CN114725234B - 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法 - Google Patents

基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN114725234B
CN114725234B CN202210291433.1A CN202210291433A CN114725234B CN 114725234 B CN114725234 B CN 114725234B CN 202210291433 A CN202210291433 A CN 202210291433A CN 114725234 B CN114725234 B CN 114725234B
Authority
CN
China
Prior art keywords
amorphous
substrate
film
solar blind
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210291433.1A
Other languages
English (en)
Other versions
CN114725234A (zh
Inventor
李严波
范泽宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210291433.1A priority Critical patent/CN114725234B/zh
Publication of CN114725234A publication Critical patent/CN114725234A/zh
Application granted granted Critical
Publication of CN114725234B publication Critical patent/CN114725234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于深紫外探测领域,涉及日盲紫外探测器,具体提供一种基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法。本发明采用叉指电极设置于衬底上、非晶Ga2O3薄膜层直接覆盖衬底与电极上的新型结构,相比于非晶Ga2O3薄膜层设置于衬底上、叉指电极设置于非晶Ga2O3薄膜层上的现有结构,本发明能够消除器件后制作过程中a‑Ga2O3薄膜污染的可能性,改善了材料的界面态,最大程度降低了界面处产生缺陷从而影响器件性能;并且维持了较好的表面形貌,避免光刻胶对材料光学性能产生不利影响;同时,反式结构有利于电荷的短距离传输,避免电荷在传输过程中造成的损耗,提升了器件的响应时间。综上,本发明的提供了一种兼具高响应度与快速响应时间的非晶Ga2O3日盲紫外探测器。

