WO2019218581A1 - 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用 - Google Patents

基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用 Download PDF

Info

Publication number
WO2019218581A1
WO2019218581A1 PCT/CN2018/109317 CN2018109317W WO2019218581A1 WO 2019218581 A1 WO2019218581 A1 WO 2019218581A1 CN 2018109317 W CN2018109317 W CN 2018109317W WO 2019218581 A1 WO2019218581 A1 WO 2019218581A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapphire substrate
gallium oxide
source
gallium
strain buffer
Prior art date
Application number
PCT/CN2018/109317
Other languages
English (en)
French (fr)
Inventor
张晓东
范亚明
张宝顺
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to JP2020564615A priority Critical patent/JP7173621B2/ja
Priority to US17/051,779 priority patent/US11996288B2/en
Publication of WO2019218581A1 publication Critical patent/WO2019218581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers

Definitions

  • the invention relates to a method for growing a semiconductor material, in particular to a gallium oxide film based on a sapphire substrate and a growth method thereof, and belongs to the field of semiconductor technology and electronic technology.
  • GaN gallium nitride
  • SiC silicon carbide
  • the ⁇ -Ga 2 O 3 band gap is 5.3 eV, which can effectively improve the withstand voltage performance of the device.
  • the mobility of ⁇ -Ga 2 O 3 material is also higher than that of ⁇ -Ga 2 O 3 , so the device performance is better than ⁇ -Ga. 2 O 3 .
  • ⁇ -Ga 2 O 3 has excellent chemical stability, thermal stability and strong penetrating field, and is in the fields of deep ultraviolet transparent conductive film, ultraviolet detector, semiconductor power device, spintronic device, gas sensor, and the like. Has broad application prospects.
  • ⁇ -Ga 2 O 3 materials include various chemical vapor deposition (CVD) such as MOCVD, LPCVD, Mist-CVD, etc., molecular beam epitaxy (MBE), and halide gas phase.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE atomic layer deposition
  • ALD atomic layer deposition
  • ⁇ -Ga 2 O 3 belongs to the trigonal system.
  • ⁇ -Ga 2 O 3 can be grown on a sapphire substrate by mist chemical vapor deposition (Mist-CVD), and the prepared Schottky diode (SBD) has better performance than SiC. SBD. Therefore, by using an inexpensive Sapphire substrate and CVD growth technology, ⁇ -Ga 2 O 3 materials and devices can be produced at low cost and on a large scale.
  • Mist-CVD mist chemical vapor deposition
  • SBD Schottky diode
  • ⁇ -Ga 2 O 3 has the same crystal structure as ⁇ -Al 2 O 3 , the difference in lattice constant and thermal conductivity cause a certain degree of mismatch in epitaxy, resulting in ⁇ -Ga 2 O 3 dislocations. Increased, film cracking, which seriously affects the application of materials and the development of devices.
  • the main object of the present invention is to provide a sapphire substrate-based gallium oxide thin film and a growth method and application thereof to overcome the deficiencies of the prior art.
  • the technical solution adopted by the present invention includes:
  • Embodiments of the present invention provide a method for preparing a gallium oxide film based on a sapphire substrate, which includes:
  • a gallium oxide epitaxial layer is formed on the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer.
  • the embodiment of the invention also provides a sapphire substrate-based gallium oxide film prepared by the preparation method.
  • the embodiment of the invention further provides a sapphire substrate-based gallium oxide film, comprising a sapphire substrate and a gallium oxide epitaxial layer, wherein more than one ⁇ -(Al x Ga is formed between the sapphire substrate and the gallium oxide epitaxial layer 1-x ) 2 O 3 strain buffer layer, where 0.99 ⁇ x ⁇ 0.01.
  • Embodiments of the present invention also provide the use of the sapphire substrate-based gallium oxide film in the field of fabricating semiconductor power devices and semiconductor optoelectronic devices.
  • the growth method provided by the embodiment of the present invention forms an ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer, which can avoid not only ⁇ -Ga 2 O 3 and ⁇ -Al 2 O 3 temperature epitaxial conflicting technical difficulties, but also can reduce the ⁇ -Ga 2 O 3 thin film epitaxial defect density, thereby improving the crystal quality of the epitaxial film 2 O 3 material ⁇ -Ga.
  • FIG. 1 is a schematic view showing the structure of a gallium oxide film based on a sapphire substrate in an exemplary embodiment of the present invention.
  • FIG. 2 is a flow diagram showing the flow rates of an oxygen source and an aluminum/gallium source in pulsed epitaxial growth in an exemplary embodiment of the present invention.
  • FIG 3 is a schematic view showing epitaxial growth of an ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in an exemplary embodiment of the present invention.
  • the inventors of the present invention have attempted to low-temperature growth of ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer structures of different Al compositions by pulse epitaxy to alleviate ⁇ -Ga 2 O 3 film stress, reduce the dislocation density of epitaxial film, and improve the quality of ⁇ -Ga 2 O 3 crystal.
  • Al 2 O 3 has a smaller bond length and a higher decomposition temperature than Ga 2 O 3 , so epitaxial ⁇ -Al 2 O 3 also requires a higher temperature.
  • the physical and chemical adsorption capacity, migration ability, ability to incorporate a lattice, and desorption temperature of the Al atom on the surface of the epitaxial layer affect the crystal quality of ⁇ -(Al x Ga 1-x ) 2 O 3 .
  • ⁇ -Ga 2 O 3 epitaxy requires a low temperature, and a phase transition occurs above 550 ° C, which results in the growth of ⁇ -(Al x Ga 1-x with a high Al composition below this temperature. ) 2 O 3 strain buffer layer is difficult. That is, if the foregoing scheme tried by the inventors of the present invention is employed, the problem that the epitaxial temperatures of ⁇ -Ga 2 O 3 and ⁇ -Al 2 O 3 are contradictory is unavoidable.
  • the inventors of the present invention conducted long-term research and a large number of practices to propose the technical solution of the present invention, mainly by low-temperature growth of ⁇ -(Al x Ga 1-x ) 2 O 3 composite strain by pulse epitaxy.
  • the buffer structure solves the problems of the prior art.
  • Embodiments of the present invention provide a method for preparing a gallium oxide film based on a sapphire substrate, which includes:
  • a gallium oxide epitaxial layer is formed on the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer.
  • the preparation method comprises: placing a sapphire substrate into the reaction chamber, and then separately inputting the oxygen source, the gallium source and/or the aluminum source into the reaction chamber at different times by pulse to form the one or more ⁇ . - (Al x Ga 1-x ) 2 O 3 strain buffer layer.
  • the preparation method specifically includes: continuously feeding any one of an oxygen source, a gallium source, and/or an aluminum source into the reaction chamber in a first period of time during each growth cycle, and then spacing A second period of time, and then the other of the oxygen source, the gallium source, and/or the aluminum source is continuously input to the reaction chamber during the third period of time, and then separated by a fourth period of time.
  • the duration of the first time period, the second time period, the third time period, and the fourth time period is 0.1-99 s.
  • the oxygen source is selected from the group consisting of oxygen-containing substances capable of providing oxygen.
  • the oxygen-containing substance includes any one or a combination of two or more of oxygen, water, nitrous oxide, nitrogen monoxide, carbon dioxide, and carbon monoxide, but is not limited thereto.
  • gallium source is selected from the group consisting of organic compounds containing gallium.
  • the gallium source comprises trimethyl gallium and/or triethyl gallium, but is not limited thereto.
  • the aluminum source is selected from the group consisting of organic compounds containing aluminum.
  • the aluminum source comprises trimethyl aluminum and/or triethyl gallium, but is not limited thereto.
  • the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer has a growth pressure of 10 to 760 Torr and a growth temperature of 100 to 1000 ° C.
  • the preparation method comprises: sequentially forming 1-99 of the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer on a sapphire substrate.
  • one of the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layers has a thickness of 1-1000 nm.
  • the content of Al elements in at least two layers of ⁇ -(Al x Ga 1-x ) 2 O 3 is different.
  • the gallium oxide epitaxial layer has a growth pressure of 10 to 760 Torr and a growth temperature of 100 to 600 °C.
  • the material of the gallium oxide epitaxial layer is ⁇ -Ga 2 O 3 .
  • the embodiment of the invention also provides a sapphire substrate-based gallium oxide film prepared by the preparation method.
  • the embodiment of the invention further provides a sapphire substrate-based gallium oxide film, comprising a sapphire substrate and a gallium oxide epitaxial layer, wherein more than one ⁇ -(Al x Ga is formed between the sapphire substrate and the gallium oxide epitaxial layer 1-x ) 2 O 3 strain buffer layer, where 0.99 ⁇ x ⁇ 0.01.
  • each ⁇ -(Al x Ga 1-x ) 2 O 3 layer has a thickness of 1-1000 nm.
  • the gallium oxide film comprises 1-99 alpha-(Al x Ga 1-x ) 2 O 3 layers.
  • the content of the Al element of at least two of the ⁇ -(Al x Ga 1-x ) 2 O 3 layers is different.
  • the invention can not only avoid ⁇ -Ga 2 O 3 and ⁇ -Al 2 O 3 epitaxy by low-temperature growth of ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer structure of different Al components by pulse epitaxy method.
  • the contradiction between the intermediate temperatures can also effectively reduce the defect density of the ⁇ -Ga 2 O 3 epitaxial film, alleviate the stress of the ⁇ -Ga 2 O 3 film, and further improve the crystal quality of the ⁇ -Ga 2 O 3 epitaxial film material.
  • Embodiments of the present invention also provide the use of the sapphire substrate-based gallium oxide film for fabricating a semiconductor power device or a semiconductor optoelectronic device.
