WO2019218933A1 - 一种高熔融指数的热塑性弹性体及其制备方法 - Google Patents

一种高熔融指数的热塑性弹性体及其制备方法 Download PDF

Info

Publication number
WO2019218933A1
WO2019218933A1 PCT/CN2019/086303 CN2019086303W WO2019218933A1 WO 2019218933 A1 WO2019218933 A1 WO 2019218933A1 CN 2019086303 W CN2019086303 W CN 2019086303W WO 2019218933 A1 WO2019218933 A1 WO 2019218933A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
monomer
reaction
added
Prior art date
Application number
PCT/CN2019/086303
Other languages
English (en)
French (fr)
Inventor
方进伟
罗英武
高翔
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2020564645A priority Critical patent/JP7085770B2/ja
Priority to US17/055,994 priority patent/US20210253770A1/en
Publication of WO2019218933A1 publication Critical patent/WO2019218933A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the invention relates to the field of polymer materials, in particular to a block copolymer thermoplastic elastomer having a high melt index and a synthesis method thereof.
  • thermoplastic elastomer is a new type of polymer material which has rubber elasticity at normal temperature and can be plastically processed at high temperature.
  • Most of the thermoplastic elastomer triblock or multi-block copolymers consist of a hard segment with a glass transition temperature above the operating temperature and a soft segment with a glass transition temperature below the operating temperature, the former providing physical crosslinking for the polymer. To improve the strength of the product, the latter provides a good elasticity for the product.
  • the melt index of the polymer shows its thermal processing properties. The higher the melt index, the better the hot workability of the polymer.
  • the melt index of the polymer is related to the molecular weight of the polymer, the degree of branching, the molecular structure, etc.
  • the melt index is also related to the compatibility between the two blocks, and the compatibility of the soft and hard blocks. The better, the higher the melt index.
  • the thermoplastic elastomer requires a soft and hard block to have sufficient driving force to form a micro phase separation morphology, so the compatibility between the two is generally poor.
  • the industrial synthesis of block thermoplastic elastomers usually adopts an anionic living polymerization method, but since the purity of the raw materials and the reaction environment are extremely high, the synthesis cost is high, and the monomers are less suitable.
  • Active/controlled radical polymerization is a rapid synthesis method in recent decades. It not only can realize the controllable preparation of polymer molecular chains, but also has the advantages of wide range of monomers for free radical polymerization and mild reaction conditions. Widely used in the synthesis of block copolymers.
  • Reversible addition-fragmentation chain transfer polymerization (RAFT) polymerization is one of the most industrialized prospects for active/controlled free radical polymerization.
  • emulsion polymerization Compared with solution polymerization and bulk polymerization, emulsion polymerization has the advantages of high polymerization speed, good heat transfer effect, viscosity of final product, etc. It is the most suitable polymerization method for industrialization.
  • RAFT emulsion polymerization combines the controllable characteristics of RAFT polymerization activity with the advantages of fast polymerization rate of emulsion polymerization and high molecular weight of products. It has great advantages in the synthesis of block copolymers and thermoplastic elastomers.
  • thermoplastic elastomers among which acrylate polymers have the advantages of low glass transition temperature, good aging resistance, and high polarity, and thus are widely used as soft segments of thermoplastic elastomers.
  • the acrylate-based thermoplastic elastomer synthesized by RAFT emulsion polymerization generally has the defects of too low melt index and poor processing property, and its melt index is generally lower than 0.01. g/10min.
  • the too low melt index limits the application of the acrylate-based thermoplastic elastomer and greatly increases the processing cost of its hot working.
  • the object of the present invention is to provide a polar thermoplastic elastomer having a high melt index and a preparation method thereof in view of the deficiencies of the prior art.
  • the invention also provides a preparation method of the above thermoplastic elastomer, comprising the following steps:
  • the reactor In the reactor; the reactor is heated to 30-80 degrees Celsius, kept stirring, nitrogen is deoxygenated for more than 5 minutes; 0.014-0.1 parts by weight of the first water-soluble initiator is added to the reaction system; after 30-60 minutes of reaction Adding 20-40 parts by weight of an aqueous sodium hydroxide solution containing 0.05-0.2 parts by weight of sodium hydroxide, and continuing the reaction for 30-60 minutes to obtain X-AA n1 -b-St n2 -b- ⁇ n3 -R block copolymerization
  • the block copolymer is stably dispersed in water in the form of particles to form a latex;
  • reaction temperature is changed to 30-60 degrees Celsius, 15-30 parts by weight of ⁇ monomer and 0-45 parts by weight of ⁇ monomer are added; then 0.014-0.1 parts by weight of the first a water-soluble initiator, after reacting for 90-240 minutes, an X-AA n1 -b-St n2 -b- ⁇ n3 -b-( ⁇ -co- ⁇ ) n4 -R block copolymer, a block copolymer Stable dispersion in water in the form of particles to form a latex;
  • the obtained latex is demulsified, washed, and dried to obtain a thermoplastic elastomer having a high melt index.
  • Z is an alkylthio group having 4 to 12 carbon atoms, an alkyl group, a phenyl group or a benzyl group, S is a sulfur element, St is a styrene monomer unit, and AA is a methacrylic monomer unit or an acrylic monomer.
  • the first water-soluble initiator is ammonium persulfate, potassium persulfate, hydrogen peroxide or hydrogen peroxide derivative
  • the second water-soluble initiator is azobisisobutyl hydrazine hydrochloride (V50), azobisisobutyrazoline hydrochloride (VA044), 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (2959), sodium hydrogen persulfate/over Potassium sulfate redox initiator or sodium persulfate/ammonium persulfate redox initiator.
  • the invention has the beneficial effects that the invention adopts an emulsion polymerization system, combined with a reversible addition fragmentation chain transfer radical polymerization technique, to obtain a high melt index triblock structure thermoplastic elastomer by lowering the reaction temperature and copolymerizing in a soft segment. .
  • Emulsion polymerization has the advantages of low viscosity, high heat transfer efficiency and less pollution, which is convenient for industrialization and continuous production;
  • the emulsion polymerization has a free radical isolation effect, and the radicals in different particles do not react with each other, which reduces the rate of radical termination. Therefore, the invention has the advantages of high polymerization rate and large molecular weight of the obtained product;
  • amphiphilic amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is used as a chain transfer agent and an emulsifier, which can not only control the molecular structure and distribution of the final product, but also avoid the cumbersome operation of removing the external emulsifier. .