Description

基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法
技术领域
本发明属于深紫外探测领域,涉及日盲紫外探测器,具体提供一种基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法。
背景技术
在过去的几年里,大多数Ga2O3日盲光电探测器都是基于β-Ga2O3单斜晶片,通过分子束外延(MBE)、化学气相沉积(CVD)或脉冲激光沉积(PLD)工艺在蓝宝石衬底上外延生长;日盲光检测特性主要取决于β-Ga2O3薄膜的结晶质量,其结晶质量受衬底热点阵匹配、生长温度、沉积速率和退火条件的影响。在基于β-Ga2O3薄膜的光电探测器中,可以通过在β-Ga2O3薄膜中引入氧空位来实现高响应率;然而,氧空位的存在也导致了高达几秒钟的响应时间;此外,β-Ga2O3单斜相的形成需要较高的加工温度(>650℃),导致热收支急剧增加,限制了衬底的选择。相比之下,非晶Ga2O3薄膜可以通过相对简单的物理和化学气相沉积方法(如射频溅射和原子层沉积(ALD)在几乎任何衬底上在低生长温度下沉积;基于此,本发明提供一种基于非晶Ga2O3薄膜的日盲紫外探测器。
发明内容
本发明的目的在于针对基于β-Ga2O3单斜晶片的光电探测器存在的诸多问题,提供一种基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法;本发明采用新型结构,基于等离子体增强原子层沉积(PE-ALD)法将非晶a-Ga2O3薄膜直接沉积于带叉指电极的衬底上,形成高响应性和快速响应时间的日盲紫外探测器。
为实现上述目的,本发明采用的技术方案为:
一种基于非晶Ga2O3薄膜的日盲紫外探测器,其特征在于,所述日盲紫外探测器由衬底、叉指电极与非晶Ga2O3薄膜层构成,所述叉指电极设置于衬底上表面,所述衬底与叉指电极被非晶Ga2O3薄膜层完全覆盖。
进一步的,所述非晶Ga2O3薄膜层的厚度为50~150nm。
进一步的,所述衬底采用石英、Si、蓝宝石(Al2O3)等。
上述基于非晶Ga2O3薄膜的日盲紫外探测器的制备方法,包括以下步骤:
步骤1.衬底预处理:对衬底进行切割、清洗;
步骤2.叉指电极制备:采用负胶光刻法制备叉指电极图案,再采用双源电子束物理气相沉积法制备金电极于衬底上表面;
步骤3.非晶Ga2O3薄膜制备:采用等离子体增强原子层沉积(PE-ALD)法沉积非晶Ga2O3薄膜于衬底与叉指电极上表面;具体为:将样品放入原子层沉积设备中,设置反应的基底温度为200~250度、载气为高纯氮气,并温度保持在室温;采用TEG作为镓源、O2作为氧源送入反应腔:TEG前驱体注入0.5s~1s、N2吹扫5s-10s,O2等离子体注入10s~15s、N2吹扫5s~10s,重复1500~2500个循环,得到非晶Ga2O3薄膜。
本发明的有益效果在于:
本发明提供一种基于非晶Ga2O3薄膜的日盲紫外探测器,采用叉指电极设置于衬底上、非晶Ga2O3薄膜层直接覆盖衬底与电极上的结构,相比于非晶Ga2O3薄膜层设置于衬底上、叉指电极设置于非晶Ga2O3薄膜层上的现有结构,首先,将电极直接设置于衬底上的结构避免了光刻胶对薄膜材料表面的污染影响材料的光吸收,从而避免对器件响应度所造成的不良影响;其次,反式结构一定程度上有利于电荷的短距离传输,避免电荷在传输过程中造成的损耗,提升了器件的响应时间;并且,其制备过程成本较低,避免了因光刻失败造成制备薄膜材料的浪费,降低了制备成本。另外,非晶Ga2O3薄膜层采用PE-ALD法沉积制备,由于PE-ALD法的处理温度较低(250℃),降低了热力学成本;将a-Ga2O3薄膜直接沉积在预制的Au间指电极上,从而消除了器件后制作过程中a-Ga2O3薄膜污染的可能性,改善了材料的界面态,最大程度降低了制备流程中界面处产生缺陷从而影响器件性能;维持了较好的表面形貌,避免光刻胶对材料光学性能产生不利影响。
综上,本发明降低成本的同时,最大程度避免了光刻工艺对于材料界面与形貌造成的不利影响,从而获得了兼具高响应度与快速响应时间的非晶Ga2O3日盲紫外探测器。
附图说明
图1为本发明中基于非晶Ga2O3薄膜的日盲紫外探测器的结构示意图。
图2为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器中叉指电极的光学显微镜图像。
图3为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器的I-V曲线。
图4为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器的响应度曲线。
图5为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器的周期瞬态响应曲线。
图6为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器的单周期瞬态响应曲线。
图7为本发明实施例中基于非晶Ga2O3薄膜的日盲紫外探测器的光谱响应曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本实施例提供一种基于非晶Ga2O3薄膜的日盲紫外探测器,其结构如图1所示,具体由衬底、叉指电极与非晶Ga2O3薄膜层构成,其中,叉指电极设置于衬底上表面,衬底与叉指电极被非晶Ga2O3薄膜层完全覆盖;本实施例中,衬底采用石英衬底,非晶Ga2O3薄膜层的厚度为约100nm;叉指电极的叉指长度、宽度、叉指间距分别为200um、4um、4um。
本实施例还提供上述基于非晶Ga2O3薄膜的日盲紫外探测器的制备方法,采用Picsun200R型等离子体增强原子层沉积设备沉积非晶Ga2O3薄膜,使用TEG(三乙基镓)和氧气分别作为Ga源和O源;具体包括以下步骤:
步骤1.衬底预处理;
将石英衬底切割为1×1cm2大小,再进行清洗;所述清洗过程具体为:将切好的石英衬底装入石英管中、加入肥皂水超声清洗15分钟,再用去离子水冲干净石英管中的肥皂水、并用去离子水超声清洗两遍、遍15分钟,再依次用丙酮、乙醇各超声清洗15分钟,最后用高纯氮气气枪将石英衬底吹干备用;
步骤2.叉指电极制备;
采用负胶(ARN-4340)光刻法制备叉指电极图案,包括:预处理、匀胶、前烘、曝光、中烘、显影、镀膜、去胶等步骤;具体为:预处理:将石英衬底置于加热台上,加热温度为110度、时间为5分钟,以去除样品表面残留的水汽、防止影响光刻胶与衬底之间的粘结性;匀胶:首先在500r/min下持续5秒的低转速旋转,然后将转速上升为4000r/min、持续60s的高速旋转,从而使得光刻胶在样品表面形成均匀的薄膜;前烘:基板加热温度为90度、加热时间为1分钟;曝光:曝光时间为43.5秒;中烘:基板加热温度为95度、加热时间2分钟;显影:显影时间40秒左右;镀膜:采用双源电子束物理气相沉积法制备金电极;去胶:镀膜完成后使用去胶液将样品表面的光刻胶清洗干净;最后用酒精和去离子水清洗样品,吹干样品即光刻结束;
本实施例中,制备得叉指电极如图2所示,叉指电极的叉指长度、宽度、叉指间距分别为200um、4um、4um;金电极的厚度为60nm;
步骤3.非晶Ga2O3薄膜制备;
采用等离子体增强原子层沉积(PE-ALD)法沉积非晶Ga2O3(a-Ga2O3)薄膜于衬底与叉指电极上表面;具体为:将样品放入原子层沉积设备中,设置反应的基底温度为200度、载气为高纯氮气,采用TEG作为镓源,并温度保持在室温(25度);TEG、O2分别作为反应前驱体送入反应腔:TEG前驱体注入0.5s、N2吹扫5s,O2等离子体注入12s、N2吹扫5s,重复2000个循环,制备时常约为13小时,得到的非晶Ga2O3薄膜厚度约为100nm;
对本实施例制备得基于非晶Ga2O3薄膜的日盲紫外探测器进行测试,测试结果如图3~图7所示。
具体而言,对非晶Ga2O3基日盲紫外探测器进行了I-V曲线测试,测试结果如图3所示,a-Ga2O3/Au日盲紫外探测器的光电流和暗电流在254nm、光强为310μw/cm2的紫外灯下测试,在10V的偏压下,探测器的暗电流(Idark)约为0.45nA、光电流(Ilight)约为65.5nA,从而可以看出光电流与暗电流的比值(Ilight/Idark)超过了1.4×105。利用I-V曲线,通过响应度计算公式计算得到器件响应度在10V偏压下为579A/W,如图4所示。a-Ga2O3/Au日盲紫外探测器的瞬态响应曲线如图5所示,从图中可以看出器件展现出来了很好的可重复性与工作稳定性。如图6所示,通过控制开关器件在0.2s内的开关,器件的光电流展现出了快速的上升和下降时间,上升时间和下降时间分别为42ms和8ms,这一性能也超过了大多数其它已经报道的a-Ga2O3基日盲紫外探测器。a-Ga2O3/Au的光谱响应如图7所示,在图中展示了在日盲区域的清晰地截至边;R230nm/R290nm的截止比高达1.2×103,展现了器件对于日盲探测优秀的波长选择性;高响应度,快速的响应时间以及优秀的波长选择性证明了PE-ALD制备得到的a-Ga2O3薄膜存在较少的缺陷态,是用来制备日盲紫外探测器的理想材料。
同时,本实施例提供两个对比例:均采用非晶Ga2O3薄膜层设置于衬底上、叉指电极设置于非晶Ga2O3薄膜层上的传统结构,具体为:
对比例1:“Performance improvement of amorphous Ga2O3 ultravioletphotodetector by annealing under oxygen atmosphere”,其中采用传统结构,制备所得非晶Ga2O3日盲紫外探测器响应度在10V偏压下仅为28A/W,远小于本发明制备得到的非晶Ga2O3薄膜日盲紫外探测器的579A/W的响应度;
对比例2:“Ultrahigh-responsivity,rapid-recovery,solar-blindphotodetector based on highly nonstoichiometric amorphous gallium oxide.”,其中采用传统结构,制备所得非晶Ga2O3日盲紫外探测器响应度在10V偏压下仅为70.26A/W,响应时间分别为410ms的上升时间和20ms的下降时间;无论是响应度和响应时间,本发明制备得到的非晶Ga2O3薄膜日盲紫外探测器的器件性能远优于传统结构制备得到的非晶Ga2O3日盲紫外探测器。
由此可见,本发明制备得到的非晶Ga2O3薄膜日盲紫外探测器兼具高响应度和快速响应时间的优点,而较高的器件响应度有利于本发明制备的非晶Ga2O3薄膜日盲紫外探测器探测信号的放大与检测,快速响应时间可以使探测信号被快速读取。有巨大的应用前景。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (1)

