、C 1-6烷氧基、羟基、氰基;
或R 4、R 5、R 6和R 7独立选自氢、C 1-6烷氧基、羟基、氰基、C 1-6酯基、糖基;
R 8选自氢或C 1-6烷基。
根据本发明的另一种实施方式,其中,R 2和R 3一起表示=N-OH。
根据本发明的另一种实施方式,其中,R 4和R 6结合成键。
根据本发明的另一种实施方式,其中,R 6和R 7一起表示=N-OR 8;并且R 8表示氢或甲基。
根据本发明的另一种实施方式,其中,R 4和R 6结合成键,R 5选自糖基;并且R 1表示羟基。
其中,所述C 1-6烷氧基是指RO-基团,其中R是指C 1-6烷基,具体包括甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、叔丁氧基、戊氧基、异戊氧基、叔戊氧基、新戊氧基、己氧基、异己氧基、叔己氧基、新己氧基等。所述烷基可以任选被选自低级烷基、羟基、氰基的取代基取代。
所述C 1-6烷氧基优选未取代的甲氧基或乙氧基。
所述C 1-6酯基是指R aCOO-基团,其中R a是指C 1-5烷基;所述C 1-6酯基优选乙酰氧基。
所述非葡萄糖的吡喃糖基是指:鼠李糖基、岩藻糖基、阿拉伯糖基、木糖基、核糖基、奎诺糖基、半乳糖基、氨基葡萄糖基、6-脱氧-6-氨基葡萄糖基、乳糖基以及纤维二糖基。
所述糖基是指糖苷分子中提供半缩醛羟基的糖部分,根据本发明的糖基优选脱氧糖基或五碳糖基,其具体例子包括:核酮糖基、鼠李糖基、岩藻糖基、阿拉伯糖基、木糖基、核糖基、奎诺糖基、葡萄糖基、半乳糖基、氨基葡萄糖基、6-脱氧-6-氨基葡萄糖基、乳糖基以及纤维二糖基。
根据本发明的另一种实施方式,其中本发明涉及如下化合物:
Figure PCTCN2019095992-appb-000003
本发明中,所述的药学上可接受的盐较佳的为本发明化合物与药学上可接受的酸进行反应制得的酸加成盐,或者其中具有酸性基团的化合物和碱性化合物反应生成的盐。其中,所述的酸较佳的选自无机酸(如盐酸、硫酸、磷酸或氢溴酸等),和有机酸(如草酸、马来酸、富马酸、苹果酸、酒石酸、柠檬酸或苯甲酸等);所述的碱性化合物较佳的选自氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸氢钾、氨水或碳酸氢铵等。上述药学上可接受的盐容易分离,可采用常规分离方法提纯,如溶剂萃取、稀释、重结晶、柱色谱和制备薄层色谱等。
本发明的另一个方面涉及通式(I)化合物的合成方法,具体涉及包括如下的反应:
1)3位和12位选择性二酰基取代的20(S)-人参二醇苷的制备
所述的选择性酰基化处理是指:将20(S)-人参二醇苷(PPD)溶于有机溶剂中,加入催化剂后,再加热3~7当量的酰基化剂,加热反应,即得。
所述的酰基化剂可以选自酸酐、活性酯或酰氯中的一种;优选乙酸酐,苯甲酰氯。
所述的催化剂选自二甲氨基吡啶、三乙胺、吡啶、二异丙基乙胺或N,N,N,N-四甲基乙二胺中的一种或其组合。优选二甲氨基吡啶、三乙胺。
2)酰基取代的20(S)-人参二醇苷的选择性去酰基
3,12-O-二酰基取代的20(S)-人参二醇苷在有机碱的存在性进行选择性脱酰基,得目标化合物。
所述有机碱优选一价碱金属化合物;更优选甲醇钠、乙醇钠、氢氧化钠、氢氧化钾、氢氧化锂中的一种或其组合
所述反应优选在有机溶剂的存在下进行,所述有机溶剂选自二氯甲烷、三氯甲烷、四氯化碳、甲醇、乙醇、丙醇、 丁醇、乙腈、THF、DMF、DMSO、吡啶、苯、甲苯、二甲苯、乙醚或其混合物。
3)糖苷化反应
将取代的20(S)-人参二醇苷与糖基供体、路易斯酸催化剂和分子筛在惰性气体保护下,在糖苷处理液中进行糖苷化反应,待反应结束时加入淬灭剂淬灭反应,最后用柱层析纯化或重结晶纯化,获得20-O-糖苷化反应提纯物。
所述的二取代的20(S)-人参二醇苷、糖基供体和路易斯酸催化剂的摩尔比为1∶(1.0~5.0)∶(0.01~0.5),所述的二取代的20(S)-人参二醇苷和分子筛的质量比为1∶0.1~7∶1。
所述的路易斯酸催化剂是指C 3-C 9的卤代酰胺、C 1-C 6的氟代烃基磺酸、C 2-C 8的硅基氟代烃基磺酸酯、C 1-C 6的氟代烃基磺酸银、三氟化硼-乙醚络合物或三氟化硼-乙醚混合物中的一种或其组合。
所述的分子筛为
Figure PCTCN2019095992-appb-000004
型硅铝酸盐分子筛。
所述的糖苷处理液是指C 1-C 4的氯代烷烃、甲苯或乙醚中的一种或其组合。
所述的淬灭剂为三甲胺、三乙胺或硫代硫酸钠中的一种或其组合。
所述的柱层析纯化中采用的洗脱液为:石油醚、二氯甲烷、乙酸乙酯、三氯甲烷、甲醇、正己烷或环己烷中一种其混合。
所述的重结晶纯化中采用的结晶溶剂为:三氯甲烷、C 1-C 4的烷基醇、乙酸乙酯、丙酮、正己烷、石油醚、环己烷、二氯甲烷或水中一种或其组合。
所述的有机溶剂为:二氯甲烷、三氯甲烷、吡啶、二氯乙烷中一种或其混合。
4)20-O-糖基类化合物的制备
糖苷化反应提纯物可在类似步骤2)的条件下进行选择性脱除保护基反应或完全脱除保护基反应后生成。
所述的极性溶剂为:四氢呋喃、甲醇、乙醇、二氯甲烷或水中的一种或其组合。
5)羟基的氧化
20(S)-人参二醇苷衍生物3位和12位的羟基可以在氧化剂的存在下氧化反应得到对应的氧代衍生物。
所述的所述的氧化剂为重铬酸二吡啶盐、吡啶铬酐、重铬酸钾、重铬酸钠、Dess-Martin氧化剂或三氧化铬中一种或其混合。
所述氧化反应优选在有机溶剂的存在下加热进行。
6)双键的还原
20(S)-人参二醇苷衍生物中的双键可以与氢气在氢化催化剂的作用下发生还原得到对应的氢化产物。
所述氢化催化剂可以选择Pd/C或其它已知的氢化催化剂。
反应优选在极性溶剂的存在下进行,所述极性溶剂优选甲醇、乙醇。
7)20(S)-羟基达玛烷-3,24-二烯-12-酮类化合物的合成
将20(S)-羟基达玛烷-3-羟基-24-烯-12-酮与酰氯在碱性条件下反应,然后与溴化锂、碳酸锂在DMF中加热反应,得目标化合物。
所述酰氯可以选自苯磺酰氯、对甲苯磺酰氯。
8)12-β-羟基-20(S)-羟基达玛烷-24-烯-3-酮类化合物的制备
PPD与活性酰氯在有机溶剂中,有机碱的存在下,低温反应,在PPD的12位引入酰基。该酰基取代的PPD在有机溶剂中,PDC和醋酐的存在下室温反应,将化合物3位的羟基氧化为羰基。然后将其在醇钠/醇的存在下脱去12位的酰基,即得目标化合物。
9)20(S)-达玛烷-3,12-羟基亚胺基-24-烯类化合物的合成
将20(S)-达玛烷-3,12-二氧代-24-烯类化合物与盐酸羟胺在碱性条件下反应,得相应的羟基亚胺类化合物。
本发明的另一方面涉及一种药物组合物,其包括上述本发明的人参二醇苷衍生物或其药学上可接受的盐及药学上可接受的辅料。
根据治疗目的,可将药物组合物制成各种类型的给药单位剂型,如片剂、丸剂、粉剂、液体、悬浮液、乳液、颗粒剂、胶囊、栓剂和针剂(溶液及悬浮液)等。
为了使片剂形式的药物组合物成形,可使用本领域任何已知的并广泛使用的赋形剂。例如,载体,如乳糖、白糖、氯化钠、葡萄糖、尿素、淀粉、碳酸钙、高岭土、结晶纤维素和硅酸等;粘合剂,如水、乙醇、丙醇、普通糖浆、葡萄糖溶液、淀粉溶液、明胶溶液,羧甲基纤维素、紫胶、甲基纤维素和磷酸钾、聚乙烯吡咯烷酮等;崩解剂,如干淀粉、藻酸钠、琼脂粉和海带粉,碳酸氢钠、碳酸钙、聚乙烯脱水山梨醇的脂肪酸酯、十二烷基硫酸钠、硬脂酸单甘酯、淀粉和乳糖等;崩解抑制剂,如白糖、甘油三硬脂酸酯、椰子油和氢化油等;吸附促进剂,如季胺碱和十二烷基硫酸钠等;润湿剂,如甘油、淀粉等;吸附剂,如淀粉、乳糖、高岭土、膨润土和胶体硅酸等;以及润滑剂,如纯净的滑石,硬脂酸盐、硼酸粉和聚乙二醇等。如果需要的话,还可以用通常的涂渍材料使片剂作为糖衣片剂、肠衣片剂、涂膜片剂(如涂明胶膜片剂)、双层膜片剂及多层片剂。
为了使丸剂形式的药物组合物成形,可使用本领域任何已知的并广泛使用的赋形剂,例如,载体,如乳糖,淀粉,椰子油,硬化植物油,高岭土和滑石等;粘合剂,如阿拉伯树胶粉,黄蓍胶粉,明胶和乙醇等;崩解剂,如琼脂和海带粉等。
为了使栓剂形式的药物组合物成形,可使用本领域任何已知并广泛使用的赋形剂,例如,聚乙二醇,椰子油,高级醇,高级醇的酯,明胶和半合成的甘油酯等。
为了制备针剂形式的药物组合物,可将溶液和悬浮液消毒,并最好加入适量的氯化钠,葡萄糖或甘油等,制成与血液等渗压的针剂。在制备针剂时,也可使用本领域内任何常用的载体。例如,水,乙醇,丙二醇,乙氧基化的异硬脂醇,聚氧基化的异硬脂醇和聚乙烯脱水山梨醇的脂肪酸酯等。此外,还可加入通常的溶解剂、缓冲剂和止痛剂等。
本发明的如式I所示的化合物及其药学上可接受的盐在药物组合物中的含量无特殊限制,可在很宽的范围内进行选择,通常可为质量百分比1-70%,较佳的为质量百分比1-30%。
本发明中,所述的药物组合物的给药方法没有特殊限制。可根据病人年龄、性别和其它条件及症状,选择合适剂型的制剂给药。例如,片剂、丸剂、溶液、悬浮液、乳液、颗粒剂和胶囊是口服给药;针剂可以单独给药,或者和注射用输送液(如葡萄糖溶液及氨基酸溶液)混合进行静脉注射,如有必要可以单纯用针剂进行肌肉、皮内、皮下或腹内注射;栓剂为给药到直肠。
本发明的另一方面涉及上述化合物的医药用途,具体而言,该类化合物在体外和动物模型实验中体现出很强的抗炎作用,因此可以用于制备抗炎的药物,尤其是可以用于治疗哮喘和COPD。在超过治疗指数很大的剂量下,对血液和血糖也未产生明显的影响,这显然优于选择性糖皮质激素。因此,其在抗炎药物,尤其是治疗哮喘和COPD领域具有很高的应用前景。
说明书附图
图1化合物IA-1的 1H NMR谱图
图2化合物ID的 1H NMR谱图
具体实施方式
实施例1 3-O-乙酰基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-12-酮(IA)
1.1 3,12-二-O-乙酰基-20(S)-人参二醇苷(I-1a)的合成
Figure PCTCN2019095992-appb-000005
将20(S)-人参二醇苷(120.0g,0.26mol)溶于干燥吡啶(750.0mL),加入催化量的DMAP,冰浴条件下滴加Ac 2O(99.1mL,1.04mol),自然恢复至室温反应6.0h。将反应液减压浓缩,再以乙酸乙酯(2.0L)稀释,依次用稀盐酸,饱和NaHCO 3水溶液,饱和NaCl水溶液洗涤,有机层用无水Na 2SO 4干燥,过滤,减压浓缩,得微黄色固体,重结晶(乙酸乙酯/石油醚)得白色晶体I-1a(110.3g,收率77.8%)。 1H NMR(CDCl 3)δ5.15(t,J=6.6Hz,1H,H-24),4.72(td,J=10.8,4.8Hz,1H,H-12),4.48(dd,J=12.0,4.2Hz,1H,H-3),2.04(s,3H,H-COC H 3),2.03(s,3H,H-COC H 3),1.70(s,3H),1.63(s,3H),1.12(s,3H),1.00(s,3H),0.94(s,3H),0.87(s,3H),0.85(s,3H),0.84(s,3H)。
1.2 3-β-O-乙酰基-20(S)-人参二醇苷(I-2a)的合成
Figure PCTCN2019095992-appb-000006
将化合物I-1a(110.0g,0.20mol)溶于100.0mL CH 2Cl 2,加入400.0mL甲醇和MeONa(1.1g,0.02mol),室温反应3.0h。加入适量阳离子树脂调节pH至7,过滤除去树脂,浓缩,得浅黄色固体I-2a(91.7g,90.3%)。 1H NMR(CDCl 3)δ5.15(t,J=6.6Hz,1H,H-24),4.47(dd,J=11.0,5.5Hz,1H,H-3),3.60(td,J=10.5,5.0Hz,1H,H-12),2.04(s,3H,H-COC H 3),1.69(s,3H),1.63(s,3H),1.19(s,3H),0.98(s,3H),0.90(s,3H),0.87(s,3H),0.85(s,6H)。
1.3 3-β-O-乙酰基-20(S)-羟基达玛烷-24-烯-12-酮(I-3a)的合成