  • the polymer synthesized by the method has controllable molecular weight, narrow molecular weight distribution and wide application range of monomers.
  • thermoplastic elastomer product obtained by the invention has a high melt index, has excellent hot workability, and also has good viscoelastic energy.
  • Figure 1 is a GPC graph of a polymer sample taken after the end of each block in Case 1 of the present invention
  • Figure 2 is a comparison chart of GPC curves of the block product obtained by the case product of the present invention and the conventional RAFT emulsion polymerization, the latter maintaining the polymerization temperature at 70 ° C throughout the reaction;
  • Figure 3 is a GPC graph of a polymer sample taken after the end of each block in Case 2 of the present invention.
  • Figure 4 is a comparison of DSC curves of the products obtained in Cases 1 and 2 of the present invention.
  • the inventors of the present application have found that when the reaction temperature of the RAFT emulsion polymerization is lowered from the conventional 50-80 degrees Celsius to 30-60 degrees Celsius, the melt index of the obtained acrylate-based triblock thermoplastic elastomer is greatly improved.
  • the monomer which is more compatible with the hard segment and similar to the soft segment structure can not only effectively improve the melt index of the thermoplastic elastomer, but also the viscoelasticity and polarity of the polymer. Performance such as sex will not have a major impact.
  • the final product not only has excellent thermoplastic elastomer properties, high strength, high polarity, and more importantly, its processing properties have been greatly improved.
  • the invention provides a method for preparing a high melt index thermoplastic elastomer by reversible addition fragmentation chain transfer emulsion polymerization, comprising the following steps:
  • the reactor In the reactor; the reactor is heated to 30-80 degrees Celsius, kept stirring, nitrogen is deoxygenated for more than 5 minutes; 0.014-0.1 parts by weight of the first water-soluble initiator is added to the reaction system; after 30-60 minutes of reaction Adding 20-40 parts by weight of an aqueous sodium hydroxide solution containing 0.05-0.2 parts by weight of sodium hydroxide, and continuing the reaction for 30-60 minutes to obtain X-AA n1 -b-St n2 -b- ⁇ n3 -R block copolymerization
  • the block copolymer is stably dispersed in water in the form of particles to form a latex;
  • reaction temperature is changed to 30-60 degrees Celsius, 15-30 parts by weight of ⁇ monomer and 0-45 parts by weight of ⁇ monomer are added; then 0.014-0.1 parts by weight of the first a water-soluble initiator, after reacting for 90-240 minutes, an X-AA n1 -b-St n2 -b- ⁇ n3 -b-( ⁇ -co- ⁇ ) n4 -R block copolymer, a block copolymer Stable dispersion in water in the form of particles to form a latex;
  • the obtained polymer latex is subjected to demulsification, washing, and drying to obtain a thermoplastic elastomer having a high melt index.
  • amphiphilic macromolecular reversible addition fragmentation chain transfer reagent used in step 1 has the structural formula:
  • Z is an alkylthio group having 4 to 12 carbon atoms, an alkyl group, a phenyl group or a benzyl group, S is a sulfur element, St is a styrene monomer unit, and AA is a methacrylic monomer unit or an acrylic monomer.
  • the molecular weight of the design is calculated by the following formula:
  • M n,th refers to the design value of the molecular weight of the polymer at the end of each step of the reaction
  • m is the total mass of the monomer added for the reaction in this step
  • x is the conversion rate
  • [RAFT] is the amphiphilicity added before the start of the reaction.
  • the amount of material that reversibly adds to the fragmentation chain transfer reagent, Mn , RAFT is the molecular weight of the amphiphilic reversible addition fragmentation chain transfer reagent.
  • the molecular weight of the polymer was characterized by gel permeation chromatography on a Waters 1525-2414-717 GPC instrument with the eluent being tetrahydrofuran corrected for narrowly distributed polystyrene standards.
  • the glass transition temperature of the polymer was measured on a DSC Q200 apparatus and heated from -50 ° C to 150 ° C at a heating rate of 10 ° C / min using a nitrogen atmosphere.
  • the melt index of the polymer was measured on a melt indexer under the conditions of a temperature of 190 ° C and a pressure of 2.16 kg.
  • the chemical structure of the reversible addition fragmentation chain transfer reagent for amphiphilic macromolecules used in the examples of the present invention is:
  • the first step 1.2 parts by weight of the amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is stirred and dissolved in 70 parts by weight of water, and then 8 parts by weight of St monomer is added, stirred pre-emulsified and added to the reactor;
  • the reactor was heated to 70 ° C, kept stirring, and deoxygenated by nitrogen for 30 minutes; 0.03 parts by weight of potassium persulfate was added to the reaction system; after 60 minutes of reaction, 30 parts by weight of an aqueous sodium hydroxide solution containing 0.16 parts by weight was added.
  • Sodium hydroxide continue to react for 30 minutes to obtain X-AA n1 -b-St n2 -b-St n3 -R block copolymer latex;
  • the second step after the first step of the reaction, the reaction temperature was changed to 40 degrees Celsius, 30 parts by weight of the BA monomer was added; then 0.05 parts by weight of VA044 was added, and after 180 minutes of reaction, X-AA n1 -b-St was obtained. N2 -b-St n3 -b-BA n4 -R block copolymer latex;
  • Step 3 After the second step, 8 parts by weight of St monomer was added, and the reaction was continued for 150 minutes at a reaction temperature of 40 ° C to obtain X-AA n1 -b-St n2 -b-St n3 -b-BA. N4 -b-St n5 -R block copolymer latex;
  • the fourth step demulsification, washing and drying the obtained polymer latex to obtain a thermoplastic elastomer having a high melt index.
  • Figure 1 shows the GPC curve of the polymer after the end of each block reaction. It can be seen that the molecular weight of the polymer gradually increases during the polymerization process, which proves to be a block copolymer. The PDI of the product during the whole polymerization process is less than 1.6, indicating that the polymerization process For living polymerization.
  • Figure 2 compares the GPC curves of the block copolymer of the same composition obtained by 70°C RAFT emulsion polymerization with the product obtained in Case 1. The former maintains the reaction temperature at 70 ° C throughout the reaction, which is evident at 70 ° C.
  • the GPC curve of the triblock copolymer obtained by the reaction has a very obvious shoulder at the high molecular weight, and the final PDI is greater than 3, and the final product obtained in the case of Example 1 has no shoulder peak, and the final molecular weight distribution is narrow.
  • the above two polymers were tested in a melt indexer at a temperature of 190 ° C and a pressure of 2.16 kg.
  • the final melt index of the product at 70 ° C was less than 0.01 g/10 min, and the melt index of the product of Case 1 reached 0.5 g/10 min. .
  • the first step 1.8 parts by weight of the amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is stirred and dissolved in 70 parts by weight of water, and then 8 parts by weight of St monomer is added, stirred pre-emulsified and added to the reactor;
  • the reactor was heated to 70 ° C, kept stirring, and deoxygenated by nitrogen for 30 minutes; 0.045 parts by weight of ammonium persulfate was added to the reaction system; after 60 minutes of reaction, 25 parts by weight of an aqueous sodium hydroxide solution containing 0.2 parts by weight was added.
  • Sodium hydroxide continue to react for 30 minutes to obtain X-AA n1 -b-St n2 -b-St n3 -R block copolymer latex;
  • the second step after the first step of the reaction, the reaction temperature was changed to 45 degrees Celsius, 15 parts by weight of the BA monomer and 15 parts by weight of the BMA monomer were added; then 0.05 parts by weight of VA044 was added, and after 150 minutes of reaction, X-AA n1 -b-St n2 -b-St n3 -b-(BA-co-BMA) n4 -R block copolymer latex;
  • the third step after the second step of the reaction, 8 parts by weight of St monomer is added, the reaction is continued for 180 minutes, and the reaction temperature is 45 degrees Celsius to obtain X-AA n1 -b-St n2 -b-St n3 -b-( BA-co-BMA) n4- b-St n5- R block copolymer latex;
  • the fourth step demulsification, washing and drying the obtained polymer latex to obtain a thermoplastic elastomer having a high melt index.
  • Figure 3 is the GPC curve of the polymer obtained after the end of each block reaction. It can be seen that the molecular weight of the polymer is gradually increased, and the obtained product is proved to be a triblock copolymer. The PDI of the product during the whole polymerization process is less than 1.6, indicating that the polymerization process For living polymerization.
  • Figure 4 shows two different triblock copolymers X-AA n1 -b-St n2 -b-St n3 -b-BA n4 -b-St n5 -R (case 1 product) and X-AA n1 -b- St N2 -b-St n3 -b-(BA-co-BMA) n4 -b-St n5 -R (case 2 product) comparison of DSC curves, it can be seen that the former soft segment (BA segment) glass transition temperature is about -50 ° C, close to the glass transition temperature (-56 ° C) of the homopolymer PBA, and the glass transition temperature range is narrow; in the latter, the glass transition temperature of the soft segment (BA-co-BMA segment) is increased to about -20 ° C, still far below the general room temperature, meets the requirements of the thermoplastic elastomer soft segment, while the glass transition temperature range is widened, indicating that the compatibility between the soft segment
  • the first step 0.6 parts by weight of the amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is stirred and dissolved in 50 parts by weight of water, and then 5 parts by weight of St monomer is added, stirred pre-emulsified and added to the reactor;
  • the reactor was heated to 80 ° C, kept stirring, and deaerated by nitrogen for 15 minutes; 0.014 parts by weight of potassium persulfate was added to the reaction system; after 30 minutes of reaction, 20 parts by weight of an aqueous sodium hydroxide solution containing 0.05 parts by weight was added.
  • Sodium hydroxide the reaction is continued for 60 minutes to obtain an X-AA n1 -b-St n2 -b-St n3 -R block copolymer latex;
  • Second step After the first step of the reaction, the reaction temperature was changed to 50 degrees Celsius, 15 parts by weight of BA monomer and 45 parts by weight of BMA monomer were added; then 0.014 parts by weight of potassium persulfate was added, and after 240 minutes of reaction, , obtaining X-AA n1 -b-St n2 -b-St n3 -b-(BA-co-BMA) n4 -R block copolymer, the block copolymer is stably dispersed in water in the form of particles to form a latex;
  • the third step after the second step of the reaction, 5 parts by weight of St monomer is added, the reaction is continued for 90 minutes, and the reaction temperature is 50 degrees Celsius to obtain X-AA n1 -b-St n2 -b-St n3 -b-( BA-co-BMA) n4- b-St n5- R block copolymer latex;
  • the fourth step demulsification, washing and drying the obtained polymer latex to obtain a thermoplastic elastomer having a high melt index.
  • the first step 3 parts by weight of the amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is stirred and dissolved in 100 parts by weight of water, followed by adding 15 parts by weight of MMA monomer, stirred pre-emulsified and added to the reactor;
  • the reactor was heated to 30 ° C, kept stirring, and deoxygenated by nitrogen for 50 minutes; 0.1 part by weight of ammonium persulfate was added to the reaction system; after 60 minutes of reaction, 40 parts by weight of an aqueous sodium hydroxide solution containing 0.2 parts by weight was added.
  • Sodium hydroxide continue to react for 60 minutes to obtain X-AA n1 -b-St n2 -b-MMA n3 -R block copolymer latex;
  • Second step After the first step of the reaction, the reaction temperature was changed to 30 degrees Celsius, 30 parts by weight of EA monomer and 15 parts by weight of EHMA monomer were added; then 0.1 part by weight of potassium persulfate/sodium sulfite was added (1: 1) a redox initiator, after 240 minutes of reaction, an X-AA n1 -b-St n2 -b- ⁇ n3 -b-(EA-co-EHMA) n4 -R block copolymer latex is obtained;
  • the third step after the second step of the reaction, 15 parts by weight of the MMA monomer is added, the reaction is continued for 90 minutes, and the reaction temperature is 30 degrees Celsius to obtain X-AA n1 -b-St n2 -b-MMA n3 -b-( EA-co-EHA) n4- b-MMA n5- R block copolymer latex;
  • the fourth step demulsification, washing and drying the obtained polymer latex to obtain a thermoplastic elastomer having a high melt index.
  • the first step 1.5 parts by weight of the amphiphilic macromolecular reversible addition fragmentation chain transfer reagent is stirred and dissolved in 80 parts by weight of water, and then 10 parts by weight of St monomer is added, stirred pre-emulsified and added to the reactor;
  • the reactor was heated to 80 ° C, kept stirring, and deoxygenated with nitrogen for 30 minutes; 0.03 parts by weight of potassium persulfate was added to the reaction system; after 30 minutes of reaction, 30 parts by weight of an aqueous sodium hydroxide solution containing 0.1 parts by weight was added.
  • Sodium hydroxide continue to react for 30 minutes to obtain X-AA n1 -b-St n2 -b-St n3 -R block copolymer latex;
  • Second step After the first step of the reaction, the reaction temperature was changed to 50 degrees Celsius, 20 parts by weight of BA monomer and 20 parts by weight of BMA monomer were added; then 0.03 part by weight of VA044 was added, and after 90 minutes of reaction, it was obtained.
  • the third step after the second step of the reaction, 10 parts by weight of St monomer is added, the reaction is continued for 240 minutes, and the reaction temperature is 50 degrees Celsius to obtain X-AA n1 -b-St n2 -b-St n3 -b-( BA-co-BMA) n4- b-St n5- R block copolymer latex;
  • the fourth step demulsification, washing and drying the obtained polymer latex to obtain a thermoplastic elastomer having a high melt index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种高熔融指数的热塑性弹性体及其制备方法。本发明采用乳液聚合体系,采用可逆加成链转移自由基聚合技术,通过控制不同阶段的反应温度,得到了具有高熔融指数的嵌段结构的热塑性弹性体。本发明流程设备简单,过程节能环保,原料廉价易得,得到的高熔融指数热塑性弹性体具有优异的热加工性能。

Description

一种高熔融指数的热塑性弹性体及其制备方法 技术领域
本发明高分子材料领域,尤其涉及一种具有较高熔融指数的嵌段共聚物热塑性弹性体及其合成方法。
背景技术
热塑性弹性体是一种常温下具有橡胶弹性,高温下可进行塑性加工的一类新型高分子材料。大部分热塑性弹性体的三嵌段或多嵌段共聚物,由玻璃化温度高于工作温度的硬段嵌段与玻璃化温度低于工作温度的软段组成,前者为聚合物提供物理交联,提高产品的强度,后者为产品提供了良好的弹性。
聚合物的熔融指数表现了其热加工性能的优劣,熔融指数越高,聚合物的热加工性能越好。聚合物的熔融指数与聚合物分子量大小、支化程度、分子结构等有关,对于嵌段共聚物,熔融指数还与两种嵌段之间的相容性有关,软硬嵌段的相容性越好,其熔融指数越高。而热塑性弹性体需要软硬嵌段具有足够的驱动力形成微相分离形态,因此两者的相容性一般较差。
现阶段工业上合成嵌段热塑性弹性体通常采用阴离子活性聚合的方法,但由于对原料纯度与反应环境的要求极高,合成成本较高,并且适用单体较少。活性/可控自由基聚合是近几十年来发展迅速的一种合成手段,由于其不仅可以实现聚合物分子链可控制备,还具备自由基聚合适用单体广、反应条件温和等优点,因此广泛应用于嵌段共聚物的合成中。可逆加成‐断裂链转移聚合(RAFT)聚合是活性/可控自由基聚合中最具有工业化前景的一种。
相比于溶液聚合与本体聚合,乳液聚合具有聚合速度快、传热效果好、最终产物粘度等优势,是最适用于工业化的一种聚合方法。RAFT乳液聚合综合了RAFT聚合活性可控的特点以及乳液聚合聚合速率快、产物分子量高的优势,在嵌段共聚物与热塑性弹性体的合成中具有极大的优势。近年来,RAFT乳液聚合已经成功多种热塑性弹性体,其中丙烯酸酯类聚合物具有玻璃化温度低、耐老化效果好、极性高等优势,因此广泛作为热塑性弹性体软段。
然而,在传统的乳液聚合反应温度下,即50‐80摄氏度下,RAFT乳液聚合合成的丙烯酸酯类热塑性弹性体普遍存在熔融指数过低、加工性能较差的缺陷,其熔融指数普遍低于0.01g/10min。过低的熔融指数限制了丙烯酸酯类热塑性弹性体的应用,大大提高了其热加工的加工成本。
发明内容
本发明的目的是针对现有技术的不足,提供一种具备高熔融指数的极性热塑性弹性及其制备方法。
本发明的目的是通过以下技术方案来实现的:一种高熔融指数的热塑性弹性体及其制备方法,其结构通式为X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-b-α n5-R,其中,X为异丙酸基、乙酸基、2-腈基乙酸基或2-胺基乙酸基;AA n1中,AA为甲基丙烯酸单体单元或丙烯酸单体单元,n 1为AA的平均聚合度,n 1=20-60;St n2中,St为苯乙烯单体单元,n 2为St的平均聚合度,n 2=3-10;α n3中,α为苯乙烯、甲基丙烯酸甲酯(MMA)或丙烯腈(AN)单体单元,n 3为α的平均聚合物,n 3=50-200;(β-co-γ) n4中,β-co-γ为β单体和γ单体的无规共聚物,β为丙烯酸甲酯(MA)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸叔丁酯(tBA)、丙烯酸异丁酯(iBA)或丙烯酸异辛酯(EHA)单体单元,γ为甲基丙烯酸丁酯(BMA)、甲基丙烯酸叔丁酯(tBMA)、甲基丙烯酸异丁酯(iBMA)或甲基丙烯酸异辛酯(EHMA)单体单元,n 4为β-co-γ共聚物的平均聚合度,n 4=200-1000,β-co-γ共聚物中γ与β的重量比为0:1-3:1;α n5中,α为苯乙烯、甲基丙烯酸甲酯或丙烯腈单体单元,n 5为α的平均聚合物,n 5=50-200;R为烷基二硫代酯基团或烷基三硫代酯基团。上述热塑性弹性体在190℃、2.16kg条件下测得的熔融指数为0.5-10g/10min;
本发明还提供了一种上述热塑性弹性体的制备方法,包括以下步骤:
(1)将0.6-3重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于50-100重量份的水中,随后加入5-15重量份的α单体,搅拌预乳化后加入反应器中;将反应器升温至30-80摄氏度,保持搅拌,通氮除氧5分钟以上;将0.014-0.1重量份的第一水溶性引发剂加入至反应体系中;反应30-60分钟后,加入20-40重量份氢氧化钠水溶液,其中含0.05-0.2重量份氢氧化钠,继续反应30-60分钟,得到X-AA n1-b-St n2-b-α n3-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(2)第一步反应结束后,将反应温度改变为30-60摄氏度,加入15-30重量份的β单体和0-45重量份的γ单体;随后加入0.014-0.1重量份的第二水溶性引发剂,反应90-240分钟后,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(3)第二步反应结束后,加入5-15重量份的α单体,继续反应90-240分钟,反应温度为30-60摄氏度,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-b-α n5-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(4)对得到的胶乳进行破乳、清洗、干燥,得到高熔融指数的热塑性弹性体。
进一步地,所述的两亲性大分子可逆加成断裂链转移试剂的结构通式为:
Figure PCTCN2019086303-appb-000001
其中,Z为碳原子数四到十二的烷硫基、烷基、苯基或苄基,S为硫元素,St为苯乙烯单体单元,AA为甲基丙烯酸单体单元或丙烯酸单体单元,X为异丙酸基、乙酸基、2-腈基乙酸基或2-胺基乙酸基;n 6为苯乙烯单体单元的平均聚合度,n 6=3-10,n 7为甲基丙烯酸单体单元或丙烯酸单体单元的平均聚合度,n 7=20-60。
进一步地,所述的第一水溶性引发剂为过硫酸铵、过硫酸钾、过氧化氢或过氧化氢衍生物;所述的第二水溶性引发剂为偶氮二异丁脒盐酸盐(V50)、偶氮二异丁咪唑啉盐酸盐(VA044)、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮(2959)、过硫酸氢钠/过硫酸钾氧化还原引发剂或过硫酸钠/过硫酸铵氧化还原引发剂。
本发明的有益效果是,本发明采用乳液聚合体系,结合可逆加成断裂链转移自由基聚合技术,通过降低反应温度以及在软段共聚的方法,得到高熔融指数的三嵌段结构热塑性弹性体。
1、乳液聚合具有粘度低、传热效率高、污染少等优点,便于工业化与连续生产;
2、乳液聚合具备自由基隔离效应,不同粒子中的自由基不会相互反应,降低了自由基终止的速率,因此本发明具有聚合速率高,所得产物分子量大的优势;
3、采用的双亲性两亲性大分子可逆加成断裂链转移试剂同时作为链转移剂以及乳化剂,既能良好控制最终产物的分子结构及分布,还避免了后续除去外加乳化剂的繁琐操作。
4、该方法合成的聚合物分子量可控,分子量分布窄,单体适用范围广。
5、相比于传统RAFT乳液聚合所得的产物,本发明所得的热塑性弹性体产品具有较高的熔融指数,具备优良的热加工性能,同时也具有良好的粘弹性能。
附图说明
图1是本发明案例1中每嵌段结束后所取聚合物样品的GPC曲线图;
图2是本发明案例1所得嵌段产物与传统RAFT乳液聚合得到相同组成的嵌段产物的GPC曲线对比图,后者在整个反应过程中始终保持聚合温度为70℃;
图3是本发明案例2中每嵌段结束后所取聚合物样品的GPC曲线图;
图4是本发明案例1与案例2所得产物的DSC曲线对比图。
具体实施方式
本申请发明人研究发现,当RAFT乳液聚合的反应温度由传统的50‐80摄氏度降低至30‐60 摄氏度后,所得的丙烯酸酯类三嵌段热塑性弹性的熔融指数得到了极大的提高。同时,通过向软段丙烯酸酯类单体中共聚入部分与硬段相容性更好同时与软段结构相近的单体,不仅可以有效提高热塑性弹性体的熔融指数,同时对聚合物粘弹性、极性等性能也不会造成较大的影响。最终所得产品不仅具备热塑性弹性体弹性性能优异、强度高,且具备较高的极性,更重要的是其加工性能得到了极大的提升。
本发明为一种可逆加成断裂链转移乳液聚合制备高熔融指数热塑性弹性体的方法,包括以下步骤:
(1)将0.6-3重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于50-100重量份的水中,随后加入5-15重量份的α单体,搅拌预乳化后加入反应器中;将反应器升温至30-80摄氏度,保持搅拌,通氮除氧5分钟以上;将0.014-0.1重量份的第一水溶性引发剂加入至反应体系中;反应30-60分钟后,加入20-40重量份氢氧化钠水溶液,其中含0.05-0.2重量份氢氧化钠,继续反应30-60分钟,得到X-AA n1-b-St n2-b-α n3-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(2)第一步反应结束后,将反应温度改变为30-60摄氏度,加入15-30重量份的β单体和0-45重量份的γ单体;随后加入0.014-0.1重量份的第二水溶性引发剂,反应90-240分钟后,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(3)第二步反应结束后,加入5-15重量份的α单体,继续反应90-240分钟,反应温度为30-60摄氏度,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-b-α n5-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
(4)对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
步骤1中所使用的两亲性大分子可逆加成断裂链转移试剂的结构通式为:
Figure PCTCN2019086303-appb-000002
其中,Z为碳原子数四到十二的烷硫基、烷基、苯基或苄基,S为硫元素,St为苯乙烯单体单元,AA为甲基丙烯酸单体单元或丙烯酸单体单元,X为异丙酸基、乙酸基、2-腈基乙酸基或2-胺基乙酸基;n 6为苯乙烯单体单元的平均聚合度,n 6=3-10,n 7为甲基丙烯酸单体单元或丙烯酸单体单元的平均聚合度,n 7=20-60。
各单体的转化率通过重量法测得。
设计分子量由下式计算得到:
Figure PCTCN2019086303-appb-000003
其中,M n,th指各步反应结束时聚合物分子量的设计值,m为此步反应所加单体的总质量,x为转化率,[RAFT]为反应开始前所加的两亲性可逆加成断裂链转移试剂的物质的量,M n,RAFT为两亲性可逆加成断裂链转移试剂的分子量。
聚合物的分子量表征在凝胶渗透色谱Waters1525-2414-717GPC仪器上进行,洗脱液为四氢呋喃,以窄分布聚苯乙烯标样进行校正。
聚合物的玻璃化温度测定在DSC Q200仪器上进行,使用氮气氛围,以10℃/分钟的升温速率从-50℃加热到150℃。
聚合物的熔融指数测定在熔融指数仪上进行,测试条件为温度190℃,压力2.16kg。
下面根据附图和实施例详细描述本发明。
本发明实施例中所用的两亲性大分子可逆加成断裂链转移试剂的化学结构式为:
Figure PCTCN2019086303-appb-000004
两亲性大分子可逆加成断裂链转移试剂(1)
Figure PCTCN2019086303-appb-000005
两亲性大分子可逆加成断裂链转移试剂(2)
实施例1:
第一步:将1.2重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于70重量份的水 中,随后加入8重量份的St单体,搅拌预乳化后加入反应器中;将反应器升温至70摄氏度,保持搅拌,通氮除氧30分钟;将0.03重量份的过硫酸钾加入至反应体系中;反应60分钟后,加入30重量份氢氧化钠水溶液,其中含0.16重量份氢氧化钠,继续反应30分钟,得到X-AA n1-b-St n2-b-St n3-R嵌段共聚物胶乳;
第二步:第一步反应结束后,将反应温度改变为40摄氏度,加入30重量份的BA单体;随后加入0.05重量份的VA044,反应180分钟后,得到X-AA n1-b-St n2-b-St n3-b-BA n4-R嵌段共聚物胶乳;
第三步:第二步反应结束后,加入8重量份的St单体,继续反应150分钟,反应温度为40摄氏度,得到X-AA n1-b-St n2-b-St n3-b-BA n4-b-St n5-R嵌段共聚物胶乳;
第四步:对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
图1为每嵌段反应结束后聚合物的GPC曲线,可以看出聚合物分子量在聚合过程中逐步增加,证明为嵌段共聚物,整个聚合过程中产品的PDI均小于1.6,表明该聚合过程为活性聚合。图2对比了70℃RAFT乳液聚合所得的相同组成的嵌段共聚物与案例1所得产物的GPC曲线对比,前者在整个反应过程中均保持反应温度为70℃,可以明显看出,70℃下反应得到的三嵌段共聚物的GPC曲线在高分子量处有一个十分明显的肩峰,最终PDI大于3,而案例一最终得到的产物没有肩峰,最终分子量分布很窄。上述两种聚合物在熔融指数仪中以温度190℃、压力2.16kg的条件进行测试,70℃下的产品最终熔融指数低于0.01g/10min,而案例一的产品熔融指数达到0.5g/10min。
实施例2:
第一步:将1.8重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于70重量份的水中,随后加入8重量份的St单体,搅拌预乳化后加入反应器中;将反应器升温至70摄氏度,保持搅拌,通氮除氧30分钟;将0.045重量份的过硫酸铵加入至反应体系中;反应60分钟后,加入25重量份氢氧化钠水溶液,其中含0.2重量份氢氧化钠,继续反应30分钟,得到X-AA n1-b-St n2-b-St n3-R嵌段共聚物胶乳;
第二步:第一步反应结束后,将反应温度改变为45摄氏度,加入15重量份的BA单体和15重量份的BMA单体;随后加入0.05重量份的VA044,反应150分钟后,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-R嵌段共聚物胶乳;
第三步:第二步反应结束后,加入8重量份的St单体,继续反应180分钟,反应温度为45摄氏度,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-b-St n5-R嵌段共聚物胶乳;
第四步:对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
图3为每嵌段反应结束后所得聚合物的GPC曲线,可以看出聚合物分子量逐步增加,证 明所得产物为三嵌段共聚物,整个聚合过程中产品的PDI均小于1.6,表明该聚合过程为活性聚合。图四为两种不同三嵌段共聚物X-AA n1-b-St n2-b-St n3-b-BA n4-b-St n5-R(案例1产品)与X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-b-St n5-R(案例2产品)的DSC曲线对比,可以看出前者软段(BA段)玻璃化温度约为-50℃,与均聚物PBA的玻璃化温度(-56℃)接近,且玻璃化温度范围较窄;而在后者中,软段(BA-co-BMA段)玻璃化温度提高至约-20℃,仍然远低于普遍的室温,符合热塑性弹性体软段的要求,同时玻璃化温度范围变宽,说明软段与硬段之间的相容性有一定的提高。最终所得聚合物在温度190℃、压力2.16kg的条件下的熔融指数达到1.25g/10min。
实施例3:
第一步:将0.6重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于50重量份的水中,随后加入5重量份的St单体,搅拌预乳化后加入反应器中;将反应器升温至80摄氏度,保持搅拌,通氮除氧15分钟;将0.014重量份的过硫酸钾加入至反应体系中;反应30分钟后,加入20重量份氢氧化钠水溶液,其中含0.05重量份氢氧化钠,继续反应60分钟,得到X-AA n1-b-St n2-b-St n3-R嵌段共聚物胶乳;
第二步:第一步反应结束后,将反应温度改变为50摄氏度,加入15重量份的BA单体和45重量份的BMA单体;随后加入0.014重量份的过硫酸钾,反应240分钟后,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳;
第三步:第二步反应结束后,加入5重量份的St单体,继续反应90分钟,反应温度为50摄氏度,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-b-St n5-R嵌段共聚物胶乳;
第四步:对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
实施例4:
第一步:将3重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于100重量份的水中,随后加入15重量份的MMA单体,搅拌预乳化后加入反应器中;将反应器升温至30摄氏度,保持搅拌,通氮除氧50分钟;将0.1重量份的过硫酸铵加入至反应体系中;反应60分钟后,加入40重量份氢氧化钠水溶液,其中含0.2重量份氢氧化钠,继续反应60分钟,得到X-AA n1-b-St n2-b-MMA n3-R嵌段共聚物胶乳;
第二步:第一步反应结束后,将反应温度改变为30摄氏度,加入30重量份的EA单体和15重量份的EHMA单体;随后加入0.1重量份的过硫酸钾/亚硫酸钠(1:1)氧化还原引发剂,反应240分钟后,得到X-AA n1-b-St n2-b-α n3-b-(EA-co-EHMA) n4-R嵌段共聚物胶乳;
第三步:第二步反应结束后,加入15重量份的MMA单体,继续反应90分钟,反应温 度为30摄氏度,得到X-AA n1-b-St n2-b-MMA n3-b-(EA-co-EHA) n4-b-MMA n5-R嵌段共聚物胶乳;
第四步:对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
实施例5:
第一步:将1.5重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于80重量份的水中,随后加入10重量份的St单体,搅拌预乳化后加入反应器中;将反应器升温至80摄氏度,保持搅拌,通氮除氧30分钟;将0.03重量份的过硫酸钾加入至反应体系中;反应30分钟后,加入30重量份氢氧化钠水溶液,其中含0.1重量份氢氧化钠,继续反应30分钟,得到X-AA n1-b-St n2-b-St n3-R嵌段共聚物胶乳;
第二步:第一步反应结束后,将反应温度改变为50摄氏度,加入20重量份的BA单体和20重量份的BMA单体;随后加入0.03重量份的VA044,反应90分钟后,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-R嵌段共聚物胶乳;
第三步:第二步反应结束后,加入10重量份的St单体,继续反应240分钟,反应温度为50摄氏度,得到X-AA n1-b-St n2-b-St n3-b-(BA-co-BMA) n4-b-St n5-R嵌段共聚物胶乳;
第四步:对得到的聚合物胶乳进行破乳、清洗、干燥后得到高熔融指数的热塑性弹性体。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

  1. 一种高熔融指数的热塑性弹性体及其制备方法,其特征在于:其结构通式为X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-b-α n5-R,其中,X为异丙酸基、乙酸基、2-腈基乙酸基或2-胺基乙酸基;AA n1中,AA为甲基丙烯酸单体单元或丙烯酸单体单元,n 1为AA的平均聚合度,n 1=20-60;St n2中,St为苯乙烯单体单元,n 2为St的平均聚合度,n 2=3-10;α n3中,α为苯乙烯、甲基丙烯酸甲酯或丙烯腈单体单元,n 3为α的平均聚合物,n 3=50-200;(β-co-γ) n4中,β-co-γ为β单体和γ单体的无规共聚物,β为丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸叔丁酯、丙烯酸异丁酯或丙烯酸异辛酯单体单元,γ为甲基丙烯酸丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸异丁酯或甲基丙烯酸异辛酯单体单元,n 4为β-co-γ共聚物的平均聚合度,n 4=200-1000,β-co-γ共聚物中γ与β的重量比为0:1-3:1;α n5中,α为苯乙烯、甲基丙烯酸甲酯或丙烯腈单体单元,n 5为α的平均聚合物,n 5=50-200;R为烷基二硫代酯基团或烷基三硫代酯基团。上述热塑性弹性体在190℃、2.16kg条件下测得的熔融指数为0.5-10g/10min;
  2. 一种权利要求1所述热塑性弹性体的制备方法,其特征在于,包括以下步骤:
    (1)将0.6-3重量份的两亲性大分子可逆加成断裂链转移试剂搅拌溶于50-100重量份的水中,随后加入5-15重量份的α单体,搅拌预乳化后加入反应器中;将反应器升温至30-80摄氏度,保持搅拌,通氮除氧5分钟以上;将0.014-0.1重量份的第一水溶性引发剂加入至反应体系中;反应约30-60分钟后,加入20-40重量份氢氧化钠水溶液,其中含0.05-0.2重量份氢氧化钠,继续反应约30-60分钟,得到X-AA n1-b-St n2-b-α n3-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳。
    (2)第一步反应结束后,将反应温度改变为30-60摄氏度,加入15-30重量份的β单体和0-45重量份的γ单体;随后加入0.014-0.1重量份的第二水溶性引发剂,反应90-240分钟后,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳。
    (3)第二步反应结束后,加入5-15重量份的α单体,继续反应约90-240分钟,反应温度为30-60摄氏度,得到X-AA n1-b-St n2-b-α n3-b-(β-co-γ) n4-b-α n5-R嵌段共聚物,嵌段共聚物以粒子形式稳定分散在水中形成胶乳。
    (4)对得到的胶乳进行破乳、清洗、干燥,得到高熔融指数的热塑性弹性体。
  3. 根据权利要求2所述的制备方法,其特征在于,所述两亲性大分子可逆加成断裂链转移试剂的结构通式为:
    Figure PCTCN2019086303-appb-100001
    其中,Z为碳原子数四到十二的烷硫基、烷基、苯基或苄基,S为硫元素,St为苯乙烯单体单元,AA为甲基丙烯酸单体单元或丙烯酸单体单元,X为异丙酸基、乙酸基、2-腈基乙酸基或2-胺基乙酸基;n 6为苯乙烯单体单元的平均聚合度,n 6=3-10,n 7为甲基丙烯酸单体单元或丙烯酸单体单元的平均聚合度,n 7=20-60。
  4. 根据权利要求2所述的可逆加成断裂链转移乳液聚合制备方法,其特征在于,所述第一水溶性引发剂为过硫酸铵、过硫酸钾、过氧化氢或过氧化氢衍生物。
  5. 根据权利要求2所述的可逆加成断裂链转移乳液聚合制备方法,其特征在于,所述第二水溶性引发剂为偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、过硫酸氢钠/过硫酸钾氧化还原引发剂或过硫酸钠/过硫酸铵氧化还原引发剂。
PCT/CN2019/086303 2018-05-17 2019-05-10 一种高熔融指数的热塑性弹性体及其制备方法 WO2019218933A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020564645A JP7085770B2 (ja) 2018-05-17 2019-05-10 高メルトインデックスの熱可塑性エラストマー及びその製造方法
US17/055,994 US20210253770A1 (en) 2018-05-17 2019-05-10 High melt index thermoplastic elastomer and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810474427.3 2018-05-17
CN201810474427.3A CN108912288B (zh) 2018-05-17 2018-05-17 一种高熔融指数的热塑性弹性体及其制备方法

Publications (1)

Publication Number Publication Date
WO2019218933A1 true WO2019218933A1 (zh) 2019-11-21

Family

ID=64403691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086303 WO2019218933A1 (zh) 2018-05-17 2019-05-10 一种高熔融指数的热塑性弹性体及其制备方法

Country Status (4)

Country Link
US (1) US20210253770A1 (zh)
JP (1) JP7085770B2 (zh)
CN (1) CN108912288B (zh)
WO (1) WO2019218933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912288B (zh) * 2018-05-17 2020-10-16 浙江大学 一种高熔融指数的热塑性弹性体及其制备方法
CN112831007B (zh) * 2021-02-01 2022-04-22 西北工业大学 一种具有多相结构的自修复聚丙烯酸酯弹性体及制备方法
CN115260921B (zh) * 2022-07-06 2023-06-09 浙江大学 一种oca光学压敏胶及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910475A1 (fr) * 2006-12-22 2008-06-27 Arkema France Copolymeres a base d'unites methacrylates, leur procede de preparation et leurs utilisations
JP2014221868A (ja) * 2013-05-13 2014-11-27 国立大学法人名古屋大学 ブロック共重合体の製法及びそのブロック共重合体を用いたフォトニック材料
CN106281147A (zh) * 2016-08-15 2017-01-04 浙江大学 一种水基电极粘结剂及制备方法
CN106433530A (zh) * 2016-09-19 2017-02-22 浙江大学 一种硫正极用水基电极粘结剂及制备方法
CN107418125A (zh) * 2017-07-06 2017-12-01 浙江大学 一种采用嵌段共聚物胶乳制备多相聚合物材料的方法
CN108912288A (zh) * 2018-05-17 2018-11-30 浙江大学 一种高熔融指数的热塑性弹性体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE509959T1 (de) * 2007-08-02 2011-06-15 Dsm Ip Assets Bv Wässrige dispersionen mit kristallisierbaren blockcopolymeren
CN103936948A (zh) * 2014-04-11 2014-07-23 浙江大学 聚((甲基)丙烯酸-b-苯乙烯-b-苯乙烯/丙烯腈)嵌段共聚物胶乳及制备方法
CN106905951A (zh) * 2017-01-24 2017-06-30 苏州科技大学 基于光子晶体的三重态‑三重态湮灭上转换发光体系及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910475A1 (fr) * 2006-12-22 2008-06-27 Arkema France Copolymeres a base d'unites methacrylates, leur procede de preparation et leurs utilisations
JP2014221868A (ja) * 2013-05-13 2014-11-27 国立大学法人名古屋大学 ブロック共重合体の製法及びそのブロック共重合体を用いたフォトニック材料
CN106281147A (zh) * 2016-08-15 2017-01-04 浙江大学 一种水基电极粘结剂及制备方法
CN106433530A (zh) * 2016-09-19 2017-02-22 浙江大学 一种硫正极用水基电极粘结剂及制备方法
CN107418125A (zh) * 2017-07-06 2017-12-01 浙江大学 一种采用嵌段共聚物胶乳制备多相聚合物材料的方法
CN108912288A (zh) * 2018-05-17 2018-11-30 浙江大学 一种高熔融指数的热塑性弹性体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FEIZHOU WANG ET AL.: "Synthesis and Redispersibility of Poly(styrene-block-n-bu- tyl acrylate) Core-Shell Latexes by Emulsion Polymerization with RAFT Agent- Surfactant Design", MACROMOLECULES, vol. 48, no. 5, 20 February 2015 (2015-02-20), pages 1313 - 1319, XP055653109 *
YINGWU LUO: "Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Po- lymerization", MACROMOLECULES, vol. 43, no. 18, 17 August 2010 (2010-08-17) - 28 September 2010 (2010-09-28), pages 7472 - 7481, XP001558162 *
YUNLONG GUO ET AL.: "Suppressing the Long-Chain Branching in the Synthesis of Poly(styrene-b-butyl acrylate-b-styrene) in RAFT Emulsion Polymerization by Tuning the Interfacial Properties", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 53, no. 12, 27 February 2015 (2015-02-27) - 15 June 2015 (2015-06-15), pages 1464 - 1473, XP055653106 *

Also Published As

Publication number Publication date
JP2021524872A (ja) 2021-09-16
CN108912288B (zh) 2020-10-16
US20210253770A1 (en) 2021-08-19
JP7085770B2 (ja) 2022-06-17
CN108912288A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2019218933A1 (zh) 一种高熔融指数的热塑性弹性体及其制备方法
WO2020207088A1 (zh) 一种窄分子量分布的多嵌段共聚物及其制备方法
JP2007327073A (ja) アクリロニトリルおよびオレフィン性不飽和モノマーから調製される高ニトリルマルチポリマーの製造方法
WO2013134965A1 (zh) 聚((甲基)丙烯酸-b-苯乙烯-b-丁二烯-b-苯乙烯)嵌段共聚物胶乳及其制备方法
US10214641B2 (en) Aqueous organic silicon fluoro-containing polymer dispersion and method for manufacturing the same
US20160122597A1 (en) Preparation of pressure sensitive adhesive dispersions from multi-stage emulsion polymerization for applications of protective films
CN1800286A (zh) 聚合物添加剂和含有这些聚合物添加剂的粘合剂组合物
JP2017082246A (ja) 制御されたラジカル重合による高質量の親水性ポリマーの製造
WO2016061110A1 (en) Vinyl acetate-ethylene / acrylic polymer emulsions and products and methods relating thereto
CN114133500A (zh) 一种三嵌段共聚物韧性树脂胶乳及制备方法
JP6608160B2 (ja) 高分子ゲル及びその製造方法
WO2004009648A2 (en) Method for polymerizing ethylenically unsaturated monomers by degenerative iodine transfer
CN114015000B (zh) 一种嵌段共聚物胶乳的制备方法
JP6964196B2 (ja) 塩化ビニル重合体及びこの製造方法
JP3637794B2 (ja) メタクリル酸メチル系重合体ビーズの製造方法
CN114591474B (zh) 一种高回弹性的水性丙烯酸酯组合物及其制备方法
CN103755899B (zh) 一种热塑性弹性体及制备方法
CN115491153B (zh) 一种交联型水性丙烯酸酯嵌段共聚物压敏胶及其制备方法
CN112574349B (zh) 硬质聚氯乙烯系共聚物、其制备方法、包括其的组合物和由该组合物制成的树脂制品
JP2010095581A (ja) アクリル共重合体の製造方法
JPH035407B2 (zh)
CN108424491B (zh) 一种丙烯酰胺共聚物及其制备方法和应用
JP2011132397A (ja) ビニル共重合体の水性分散体の製造方法
JPH0542474B2 (zh)
JP2002363217A (ja) 塩化ビニル系重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803196

Country of ref document: EP

Kind code of ref document: A1