1.一种基于非晶Ga2O3薄膜的日盲紫外探测器,其特征在于,所述日盲紫外探测器由衬底、叉指电极与非晶Ga2O3薄膜层构成,所述叉指电极设置于衬底上表面,所述衬底与叉指电极被非晶Ga2O3薄膜层完全覆盖;
所述衬底采用石英衬底,所述叉指电极采用金电极、金电极的厚度为60nm,叉指电极的叉指长度、宽度、叉指间距分别为200um、4um、4um,所述非晶Ga2O3薄膜层的厚度为100nm;
所述日盲紫外探测器的响应度在10V偏压下为579A/W,所述日盲紫外探测器的光电流的上升时间和下降时间分别为42ms和8ms;
所述基于非晶Ga2O3薄膜的日盲紫外探测器由以下步骤制备:
步骤1.衬底预处理:对衬底进行切割、清洗;
步骤2.叉指电极制备:采用负胶光刻法制备叉指电极图案,再采用双源电子束物理气相沉积法制备金电极于衬底上表面;
步骤3.非晶Ga2O3薄膜制备:采用等离子体增强原子层沉积(PE-ALD)法沉积非晶Ga2O3薄膜于衬底与叉指电极上表面;具体为:将样品放入原子层沉积设备中,设置反应的基底温度为200~250度、载气为高纯氮气,并温度保持在室温;采用TEG作为镓源、O2作为氧源送入反应腔:TEG前驱体注入0.5s~1s、N2吹扫5s~10s,O2等离子体注入10s~15s、N2吹扫5s~10s,重复1500~2500个循环,得到非晶Ga2O3薄膜,非晶Ga2O3薄膜为a-Ga2O3薄膜。
CN202210291433.1A 2022-03-23 2022-03-23 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法 Active CN114725234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210291433.1A CN114725234B (zh) 2022-03-23 2022-03-23 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210291433.1A CN114725234B (zh) 2022-03-23 2022-03-23 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114725234A CN114725234A (zh) 2022-07-08
CN114725234B true CN114725234B (zh) 2024-03-22