Figure PCTCN2019095992-appb-000007
将化合物I-2a(91.0g,0.18mol)溶于干燥的500.0mL CH 2Cl 2中,加入PDC(101.6g,0.27mol)和醋酐(34.0mL,0.36mol)室温反应约5.0h,抽滤除去不溶物,滤液浓缩,柱层析分离(乙酸乙酯/正己烷=1/10)得白色晶体I-3a(63.4g,70.0%)。 1H NMR(CDCl 3)δ5.10(s,1H,H-24),4.48(dd,J=11.6,4.4Hz,1H,H-3),2.85(d,J=10.2Hz,1H,H-13),2.44-2.37(m,1H,H-17),2.28(d,J=14.3Hz,1H),2.23(d,J=14.0Hz,1H),2.05(s,3H),1.68(s,3H),1.62(s,3H),1.17(s,3H),1.12(s,3H),0.95(s,3H),0.87(s,6H),0.80(s,3H)。
1.4 3-β-O-乙酰基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-12-酮(IA)的合成
Figure PCTCN2019095992-appb-000008
将I-3a(25.0g,49.92mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(36.9g,74.88mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000009
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(901.69μL,4.99mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体。将四分之一浓缩物溶于二氯甲烷和甲醇的混合溶剂(400.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IA(6.7g,两步收率81.0%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.5Hz,1H,H-24),4.47-4.43(m,1H),4.44(d,J=7.6Hz,1H,H-1’),3.80(dd,J=11.7,1.8Hz,1H),3.64(dd,J=11.8,5.3Hz,1H),3.36-3.32(m,2H),3.27(t,J=8.8Hz,1H),3.22-3.18(m,1H),3.10(t,J=8.2Hz,1H),2.51(dd,J=9.7,4.4Hz,1H),2.44(t,J=13.2Hz,1H),2.11(dd,J=12.8,3.3Hz,1H),2.02(s,3H),1.66(s,3H),1.62(s,3H),1.27(s,3H),1.11(s,3H),1.02(s,3H),0.91(s,3H),0.88(s,3H),0.76(s,3H); 13C NMR(150MHz,CD 3OD)δ215.2,172.8,132.0,126.0,98.3,82.5,82.1,78.8,77.4,75.7,71.8,62.9,57.5,57.2,57.1,56.1,43.0,41.9,40.7,40.7,39.4,39.0,38.8,35.5,33.0,28.5,25.9,25.0,24.7,24.6,22.9,21.2,19.4,17.8,17.2,16.9,16.7,16.3。MALDI-HRMS calcd for C38H62NaO9[M+Na] +685.4286,found 685.4293。
实施例2 3-β-O-乙酰基-20(S)-O-β-D-吡喃葡萄糖醛酸甲酯达玛烷-24-烯-12-酮(IA-1)的制备
Figure PCTCN2019095992-appb-000010
将I-3a(4.4g,8.79mmol)和2,3,4-三-O-乙酰基葡萄糖醛酸甲酯三氯亚胺酯(5.0g,10.44mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000011
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(157.21μL,0.87mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(150.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IA-1(3.3g,两步收率54.1%)。其 1H NMR(400MHz,DMSO-D6)如图1所示。 13C NMR(150MHz,CD 3OD)δ215.1,172.8,171.3,132.0,125.9,98.7,83.0,82.1,77.9,76.4,75.2,73.1,57.4,57.2,57.1,56.1,52.8,43.2,41.9,40.7,40.4,39.4,38.9,38.8,35.4,33.0,28.4,25.9,25.0,24.5,24.4,22.7,21.1,19.4,17.8,17.1,16.9,16.7,16.3。
实施例3 3β-羟基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-12-酮(IB)
Figure PCTCN2019095992-appb-000012
将实施例步骤1.4中四分之二的浓缩物溶于二氯甲烷和甲醇的混合溶剂(400.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,50℃下反应6.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IB(11.6g,两步收率74.8%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.2Hz,1H),4.44(d,J=7.6Hz,1H,H-1’),3.80(d,J=11.5Hz, 1H),3.64(dd,J=11.7,5.3Hz,1H),3.34-3.31(m,2H),3.28(t,J=8.8Hz,1H),3.21-3.18(m,1H),3.16-3.08(m,2H),2.52-2.40(m,2H),1.67(s,3H),1.62(s,4H),1.27(s,3H),1.11(s,3H),0.98(s,3H),0.97(s,3H),0.79(s,4H),0.74(s,3H)。
实施例4 3β-羟基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-12-酮(IB-1)
Figure PCTCN2019095992-appb-000013
将IB(7.5g,12.08mmol)溶于MeOH(200.0mL)中,加入Pd/C(750.0mg),H 2置换后室温反应2h,TLC检测反应完毕后,硅藻土滤除Pd/C,反应液浓缩,柱层析分离(CH 2Cl 2/MeOH=10/1)得白色固体IB-1(4.6g,61.3%)。 1H NMR(400MHz,CD 3OD)δ4.43(d,J=7.7Hz,1H),3.80(dd,J=11.6,1.5Hz,1H),3.64(dd,J=11.6,5.4Hz,1H),3.36-3.31(m,2H),3.27(d,J=8.8Hz,1H),3.21-3.17(m,1H),3.15(t,J=6.4,4.8Hz,1H),3.09(t,J=8.4Hz,1H),2.50-2.40(m,2H),2.11(dd,J=12.7,3.5Hz,1H),1.9-1.91(m,1H),1.84-1.78(m,1H),1.27(s,3H),1.08(s,3H),0.98(s,3H),0.97(s,3H),0.89(s,3H),0.88(s,3H),0.79(s,3H),0.74(s,3H); 13C NMR(150MHz,CD 3OD)δ215.6,98.3,82.6,79.3,78.8,77.4,75.6,71.8,62.9,57.5,57.2,57.1,56.3,42.9,41.9,41.0,40.7,40.0,40.0,38.8,35.6,33.0,29.0,28.6,27.9,24.9,23.8,23.0,22.9,19.5,17.1,16.7,16.3,16.0。MALDI-HRMS calcd for C36H62NaO8[M+Na] +645.4337,found 645.4354。
实施例5 3β,25-二羟基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-12-酮(IB-2)
5.1 24-溴-25-羟基-3β-O-乙酰基-20(S)-O-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖基)达玛烷-12-酮(I-3A-2)的合成
Figure PCTCN2019095992-appb-000014
将I-3A(7.5g,9.02mmol)溶于四氢呋喃150mL,加入水15mL,冰浴下分批加入N-溴代丁二酰亚胺(2.4g,13.53mmol),冰浴继续反应1h。TLC检测反应完毕后,加入乙酸乙酯200mL稀释反应液,依次用5%硫代硫酸钠溶液,饱和食盐水洗涤,有机层以无水硫酸钠干燥,过滤,浓缩,柱层析分离(乙酸乙酯/石油醚=1/2)得白色固体I-3A-2(7.6g,90.5%)。 1H NMR(400MHz,CDCl 3)δ5.20(t,J=9.4Hz,1H,H-3’),5.01(t,J=9.8Hz,1H,H-4’),4.95(t-like,J=9.0,8.2Hz,1H,H-2’),4.68(d,J=7.8Hz,1H,H-1’),4.46(dd,J=11.4,4.7Hz,1H,H-3),4.12-4.18(m,2H,H-6’),3.89(d,J=9.8Hz,1H,H-24),3.70-3.68(m,1H,H-5’),2.97(d,J=9.8Hz,1H,H-13),2.38-2.44(m,1H,H-17),2.16(d,J=8.6Hz,2H,H-11),2.10(s,3H,H-Ac),2.04(s,3H,H-Ac),2.02(s,3H,H-Ac),1.98(s,6H,H-Ac*2),1.35(s,3H,H-26,H-27),1.19(s,3H,H-20),1.04(s,3H,H-Me),0.95(s,3H,H-Me),0.87(s,3H,H-Me),0.85(s,3H,H-Me),0.72(s,3H,H-Me); 13C NMR(125MHz,CDCl 3)δ211.3(C-12),170.9,170.7,170.2,169.5,169.1,94.7(C-1’),81.8,80.3,73.1,72.6,72.1,71.8,71.7,68.6,62.4,56.2,55.8,55.7,54.3,41.4,40.5,39.7,38.6,38.2,37.8,37.5,34.2,31.6,29.1,27.9,26.5,26.2,23.7,23.4,22.8,21.3,20.8,20.6,18.2,16.7,16.4,16.2,15.6。MALDI-HRMS calcd for C 46H 71O 14BrNa[M+Na] +949.3919,found 949.3919。
5.2 25-羟基-3β-O-乙酰基-20(S)-O-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖基)达玛烷-12-酮(I-3A-3)的合成
Figure PCTCN2019095992-appb-000015
将I-3A-2(7.2g,7.76mmol)溶于EtOAc 150mL中加入DIEA 3mL,Pd/C 720.0mg,H 2置换后室温反应2h,TLC检测反应完毕后,硅藻土滤除Pd/C,反应液浓缩,柱层析分离(乙酸乙酯/石油醚=1/1)得白色固体I-3A-3(6.0g,90.9%)。 1HNMR(400MHz,CDCl 3)δ5.17(t,J=9.4Hz,1H,H-3’),5.00(t-like,J=9.9,9.3Hz,1H,H-4’),4.93(t,J=8.8Hz,1H,H-2’),4.61(d,J=7.7Hz,1H,H-1’),4.46(dd,J=11.5,4.4Hz,1H,H-3),4.16(dd,J=12.1,6.1Hz,1H,H-6’-1),4.09(dd,J=12.1,2.0Hz,1H,H-6’-2),3.64(ddd,J=9.9,6.1,2.2Hz,1H,H-5’),2.98(d,J=9.9Hz,1H,H-13),2.45(td,J=10.4,5.5Hz,1H,H-17),2.07(s,3H,H-Ac),2.03(s,3H,H-Ac),2.01(s,3H,H-Ac),1.98(s,6H,H-Ac,H-Ac),1.21(s,6H,H-26,H-27),1.19(s,3H,H-21),1.02(s,3H,H-Me),0.95(s,3H,H-Me),0.87(s,3H,H-Me),0.85(s,3H,H-Me),0.72(s,3H,H-Me); 13CNMR(125MHz,CDCl 3)δ 211.6(C-12),170.8(C-Ac),170.6(C-Ac),170.2(C-Ac),169.5(C-Ac),169.0(C-Ac),94.6(C-1’),82.3,80.4,73.2,71.9,71.5,70.7,68.8,62.6,56.1,55.8,55.6,54.5,44.7,41.2,40.5,39.7,39.6,38.3,37.9,37.5,34.3,29.4,29.3,27.9,23.5,23.5,23.2,21.2,20.8,20.6,19.6,18,2,16.8,16.4,16.2,15.6。MALDI-HRMS calcd for C 46H 72O 14Na[M+Na] +871.4820,found 871.4824。
5.3 3β,25-二羟基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-12-酮(IB-2)的合成
Figure PCTCN2019095992-appb-000016
将I-3A-3(6.0g,7.07mmol)溶于干燥CH 2Cl 2(60mL),加入60mL CH 3OH,加入MeONa调节pH至10,48℃反应约6h。用适量阳离子树脂调节pH至中性,滤除树脂,浓缩,柱层析分离(CHCl 3/CH 3OH=15/1)得白色固体IB-2(3.9g,86.6%)。 1H NMR(400MHz,CD 3OD)δ4.44(d,J=7.7Hz,1H),3.81(dd,J=11.8,1.8Hz,1H),3.63(dd,J=11.8,5.5Hz,1H),3.34-3.31(m,2H),3.27(t,J=9.0Hz,1H),3.23-3.18(m,1H),3.15(t,J=6.0,4.8Hz,1H),3.09(t,J=8.4Hz,1H),2.50(dd,J=9.5,4.3Hz,1H),2.43(t,J=13.2Hz,1H),2.11(dd,J=12.7,3.3Hz,1H),1.95-1.90(m,1H),1.27(s,3H),1.17(s,6H),1.11(s,3H),0.98(s,3H),0.97(s,3H),0.79(s,3H),0.75(s,3H); 13C NMR(150MHz,CD 3OD)δ215.6,98.3,82.7,79.3,78.7,77.5,75.6,71.8,71.5,62.9,57.5,57.2,57.2,56.3,45.5,43.3,41.9,41.3,40.7,40.0,39.9,38.8,35.6,33.0,29.4,29.2,28.6,27.9,25.0,22.9,20.6,19.5,17.1,16.7,16.3,16.0。MALDI-HRMS calcd for C 36H 62O 9Na[M+Na] +661.4292,found 661.4304。
根据以上相同的方法制备其他连接不同糖基的人参二醇苷类衍生物。
实施例6 3β-羟基-20(S)-O-β-D-吡喃半乳糖基达玛烷-24-烯-12-酮(IC)
白色固体,5.2g,两步收率70.3%。 1H NMR(400MHz,CD 3OD)δ5.08(t,J=6.8Hz,1H,H-24),4.39(d,J=6.2Hz,1H,H-1’),3.82(s,1H),3.71(dd,J=10.6,6.6Hz,1H),3.64(dd,J=10.8,6.4Hz,1H),3.46-3.42(m,3H),3.35(d,J=9.4Hz,1H),3.14(dd,J=10.7,4.5Hz,1H),2.52-2.40(m,2H),2.11(dd,J=12.7,2.3Hz,1H),1.66(s,4H),1.62(s,3H),1.27(s,3H),1.11(s,3H),0.98(s,3H),0.97(s,3H),0.80(s,3H),0.74(s,3H); 13C NMR(150MHz,CD 3OD)δ215.6,131.9,126.0,98.8,82.4,79.3,76.1,75.6,73.1,70.1,62.1,57.5,57.2,57.1,56.4,43.0,41.9,40.7,40.6,40.0,39.9,38.8,35.6,33.0,28.6,27.9,25.9,24.9,24.7,22.9,19.5,17.8,17.1,16.7,16.3,16.0。
MALDI-HRMS calcd for C36H60NaO8[M+Na] +643.4180,found 643.4190。
实施例7 3β-羟基-20(S)-O-α-D-吡喃甘露糖基达玛烷-24-烯-12-酮(ID)
白色固体,4.9g,两步收率66.2%。其 1H NMR((400MHz,DMSO-D6))如图2所示; 13C NMR(150MHz,CD 3OD)δ214.6,132.5,125.4,95.4,81.9,79.3,75.0,73.7,72.9,68.7,63.0,57.4,57.4,57.1,56.2,42.4,41.8,40.7,40.0,39.9,39.4,38.8,35.4,33.2,28.6,27.9,25.9,24.9,24.6,23.8,19.5,17.7,17.0,16.7,16.6,16.0。MALDI-HRMS calcd for C36H60NaO8[M+Na] +643.4180,found 643.4185。
实施例8 3β-羟基-20(S)-O-β-D-吡喃木糖基达玛烷-24-烯-12-酮(IE)
白色固体,4.5g,两步收率63.4%。 1H NMR(400MHz,CD 3OD)δ5.08(t,J=6.4Hz,1H),4.39(d,J=7.3Hz,1H,H-1’),3.77(dd,J=11.2,5.2Hz,1H),3.49-3.42(m,1H),3.33(d,J=9.4Hz,1H),3.27(t,J=8.8Hz,1H),3.16-3.11(m,2H),3.07(t,J=8.8Hz,1H),2.49(dd,J=10.0,4.4Hz,1H),2.43(t,J=13.2Hz,1H)2.11(dd,J=12.8,2.4Hz,1H),1.67(s,4H),1.61(s,5H),1.26(s,3H),1.09(s,3H),0.97(s,6H),0.79(s,3H),0.74(s,3H); 13C NMR(150MHz,CD 3OD)δ215.5,132.1,125.8,98.9,82.4,79.3,78.4,75.5,71.3,66.5,57.5,57.2,57.1,56.3,42.9,41.9,40.7,40.7,40.0,39.9,38.8,35.6,33.0,28.6,27.9,25.9,24.9,24.7,23.0,19.5,17.7,17.1,16.7,16.3,16.0。MALDI-HRMS calcd for C35H58NaO7[M+Na] +613.4075,found 613.4078。
实施例9 3β-羟基-20(S)-O-α-L-吡喃鼠李糖基达玛烷-24-烯-12-酮(IF)
白色固体,4.8g,两步收率66.7%。 1H NMR(400MHz,(CD 3) 2SO)δ5.05(t,J=6.4Hz,1H),4.78(s,1H),4.74(s,1H),4.60(s,1H),4.50(s,1H),4.35(s,1H),3.55-3.48(m,2H),3.44(d,J=8.4Hz,1H),3.15(t,J=9.2Hz,1H),2.98(m,1H),2.94(d,J=9.2Hz,1H),2.36(t,J=12.8Hz,2H),1.64(s,4H),1.57(s,3H),1.14(s,3H),1.07(d,J=6.4Hz,3H),0.96(s,3H),0.89(s,3H),0.88(s,3H),0.70(s,3H),0.66(s,3H); 13C NMR(150MHz,(CD 3) 2SO)δ201.4,130.5,124.6,94.0,79.9,76.5,72.2,72.0,71.0,68.6,55.3,55.3,55.1,53.9,40.7,38.9,38.6,38.1,37.1,33.9,31.7,28.1,27.,25.5,23.7,23.1,21.0,18.1,17.9,17.45,16.4,15.7,15.7,15.3。MALDI-HRMS calcd for C37H62NaO6[M+Na] +625.4439,found 625.4444。
实施例10 3-β-甲氧基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-12-酮(IG)
10.1 3-β-羟基-20(S)-羟基达玛烷-24-烯-12-酮(I-4)的合成
Figure PCTCN2019095992-appb-000017
将化合物I-3a(16.0g,31.96mmol)溶于80.0mL CH 2Cl 2,加入80.0mL甲醇,加入甲醇钠至pH=9-10,50℃下反应6.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析分离,得浅黄色固体I-4(14.1g,96.2%)。 1H NMR(400MHz,CDCl 3)δ5.10(s,1H),3.20(d,J=9.0Hz,1H),2.85(d,J=10.3Hz,1H),2.40(q,J=9.0Hz,1H),2.28(d,J=13.6Hz,1H),2.21(t,J=14.4Hz,1),1.68(s,3H),1.62(s,3H),1.17(s,3H),1.11(s,3H),0.99(s,3H),0.93(s,3H),0.80(s,6H)。
10.2 3-β-甲氧基-20(S)-羟基达玛烷-24-烯-12-酮(I-5a)的合成
Figure PCTCN2019095992-appb-000018
将I-4(7.3g,15.91mmol)溶于干燥的DMF(200.0mL)中,加入碘甲烷(1.99mL,31.96mmol),冰浴下分批加入60%氢化钠(1.9g,47.94mmol),于室温下反应。反应结束后,缓慢滴加水淬灭反应,乙酸乙酯稀释,依次用1mol/L盐酸,饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析分离(EA/PE,1∶6)得淡黄色液体I-5a(5.9g,78.4%)。 1H NMR(400MHz,CDCl 3)δ5.61(s,1H),5.06(t,J=7.1Hz,1H),3.52(s,3H),3.23(dd,J=11.0,4.4Hz,1H),2.94-2.86(m,1H),1.66(s,3H),1.60(s,3H),1.17(s,3H),1.00(s,3H),0.99(s,3H),0.97(s,3H),0.84(s,3H),0.80(s,3H); 13C NMR(150MHz,CDCl 3)δ214.3,142.7,125.7,79.0,74.5,55.8,55.2,54.0,52.4,48.9,39.0,38.9,38.5,37.3,36.7,34.6,31.6,28.3,28.2,27.3,26.8,25.9,25.2,22.7,22.2,18.3,17.9,16.9,15.8,15.7。
10.3 3-β-甲氧基-20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-12-酮(IG)
Figure PCTCN2019095992-appb-000019
将I-5a(5.8g,12.27mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(9.1g,18.41mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000020
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(222.3μL,1.23mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(150.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IG(4.0g,两步收率52.0%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.7Hz,1H),4.48(d,J=7.6Hz,1H),3.81(d,J=11.3Hz,1H),3.64(dd,J=11.8,7.6Hz,1H),3.48(s,3H),3.38(t,J=8.9Hz,1H),3.23-3.14(m,4H),3.09-3.07(m,1H),2.18-1.95(m,5H),1.66(s,3H),1.62(s,3H),1.33(s,3H),1.03(s,3H),1.00(s,3H),0.97(s,3H),0.88(s,3H),0.79(s,3H)。
实施例11 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3,24-二烯-12-酮(IH,即RSM-17)
11.1 3-β-O-对甲苯磺酰基-20(S)-羟基达玛烷-24-烯-12-酮(I-6)的合成
Figure PCTCN2019095992-appb-000021
将I-4(3.3g,7.19mmol)溶于干燥的CH 2Cl 2和吡啶中,冰浴下加入对甲苯磺酰氯(13.7g,71.90mmol),80℃下反应6.0h。反应结束后,缓慢滴加水淬灭反应,乙酸乙酯稀释,依次用1mol/L盐酸,饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析分离,得白色固体I-6(3.8g,87.5%)。 1H NMR(400MHz,CDCl 3)δ7.79(d,J=7.3Hz,2H),7.33(d,J=7.4Hz,2H),5.09(s,1H),4.18(d,J=11.2Hz,1H),3.18(s,1H),2.83(d,J=10.0Hz,1H),2.44(s,3H),2.41-2.34 (m,1H),2.20(d,J=11.2Hz,2H),1.68(s,3H),1.61(s,3H),1.15(s,3H),1.10(s,3H),0.90(s,3H),0.83(s,6H),0.77(s,3H); 13C NMR(150MHz,CDCl 3)δ213.8,144.5,134.9,131.7,129.8,127.8,125.0,90.3,73.3,56.3,56.0,54.8,53.3,46.2,40.3,39.3,38.8,38.4,38.0,37.3,33.9,30.9,28.0,26.5,25.9,24.8,24.6,22.6,21.8,18.5,17.8,17.6,16.3,16.0,15.9。MALDI-HRMS calcd for C37H57O5S[M+H] +613.3921,found 613.3927。
11.2 20(S)-羟基达玛烷-3,24-二烯-12-酮(I-7)的合成
Figure PCTCN2019095992-appb-000022
将I-6(3.8g,6.20mmol)溶于DMF(50.0mL)中,加入溴化锂(5.2g,49.60mmol)和碳酸锂(3.7g,49.60mmol),于153℃条件下反应1.5h。将反应液冷却至室温,加入水终止反应,乙酸乙酯稀释,依次用1mol/L盐酸、饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析分离(EA/PE,1∶6)得到I-7(2.3g,84.2%)。 1H NMR(400MHz,CDCl 3)δ5.40(s,2H),5.11(s,1H),2.89(d,J=9.9Hz,1H),2.42(s,1H),2.32-1.96(m,5H),1.69(s,3H),1.62(s,3H),1.21(s,3H),1.13(s,3H),0.96(s,6H),0.92(s,3H),0.81(s,3H); 13C NMR(150MHz,CDCl 3)δ214.4,138.2,131.6,125.0,121.1,73.3,56.3,55.1,52.5,52.4,46.2,40.9,40.4,39.4,37.9,36.8,34.8,33.3,31.8,30.9,26.5,25.9,24.8,22.7,22.6,19.6,17.8,17.5,16.2,15.5。MALDI-HRMS calcd for C30H48NaO2[M+Na] +463.3547,found 463.3543。
11.3 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3,24-二烯-12-酮(IH)
Figure PCTCN2019095992-appb-000023
将I-7(2.3g,5.22mmol)和2,3,4,6-四-O-苯甲酰基葡萄糖三氯亚胺酯(4.6g,6.26mmol)溶于干燥的CH 2Cl 2(60.0mL),加入适量
Figure PCTCN2019095992-appb-000024
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(94.3μL,0.52mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(50.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应4.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IH(2.5g,两步收率79.5%)。 1H NMR(400MHz,CD 3OD)δ5.44-5.36(m,2H),5.09(t,J=6.6Hz,1H),4.44(d,J=7.6Hz,1H),3.80(dd,J=11.7,1.5Hz,1H),3.65(dd,J=11.7,5.5Hz,1H),3.37-3.34(m,2H),3.28(t,J=8.8Hz,1H),3.20(dd,J=8.3,6.0Hz,1H),3.10(t,J=8.1Hz,1H),2.54-2.45(m,2H),2.08(dd,J=12.8,3.2Hz,1H),1.66(s,3H),1.62(s,3H),1.30(s,3H),1.12(s,3H),1.00(s,3H),0.97(s,3H),0.93(s,3H),0.76(s,3H); 13C NMR(150MHz,CD 3OD)δ215.5,139.2,131.9,126.0,122.2,98.3,82.5,78.7,77.4,75.6,71.7,62.9,57.8,57.1,55.1,53.9,42.9,42.2,41.9,40.8,40.7,38.0,35.7,34.8,33.0,32.1,25.9,24.9,24.7,23.0,22.9,20.7,17.8,17.1,16.9,15.7。MALDI-HRMS calcd for C36H58NaO7[M+Na] +625.4075,found 625.4080。
实施例12 20-O-β-D-吡喃木糖基-20(S)-人参二醇苷(IJ)
白色固体。 1H NMR(CD 3OD):5.09(t,J=7.1Hz,1H,H-24),4.52(d,J=7.7Hz,1H,H-1’),3.78(dd,J=11.5,5.5Hz,1H,H-5’-2),3.68(td,J=10.4,4.9Hz,1H,H-12),3.45(ddd,J=10.4,8.8,5.5Hz,1H,H-4’),3.29(t,J=8.8Hz,1H,H-3’),3.14(dd,J=11.5,10.4Hz,1H,H-5’-1),3.13(dd,J=11.0,4.4Hz,1H,H-3),3.07(dd,J=8.8,7.7Hz,1H,H-12),1.67(s,3H),1.61(s,3H),1.32(s,3H),1.00(s,3H),0.96(s,3H),0.91(s,3H),0.90(s,3H),0.70(s,3H); 13C NMR(CDCl 3):132.3(C-25),128.2(C-24),98.9(C-1’),84.8(C-20),79.6(C-3),78.4(C-3’),75.3(C-2’),71.8(C-12),71.1(C-4’),66.8(C-5’),57.3,53.1,52.4,51.0,40.9,40.2,40.0,38.1,36.7,35.9,31.5,30.8,28.6,28.0,27.2,25.9,23.9,22.4,19.4,18.3,17.8,17.3,16.7,16.3,16.1。
实施例13 20-O-β-L-吡喃鼠李糖基-20(S)-人参二醇苷(IK)
白色固体。 1H NMR(CD 3OD):5.13(d,J=1.4Hz,1H,H-1’),5.13(t,J=7.1Hz,1H,H-24),3.79(m,1H,H-2’),3.79(m,1H,H-5’),3.60(td,J=10.1,5.5Hz,1H,H-12),3.56(dd,J=9.6,3.2Hz,1H,H-3’),3.38(t-like,J=9.6,9.2Hz,1H,H-4),3.13(dd,J=11.5,4.6Hz,1H,H-3),1.69(s,3H),1.62(s,3H),1.36(s,3H),1.24(d,J=6.0Hz,3H,H-5’),1.00(s,3H),0.96(s,3H),0.93(s,3H),0.91(s,3H),0.77(s,3H);MS:629[M+Na] +,607[M+H]+,589.5[M-OH] +,443.4,425.4,407.4。
实施例14 20-O-α-L-吡喃阿拉伯糖基-20(S)-人参二醇苷(IL)
白色固体。 1H NMR(CD 3OD):5.10(d,J=7.3Hz,1H,H-24),4.50(d,J=7.3Hz,1H,H-1),3.84(dd,J=12.4,1.4Hz,1H,H-5’-1),3.79(brs,1H,H-4’),3.71(td,J=10.6,5.5Hz,1H,H-12),3.53(dd,J=12.4,1.4Hz,1H,H-5’-2),3.51(dd,J=6.4,3.2Hz,1H,H-3’),3.45(dd,J=9.1,7.3Hz,1H,H-2’),3.14(dd,J=11.5,4.6Hz,1H,H-3),1.67(s,3H),1.62(s,3H),1.34(s,3H),1.01(s,3H),0.96(s,3H),0.92(s,3H),0.91(s,3H),0.78(s,3H)。
实施例15、16 20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-3,12-二酮(IIA)和20(S)-羟基-3-O-β-D-吡喃葡萄糖基达玛烷-3,24-二烯-12-酮(IIA-1)的合成
15.1 20(S)-羟基达玛烷-24-烯-3,12-二酮(II-1)的合成
Figure PCTCN2019095992-appb-000025
将PPD(40.0,86.82mmol)溶于干燥的500.0mL二氯甲烷中,加入PDC(98.0g,260.46mmol)和醋酐(32.8mL,347.28mmol)室温反应约5.0h,抽滤除去不溶物,滤液浓缩柱层析分离(EA/PE,1∶8)得到淡黄色泡沫状固体II-1(24.3g,61.2%)。 1H NMR(400MHz,CDCl 3)δ5.11(t,J=7.1Hz,1H,H-24),2.90(d,J=9.6Hz,1H,H-13),2.55-2.40(m,3H),2.29(d,J=7.7Hz,2H),1.69(s,3H),1.62(s,3H),1.23(s,3H),1.11(s,6H)1.07(s,3H),1.04(s,3H),0.81(s,3H)。
15.2 20(S)-O-β-D-吡喃葡萄糖基达玛烷-24-烯-3,12-二酮(2A)和20(S)-羟基-3-O-β-D-吡喃葡萄糖基达玛烷-3,24-二烯-12-酮(2A-1)的合成
Figure PCTCN2019095992-appb-000026
将II-1(11.0g,24.08mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(17.8g,36.12mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000027
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(435.5μL,2.41mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(150.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IIA(5.8g,两步收率38.9%)和IIA-1(5.6g,两步收率37.6%)。IIA: 1H NMR(400MHz,CD 3OD)δ5.10(t,J=6.4Hz,1H),4.45(d,J=7.7Hz,1H),3.80(dd,J=11.8,1.4Hz,1H),3.65(dd,J=11.7,5.4Hz,1H),3.40-3.33(m,2H),3.28(d,J=8.9Hz,1H),3.21(dd,J=7.4,5.1Hz,1H),3.11(t,J=8.2Hz,1H),2.54-2.48(m,4H),2.14(dd,J=12.8,3.2Hz,1H),1.67(s,3H),1.62(s,3H),1.31(s,3H),1.12(s,3H),1.09(s,3H),1.07(s,6H),0.77(s,3H); 13C NMR(150MHz,CD 3OD)δ220.0,214.8,131.9,126.0,98.3,82.5,78.8,77.4,75.6,71.8,62.9,57.5,57.2,56.1,55.4,43.0,41.8,40.8,40.7,40.3,38.5,34.8,33.0,27.1,25.9,24.9,24.7,22.9,21.4,20.9,17.8,17.1,16.3,15.8。MALDI-HRMS calcd for C36H58NaO8[M+Na] +641.4024,found 625.4041。
IIA-1: 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.7Hz,1H),4.94(d,J=7.3Hz,1H),4.59(d,J=8.1Hz,1H),3.83(d,J=12.2Hz,1H),3.66(dd,J=12.1,4.7Hz,1H),3.39-3.29(m,3H),3.07(d,J=9.5Hz,1H),2.46-2.35(m,2H),2.14(d,J=14.8Hz,1H),2.06-1.92(m,3H),1.66(s,3H),1.61(s,3H),1.27(s,3H),1.15(s,3H),1.01(s,6H),0.99(s,3H),0.77(s,3H); 13C NMR(150MHz,CD 3OD)δ215.2,160.6,132.1,125.8,102.1,97.2,78.3,77.9,75.1,75.0,71.4,62.5,57.5,57.3,55.0,54.6,44.4,42.1,41.6,40.7,40.6,38.6,37.6,34.7,32.7,28.8,25.9,25.7,24.9,23.9,20.6,20.0,17.7,17.3,16.4,15.7。MALDI-HRMS calcd for C36H58NaO8[M+Na] +641.4024,found 625.4040。
实施例17 20(S)-O-β-D-吡喃葡萄糖基达玛烷-1,24-二烯-3,12-二酮(IIB)
17.1 20(S)-羟基达玛烷-1,24-二烯-3,12-二酮(II-2)的合成
Figure PCTCN2019095992-appb-000028
将II-1(12.0g,26.27mmol)溶于DMSO(88.0mL)中,加入IBX(24.0g,39.41mmol),于70℃条件下反应24.0h。将反应液冷却至室温,加入水终止反应,乙醚稀释,依次用饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析分离(EA/PE,1∶7)得到II-2(8.4g,70.5%)。 1H NMR(400MHz,CDCl 3)δ6.98(d,J=10.0Hz,1H),5.81(d,J=9.9Hz,1H),5.07(s,1H),2.88(d,J=10.8Hz,1H),2.47(d,J=13.8Hz,1H),2.38(t,J=12.5Hz,2H),1.65(s,3H),1.59(s,3H),1.23(s,3H),1.13(s,6H),1.09(s,6H),0.78(s,3H)。
17.2 20(S)-O-β-D-吡喃葡萄糖基达玛烷-1,24-二烯-3,12-二酮(IIB)的合成
Figure PCTCN2019095992-appb-000029
将II-2(8.3g,18.25mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(13.5g,27.37mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000030
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(330.7μL,1.83mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(100.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体2B(5.1g,两步收率45.3%)。 1H NMR(400MHz,CD 3OD)δ7.21(d,J=10.1Hz,1H),5.81(d,J=10.1Hz,1H),5.10(t,J=6.3Hz,1H),4.45(d,J=7.4Hz,1H),3.80(d,J=12.0Hz,1H),3.65(dd,J=12.0,4.9Hz,1H),3.40(d,J=9.7Hz,1H),3.35(t,J=9.2Hz,1H),3.27(d,J=9.6Hz,1H),3.22-3.19(m,1H),3.11(t,J=7.9Hz,1H),2.64(t,J=13.0Hz,1H),2.54-2.49(m,2H),2.39(d,J=12.4Hz,1H),1.66(s,3H),1.62(s,3H),1.35(s,3H),1.21(s,3H),1.14(s,6H),1.11(s,4H),0.76(s,3H); 13C NMR(150MHz,CD 3OD)δ213.8,207.3,160.6131.9,126.1,126.0,98.3,82.4,78.7,77.4,75.6,71.7,62.8,57.3,55.0,50.1,45.9,42.9,42.7,41.3,40.7,40.4,34.9,32.8,28.1,25.9,24.9,24.7,22.9,21.8,20.2,19.7,17.8,17.1,16.5。MALDI-HRMS calcd for C36H56NaO8[M+Na] +639.3867,found 639.3873。
实施例18 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-甲氧亚胺基-24-烯-12-酮(IIIA)
18.1 3-β-羟基-12-β-O-三甲基乙酰基-20(S)-人参二醇苷(III-1)的合成
Figure PCTCN2019095992-appb-000031
将PPD(45.0g,97.68mmol)溶于500.0mL二氯甲烷中,加入三乙胺(27.1mL,195.36mmol),将反应体系温度降至-5℃,冰浴下滴加三甲基乙酰氯(24.1mL,195.36mmol),-5℃下反应3.0h。加入水终止反应,依次用水洗,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,得粗产物36.6g,直接用于下一步反应。
18.2 12-β-O-三甲基乙酰基-20(S)-羟基达玛烷-24-烯-3-酮(III-2)的合成
Figure PCTCN2019095992-appb-000032
将III-1(36.6g,67.17mmol)溶于干燥的600.0mL二氯甲烷中,加入PDC(37.9g,100.76mmol)和醋酐(19.0mL,201.51mmol)室温反应约5.0h,抽滤除去不溶物,滤液浓缩直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ5.15(t,J=7.2Hz,1H),4.82(t,J=10.4Hz,1H),2.47-2.45(m,2H),2.22(s,1H),1.71(s,3H),1.63(s,3H),1.21(s,9H),1.12(s,3H),1.09(s,3H),1.06(s,3H),1.04(s,3H),0.98(s,3H),0.93(s,3H)。
18.3 12-β-羟基-20(S)-羟基达玛烷-24-烯-3-酮(III-3)的合成
Figure PCTCN2019095992-appb-000033
将上步反应浓缩物溶于二氯甲烷和甲醇的混合溶剂(400.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,50℃下反应6.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体III-3(17.9g,三步收率39.9%)。 1H NMR(400MHz,CDCl 3)δ5.16(s,1H,H-24),3.62-3.57(m,1H,H-3),2.54-2.41(m,2H),1.70(s,3H),1.64(s,3H),1.20(s,3H),1.08(s,3H),1.04(s,3H),1.03(s,3H),0.98(s,3H),0.89(s,3H)。
18.4 12-β-羟基-20(S)-羟基达玛烷-3-甲氧亚胺基-24-烯(III-4a)的合成
Figure PCTCN2019095992-appb-000034
将III-3(2.3g,5.01mmol)溶于吡啶(60.0mL)中,加入O-甲基羟胺盐酸盐(628.1mg,7.52mmol),于80℃条件下反应4.0h。将反应液冷却至室温,加入水终止反应,乙酸乙酯稀释,依次用1mol/L盐酸、饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,直接用于下一步。
18.5 20(S)-羟基达玛烷-3-甲氧亚胺基-24-烯-12-酮(III-5a)的合成
Figure PCTCN2019095992-appb-000035
将III-4a溶于干燥的120.0mL二氯甲烷中,加入PDC(2.8g,7.52mmol)和醋酐(1.4mL,15.03mmol)室温反应约5.0h,抽滤除去不溶物,滤液浓缩柱层析分离得到淡黄色泡沫状固体III-5a(1.1g,两步收率45.2%)。 1H NMR(400MHz,CDCl 3)δ5.10(s,1H,H-24),3.81(s,3H),3.25(s,1H),2.92(d,J=14.8Hz,1H),2.86(d,J=10.4Hz,1H),2.40(d,J=8.0Hz,1H),1.69(s,3H),1.62(s,3H),1.20(s,3H),1.16(s,3H),1.12(s,3H),1.07(s,3H),1.01(s,3H),0.78(s,3H); 13C NMR(150MHz,CDCl 3)δ214.0,165.2,131.7,125.0,73.2,61.2,56.4,56.0,54.9,53.1,46.2,40.3,40.2,39.3,38.5,37.9,37.5,33.7,30.9,27.5,26.5,25.9,24.8,23.2,22.6,19.2,17.8,17.5,15.9,15.6。MALDI-HRMS calcd for C31H51NNaO3[M+Na] +508.3761,found 508.3760。
18.6 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-甲氧亚胺基-24-烯-12-酮(IIIA)的合成
Figure PCTCN2019095992-appb-000036
将III-5a(1.1g,2.26mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(1.3g,2.71mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000037
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(40.8μL,0.23mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(50.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析,得到白色固体IIIA(860.0mg,两步收率58.5%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.7Hz,1H),4.44(d,J=7.7Hz,1H),3.80(d,J=11.7Hz,1H),3.76(s,3H),3.64(dd,J=11.7,5.3Hz,1H),3.36-3.31(m,2H),3.27(t,J=8.9Hz,1H),3.20(dd,J=7.3,5.1Hz,1H),3.10(t,J=8.2Hz,1H),2.88(dt,J=8.5,4.8Hz,1H),2.52-2.43(m,2H),2.31-2.22(m,1H),2.10(dd,J=12.7,2.9Hz,1H),1.66(s,3H),1.62(s,3H),1.29(s,3H),1.14(s,3H),1.11(s,3H),1.07(s,3H),1.05(s,3H),0.74(s,3H); 13C NMR(150MHz,CD 3OD)δ215.1,166.5,131.9,126.0,98.3,82.5,78.7,77.4,75.6,71.7,62.8,61.3,57.5,57.2,57.1,55.8,42.9,41.9,41.1,40.8,40.7,39.6,38.7,35.1,33.0,28.1,25.9,24.9,24.7,23.5,22.9,20.3,18.4,17.8,17.1,16.2,16.1。MALDI-HRMS calcd for C37H61NNaO8[M+Na] +670.4289,found 670.4294。
实施例19 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-羟基亚胺基-24-烯-12-酮(IIIB)
19.1 12-β-羟基-20(S)-羟基达玛烷-3-烯丙氧亚胺基-24-烯(III-4b)的合成
Figure PCTCN2019095992-appb-000038
将III-3(5.0g,10.90mmol)溶于吡啶(120.0mL)中,加入O-烯丙基羟胺盐酸盐(1.8g,16.35mmol),于80℃条件下反应4.0h。将反应液冷却至室温,加入水终止反应,乙酸乙酯稀释,依次用1mol/L盐酸、饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,直接用于下一步。
19.2 20(S)-羟基达玛烷-3-烯丙氧亚胺基-24-烯-12-酮(III-5b)的合成
Figure PCTCN2019095992-appb-000039
将III-4b溶于干燥的120.0mL二氯甲烷中,加入PDC(6.2g,16.35mmol)和醋酐(3.1mL,32.70mmol)室温反应约5.0h,抽滤除去不溶物,滤液浓缩柱层析分离得到淡黄色泡沫状固体III-5b(3.6g,两步收率64.6%)。 1H NMR(400MHz,CDCl 3)δ5.99(dd,J=17.4,11.4Hz,1H),5.26(d,J=17.3Hz,1H),5.17(d,J=10.5Hz,1H),5.09(t,J=6.8Hz,1H),4.52(d,J=2.6Hz,2H),3.24(s,1H),2.97(d,J=15.8Hz,1H),2.86(d,J=10.3Hz,1H),2.43-2.36(m,1H),1.69(s,3H),1.62(s,3H),1.20(s,3H),1.16(s,3H),1.12(s,3H),1.06(s,3H),1.01(s,3H),0.79(s,3H); 13C NMR(150MHz,CDCl 3)δ214.0,165.3,134.9,131.7,125.0,117.0,74.4,73.2,56.4,56.0,54.9,53.1,46.2,40.3,40.3,39.3,38.4,37.9,37.5,33.7,30.9,27.6,26.5,25.9,24.8,23.2,22.6,19.2,17.8,17.8,17.5,15.9,15.5。MALDI-HRMS calcd for C33H53NNaO3[M+Na] +534.3918,found 534.3921。
19.3 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-羟基亚胺基-24-烯-12-酮(IIIB)的合成
Figure PCTCN2019095992-appb-000040
将III-5b(3.6g,7.03mmol)和2,3,4,6-四-O-乙酰基葡萄糖三氯亚胺酯(4.2g,8.44mmol)溶于干燥的CH 2Cl 2,加入适量
Figure PCTCN2019095992-appb-000041
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至-40℃,滴加TMSOTf(127.0μL,0.70mmol),-40℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(100.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应1.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,将浓缩物溶于乙醇和水的混合溶剂中(50.0mL,v∶v=4∶1),加入三苯基膦(256.5mg,0.98mmol)、醋酸钯(73.2mg,0.33mmol)、三乙胺(4.1mL,29.34mmol)和甲酸(1.1mL,29.34mmol),加热回流1.5h,反应液浓缩,柱层析纯化,得到白色固体IIIB(1.8g,三步收率40.4%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.5Hz,1H),4.44(d,J=7.5Hz,1H),3.80(d,J=11.6Hz,1H),3.65(dd,J=11.8,5.3Hz,1H),3.36-3.31(m,2H),3.28(t,J=9.2Hz,1H),3.22-3.19(m,1H),3.10(t,J=8.2Hz,1H),2.96(dt,J=14.6,3.9Hz,1H),2.53-2.44(m,2H),2.33-2.24(m,1H),2.11(dd,J=12.2,2.4Hz,1H),1.66(s,3H),1.62(s,3H),1.30(s,3H),1.14(s,3H),1.11(s,3H),1.07(s,3H),1.06(s,3H),0.74(s,3H); 13C NMR(150MHz,CD 3OD)δ215.2,166.5,131.9,126.,98.3,82.5,78.7,77.4,75.6,71.7,62.8,57.5,57.2,57.1,55.9,42.9,41.9,41.1,40.8,40.7,39.6,38.8,35.1,33.0,28.1,25.9,24.9,24.7,23.4,22.9,20.3,17.8,17.7,17.1,16.12,16.1。MALDI-HRMS calcd for C36H59NNaO8[M+Na] +656.4133,found 656.4139。
实施例20 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-羟基-2-氰基-2,24-二烯-12-酮(IIIC)
20.1 20(S)-羟基达玛烷-3-羟基-2-氰基-2,24-二烯-12-酮(III-9)
Figure PCTCN2019095992-appb-000042
将III-3(10.0g,21.80mmol)溶于干燥的甲酸乙酯中(150.0mL)中,加入30%甲醇钠(30mL),于室温下反应3.0h。反应结束后,乙酸乙酯稀释,依次用1mol/L盐酸,饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,浓缩物溶于乙醇(150.0mL)和水(26.4mL)的混合溶剂中,加入羟胺盐酸盐(3.0g,43.60mmol)和三乙胺(3.0mL,21.80mmol),于55℃下反应10.0h。反应结束后,乙酸乙酯稀释,依次用1mol/L盐酸,饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,粗产物溶于干燥的150.0mL二氯甲烷中,加入PDC(12.3g,32.70mmol)和醋酐(4.1mL,43.60mmol)室温反应6.0h,抽滤除去不溶物,滤液浓缩,浓缩物溶于干燥的甲醇中(130.0mL)中,加入30%甲醇钠(5.4mL),于55℃下反应3.5h。反应结束后,乙酸乙酯稀释,依次用1mol/L盐酸,饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析分离,得白色固体III-9(3.0g,四步收率28.6%)。 1H NMR(600MHz,(CD 3) 2SO)δ9.78(s,1H),5.06(brs,1H),3.92(s,1H),2.97(d,J=9.3Hz,1H),2.40(t,J=13.1Hz,1H),2.20(brs,1H),1.63(s,3H),1.57(s,3H),1.17(s,3H),1.10(s,3H),1.01(s,3H),0.90(s,3H),0.87(s,3H),0.66(s,3H); 13C NMR(150MHz,(CD 3) 2SO)δ210.3,171.5,130.1,125.1,119.9,77.9,72.3,55.4,55.4,51.8,51.7,42.3,41.5,40.5,38.1,35.9,32.8,31.4,26.9,25.5,25.3,23.3,22.6,19.0,17.5,16.5,15.2,14.8。MALDI-HRMS calcd for C31H47NNaO3[M+Na] +504.3448,found 504.3452。
20.2 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3-羟基-2-氰基-2,24-二烯-12-酮(IIIC)
Figure PCTCN2019095992-appb-000043
将III-9(2.0g,4.15mmol)和2,3,4,6-四-O-苯甲酰基葡萄糖三氯亚胺酯(3.7g,4.98mmol)溶于干燥的CH 2Cl 2(90.0mL),加入适量
Figure PCTCN2019095992-appb-000044
分子筛,氩气保护,室温搅拌30min后将反应体系温度降至0℃,滴加TMSOTf(75.0μL,0.42mmol),0℃反应。TLC检测反应完毕后,加入Et 3N终止反应,恢复至室温,抽滤除去分子筛,反应液浓缩成固体,将浓缩物溶于二氯甲烷和甲醇的混合溶剂(50.0mL,v∶v=1∶1)中,加入甲醇钠至pH=9-10,室温下反应4.0h后,TLC检测反应完全,加入阳离子树脂中和反应液,过滤浓缩,柱层析。得到白色固体IIIC(1.6g,两步收率59.9%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.5Hz,1H),4.44(d,J=7.7Hz,1H),3.80(dd,J=11.8,1.9Hz,1H),3.64(dd,J=11.9,5.3Hz,1H),3.38-3.34(m,2H),3.27(d,J=8.8Hz,1H),3.22-3.17(m,1H),3.10(t,J=8.2Hz,1H),2.56-2.48(m,2H),1.66(s,3H),1.62(s,3H),1.29(s,3H),1.16(s,3H),1.12(s,3H),1.09(s,4H),1.02(s,3H),0.76(s,3H); 13C NMR(150MHz,CD 3OD)δ214.7,173.6,131.9,126.0,120.6,98.3,82.5,79.4,78.7,77.4,75.6,71.7,62.8,57.6,57.1,54.4,53.9,42.9,42.4,41.6,40.7,40.6,39.7,37.7,34.5,33.0,27.9,25.9,24.9,24.7,22.9,20.6,19.8,17.8,17.0,16.0,15.7。MALDI-HRMS calcd for C37H57NNaO8[M+Na] +666.3976,found 666.3973。
实施例21 20(S)-O-β-D-吡喃葡萄糖基达玛烷-3,12-羟基亚胺基-24-烯-12-酮(IVA)
Figure PCTCN2019095992-appb-000045
将IIA(1.25g,2.02mmol)溶于吡啶(60.0mL)中,加入羟胺盐酸盐(421.1mg,6.06mmol),于80℃条件下反应4.0h。将反应液冷却至室温,加入水终止反应,乙酸乙酯稀释,依次用1mol/L盐酸、饱和碳酸氢钠,饱和氯化钠洗涤,有机层用无水硫酸钠干燥,减压浓缩,柱层析纯化,得白色固体IVA(913.0mg,69.7%)。 1H NMR(400MHz,CD 3OD)δ5.09(t,J=6.8Hz,1H),4.46(d,J=7.6Hz,1H),3.80(d,J=11.4Hz,1H),3.65(dd,J=11.5,5.1Hz,1H),3.37-3.33(m,2H),3.30-3.28(m,1H),3.20(dd,J=14.6,7.8Hz,1H),3.11(t,J=8.0Hz,1H),2.94-2.88(m,1H),2.85(d,J=9.6Hz,1H),2.59(dd,J=11.0,6.9Hz,1H),2.38-2.30(m,1H),1.66(s,3H),1.60(s,3H),1.22(s,3H),1.18(s,3H),1.13(s,3H),1.06(s,3H),1.03(s,3H),0.77(s,3H); 13C NMR(150MHz,CD 3OD)δ166.9,161.8,131.8,126.2,98.4,83.4,78.6,77.3,75.4,71.8,62.9,57.0,55.5,53.2,43.4,41.9,41.1,40.5,39.9,38.8,35.6,32.5,28.2,25.9,24.4,23.4,22.7,20.2,17.8,17.3,16.3,15.8。MALDI-HRMS calcd for C36H60N2NaO8[M+Na] +671.4242,found 671.4246。
实施例22化合物对卵清蛋白诱导的balb/c小鼠哮喘的作用研究
本实验选择前述的人参二醇苷衍生物(下称GR衍生物)及人参皂苷CK。
药物配制:取相应量受试样品,置于研钵研磨,再用0.5%CMCNa以等量倍增法配制至相应体积。
阳性对照:
本系列是口服,选择醋酸地塞米松片(生产单位:上海信谊药厂有限公司,批号、规格:015150901,0.75mg)作为阳性药。
人参皂苷CK(生产单位:Shanghai Standard Biotech Co.Ltd,批号、规格:3690/20548,5000.0mg,纯度:92%)
试剂
OVA(卵清蛋白):批号SLBF4846V,规格500g/瓶,Sigma-Aldrich(美国)。
Mouse IgE ELISA Kit:Cat EK2752,Lot 227570132,有效期至2018.07,联科生物。
Mouse IgE ELISA Kit:Cat EK2752,Lot 227570341,有效期至2018.09,联科生物。
Mouse IgE ELISA Kit:Cat EK2752,Lot 227570842,有效期至2019.02,联科生物。
氢氧化铝佐剂制备:取5%硫酸铝溶液250mL,在强烈搅拌下加入5%氢氧化钠溶液100mL,用生理盐水离心洗涤沉淀2次,再将沉淀混悬入生理盐水中使达250mL。
仪器
雾化器:型号:403C型家用空气压缩式雾化器,生产厂家:鱼跃医疗。
实验动物
动物购自上海西普尔-必凯实验动物有限公司。许可证号码:SCXK(沪)2013-0016。
试验方法
分组及剂量
第一次:Balb/c小鼠,雌性,体重18-20g,分为空白组、模型组、地塞米松0.6mg/kg组,CK组,GR衍生物,每组5只,口服给药。
第二次:Balb/c小鼠,雌性,体重18-20g,分为空白组、模型组、地塞米松0.6mg/kg组,CK组,GR衍生物,每组5只,口服给药。
实验方法:
除空白组外,小鼠于第0,14天腹腔注射OVA进行致敏(20μg OVA/mice),腹腔注射。于第21-25天进行OVA雾化给药激发。最后一次激发后24小时,小鼠眼内眦采血,取血清,用ELISA试剂盒对血清中的IgE水平进行测定。
数据分析
数据以均数和标准差
Figure PCTCN2019095992-appb-000046
表示,采用SPSS16.0软件进行单因素方差分析(one way ANOVA)比较各组差异,如果p<0.05则被认为具有统计学意义。
6试验结果
表1-1样品对OVA诱导的小鼠哮喘模型血清中IgE的浓度
组别 浓度(ng/mL)
空白组 176.70±36.97**
模型组 2244.05±429.07
醋酸地塞米松片0.6mg/kg 1131.05±211.85**
CK-20mg/kg 1701.85±284.66*
IC 20mg/kg 975.82±260.32**
ID 20mg/kg 1336.96±211.85**
IB 20mg/kg 1337.11±216.28**
IVA 20mg/kg 1358.27±248.70**
IH 20mg/kg 1191.08±107.59**
IJ 20mg/kg 1250.07±144.38**
IK 20mg/kg 1020.78±136.94**
IL 20mg/kg 996.36±102.45**
与模型组相比:*p<0.05,**p<0.01
表1-2样品对OVA诱导的小鼠哮喘模型血清中IgE的浓度
组别 浓度(ng/mL)
空白组 80.59±10.16**
模型组 2322.52±296.04
醋酸地塞米松片0.6mg/kg 1367.07±103.80**
CK 15mg/kg 1921.25±160.12*
CK 30mg/kg 1676.69±159.13*
CK 60mg/kg 1501.85±110.68*
IB 15mg/kg 2023.33±203.47
IB 30mg/kg 1909.19±121.73
IB 60mg/kg 1769.13±164.34*
IC 15mg/kg 1908.70±221.74
IC 30mg/kg 1738.93±124.22
IC 60mg/kg 1575.92±148.33*
ID 15mg/kg 1571.67±134.04*
ID 30mg/kg 1427.83±164.28**
ID 60mg/kg 1264.95±127.60**
IVA 15mg/kg 2026.13±273.15
IVA 30mg/kg 1927.60±151.61
IVA 60mg/kg 1723.86±167.59*
IH 15mg/kg 1682.40±182.76*
IH 30mg/kg 1311.37±165.93*
IH 60mg/kg 1150.59±129.55**
IJ 15mg/kg 2068.41±153.29
IJ 30mg/kg 1824.85±155.74
IJ 60mg/kg 1622.18±130.38*
IK 15mg/kg 1720.54±165.49*
IK 30mg/kg 1406.28±171.05**
IK 60mg/kg 1217.43±162.75**
IL 15mg/kg 1548.67±190.16*
IL 30mg/kg 1311.37±154.37**
IL 60mg/kg 1080.12±131.23**
与模型组相比:*p<0.05,**p<0.01
结论:在OVA诱导的小鼠哮喘模型中,样品ID、IH、IK、IL可显著降低小鼠血清中IgE含量,同样0.6mg/kg地塞米松可显著降低小鼠血清中IgE含量。ID、IH、IK、IL对OVA诱导的支气管哮喘有明显的治疗作用。
实施例23小鼠肺泡灌洗液测定炎症细胞测定
6周龄BALB/C小鼠(18-20g)共144只,分为24组。分为:对照组,安慰剂组,地塞米松组(3mg/kg),其余各给药组。每组6只。对照组给予生理盐水,除此之外不做任何处理。其余各组均致敏,腹腔注射20μgOVA和氢氧化铝200μlPBC(2mg制成乳剂),每个动物在0和14天注射致敏激发通过吸入雾化的3%OVA30分钟,在21、22、23天口服治疗剂(即阳性对照组给药3mg/kg地塞米松和给药组口服给药从17至23天,对照组和安慰剂组分别给予PBS,对照组小鼠给予PBS(无OVA)0天和14天雾化生理盐水30分钟而去除氢氧化铝30分钟在21、22和23天见表2。
表2小鼠肺泡灌洗液测定炎症细胞测定结果
Figure PCTCN2019095992-appb-000047
Figure PCTCN2019095992-appb-000048
试验结果显示:在小鼠的哮喘模型组小鼠肺泡灌洗液测定炎症细胞结果显示炎症细胞大量汇聚,而GR衍生物组小鼠肺泡灌洗液测定炎症细胞结果显示GR衍生物组炎症细胞相对于模型组显著减少。
实施例24GR衍生物对烟雾暴露诱导大鼠COPD的影响研究
吸入用布地奈德混悬液(批号318205,生产厂家:AstraZeneca Pty Ltd.)
黄果树香烟,焦油量11mg/支,贵州中烟工业有限责任公司。
雾化器:型号:403C型家用空气压缩式雾化器,生产厂家:鱼跃医疗。
动物肺功能分析系统:型号:AniRes2005。生产厂家:北京贝兰博科技有限公司。
被动吸烟动物染毒系统:型号:PAB-S200。生产厂家:北京贝兰博科技有限公司。
动物Wistar大鼠,雄性,体重160g,清洁级,购买自上海斯莱克实验动物有限责任公司,生产许可证号:SCXK(沪)2013-0016。
实验方法:
(1)烟雾的产生及吸入:
除空白组,将香烟放入烟雾发生器(20支/次),将大鼠放置于雾化吸入箱中,雾化箱尺寸为60厘米×60厘米×80厘米,点燃香烟后,通过注射器自动抽吸作用将烟雾注射进染毒箱内,五分钟内全部燃完。每天早晚两次,每次30min,间隔4小时以上,连续180天。
(2)布地奈德给药:
布地奈德制剂用生理盐水稀释后放入雾化杯中给药,0.25mg/mL组雾化液浓度为0.25mg/mL,每次4毫升。每次雾化给药30分钟。
(3)CK及GR衍生物给药:
分为空白组,模型组、布地奈德、CK及GR□□衍生物:IB、IC、ID、IVA、IH、IJ、IK、IL口服给药组,CK和GR□□衍生物给药剂量梯度为20mg/kg、40mg/kg、80mg/kg。每组5只,分组后开始连续给药至180天。实验结束后进行肺功能的测定。以戊巴比妥钠麻醉大鼠后,行气管插管术,用AniRes2005肺功能测试仪对每只动物进行用力肺通气(FVC)相关指标的测量,通过软件分析大鼠的相关肺功能指标。
实验结果:
表3受试物对COPD大鼠FEV0.2/FVC%(200ms内用力呼气指数)的影响
Figure PCTCN2019095992-appb-000049
Figure PCTCN2019095992-appb-000050
与模型组相比:*p<0.05,**p<0.01
结论:在对烟雾暴露诱导大鼠COPD的影响模型中,布地奈德给药为吸入,其余化合物为口服给药,CK、IB、IC、ID、IVA、IH、IJ、IK、IL高剂量组均优于布地奈德。因此,GR□□衍生物对COPD有良好的疗效。
实施例25血常规
33只ICR小鼠,随机分为11组,即生理盐水组,1.8mg/kg醋酸地塞米松组(Dex),CK、IB、IC、ID、IVA、IH、IJ、IK、IL均给予225mg/kg。分别灌胃给予小鼠,连续6天,于末次给药后1h取足量血测血常规。
表4 GR系列化合物血液学检查数据
Figure PCTCN2019095992-appb-000051
注:与空白相比,*P<0.05,**P<0.01
血液学数据显示,与空白对照相比,地塞米松1.8mg/kg剂量组的淋巴细胞百分比均显著降低、中性粒细胞百分比显著增加,白细胞计数显著降低、单核细胞百分比显著增加;而CK和GR衍生物均未引起血液学相关变化。
实施例26尾静脉血糖
33只ICR小鼠,随机分为11组,即生理盐水组,1.8mg/kg醋酸地塞米松组(Dex),CK、IB、IC、ID、IVA、IH、IJ、IK、IL均给予225mg/kg。分别灌胃给予小鼠,连续6天,于第6天晨8:00左右开始禁食,于次日4:00左右,测尾静脉血糖。
表5 GR系列化合物血糖数据
组别 血糖值(mmol/L)
空白组 3.05±0.11
Dex 5.78±0.36**
CK 3.18±0.28
IB 3.10±0.19
IC 3.25±0.26
ID 2.79±0.56
IVA 3.02±0.23
IH 2.98±0.37
IJ 3.11±0.43
IK 3.09±0.28
IL 3.03±0.21
注:与空白相比,*P<0.05,**P<0.01
血糖数据显示,与空白对照相比,地塞米松d引起小鼠血糖升高;而CK和GR衍生物未引起血糖相关变化。

Claims (10)

  1. 一种通式(I)的结构所示的人参二醇苷衍生物或其药学上可接受的盐,
    Figure PCTCN2019095992-appb-100001
    其中,R 1选自羟基或非葡萄糖的吡喃糖基或
    Figure PCTCN2019095992-appb-100002
    R 2和R 3一起表示=O或=N-OR 8
    或R 2为氢且R 3为羟基;
    R 4和R 6结合成键,且R 5和R 7独立选自氢、C 1-6烷氧基、羟基、氰基、C 1-6酯基、糖基;
    或R 6和R 7一起表示=O或=N-OH,且R 5和R 4独立选自氢、C 1-6烷氧基、羟基、氰基;
    或R 4、R 5、R 6和R 7独立选自氢、C 1-6烷氧基、羟基、氰基、C 1-6酯基、糖基;
    R 8选自氢或C 1-6烷基。
  2. 根据权利要求1所述的人参二醇苷衍生物或其药学上可接受的盐,其中,R 2和R 3一起表示=N-OH。
  3. 根据权利要求1所述的人参二醇苷衍生物或其药学上可接受的盐,其中,R 4和R 6结合成键。
  4. 根据权利要求3所述的人参二醇苷衍生物或其药学上可接受的盐,其中,R 5选自糖基;并且R 1表示羟基。
  5. 根据权利要求1所述的人参二醇苷衍生物或其药学上可接受的盐,其中,R 6和R 7一起表示=N-OR 8并且R 8表示氢或甲基。
  6. 根据权利要求1所述的人参二醇苷或其药学上可接受的盐,其中,R 1中所述非葡萄糖的吡喃糖基选自鼠李糖基、岩藻糖基、阿拉伯糖基、木糖基、核糖基、奎诺糖基、半乳糖基、氨基葡萄糖基、6-脱氧-6-氨基葡萄糖基、乳糖基以及纤维二糖基。
  7. 根据权利要求1-6任一项所述的人参二醇苷衍生物或其药学上可接受的盐,其中,所述糖基独立选自脱氧糖基或五碳糖基。
  8. 人参二醇苷衍生物或其药学上可接受的盐,其中人参二醇苷衍生物结构如下:
    Figure PCTCN2019095992-appb-100003
  9. 药物组合物,其包含权利要求1-8任一项所述的人参二醇苷衍生物或其药学上可接受的盐及药学上可接受的辅料。
  10. 权利要求1-8任一项所述的人参二醇苷衍生物或其药学上可接受的盐在制备预防和/或治疗哮喘和COPD的药物中的应用。
PCT/CN2019/095992 2018-05-15 2019-07-15 一种人参二醇苷衍生物及其制备方法和应用 WO2019219098A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/764,090 US11866458B2 (en) 2018-05-15 2019-07-15 Panaxadiol glycoside derivative and preparation method and application thereof
JP2020524671A JP7083394B2 (ja) 2018-05-15 2019-07-15 パナキサジオールサポニン誘導体、その調製方法および使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810497184.5 2018-05-15
CN201810497184.5A CN109553653B (zh) 2018-05-15 2018-05-15 一种人参二醇苷衍生物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019219098A1 true WO2019219098A1 (zh) 2019-11-21

Family

ID=65864375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095992 WO2019219098A1 (zh) 2018-05-15 2019-07-15 一种人参二醇苷衍生物及其制备方法和应用

Country Status (4)

Country Link
US (1) US11866458B2 (zh)
JP (1) JP7083394B2 (zh)
CN (1) CN109553653B (zh)
WO (1) WO2019219098A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553653B (zh) * 2018-05-15 2024-04-09 苏州济尔生物医药有限公司 一种人参二醇苷衍生物及其制备方法和应用
CN113527399B (zh) * 2021-06-08 2023-01-31 陕西巨子生物技术有限公司 人参皂苷ck衍生物及其在制备治疗抗肿瘤药物中的用途
CN116370367B (zh) * 2023-01-31 2024-05-17 西安绿天生物技术有限公司 一种化妆品用植物提取物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796159A (zh) * 2011-05-24 2012-11-28 复旦大学 一类达玛烷糖苷及其制备方法与应用
CN104586860A (zh) * 2013-11-01 2015-05-06 中国科学院上海药物研究所 达玛烷型三萜衍生物的用途
CN109553653A (zh) * 2018-05-15 2019-04-02 苏州济尔生物医药有限公司 一种人参二醇苷衍生物及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935335B (zh) * 2009-05-18 2014-05-21 中国医学科学院药物研究所 一类克洛皂苷及其制法与抗高致病h5n1流感病毒的应用
CN101781352A (zh) * 2009-12-17 2010-07-21 上海吉友医药科技有限公司 20-o-糖基及其原人参二醇类化合物及其制备方法
CN103965281B (zh) 2013-01-31 2016-06-08 上海中药创新研究中心 一种原人参二醇衍生物、其制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796159A (zh) * 2011-05-24 2012-11-28 复旦大学 一类达玛烷糖苷及其制备方法与应用
CN104586860A (zh) * 2013-11-01 2015-05-06 中国科学院上海药物研究所 达玛烷型三萜衍生物的用途
CN109553653A (zh) * 2018-05-15 2019-04-02 苏州济尔生物医药有限公司 一种人参二醇苷衍生物及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATOPKINA L.N. ET AL.: "Synthesis of 20S-protopanaxadiol 20-0- P -D-glucopyra- noside, a metabolite ofPanax ginsengglycosides, and compounds related to it", CHEMISTRY OF NATURAL COMPOUNDS, vol. 42, no. 4, 1 July 2006 (2006-07-01), pages 452 - 458, XP019433975 *
DENG XU ET AL.: "Exploring of drug leads from diversity-oriented Mi- chael-acceptor library derived from natural products", NAT. PROD. BIOPROSPECT., vol. 2, no. 5, 4 December 2012 (2012-12-04), pages 210 - 216, XP055656018 *
LIAO JINXI ET AL.: "Synthesis of ginsenoside Rh2 and chikusetsusaponin- LT 8 via gold(I)-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate as donor", TETRAHEDRON LETTERS, vol. 52, no. 24, 1 June 2011 (2011-06-01), pages 3075 - 3077, XP055656065 *
REN SUMEI ET AL.: "Synthesis and biological evaluation of Ginsenoside Co- mpound K analogues as a novel class of anti-asthmatic agents", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 29, no. 1, 9 November 2018 (2018-11-09), pages 51 - 55, XP085557010 *

Also Published As

Publication number Publication date
US11866458B2 (en) 2024-01-09
US20210054019A1 (en) 2021-02-25
JP2020528080A (ja) 2020-09-17
CN109553653B (zh) 2024-04-09
JP7083394B2 (ja) 2022-06-10
CN109553653A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2019219098A1 (zh) 一种人参二醇苷衍生物及其制备方法和应用
US6635629B2 (en) 3-nitrogen-6,7-dioxygen steroids and uses related thereto
US5856535A (en) Aminosterol ester compounds
CA2440680C (en) Steroids as agonists for fxr
US7812011B2 (en) Steroid agonist for FXR
JP4790263B2 (ja) 炎症性の疾患および病態を治療する新規な化合物、組成物および方法
CN1052155C (zh) 含新的甾族化合物的药物组合物的制法
US8080529B2 (en) Macrolides with anti-inflammatory activity
TWI472533B (zh) 新穎化合物
JPH01117879A (ja) 新規なフラボン誘導体及びその製造方法
US5885992A (en) Triterpene derivative and medicinal composition
JPH07500826A (ja) 免疫刺激性スワインソニン類似体
WO2011131749A1 (en) New 14 and 15 membered macrolides for the treatment of neutrophil dominated inflammatory diseases
JP5036557B2 (ja) 抗炎症活性デクラジノシル−マクロライド
US20060217563A1 (en) Selective spirocyclic glucocorticoid receptor modulators
CN108530508B (zh) 齐墩果烷型氮糖苷化合物及其在制备治疗抗糖尿病药物中的应用
JPH09169648A (ja) 医薬組成物
JP2012516305A (ja) 好中球優位の炎症性疾患の治療のための9−デオキソ−9a−メチル−9a−アザ−9a−ホモエリスロマイシンa誘導体
CN103370317B (zh) 可用于治疗的咪唑并[4,5-c]喹啉-1-基衍生物
CN110478360A (zh) 一种用于治疗皮炎的人参皂苷衍生物
WO1995034296A1 (en) Use of rooperol and hypoxoside and their derivatives in the treatment of inflammatory
JP2008532927A (ja) 抗炎症マクロライド接合体
JPH05286992A (ja) 新規シアリルステロイド
JPH07173150A (ja) ジテルペン系化合物およびそれを有効成分とする鎮痛剤
JPH07173147A (ja) ジテルペン系化合物およびそれを有効成分とする鎮痛剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19804144

Country of ref document: EP

Kind code of ref document: A1