  • FIG. 1 is a schematic structural view of a sapphire substrate-based gallium oxide film according to an exemplary embodiment of the present invention, which comprises a sapphire substrate, and a plurality of ⁇ - arranged on the sapphire substrate in turn.
  • the epitaxial growth method may be selected from chemical vapor deposition (CVD), in particular MOCVD (metal organic chemical vapor deposition), and the like, and suitable equipment includes CVD (Chemical Vapor Deposition), LPCVD (Low Pressure Chemical Vapor Deposition) ), MOCVD (Metal Organic Chemical Vapor Deposition Equipment), MBE (Molecular Beam Epitaxy Equipment), LMBE (Laser Molecular Beam Epitaxy Equipment), ALD (Single Atomic Layer Deposition Equipment), PEALD (Plasma Enhanced Atomic Layer Deposition Equipment), HVPE (Hydride vapor phase epitaxy equipment) and the like.
  • CVD Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition Equipment
  • MBE Molecular Beam Epitaxy Equipment
  • LMBE Laser Molecular Beam Epitaxy Equipment
  • ALD Single Atomic Layer Deposition Equipment
  • PEALD Pasma Enhanced Atomic Layer
  • an oxygen source which may be oxygen
  • a gallium/aluminum source such as triethylgallium/trimethylgallium
  • pulse separation During a pulse cycle (t 1 , t 2 , t 3 , t 4 pulse width is representative of the time when the oxygen source is introduced into the reaction chamber, the intermittent time, the time from the gallium/aluminum source to the reaction chamber, and the intermittent time.
  • Variables which alternate between intervals, where 0.1s ⁇ t 1 /t 2 /t 3 /t 4 ⁇ 99s) by pulse cycle number, pulse width (corresponding to oxygen source, time of gallium/aluminum source entering the reaction chamber) and number of pulses Flexible control and design (corresponding to the oxygen source, the number of times the gallium/aluminum source enters the reaction chamber), thereby achieving a high-quality ⁇ -(Al x Ga 1-x ) 2 O 3 film material at a lower temperature (ie, the strain buffer layer) Growth (ie, at a lower temperature, the atoms are moved to the optimal position to bond, for high-quality thin film epitaxy).
  • the oxygen source and the gallium/aluminum source can be separately introduced into the reaction chamber at different times, which can reduce the chance of pre-reaction of O and Al/Ga before contacting the substrate, and reduce the material caused by the deposition of the pre-reaction product.
  • Defects increase the lateral mobility of Al/Ga atoms on the growth surface, and make Al/Ga-O react at the optimal lattice point of the growth surface to bond, making (Al x Ga 1-x ) 2 O 3 bond more regular, atomic bonding Regular alignment into the crystal gives an atomically smooth surface.
  • the oxygen source in this embodiment may be selected from various oxygen-containing substances capable of generating O molecules such as oxygen, water, nitrous oxide, nitrogen monoxide, carbon dioxide, carbon monoxide and the like.
  • the gallium source in this embodiment may be selected from various metal organic sources of Ga, such as trimethylgallium TEG, triethylgalliumTMG; other materials containing Ga.
  • the aluminum source in this embodiment may be selected from various metal organic sources of Al such as trimethylaluminum TEA, triethylgallium TMA, and other materials containing Al.
  • the pressure at the time of epitaxial growth of each ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably controlled to a pressure of 10 Torr to 760 Torr or higher.
  • each ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably from 100 ° C to 1000 ° C.
  • each ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably from 100 ° C to 600 ° C.
  • the value of x in each ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably 0.99 ⁇ x ⁇ 0.01.
  • the number of layers of the ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably 99 ⁇ the number of layers ⁇ 1.
  • each ⁇ -(Al x Ga 1-x ) 2 O 3 strain buffer layer in this embodiment is preferably 1 nm ⁇ thickness ⁇ 1000 nm.
  • each time (t 1 , t 2 , t 3 , t 4 ) is preferably 99 s ⁇ t ⁇ 0.1 s.
  • the growth device of the ⁇ -Ga 2 O 3 epitaxial layer in this embodiment may also be MOCVD (Metal Organic Chemical Vapor Deposition), etc.
  • Suitable equipment includes suitable equipment including CVD (Chemical Vapor Deposition), LPCVD (Low Pressure Chemical Vapor Phase) Deposition apparatus), MOCVD (Metal Organic Chemical Vapor Deposition Apparatus), MBE (LMBE) (Molecular Beam Epitaxy Apparatus), ALD (PEALD) (monoatomic layer deposition apparatus), HVPE (Hydride Vapor Phase Epitaxy Apparatus), and the like.
  • the epitaxial growth pressure employed in the step 2) of this embodiment is preferably a pressure of 10 Torr to 760 Torr or higher.
  • the growth temperature of the ⁇ -Ga 2 O 3 epitaxial layer in this embodiment is preferably from 100 ° C to 600 ° C.
  • the method provided by the embodiment of the invention can not only avoid the technical difficulties of the temperature conflict between the ⁇ -Ga 2 O 3 and the ⁇ -Al 2 O 3 epitaxy, but also effectively reduce the defect density of the ⁇ -Ga 2 O 3 epitaxial film.
  • An ⁇ -Ga 2 O 3 epitaxial film material having a relatively good quality is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

一种基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用。所述的基于蓝宝石衬底的氧化镓薄膜的制备方法包括:以脉冲外延生长方式在蓝宝石衬底上形成一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01;以及,在所述α-(Al xGa 1-x) 2O 3应变缓冲层上形成氧化镓外延层。

Description

基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用 技术领域
本发明涉及一种半导体材料的生长方法,特别涉及一种基于蓝宝石衬底的氧化镓薄膜及其生长方法,属于半导体技术与电子技术领域。
背景技术
半导体材料在现代信息工业化社会中发挥着不可替代的作用,是现代半导体工业及微电子工业的基石。随着各种先进技术的不断发展,对高耐压、大功率、抗辐射等高性能电子器件以及深紫外光电子器件需求越来越迫切,尤其是在高耐压及深紫外领域,传统的半导体材料已难以满足使用要求。
超宽带隙氧化物半导体—氧化镓(Ga 2O 3),相较于第三代半导体材料,如氮化镓(GaN)和碳化硅(SiC),具有更大禁带宽度、更高的击穿场强、透明导电、可以通过熔体法生长、成本更低等优点,而成为半导体材料及器件等领域的研究热点。
Ga 2O 3材料共有α,β,γ,δ,ε五种已知的晶相,其中β-Ga 2O 3(Eg=4.7~4.9eV)结构最为稳定并能和其他四种氧化镓之间互相转化。然而α-Ga 2O 3禁带宽度达到5.3eV,可有效提高器件耐压性能,α-Ga 2O 3材料的迁移率也高于β-Ga 2O 3,因此器件性能优于β-Ga 2O 3。而且α-Ga 2O 3具有优良的化学稳定性、热稳定性和击穿场强大等优点,在深紫外透明导电薄膜、紫外探测器、半导体功率器件、自旋电子器件、气敏传感器等领域有广阔的应用前景。
目前,α-Ga 2O 3材料常见的制备方法有各种化学气相沉积(chemical vapor deposition,CVD)如MOCVD、LPCVD、Mist-CVD等,分子束外延(molecular beam epitaxy,MBE),卤化物气相外延(HVPE)、原子层沉积(ALD)等。
α-Ga 2O 3属于三方晶系,
Figure PCTCN2018109317-appb-000001
空间群,(晶格常数为
Figure PCTCN2018109317-appb-000002
α=β=90°,γ=120°,热膨胀系数α=5.23×10 -6/℃)。c面蓝宝石(α-Al 2O 3
Figure PCTCN2018109317-appb-000003
α=β=90°,γ=120°,α=5.22×10 -6/℃)与α-Ga 2O 3晶体结构相同,都是刚玉结构,适合做α-Ga 2O 3异质外延衬底。目前已经有研究报道使用雾化学气相沉积法(Mist-CVD)可以在蓝宝石(Sapphire)衬底上生长高质量的α-Ga 2O 3,且制备的肖特基二极管(SBD)性能优于SiC SBD。因此,通过使用廉 价的Sapphire衬底和CVD生长技术,可以低成本、大规模制备α-Ga 2O 3材料与器件。
虽然α-Ga 2O 3与α-Al 2O 3晶体结构相同,但晶格常数差异和热导率的不同造成外延时存在一定程度的失配,从而导致α-Ga 2O 3位错增大,薄膜开裂,这就严重影响了材料的应用与器件的发展。
发明内容
本发明的主要目的在于提供一种基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用,以克服现有技术的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种基于蓝宝石衬底的氧化镓薄膜的制备方法,其包括:
以脉冲外延生长方式在蓝宝石衬底上形成一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01;以及
在所述α-(Al xGa 1-x) 2O 3应变缓冲层上形成氧化镓外延层。
本发明实施例还提供了由所述的制备方法制备的基于蓝宝石衬底的氧化镓薄膜。
本发明实施例还提供一种基于蓝宝石衬底的氧化镓薄膜,包括蓝宝石衬底和氧化镓外延层,所述蓝宝石衬底和氧化镓外延层之间还形成有一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01。
本发明实施例还提供了所述的基于蓝宝石衬底的氧化镓薄膜于制作半导体功率器件和半导体光电子器件领域的用途。
与现有技术相比,基于本发明实施例提供的生长方法形成α-(Al xGa 1-x) 2O 3应变缓冲层,不仅可以避免α-Ga 2O 3和α-Al 2O 3外延中温度相矛盾的技术难点,还可以有效降低α-Ga 2O 3外延薄膜的缺陷密度,进而提高α-Ga 2O 3外延薄膜材料的晶体质量。
附图说明
图1是本发明一典型实施案例中一种基于蓝宝石衬底的氧化镓薄膜的结构示意图。
图2是本发明一典型实施案例中脉冲式外延生长中氧源和铝/镓源的流量示意图。
图3是本发明一典型实施案例中α-(Al xGa 1-x) 2O 3应变缓冲层的外延生长示意图。
具体实施方式
鉴于现有技术中的不足,本案发明人曾尝试采用脉冲式外延方法低温生长不同Al组分的 α-(Al xGa 1-x) 2O 3应变缓冲层结构,以缓解α-Ga 2O 3薄膜应力,降低外延薄膜位错密度,提高α-Ga 2O 3晶体质量。然而,一方面,Al 2O 3相比于Ga 2O 3有更小的键长和更高的分解温度,因此外延α-Al 2O 3也需要更高的温度。Al原子在外延层表面的物理和化学吸附能力、迁移能力、并入晶格的能力以及解吸附温度等影响着α-(Al xGa 1-x) 2O 3的晶体质量。另一方面,α-Ga 2O 3外延需要低温度,在高于550℃时会发生相变,这就导致在低于此温度下生长高Al组分的α-(Al xGa 1-x) 2O 3应变缓冲层存在困难。亦即,若采用本案发明人曾经尝试过的前述方案,则不可避免α-Ga 2O 3和α-Al 2O 3外延温度相矛盾的问题。
为此,本案发明人又进行了长期研究和大量实践,才得以提出本发明的技术方案,其主要是通过采用脉冲式外延法低温生长α-(Al xGa 1-x) 2O 3复合应变缓冲结构解决现有技术的问题。
本发明实施例提供了一种基于蓝宝石衬底的氧化镓薄膜的制备方法,其包括:
以脉冲外延生长方式在蓝宝石衬底上形成一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01;以及
在所述α-(Al xGa 1-x) 2O 3应变缓冲层上形成氧化镓外延层。
进一步的,所述的制备方法包括:将蓝宝石衬底置入反应室内,之后采用脉冲方式将氧源、镓源和/或铝源在不同时间单独输入反应室,以形成所述的一个以上α-(Al xGa 1-x) 2O 3应变缓冲层。
更进一步的,所述的制备方法具体包括:在每一个生长循环周期内,先在第一时间段内将氧源、镓源和/或铝源中的任一者持续输入反应室,再间隔一第二时间段,之后在第三时间段内将氧源、镓源和/或铝源中的另一者持续输入反应室,再间隔一第四时间段。
进一步的,所述第一时间段、第二时间段、第三时间段、第四时间段的时长为0.1-99s。
进一步的,所述氧源选自能够提供氧元素的含氧物质。
优选的,所述含氧物质包括氧气、水、一氧化二氮、一氧化氮、二氧化碳和一氧化碳中的任意一种或两种以上的组合,但不限于此。
进一步的,所述镓源选自含镓的有机化合物。
优选的,所述镓源包括三甲基镓和/或三乙基镓,但不限于此。
进一步的,所述铝源选自含铝的有机化合物。
优选的,所述铝源包括三甲基铝和/或三乙基镓,但不限于此。
进一步的,所述α-(Al xGa 1-x) 2O 3应变缓冲层的生长压力为10~760Torr,生长温度为100~1000℃。
更进一步的,所述的制备方法包括:在蓝宝石衬底上依次形成1-99个所述α-(Al xGa 1-x) 2O 3应变缓冲层。
更进一步的,一个所述α-(Al xGa 1-x) 2O 3应变缓冲层的厚度为1-1000nm。
进一步的,其中至少两个α-(Al xGa 1-x) 2O 3层中Al元素的含量不相同。
进一步的,所述氧化镓外延层的生长压力为10~760Torr,生长温度为100~600℃。
进一步的,所述氧化镓外延层的材质为α-Ga 2O 3
本发明实施例还提供了由所述的制备方法制备的基于蓝宝石衬底的氧化镓薄膜。
本发明实施例还提供一种基于蓝宝石衬底的氧化镓薄膜,包括蓝宝石衬底和氧化镓外延层,所述蓝宝石衬底和氧化镓外延层之间还形成有一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01。
进一步的,每一α-(Al xGa 1-x) 2O 3层的厚度为1-1000nm。
进一步的,所述氧化镓薄膜包括1-99个α-(Al xGa 1-x) 2O 3层。
进一步的,其中至少两个α-(Al xGa 1-x) 2O 3层的Al元素的含量不相同。
本发明通过采用脉冲式外延方法低温生长不同Al组分的α-(Al xGa 1-x) 2O 3应变缓冲层结构,不仅可以避免α-Ga 2O 3和α-Al 2O 3外延中温度相矛盾的难题,还可以有效降低α-Ga 2O 3外延薄膜的缺陷密度,缓解α-Ga 2O 3薄膜应力,进而提高α-Ga 2O 3外延薄膜材料的晶体质量。
本发明实施例还提供了所述的基于蓝宝石衬底的氧化镓薄膜于制作半导体功率器件或半导体光电子器件中的用途。
如下将结合实施例及附图对本发明实施例的技术方案、其实施过程及原理等作进一步的解释说明。
请参阅图1,图1示出了本发明一典型实施例中一种基于蓝宝石衬底的氧化镓薄膜的结构示意图,其包括蓝宝石衬底,以及依次在蓝宝石衬底上设置的多个α-(Al xGa 1-x) 2O 3应变缓冲层和一个或更多α-Ga 2O 3外延层。
本实施例中基于蓝宝石衬底的氧化镓薄膜可以包括如下步骤:
1)在蓝宝石衬底上采用脉冲式外延法低温生长α-(Al xGa 1-x) 2O 3应变缓冲层。该外延生长的方法可以选自化学气相沉积(chemical vapor deposition,CVD),特别是MOCVD(金属有机化学气相沉积)等,适用的设备包括CVD(化学气相沉积设备),LPCVD(低压化学气相沉积设备),MOCVD(金属有机化学气相沉积设备),MBE(分子束外延设备),LMBE(激光分子束外延设备),ALD(单原子层沉积设备)、PEALD(等离子体增强原子层沉积设备),HVPE(氢化物气相外延设备)等。
具体而言,请参阅图2和图3,氧源(可以是氧气)和镓/铝源(例如三乙基镓/三甲基镓)以脉冲分离的方式,周期性的进行外延生长,即在一个脉冲循环周期内(t 1、t 2、t 3、t 4脉冲宽度 分是代表氧源通入反应室的时间、间歇时间、镓/铝源通入反应室的时间、间歇时间四个变量,它们间隔交替,其中0.1s≦t 1/t 2/t 3/t 4≦99s)通过脉冲循环次数、脉冲宽度(对应氧源,镓/铝源进入反应室的时间)和脉冲个数(对应氧源,镓/铝源进入反应室的次数)的灵活调控和设计,进而实现较低温下高质量α-(Al xGa 1-x) 2O 3薄膜材料(即所述应变缓冲层)的生长(即在较低温度下使原子迁移到最佳位置成键,进行高质量薄膜外延)。
采用脉冲式外延将氧源和镓/铝源在不同的时间单独通入反应室,可以降低O和Al/Ga到达衬底之前接触而发生预反应的机会,减少预反应产物淀积引起的材料缺陷,增加Al/Ga原子在生长表面的横向迁移率,使Al/Ga-O在生长面最佳格点反应成键,使(Al xGa 1-x) 2O 3结合更规则,原子结合到晶体中时得以规则的排列,获得原子级光滑表面。
通过调整脉宽、间隔、周期和叠加时间等脉冲式生长的工艺参数来控制生长过程,提高结晶质量,在不同Al组分的缓冲层基础上,通过(Al xGa 1-x) 2O 3(0.99≥x≥0.01)温度和厚度的控制,调节外延过程中的应变,释放应力。
该实施例中的氧源可以选自能产生O分子的各种含氧物质,如氧气,水,一氧化二氮,一氧化氮,二氧化碳,一氧化碳等。
该实施例中的镓源可以选自各种Ga的金属有机源,如三甲基镓TEG,三乙基镓TMG;含Ga的其他物质。
该实施例中的铝源可以选自各种Al的金属有机源,如三甲基铝TEA,三乙基镓TMA;含Al的其他物质。
该实施例中各α-(Al xGa 1-x) 2O 3应变缓冲层外延生长时的压力优选控制为10Torr~760Torr或更高压力。
该实施例中各α-(Al xGa 1-x) 2O 3应变缓冲层的外延生长温度优选为100℃~1000℃。
该实施例中各α-(Al xGa 1-x) 2O 3应变缓冲层的外延生长温度优选为100℃~600℃。
该实施例中各α-(Al xGa 1-x) 2O 3应变缓冲层中x的取值范围优选为0.99≥x≥0.01。
该实施例中α-(Al xGa 1-x) 2O 3应变缓冲层的层数优选为99≥层数≥1。
该实施例中各α-(Al xGa 1-x) 2O 3应变缓冲层的厚度优选为1nm≥厚度≥1000nm。
该实施例中前述脉冲式外延时各个时间(t 1、t 2、t 3、t 4)优选为99s≥t≥0.1s。
2)进行α-Ga 2O 3外延层的生长
该实施例中α-Ga 2O 3外延层的生长设备亦可以是MOCVD(金属有机化学气相沉积)等,适用的设备包括适用的设备包括CVD(化学气相沉积设备),LPCVD(低压力化学气相沉积设备),MOCVD(金属有机化学气相沉积设备),MBE(LMBE)(分子束外延设备),ALD(PEALD)(单 原子层沉积设备),HVPE(氢化物气相外延设备)等。
该实施例的步骤2)所采用的外延生长压力优选为10Torr~760Torr或更高压力。
该实施例中α-Ga 2O 3外延层的生长温度优选为100℃~600℃。
采用本发明实施例提供的方法,不仅可以避免α-Ga 2O 3和α-Al 2O 3外延中温度相矛盾的技术难点,还可以有效降低α-Ga 2O 3外延薄膜的缺陷密度,获得具有较为理想的质量的α-Ga 2O 3外延薄膜材料。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (22)

  1. 一种基于蓝宝石衬底的氧化镓薄膜的制备方法,其特征在于包括:
    以脉冲外延生长方式在蓝宝石衬底上形成一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01;以及
    在所述α-(Al xGa 1-x) 2O 3应变缓冲层上形成氧化镓外延层。
  2. 根据权利要求1所述的制备方法,其特征在于包括:将蓝宝石衬底置入反应室内,之后采用脉冲方式将氧源、镓源和/或铝源在不同时间单独输入反应室,以形成所述的一个以上α-(Al xGa 1-x) 2O 3应变缓冲层。
  3. 根据权利要求1所述的制备方法,其特征在于具体包括:在每一个生长循环周期内,先在第一时间段内将氧源、镓源和/或铝源中的任一者持续输入反应室,再间隔一第二时间段,之后在第三时间段内将氧源、镓源和/或铝源中的另一者持续输入反应室,再间隔一第四时间段。
  4. 根据权利要求3所述的制备方法,其特征在于:所述第一时间段、第二时间段、第三时间段、第四时间段的时长为0.1-99s。
  5. 根据权利要求2或3所述的制备方法,其特征在于:所述氧源选自含氧物质。
  6. 根据权利要求5所述的制备方法,其特征在于:所述含氧物质包括氧气、水、一氧化二氮、一氧化氮、二氧化碳和一氧化碳中的任意一种或两种以上的组合。
  7. 根据权利要求2或3所述的制备方法,其特征在于:所述镓源选自含镓的有机化合物。
  8. 根据权利要求7所述的制备方法,其特征在于:所述镓源包括三甲基镓和/或三乙基镓。
  9. 根据权利要求2或3所述的制备方法,其特征在于:所述铝源选自含铝的有机化合物。
  10. 根据权利要求9所述的制备方法,其特征在于:所述铝源包括三甲基铝和/或三乙基镓。
  11. 根据权利要求1或2所述的制备方法,其特征在于:所述α-(Al xGa 1-x) 2O 3应变缓冲层的生长压力为10~760Torr,生长温度为100~1000℃。
  12. 根据权利要求1所述的制备方法,其特征在于包括:在蓝宝石衬底上依次形成1-99个所述α-(Al xGa 1-x) 2O 3应变缓冲层。
  13. 根据权利要求1或12所述的制备方法,其特征在于:一个所述α-(Al xGa 1-x) 2O 3应变缓冲层的厚度为1-1000nm。
  14. 根据权利要求1或12所述的制备方法,其特征在于:其中至少两个α-(Al xGa 1-x) 2O 3层中Al元素的含量不相同。
  15. 根据权利要求1所述的制备方法,其特征在于:所述氧化镓外延层的生长压力为 10~760Torr,生长温度为100~600℃。
  16. 根据权利要求1或15所述的制备方法,其特征在于:所述氧化镓外延层的材质为α-Ga 2O 3
  17. 由权利要求1-16中任一项所述的制备方法制备的基于蓝宝石衬底的氧化镓薄膜。
  18. 一种基于蓝宝石衬底的氧化镓薄膜,包括蓝宝石衬底和氧化镓外延层,其特征在于:所述蓝宝石衬底和氧化镓外延层之间还形成有一个以上α-(Al xGa 1-x) 2O 3应变缓冲层,其中0.99≥x≥0.01。
  19. 根据权利要求18所述的基于蓝宝石衬底的氧化镓薄膜,其特征在于:每一α-(Al xGa 1-x) 2O 3层的厚度为1-1000nm。
  20. 根据权利要求18所述的基于蓝宝石衬底的氧化镓薄膜,其特征在于:所述氧化镓薄膜包括1-99个α-(Al xGa 1-x) 2O 3层。
  21. 根据权利要求18所述的基于蓝宝石衬底的氧化镓薄膜,其特征在于:其中至少两个α-(Al xGa 1-x) 2O 3层的Al元素的含量不相同。
  22. 如权利要求18-21中任一项所述的基于蓝宝石衬底的氧化镓薄膜于制作半导体功率器件或半导体光电子器件中的用途。
PCT/CN2018/109317 2018-05-18 2018-10-08 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用 WO2019218581A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020564615A JP7173621B2 (ja) 2018-05-18 2018-10-08 サファイア基板を含む酸化ガリウム薄膜の製造方法
US17/051,779 US11996288B2 (en) 2018-05-18 2018-10-08 Gallium oxide film based on sapphire substrate as well as growth method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810479225.8A CN110504343B (zh) 2018-05-18 2018-05-18 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN201810479225.8 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019218581A1 true WO2019218581A1 (zh) 2019-11-21

Family

ID=68539382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109317 WO2019218581A1 (zh) 2018-05-18 2018-10-08 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用

Country Status (4)

Country Link
US (1) US11996288B2 (zh)
JP (1) JP7173621B2 (zh)
CN (1) CN110504343B (zh)
WO (1) WO2019218581A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022115064A1 (en) * 2020-11-25 2022-06-02 Yildiz Teknik Universitesi A method for growing high-quality heteroepitaxial monoclinic gallium oxide crystal
CN115838971A (zh) * 2023-02-14 2023-03-24 楚赟精工科技(上海)有限公司 氧化镓薄膜及其制备方法
US20230167548A1 (en) * 2021-11-30 2023-06-01 Illinois Institute Of Technology Thermal atomic layer deposition of ternary gallium oxide thin films

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524995B (zh) * 2020-04-21 2022-02-15 昌吉学院 β-Ga2O3/GaN异质结日盲/可见盲双色紫外探测器及其制备方法
EP4194592A1 (en) * 2020-08-06 2023-06-14 Shin-Etsu Chemical Co., Ltd. Semiconductor laminate, semiconductor element, and method for producing semiconductor element
JP7061214B2 (ja) * 2020-08-06 2022-04-27 信越化学工業株式会社 半導体積層体、半導体素子および半導体素子の製造方法
CN112359417B (zh) * 2020-09-27 2022-11-01 南京新澳半导体科技有限公司 一种无掩模原位横向外延α相氧化镓薄膜的方法
KR102537070B1 (ko) * 2020-11-30 2023-05-26 서울대학교산학협력단 알파-산화알루미늄갈륨을 활용한 알파-산화갈륨 박막의 제조방법
CN113571404A (zh) * 2021-06-07 2021-10-29 西安电子科技大学 一种β-Ga2O3薄膜的生长方法
CN114141910B (zh) * 2021-11-27 2023-09-15 北京铭镓半导体有限公司 一种蓝宝石衬底生长纯相Ga2O3薄膜的方法及日盲紫外探测器
CN114525585A (zh) * 2022-01-05 2022-05-24 西安电子科技大学 采用预铺Ga层在金刚石上外延β-Ga2O3薄膜的制备方法及结构
CN114725234B (zh) * 2022-03-23 2024-03-22 电子科技大学 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法
KR102557905B1 (ko) * 2022-09-14 2023-07-20 한국세라믹기술원 고품질의 대면적 초박형 산화갈륨 박막 제조 방법
JP2024042611A (ja) * 2022-09-15 2024-03-28 株式会社Flosfia 電力変換回路および制御システム
CN115821378A (zh) * 2022-11-29 2023-03-21 厦门大学 一种等离子体热氧化制备氧化镓薄膜的方法
CN116314278B (zh) * 2023-05-22 2023-08-15 江西兆驰半导体有限公司 高电子迁移率晶体管外延结构及制备方法、hemt器件
CN116377582A (zh) * 2023-05-30 2023-07-04 北京青禾晶元半导体科技有限责任公司 一种氧化镓薄膜及其生长方法和应用
CN116936631B (zh) * 2023-09-15 2023-12-12 江西兆驰半导体有限公司 一种氮化镓基晶体管的外延结构及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921994A (zh) * 2010-07-30 2010-12-22 北京印刷学院 一种原子层沉积超薄氧化铝薄膜的装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084455A1 (en) * 1999-03-30 2002-07-04 Jeffery T. Cheung Transparent and conductive zinc oxide film with low growth temperature
JP4888857B2 (ja) 2006-03-20 2012-02-29 国立大学法人徳島大学 Iii族窒化物半導体薄膜およびiii族窒化物半導体発光素子
US8338273B2 (en) 2006-12-15 2012-12-25 University Of South Carolina Pulsed selective area lateral epitaxy for growth of III-nitride materials over non-polar and semi-polar substrates
JP2009155672A (ja) 2007-12-25 2009-07-16 Showa Denko Kk Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体製造装置、iii族窒化物半導体及びiii族窒化物半導体発光素子、並びにランプ
KR102094568B1 (ko) * 2012-10-17 2020-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그의 제작 방법
CN103456603B (zh) * 2013-09-05 2016-04-13 大连理工大学 在镓系异质半导体衬底上制备氧化镓膜的方法及氧化镓膜
CN103489967B (zh) * 2013-09-05 2016-07-13 大连理工大学 一种氧化镓外延膜的制备方法及氧化镓外延膜
CN104988579A (zh) 2015-07-08 2015-10-21 西安电子科技大学 基于蓝宝石衬底的氧化镓薄膜及其生长方法
WO2017152620A1 (zh) 2016-03-08 2017-09-14 西安电子科技大学 基于石墨烯与磁控溅射氮化铝的氮化镓生长方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921994A (zh) * 2010-07-30 2010-12-22 北京印刷学院 一种原子层沉积超薄氧化铝薄膜的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, S. ET AL.: "Metal/Insulator/ Semiconductor Structure Using Ga203 Layer by Plasma Enhanced Atomic Layer Deposition", JOURNAL OF THE KOREAN PHYSICAL SOCIETY, vol. 47, 30 September 2005 (2005-09-30), pages S292 - S295, XP055653443 *
ODA, M. ET AL.: "Crack-free Thick (~5 µm) a-Ga203 Films on Sapphire Substrates with a-(Al, Ga)203 Buffer Layers", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 55, 14 October 2016 (2016-10-14) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022115064A1 (en) * 2020-11-25 2022-06-02 Yildiz Teknik Universitesi A method for growing high-quality heteroepitaxial monoclinic gallium oxide crystal
US20230167548A1 (en) * 2021-11-30 2023-06-01 Illinois Institute Of Technology Thermal atomic layer deposition of ternary gallium oxide thin films
CN115838971A (zh) * 2023-02-14 2023-03-24 楚赟精工科技(上海)有限公司 氧化镓薄膜及其制备方法
CN115838971B (zh) * 2023-02-14 2023-06-13 楚赟精工科技(上海)有限公司 氧化镓薄膜及其制备方法

Also Published As

Publication number Publication date
JP2021527610A (ja) 2021-10-14
US20210327703A1 (en) 2021-10-21
CN110504343A (zh) 2019-11-26
CN110504343B (zh) 2021-02-23
US11996288B2 (en) 2024-05-28
JP7173621B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2019218581A1 (zh) 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN105861987B (zh) 基于六方氮化硼和磁控溅射氮化铝的氮化镓生长方法
US10192737B2 (en) Method for heteroepitaxial growth of III metal-face polarity III-nitrides on substrates with diamond crystal structure and III-nitride semiconductors
WO2019033975A1 (zh) 一种制备GaN衬底材料的方法
CN109346400B (zh) 一种高质量Ga2O3薄膜及其异质外延制备方法
Kukushkin et al. Plasma assisted molecular beam epitaxy of thin GaN films on Si (111) and SiC/Si (111) substrates: Effect of SiC and polarity issues
KR20140111971A (ko) AlzGa1-zN 층을 갖는 반도체 웨이퍼 및 이를 제조하는 방법
US8703561B2 (en) High quality GaN high-voltage HFETs on silicon
KR101672213B1 (ko) 반도체장치의 제조방법
JP2007230823A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
CN111663181B (zh) 一种氧化镓膜的制备方法及其应用
CN112242459A (zh) 一种具有原位SiN位错湮灭层的AlGaN薄膜及其外延生长方法
Abd Rahman et al. Standard pressure deposition of crack-free AlN buffer layer grown on c-plane sapphire by PALE technique via MOCVD
CN112490112A (zh) 氧化镓薄膜及其异质外延生长方法与应用
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
KR20100104997A (ko) 전위 차단층을 구비하는 질화물 반도체 기판 및 그 제조 방법
CN115838971A (zh) 氧化镓薄膜及其制备方法
Luo et al. A study of GaN regrowth on the micro-faceted GaN template formed by in situ HCl etching
Liaw et al. Epitaxial GaN films grown on Si (1 1 1) with varied buffer layers
JPH033233A (ja) 化合物半導体単結晶薄膜の成長方法
JP2004307253A (ja) 半導体基板の製造方法
JP7120598B2 (ja) 窒化アルミニウム単結晶膜及び半導体素子の製造方法
Huang et al. Thermal pretreatment of sapphire substrates prior to ZnO buffer layer growth
TW201212120A (en) A method for treating group III nitride semiconductor
Tao et al. Crack-free Al0. 5Ga0. 5N epilayer grown on SiC substrate by in situ SiNx interlayer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919140

Country of ref document: EP

Kind code of ref document: A1