Family

ID=82239747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210291433.1A Active CN114725234B (zh) 2022-03-23 2022-03-23 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114725234B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN108807586A (zh) * 2018-04-28 2018-11-13 南京大学 一种基于氧化镓偏振选择特性的带通日盲紫外探测器及其制备方法
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用
CN110504343A (zh) * 2018-05-18 2019-11-26 中国科学院苏州纳米技术与纳米仿生研究所 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN111564504A (zh) * 2020-04-16 2020-08-21 南京大学 一种日盲紫外探测器及其制备方法
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388498A1 (en) * 2018-10-15 2021-12-16 The Board Of Trustees Of The University Of Illinois Atomic layer deposition and vapor deposition reactor with in-chamber microplasma source
US11087959B2 (en) * 2020-01-09 2021-08-10 Nano-Master, Inc. Techniques for a hybrid design for efficient and economical plasma enhanced atomic layer deposition (PEALD) and plasma enhanced chemical vapor deposition (PECVD)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963027A (zh) * 2017-05-19 2018-12-07 中国科学院物理研究所 一种非晶Ga2O3日盲紫外探测器及其制备方法和应用
CN108807586A (zh) * 2018-04-28 2018-11-13 南京大学 一种基于氧化镓偏振选择特性的带通日盲紫外探测器及其制备方法
CN110504343A (zh) * 2018-05-18 2019-11-26 中国科学院苏州纳米技术与纳米仿生研究所 基于蓝宝石衬底的氧化镓薄膜及其生长方法和应用
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN111564504A (zh) * 2020-04-16 2020-08-21 南京大学 一种日盲紫外探测器及其制备方法
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马海鑫 等.不同退火条件对PEALD制备的Ga2O3薄膜特性的影响.《人工晶体学报》.2021,第50卷(第5期),第839-840页. *

Also Published As

Publication number Publication date
CN114725234A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Liu et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN111106202B (zh) 一种基于氮化镁薄膜的光电探测器件及其制备方法
CN110246913B (zh) 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN111599890A (zh) 一种基于氧化镓/二硫化钼二维异质结的高速光电探测器
CN112563353A (zh) 一种异质结紫外探测器及其制备方法
CN111029435A (zh) 一种ZnGaO紫外探测器及其制备方法
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN114141909B (zh) 在蓝宝石衬底生长不同晶向氧化镓薄膜的方法及基于该薄膜的紫外光探测器的制备方法
CN114725234B (zh) 基于非晶Ga2O3薄膜的日盲紫外探测器及其制备方法
CN111710752B (zh) 基于立方氮化硼厚膜的msm型深紫外光电探测器及制备方法
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
CN110797422B (zh) 一种ZnGaO紫外探测器及其制备方法
CN111081798A (zh) 一种锌镓氧材料薄膜及其制备方法
CN111785795B (zh) ZnMgGaO紫外探测器及其制备方法
KR100625082B1 (ko) 용액 성장법을 이용한 Cu(In,Ga)Se₂ 또는Cu(In,Ga)(S,Se)₂ 박막 태양전지용 인듐옥시하이드로옥사이드 설파이드 버퍼층 제조방법 및이로부터 제조되는 태양전지
CN113388824A (zh) 一种气溶胶辅助化学气相沉积的氧化镓薄膜的生长方法及氧化镓薄膜
CN114823930A (zh) 基于MgO钝化的非晶Ga2O3日盲紫外探测器及其制备方法
CN116190497B (zh) 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法
CN118352425B (zh) 氧化镓/氮化镓异质结双紫外波段探测器及其制备方法
CN114823977B (zh) 氧化镓光电探测器的制备方法
KR101521450B1 (ko) CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant