WO2019218143A1 - 一种充装干式杜瓦罐的方法及装置 - Google Patents

一种充装干式杜瓦罐的方法及装置 Download PDF

Info

Publication number
WO2019218143A1
WO2019218143A1 PCT/CN2018/086850 CN2018086850W WO2019218143A1 WO 2019218143 A1 WO2019218143 A1 WO 2019218143A1 CN 2018086850 W CN2018086850 W CN 2018086850W WO 2019218143 A1 WO2019218143 A1 WO 2019218143A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
dry
dry dewar
liquid
cryogenic liquid
Prior art date
Application number
PCT/CN2018/086850
Other languages
English (en)
French (fr)
Inventor
刘奔
孙旭临
津田英二
植野敬弘
凯·菲利普
Original Assignee
乔治洛德方法研究和开发液化空气有限公司
液化空气日本有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乔治洛德方法研究和开发液化空气有限公司, 液化空气日本有限公司 filed Critical 乔治洛德方法研究和开发液化空气有限公司
Priority to PCT/CN2018/086850 priority Critical patent/WO2019218143A1/zh
Priority to CN201880093349.0A priority patent/CN112105862B/zh
Priority to PCT/CN2019/086791 priority patent/WO2019218997A1/zh
Priority to CN201980031485.1A priority patent/CN112105863B/zh
Publication of WO2019218143A1 publication Critical patent/WO2019218143A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge

Definitions

  • the present invention relates to a method and apparatus for filling dry dewars, and more particularly to a method and apparatus for filling dry dewars with cryogenic liquid liquid nitrogen.
  • Nitrogen is a special industrial product with a boiling point of -196 ° C at a standard atmospheric pressure and -210 ° C at a three-phase point.
  • Liquid nitrogen is used as a cryopreservation medium and is widely used in precision instrument manufacturing, medicine and food.
  • the ultra-low temperature properties of liquid nitrogen inhibit the metabolism of cells such as cells and embryos, allowing cells and embryos to be preserved for a long time. Therefore, liquid nitrogen is widely used in medicine and bioengineering for vaccines, bacterial strains, cells and humans.
  • the activity of biological samples such as organs of animals is preserved. It can also be applied to precision instrument manufacturing, cryogenic processing of metal materials, cryogenic assembly of precision parts, and medical surgical refrigeration.
  • the cells For the freezing conditions of the cells, it has been confirmed by many experiments that the cells should be slowly lowered from room temperature to -80 ° C at a rate of 1-3 ° C per minute, so as to avoid the formation of large ice crystals in the cells and reduce the cells. hurt.
  • cells When cells are stored for long periods of time, they must be stored in a liquid nitrogen container in order to maintain the ambient temperature below -135 ° C. When the cells are in this environment, the water molecules will enter the glass transition. Molecular activity within the cell, as well as biological activity, will completely stop and go to sleep. As shown in Fig. 5, a three-phase diagram of nitrogen has a triple point temperature of -210 ° C and a triple point pressure of 12.53 kPa.
  • Dry Dewar cans are manufactured according to the vacuum jacket insulation principle invented by British scientist Dewar in 1898. It scientifically solves the problem of heat convection, conduction and storage of cryogenic liquids such as liquid nitrogen, liquid argon, liquid oxygen and the like. The problem of large evaporation loss of cryogenic liquids caused by radiation. With the development of science and technology and the advancement of human society, high-vacuum multi-layer insulation technology and its new materials and new processes have been adopted, so that Dewar can have excellent thermal insulation performance, and it can save the natural evaporation loss of cryogenic liquid. Minimized, therefore, Dewar products are widely used in animal husbandry, medical and scientific research, mechanical processing and other fields.
  • the inner cavity of the dry dewar can be placed with high-efficiency adsorbent material, which can adsorb the cryogenic liquid in the container well. After a small amount of cryogenic liquid in the space of the container without adsorbing material evaporates, the cryogenic liquid in the adsorbent slowly evaporates and maintains. Low temperature inside the container. Therefore, the liquid nitrogen dry type dewar can be divided into a gas phase (-140 ° C to -190 ° C) and a liquid phase ( ⁇ -196 ° C). During the use and transportation of dry dewar tanks, even if it is dumped, there will be no liquid nitrogen outflow, which will ensure the effective cryopreservation time in the tank and the safety of the refrigerated active biological materials and the use site.
  • liquid nitrogen is fixed by the adsorbent material, and the dry dewar tank does not have liquid sloshing during transportation, does not increase the liquid nitrogen evaporation in the tank, and increases the working time of the dry dewar tank.
  • the liquid nitrogen dry Dewar tank is accepted by the airline as carry-on baggage and can be transported on the road by courier company.
  • a solid-liquid mixture of nitrogen (also referred to as slush nitrogen) refers to a liquid-solid two-phase cryogenic fluid formed by suspending solid nitrogen of small particles in liquid nitrogen, which is a high-quality cold source.
  • Nitrogen pulp has a wide range of applications in biomedical and superconducting fields. Compared to liquid nitrogen, the cooling capacity of the same unit mass of nitrogen slurry is greater due to the use of latent heat of fusion of solid nitrogen (melting point of -209.98 ° C at standard atmospheric pressure).
  • Liquid nitrogen dewars are generally filled by differential pressure method.
  • the pressure difference control the low temperature liquid nitrogen is loaded from the higher pressure liquid nitrogen storage tank through the liquid phase pipeline tank to the lower pressure liquid nitrogen Dewar.
  • the pressure of the liquid nitrogen storage tank is about 0.6 MPa or more, and the pressure of the Dewar bottle is controlled below 0.4 Mpa, so that the pressure difference between the two vessels is kept at 0.2 MPa, and the liquid nitrogen is continuously charged into the Dewar from the storage tank.
  • Another liquid nitrogen filling method is directly using a funnel casting method. This is particularly important to make the end of the funnel slightly away from the neck tube, so that the gas evaporated by the liquid nitrogen can smoothly escape from the gap between the funnel and the container.
  • liquid nitrogen Before filling the liquid nitrogen, a small amount of liquid nitrogen should be kept in the pre-cooled state. The rate of filling the liquid nitrogen should be slow. First, inject a small amount, then stop for a few minutes, then cool it and gradually fill it to the specified capacity. For dry dewars, it is necessary to repeat the filling several times in order to adsorb enough liquid nitrogen in the adsorbent material. Generally, liquid nitrogen is added to the bottom of the can neck, and it is kept still until the liquid nitrogen is adsorbed.
  • liquid nitrogen is added every five minutes, and the whole process is repeated at least ten times until the liquid nitrogen reaches the bottom of the neck tube and can no longer be adsorbed. At this time, excess liquid nitrogen in the tank must be poured out, and the amount of liquid nitrogen added is measured.
  • the Chinese utility model patent CN203686567U discloses a novel liquid nitrogen dewar filling device, which comprises a storage tank, an inlet shut-off valve, a dewar bottle, etc., the utility model is in the conventional differential pressure method liquid nitrogen dewar filling
  • the excess gas of the Dewar is discharged to the liquid phase of the storage tank, and the gas temperature is reduced by the thermal cycle to liquefy the gas, thereby reducing the waste of the raw materials, and controlling the flow rate by the temperature of the low-temperature liquid pump to achieve a fast filling speed and reduce noise.
  • the purpose of saving energy is performed by saving energy.
  • Chinese invention patent CN102661485B discloses a liquid nitrogen filling device and a liquid nitrogen filling system thereof, including a filling device, a liquid nitrogen tank, an inlet pipe, a liquid outlet pipe, an electromagnetic pump system, an air intake device and a safety device.
  • the liquid pipe and the inlet pipe and the injector are separated and connected in an active state, and one end of the liquid inlet pipe is provided with a filtering device, and one end of the liquid discharging pipe is provided with a quick connector, and one end of the quick connector
  • the high-temperature superconducting radio frequency coil is provided, and the other end of the high-temperature superconducting radio frequency coil is provided with a control device, and one end of the control device is provided with an automatic deflation device, and the injector is connected with the liquid nitrogen tank through the sealing and fixing device.
  • the invention solves the problem of automatic rehydration of the high-temperature superconducting radio frequency coil, ensures the safety of the operator, reduces the labor intensity of the personnel, and achieves the purpose of long-term continuous work, and is compatible with the magnetic resonance system.
  • the technical problem to be solved by the present invention is to quickly and efficiently fill a dry dewar tank with a cryogenic liquid and reduce the loss of the low temperature liquid raw material.
  • the method and device for filling a dry dewar can be disclosed by the present invention.
  • the dry dewar tank with the porous adsorbent material capable of adsorbing the low temperature liquid is filled with a low temperature liquid, such as liquid nitrogen, and the low temperature liquid is brought into a supercooled state by vacuuming or adding liquid helium, thereby increasing the low temperature of the porous adsorbent material.
  • the adsorption of liquids enables fast and efficient filling and high quality cold sources.
  • Another technical problem to be solved by the present invention is to effectively fill a dry dewar tank, and to fill a dry dewar tank with a porous adsorbent material capable of adsorbing a low temperature liquid, to provide a more low temperature liquid, thereby providing a Dewar tanks at lower operating temperatures and/or extended working hours of the Dewar.
  • the temperature of the liquid phase in the inner chamber is -196 ° C
  • the operating temperature of the gas phase is usually about -190 ° C or higher, usually around -170 ° C.
  • the temperature in the Dewar tank gradually increases.
  • the present invention can provide a dry dewar tank with an initial working temperature lower than -196 ° C, or an initial working temperature of about -210 ° C.
  • Left and right dry dewar can be used for cryopreservation of biological samples.
  • the low temperature liquid filled in the dry Dewar can be brought into a supercooled state by vacuuming or adding liquid helium, etc., liquefying the nitrogen and oxygen in the air adsorbed in the porous material, so that the liquid nitrogen is filled in the original
  • the volume occupied by air is higher than that of the dry dewar tank directly filled with liquid nitrogen.
  • the dry dewar tank of the present invention has a larger liquid nitrogen filling amount.
  • the present invention can provide dry dewars that operate for longer periods of time below -170 ° C and are suitable for long distance transportation.
  • Still another technical problem to be solved by the present invention is to easily and efficiently prepare a solid-liquid mixture of nitrogen while efficiently filling liquid nitrogen with a dewar.
  • the dry dewar tank with the porous adsorbent material capable of adsorbing the low temperature liquid is filled with liquid nitrogen, and the liquid nitrogen is brought to its supercooled state by vacuuming or adding liquid helium, thereby realizing liquid nitrogen in the porous material.
  • the dry dewar tank cavity is continuously formed of solid nitrogen in the supercooled liquid nitrogen adsorbed by the porous material, and the nitrogen solid-liquid mixture can be taken out and used as a cold source.
  • a method of filling a dry Dewar comprising the steps of: (a) providing a dry dewar tank comprising a low temperature for adsorption in a dry dewar tank a porous porous adsorbent material; (b) providing a subcooling device for bringing the cryogenic liquid in the dry Dewar to its supercooled state; (c) optionally pre-cooling the dry Dewar; (d) Filling the dry Dewar tank with a cryogenic liquid; (e) enabling the subcooling device to bring the cryogenic liquid in the dry Dewar tank to its supercooled state; (f) optionally repeating steps (d) to (e) Until the cryogenic liquid is sufficiently adsorbed by the porous material; (g) discharging the cryogenic liquid that is not adsorbed by the porous adsorbent; (h) closing the dry Dewar to balance the pressure inside and outside.
  • the steps (d)-(f) may be replaced by the step (i) of adding a subcooled cryogenic liquid or a solid-liquid of the cryogenic liquid to the dry dewar tank. mixture.
  • the cryogenic liquid can be made into a supercooled state in a cryogenic liquid storage container, such as a liquid nitrogen storage tank, and the supercooled cryogenic liquid can be directly added to the dry dewar.
  • step (i) is optionally repeated.
  • the subcooling apparatus for bringing the cryogenic liquid in the dry Dewar to its supercooled state comprises a vacuum pump and a sealing head for sealingly connecting the vacuum pump to the inner cavity of the dry Dewar tank And piping, optionally comprising a temperature measuring device for measuring the temperature of the cryogenic liquid in the dry Dewar and/or an observation window for observing the interior of the dry Dewar tank, optionally comprising a dry dewar
  • the inner chamber is used for agitating agitator, optionally including a pressure gauge for measuring the pressure inside the dewar.
  • the subcooling apparatus for bringing the cryogenic liquid in the dry Dewar to its supercooled state comprises a liquid helium addition device, optionally comprising measuring the temperature of the cryogenic liquid in the dry Dewar tank
  • the temperature measuring device and/or the viewing window for observing the interior of the dry Dewar can optionally include an agitator placed in the interior of the dry Dewar for agitation.
  • the porous adsorbent material includes, but is not limited to, phenolic resin, aerogel, alumina ceramic porous material, zirconia ceramic porous material, titanium dioxide ceramic porous material, metal foam, and the like.
  • the porous adsorbent material has a porosity of from 50% to 99%. Especially for some aerogels, the porosity is up to 99%.
  • the porous adsorbent material has a porosity of from 50% to 94%.
  • the cryogenic liquid includes, but is not limited to, liquid nitrogen.
  • the supercooled state is obtained by initiating a subcooling device to reduce the temperature within the dry Dewar tank to below the boiling point temperature (-196 ° C) of nitrogen at standard atmospheric pressure.
  • the supercooled state is obtained by initiating a subcooling device to reduce the temperature within the dry Dewar tank to a temperature at which the Leiden Frost effect can be avoided.
  • the dry dewar tank is lowered in temperature and stabilized at a triple point temperature of nitrogen (-210 ° C) by a startup subcooling device or a solid solution that reduces the temperature in the dry dewar tank to nitrogen.
  • the mixed state is generated to obtain the supercooled state.
  • the subcooling device after the supercooled state is reached, continue to operate the subcooling device to maintain the dry Dewar temperature at a triple point temperature of nitrogen (-210 ° C), optionally with a stirrer. A solid-liquid mixture of nitrogen is formed, which can be taken out as a cold source.
  • the supercooled state refers to a temperature at which the temperature is lower than the gas-liquid equilibrium of the cryogenic liquid at a certain pressure and higher than or equal to the temperature of the triple point of the cryogenic liquid.
  • an apparatus for filling a dry dewar comprising: (a) a dry dewar tank comprising a porous adsorbent material disposed in a cavity thereof, wherein the porous adsorbent material is used To adsorb a cryogenic liquid; (b) a subcooling device that causes the cryogenic liquid in the dry Dewar to reach its supercooled state; (c) optionally includes a conduit for discharging excess cryogenic liquid that is not adsorbed.
  • the subcooling apparatus for bringing the cryogenic liquid in the dry Dewar to its supercooled state comprises a vacuum pump and a sealing head for sealingly connecting the vacuum pump to the inner cavity of the dry Dewar tank And piping, optionally including a temperature measuring device for measuring the temperature of the cryogenic liquid in the dry Dewar and/or an observation window for observing the interior of the dry Dewar tank, optionally including a dry dewar
  • the inner chamber is used for agitating agitator, optionally including a pressure gauge for measuring the pressure inside the dewar.
  • the subcooling apparatus for bringing the cryogenic liquid in the dry Dewar to its supercooled state comprises a liquid helium addition device, optionally comprising measuring the temperature of the cryogenic liquid in the dry Dewar tank
  • the temperature measuring device and/or the viewing window for observing the interior of the dry Dewar can optionally include an agitator placed in the interior of the dry Dewar for agitation.
  • the porous adsorbent material includes, but is not limited to, a phenolic resin, an aerogel, an alumina ceramic porous material, a zirconia ceramic porous material, a titania ceramic porous material, a metal foam, and the like.
  • the porous adsorbent material has a porosity of from 50% to 99%.
  • the porous adsorbent material has a porosity of from 50% to 94%.
  • the cryogenic liquid includes, but is not limited to, liquid nitrogen.
  • the supercooled state is obtained by initiating a subcooling device to reduce the temperature within the dry Dewar tank to below the boiling point temperature (-196 ° C) of nitrogen at standard atmospheric pressure.
  • the supercooled state is obtained by initiating a subcooling device to reduce the temperature within the dry Dewar tank to a temperature at which the Leiden Frost effect can be avoided.
  • the dry dewar tank is lowered in temperature and stabilized at a triple point temperature of nitrogen (-210 ° C) by a startup subcooling device or a solid solution that reduces the temperature in the dry dewar tank to nitrogen.
  • the mixed state is generated to obtain the supercooled state.
  • the seal head is sealed to the dry Dewar by a top flange O-ring.
  • a dry dewar comprising a porous adsorbent material adsorbed with a cryogenic liquid placed in a cavity thereof, and a can lid which can balance the pressure inside and outside the dry Dewar can be
  • the cryogenic liquid adsorbed by the porous adsorbent material is in a supercooled state.
  • a pressure relief valve is generally connected to the can lid. When the internal pressure is too high, the pressure relief valve is opened, and a part of the gas is released to balance the pressure inside and outside the Dewar tank.
  • the supercooled state refers to a temperature at which the temperature is below a gas-liquid equilibrium of the cryogenic liquid at a certain pressure and is higher than or equal to the temperature of the triple point of the cryogenic liquid.
  • the cryogenic liquid includes, but is not limited to, liquid nitrogen.
  • Figure 1 is a schematic view showing the structure of a Dewar in an embodiment of the present invention.
  • FIG 2 is a schematic view showing the structure of an apparatus for filling a dry dewar in one embodiment of the present invention. (vacuum)
  • Fig. 3 is a schematic view showing the construction of an apparatus for filling a dry dewar in another embodiment of the present invention. (Add liquid)
  • Figure 4 is a schematic illustration of an apparatus for filling a dry dewar in one embodiment of the present invention.
  • Figure 5 is a three-phase diagram of nitrogen.
  • cryopreservation refers to the preservation of organic matter and other substances such as organisms, living tissues, or cells at a low temperature of -196 ° C or below. In general, cryopreservation refers to the preservation of biological materials or substances at temperatures below -196 ° C (ie below 77 K). At this temperature, all biological activities will theoretically stop, including some biochemical activities that will kill cells.
  • pores in the porous material are through holes, and also include partial blind holes and closed cells.
  • 15% of the pore free volume cannot be completely filled, which may be caused by residual air trapped in the pores and incomplete wetting.
  • liquid nitrogen is slowly adsorbed in the porous material, and the quality of the canned product is unstable. The difference in the holding time of the canned dewar under the same condition is also large.
  • the air trapped in the hole especially in the air Nitrogen liquefaction (the boiling point of oxygen is -183 ° C at standard atmospheric pressure, which has already been liquefied by liquid nitrogen during the filling process), and accelerates the filling rate and filling degree of liquid nitrogen.
  • the cryogenic liquid is sufficiently adsorbed by the porous material.
  • liquid nitrogen it means that during the filling of the liquid nitrogen, part or all of the 15% of the pore free volume which is not completely filled in the porous material is filled with liquid nitrogen.
  • the cryogenic liquid used to fill the Dewar in the present invention includes, but is not limited to, liquid nitrogen.
  • the solid-liquid mixed state production in the present invention means that a solid substance is produced during the temperature lowering of the low temperature liquid.
  • the temperature is lowered from -196 ° C to -210 ° C to reach the triple point temperature of nitrogen, and solid nitrogen is formed on the surface of liquid nitrogen or liquid nitrogen.
  • a Leiden Frost effect occurs on the surface of the porous material, which affects the filling of the liquid nitrogen in the porous material, and reduces the temperature of the liquid nitrogen to Obtaining the supercooled state by avoiding the temperature of the Leiden Frost effect will be more conducive to the filling of liquid nitrogen in the porous material.
  • the heat transfer coefficients are different, so for liquid nitrogen filling, the temperature of the Leiden Frost effect can be avoided depending on the material.
  • the temperature of the filling liquid nitrogen is lowered to about -203 ° C, that is, when the boiling temperature is subcooled by 7 ° C, no significant Leiden Frost effect is observed.
  • FIG. 1 is a non-limiting embodiment of the present invention
  • FIG. 1 is a schematic view showing the structure of a liquid nitrogen dewar (1) according to an embodiment of the present invention, comprising a liquid for being placed in a cavity for adsorbing a cryogenic liquid (eg, A porous adsorbent material of liquid nitrogen), wherein the porous adsorbent material 2 is a phenolic resin having a porosity of 90%.
  • the porous material may also be selected from an aerogel, an alumina ceramic porous material, or a zirconia ceramic porous material.
  • FIG. 1 is a schematic structural view of an apparatus for filling a dry dewar tank according to an embodiment of the present invention, comprising a dry dewar tank 1, the porous adsorbent material 2 disposed in the inner cavity thereof is a phenol resin, wherein the porous adsorbent material For adsorbing a cryogenic liquid, a supercooling device 3 for bringing the cryogenic liquid in the dry Dewar tank to its supercooled state, and a conduit 11 for discharging the excess cryogenic liquid which is not adsorbed.
  • the supercooling device 3 comprises a vacuum pump 6 and a sealing head 5 and a pipeline for sealingly connecting the vacuum pump 6 and the inner cavity of the dry dewar tank 1 for observing the observation window 9 or the inner cavity of the dry dewar tank
  • a temperature measuring device 7 for measuring the temperature of a cryogenic liquid in a dry Dewar, wherein the sealing head 5 is sealed to the dry Dewar 1 by a top flange O-ring 12, and further comprises a chamber for placing in a dry Dewar tank In a stirred agitator 8, the agitator is driven by a motor placed outside the Dewar (not shown), and a pressure gauge for measuring the pressure in the chamber of the Dewar.
  • FIG. 3 is a schematic structural view of an apparatus for filling a dry dewar tank according to another embodiment of the present invention, comprising a dry dewar tank 1, a porous adsorbent material 2 disposed in a cavity thereof, wherein a porous adsorbent material is used for The cryogenic liquid is adsorbed, a supercooling device 3 for bringing the cryogenic liquid in the dry Dewar tank to its supercooled state, and a conduit 11 for discharging the excess cryogenic liquid which is not adsorbed.
  • the supercooling device 3 comprises a liquid helium adding device 10 for observing the observation window 9 of the inner cavity of the dry dewar tank and a temperature measuring device 7 for measuring the temperature of the low temperature liquid in the dry dewar tank, and further comprising a setting
  • the agitator 8 is used for stirring in the inner cavity of the dry dewar tank.
  • the specific operation steps are as follows: A) a 6 L dry dewar tank 1 provided with a porous adsorbent 2 adsorbing a cryogenic liquid in the inner chamber is filled with a small amount of liquid nitrogen to cool the dry Du The inner cavity of the earthen jar; B) fill the dry dewar tank 1 with liquid nitrogen to the neck of the Dewar tank, and place it for 10mins, the liquid nitrogen level will drop; C) add liquid nitrogen to the neck tube; Repeat steps B) and C) 2-5 times; D) Close the dry Dewar 1 with the sealing head 5, open the vacuum pump connected through the pipeline and the inner chamber of the dry Dewar 1 to start vacuuming and monitor the temperature.
  • the reading of the measuring device 7 found that the liquid nitrogen temperature in the dry dewar tank quickly dropped to -206 ° C, and the pressure gauge for measuring the pressure inside the dewar tank was monitored, and it was found that the pressure inside the dewar tank quickly dropped to about 50 kPa.
  • the pressure of the inner chamber of the Dewar can be reduced to about 12.5kPa;
  • the pressure inside the Dewar tank is continuously decreased until it is lower than the saturation pressure corresponding to the liquid nitrogen.
  • the liquid nitrogen spontaneously boils, and the sensible heat of the nearby liquid nitrogen is continuously absorbed during the boiling process as needed for vaporization.
  • the latent heat causes the liquid nitrogen temperature to drop continuously.
  • the temperature monitoring of the supercooled state in the step D) can be performed by using an observation window 9 for observing the inner cavity of the dry Dewar 1 , and viewing the inner cavity of the dry Dewar 1 through the observation window 9 for solid state Nitrogen formation and solid nitrogen formation indicate that the supercooled state has already been reached.
  • A') a dry dewar 1 provided with a porous adsorbent 2 for adsorbing a cryogenic liquid in the inner chamber is filled with a small amount of liquid nitrogen to cool the inner cavity of the dry dewar;
  • the head 5 closes the dry Dewar tank 1, opens the vacuum pump connected through the pipeline and the inner cavity of the dry Dewar tank 1, vacuums, monitors the reading of the temperature measuring device 7, and the temperature of the liquid nitrogen in the dry dewar tank is lowered.
  • the dry Dewar can 1 is closed to balance the pressure inside and outside. As the vacuum is applied, part of the liquid nitrogen in the dry Dewar is vaporized and pumped out.
  • a dry dewar tank 1 provided with a porous adsorbent material 2 for adsorbing a cryogenic liquid in an inner chamber is filled with a small amount of liquid nitrogen to cool the inner cavity of the dry dewar tank; Adding a solid-liquid mixture of liquid nitrogen or nitrogen to the dry dewar tank; D) optionally repeating step C, wherein the supercooled state refers to a temperature at which the temperature is lower than the gas-liquid equilibrium of nitrogen and is high The triple point temperature of nitrogen.
  • the liquid nitrogen which is not adsorbed by the porous adsorbent 2 is discharged, and the dry Dewar 1 is closed to balance the pressure inside and outside. If the cryogenic liquid storage tank 14 in Fig. 4 can be connected to the supercooling device 3, the liquid nitrogen in the cryogenic liquid storage tank is made into its supercooled state and directly filled into the dry Dewar tank 1 through a pipe.
  • Table 1 compares the adsorption effect of supercooled liquid nitrogen and common liquid nitrogen using a certain amount of phenolic resin as an adsorbent material. It can be seen that the adsorption capacity of the phenolic resin to liquid nitrogen is increased by about 14 wt% under subcooling conditions (-196 ° C and higher than -210 ° C) under gas-liquid equilibrium conditions (-196 ° C). Subcooled liquid nitrogen should help accelerate the process of adsorbing liquid nitrogen by the porous adsorbent and increase the amount of liquid nitrogen adsorbed by about 14% by weight.
  • the rate at which liquid nitrogen is adsorbed can vary greatly.
  • the same porous adsorbent material, liquid nitrogen in the gas-liquid equilibrium state (-196 ° C), liquid nitrogen in the supercooled state (below -196 ° C and higher than -210 ° C) will have its own supercooling capacity, which can liquefy porous
  • the increase in fill liquid nitrogen is related to the type of porous adsorbent material and porosity.
  • the filling step and time of the dry dewar can on the market, the conventional filling time is 2 days, and the filling time in the cold tank condition takes about 8 hours.
  • the entire tank filling time can be shortened to 4 hours.
  • the liquid nitrogen filling amount can be significantly increased under the condition of the same year, and accordingly, the working time of the dry dewar tank is also significantly increased.
  • the actual evaporation rate of liquid nitrogen and the duration of static insulation are affected by the natural nature of the stored samples, the surrounding environmental conditions, the use of the tank and the measurement error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种充装干式杜瓦罐的方法及装置,向设有可吸附低温液体的多孔吸附材料(2)的干式杜瓦罐(1)中充装低温液体,如液氮,通过抽真空或加入液氦等方式使低温液体达到过冷态,增加多孔吸附材料(2)对低温液体的吸附,可实现快速高效的充装,并获得优质冷源。

Description

一种充装干式杜瓦罐的方法及装置 技术领域
本发明涉及一种充装干式杜瓦罐的方法及设备,特别是用低温液体液氮充装干式杜瓦罐的方法和设备。
背景技术
氮是一种特殊的工业品,在标准大气压下其沸点是-196℃,三相点温度为-210℃,液氮作为冷冻贮存媒介,广泛应用于精密仪表制造、医药和食品等领域。液氮的超低温特性能抑制细胞和胚胎等生物体的代谢能力,使细胞和胚胎得以长久保存,故液氮被广泛用于医学及生物工程领域,用于疫苗、菌毒种、细胞以及人、动物的器官等生物样本的活性保存。同时还可应用于精密仪表制造,金属材料的深冷处理,精密零件的深冷装配,医疗手术制冷等。对于细胞的冷冻条件,经由许多实验证实,须以每分钟下降1-3℃的速度,缓慢地将细胞由室温下将至-80℃,这样才能避免大冰晶在细胞内形成,减少对细胞的伤害。当细胞要长时间保存时,须存放在液氮容器内,目的是将环境温度维持在低于-135℃,当细胞处于这个环境中时,水分子将会进入玻璃状态(glass transition),所有细胞内的分子活动,以及生物活性会完全停止,进入休眠状态。如图5所示为氮的三相图,其三相点温度为-210℃,三相点压力为12.53kPa。
干式杜瓦罐是依据1898年英国科学家杜瓦发明的真空夹套绝热原理制造的,它科学地解决了低温液体,如液氮、液氩、液氧等贮存时容器由于热对流、传导和辐射引起的低温液体大量蒸发损失的难题。随着科学技术的发展和人类社会的进步,高真空多层绝热技术及其新材料、新工艺被采用,使杜瓦罐具备了优良的绝热性能,可将其保存的低温液体的自然蒸发损失降到最低,因此,杜瓦罐产品被广泛运用在畜牧业、医疗及科研、机械加工等领域。干式杜瓦罐的内腔放置了高效吸附材料,能很好地吸附容器中的低温液体,容器中无吸附材料的空间内的少量低温液体蒸发后,吸附材料中的低温 液体缓慢蒸发,维持容器内的低温。故液氮干式杜瓦罐内可以分为气相(-140℃到-190℃)与液相(~-196℃)。干式杜瓦罐在使用和运输的过程中,就算倾倒,也不会有液氮流出,保证了罐内有效低温保存时间和所冷藏的活性生物材料及使用场地的安全。且液氮被吸附材料固定,干式杜瓦罐在运输过程中不会有液体晃动,不会增加罐内的液氮蒸发量,增加了干式杜瓦罐的工作时间。液氮干式杜瓦罐被航空公司接受为随身行李,可以通过快递公司在路上运输。
此外,氮的固液混合物(也称作氮浆,slush nitrogen),是指小颗粒的固体氮悬浮于液氮中而形成的一种液-固两相低温流体,是一种优质冷源。氮浆在生物医疗和超导领域方面有着广泛的应用。与液氮相比,由于利用了固体氮(标准大气压下熔点为-209.98℃)的熔融潜热,同样单位质量的氮浆的冷却能力更大。
液氮杜瓦瓶一般采用压差法进行充装,根据压力差控制使低温液氮由较高压力的液氮储槽通过液相管道罐装到较低压力的液氮杜瓦瓶内,一般液氮储槽的压力约为0.6MPa以上,杜瓦瓶压力控制在0.4Mpa以下,使两个容器间的压差保持在0.2Mpa,液氮会从储槽内不断充入杜瓦瓶。另一种液氮充装方法是直接用漏斗浇注法,这要特别注意的是要使漏斗的端部稍离开颈管,使液氮蒸发的气体能从漏斗与容器的间隙顺利逸出,否则会使液体从漏斗溢出,不仅会增加液氮损失,还会发生冻伤事故。充填液氮前罐内要有少量液氮保持预冷状态,充填液氮的速度要缓慢,先注入小量,然后稍停几分钟,使其冷却再逐渐注足至规定容量。对于干式杜瓦罐,要反复多次进行充装,才能使吸附材料中吸附足够的液氮。一般加注液氮至罐颈管底部,保持静止待液氮被吸附,每五分钟补加液氮,整个过程重复至少十次至液氮到达颈管底部并不能再被吸附时,加注完成,此时罐内多余的液氮须被倒出,称重测量液氮的加注量。
中国实用新型专利CN203686567U公开了一种新型液氮杜瓦瓶充装装置,包括储槽、进液截止阀、杜瓦瓶等,该实用新型在传统的压差法液氮杜瓦瓶的放空充装基础上,把杜瓦瓶多余的气体排到储槽液相,通过热循环降低气体温度从而使气体液化,减少原料浪费,通过低温液体泵转速控制流量从而达到充装速度快、减少噪声及节约能源的目的。中国发明专利 CN102661485B公开了一种液氮加注装置及其液氮加注系统,包括加注器、液氮罐、进液管、出液管、电磁泵系统、进气装置和安全装置,所述出液管和进液管与加注器为分体式结构,并呈活动连接状态,所述进液管一端设有过滤装置,所述出液管一端设有快速接头,所述快速接头一端设有高温超导射频线圈,高温超导射频线圈另一端设有控制装置,所述控制装置一端设有自动放气装置,所述加注器与液氮罐通过密封固定装置连接。解决了给高温超导射频线圈自动补液,保证了操作人员的安全,减轻人员劳动强度,实现长时间的持续工作的目的,可与磁共振系统兼容。
发明的公开
本发明要解决的技术问题是,对干式杜瓦罐进行快速高效地填充低温液体,减少低温液体原料的损耗,通过本发明中公开的一种充装干式杜瓦罐的方法及装置,向设有可吸附低温液体的多孔吸附材料的干式杜瓦罐中充装低温液体,如液氮,通过抽真空或加入液氦等方式使低温液体达到过冷态,增加多孔吸附材料对低温液体的吸附,可实现快速高效的充装,并获得优质冷源。
本发明要解决的另一个技术问题是,对干式杜瓦罐进行有效填充,在设有可吸附低温液体的多孔吸附材料的干式杜瓦罐中充入更多的低温液体,提供一种更低工作温度的杜瓦罐和/或延长杜瓦罐的有效工作时间。对于液氮杜瓦罐来说,内腔中液相的温度是-196℃,气相的工作温度通常约是-190℃甚至更高,通常在-170℃左右。随着吸附在多孔材料中的液氮挥发,杜瓦罐内的温度逐渐升高,本发明可以提供初始工作温度低于-196℃的干式杜瓦罐,或初始工作温度约在-210℃左右的干式杜瓦罐,可用于生物样品的深低温保存。此外,通过抽真空或加入液氦等方式使充入干式杜瓦罐内的低温液体达到过冷态,会使多孔材料中吸附的空气中的氮和氧液化,使液氮填入原先被空气占据的体积,对比直接填充液氮的干式杜瓦罐,本发明中的干式杜瓦罐的液氮填充量同比更多。本发明可以提供在低于-170℃的条件下工作时间更长的干式杜瓦罐,适用于长途运输。
本发明解决的再一个技术问题是,在向杜瓦罐高效地充装液氮的同时简便高效地制备氮的固液混合物。向设有可吸附低温液体的多孔吸附材料的干式杜瓦罐中充装液氮,再通过抽真空或加入液氦的方式使液氮达到其过冷态, 在实现液氮在多孔材料中的快速高效填充的同时,干式杜瓦罐内腔未被多孔材料吸附的过冷液氮中不断形成固态的氮,这种氮的固液混合物可被取出,作为冷源加以利用。
根据本发明的一个主题,公开了一种充装干式杜瓦罐的方法,包括步骤:(a)提供一个干式杜瓦罐,包含置于干式杜瓦罐内腔的用于吸附低温液体的多孔吸附材料;(b)提供一个使干式杜瓦罐内的低温液体达到其过冷态的过冷装置;(c)可选择地将干式杜瓦罐进行预冷却;(d)向干式杜瓦罐内充入低温液体;(e)启用过冷装置使干式杜瓦罐内的低温液体达到其过冷态;(f)可选地重复步骤(d)~(e),直到低温液体被多孔材料充分吸附;(g)排出未被多孔吸附材料吸附的低温液体;(h)将干式杜瓦罐封闭,使其内外压力平衡。
根据其他可选方面:
在一些优选实施例中,所述步骤(d)~(f)可由步骤(i)替代,步骤(i)为向干式杜瓦罐内加入过冷态的低温液体或该低温液体的固液混合物。可以先在低温液体存储容器,例如液氮储罐中,将低温液体制成其过冷状态,再将过冷态的低温液体直接加入干式杜瓦罐中。
在一些优选实施例中,可选地重复步骤(i)。
在一些优选实施例中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置,包含真空泵和用于将真空泵和干式杜瓦罐的内腔密封连接的密封头及管路,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置和/或用于观测干式杜瓦罐内腔的观测窗,可选地包含置于干式杜瓦罐内腔用于搅拌的搅拌器,可选地包含用于测量杜瓦罐内压力的压力表。
在一些优选实施例中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置,包含一液氦加入装置,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置和/或用于观测干式杜瓦罐内腔的观测窗,可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器。
在一些优选实施例中,所述多孔吸附材料包括但不限于酚醛树脂、气凝胶、氧化铝陶瓷多孔材料、氧化锆陶瓷多孔材料、二氧化钛陶瓷多孔材料、泡沫金属等。
在一些优选实施例中,所述多孔吸附材料的孔隙率为50%-99%。特别是对于一些气凝胶,其孔隙率可达99%。
在一些优选实施例中,所述多孔吸附材料的孔隙率为50%-94%。
在一些优选实施例中,所述低温液体包括但不限于液氮。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低至低于氮在标准大气压下的沸点温度(-196℃)而获得所述过冷态。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低至可避免莱顿弗罗斯特效应的温度而获得所述过冷态。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低并稳定在氮的三相点温度(-210℃)或使干式杜瓦罐内温度降低至氮的固液混合态产生而获得所述过冷态。
在一些优选实施例中,所述过冷态达到后,继续运行过冷装置使干式杜瓦罐温度保持在氮的三相点温度(-210℃),可选地用搅拌器进行搅拌,生成氮的固液混合物,该氮的固液混合物可取出作为冷源。
在一些优选实施例中,过冷态是指温度低于一定压力下低温液体的气液平衡的温度且高于或等于该低温液体三相点的温度。
根据本发明的另一个主题,还公开了一种充装干式杜瓦罐的设备,包含:(a)干式杜瓦罐,包含设置于其内腔的多孔吸附材料,其中多孔吸附材料用于吸附低温液体;(b)一个使干式杜瓦罐内的低温液体达到其过冷态的过冷装置;(c)可选地包含用于排出未被吸附的多余低温液体的管路。
根据其他可选方面:
在一些优选实施例中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置,包含真空泵和用于将真空泵和干式杜瓦罐的内腔密封连接的密封头及管路,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置和/或用于观测干式杜瓦罐内腔的观测窗,可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器,可选地包含用于测量杜瓦罐内压力的压力表。
在一些优选实施例中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置,包含一液氦加入装置,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置和/或用于观测干式杜瓦罐内腔的观测窗,可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器。
在一些优选实施例中,所述多孔吸附材料包括但不限于酚醛树脂、气凝胶、氧化铝陶瓷多孔材料、氧化锆陶瓷多孔材料、二氧化钛陶瓷多孔材料、 泡沫金属等。
在一些优选实施例中,所述多孔吸附材料的孔隙率为50%-99%。
在一些优选实施例中,所述多孔吸附材料的孔隙率为50%-94%。
在一些优选实施例中,所述低温液体包括但不限于液氮。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低至低于氮在标准大气压下的沸点温度(-196℃)而获得所述过冷态。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低至可避免莱顿弗罗斯特效应的温度而获得所述过冷态。
在一些优选实施例中,通过启动过冷装置将干式杜瓦罐内温度降低并稳定在氮的三相点温度(-210℃)或使干式杜瓦罐内温度降低至氮的固液混合态产生而获得所述过冷态。
在一些实施例中,所述密封头通过顶法兰O圈与干式杜瓦罐密封。
根据本发明的另一个主题,还公开了一种干式杜瓦罐,包含置于其内腔的吸附了低温液体的多孔吸附材料,可使干式杜瓦罐内外压力平衡的罐盖,被多孔吸附材料吸附的低温液体为其过冷态。罐盖上一般连有泄压阀,当内压过高使泄压阀打开,放出一部分气体,使杜瓦罐内外压力平衡。
根据其他可选方面:
在一些实施例中,过冷态是指温度低于一定压力下低温液体的气液平衡的温度且高于或等于该低温液体三相点的温度。
在一些实施例中,所述低温液体包括但不限于液氮。
附图的简要说明
本公开中的附图仅作为对本发明的示意,供理解和解释本发明的精神,但不在任何方面对本发明加以限定。这些附图通常是示意性的并且为了清楚的缘故并不按比例绘制。所有附图相对于相同或相应的技术特征共享相同的附图标记。
图1是本发明中一个实施例中的杜瓦罐的结构示意图。
图2是本发明中一个实施例中的充装干式杜瓦罐的设备的结构示意图。(真空)
图3是本发明中另一个实施例中的充装干式杜瓦罐的设备的结构示意 图。(加液氦)
图4是本发明中一个实施例中充装干式杜瓦罐的设备的示意图。
图5为氮的三相图。
1-干式杜瓦罐,2-多孔吸附材料,3-过冷装置,4-罐盖,5-密封头,6-真空泵,7-温度测量装置,8-搅拌器,9观测窗,10-液氦加入装置,11-用于排出未被吸附的多余低温液体的管路,12-顶法兰O圈,13-液体充装控制系统,14-低温液体储罐,15-称重系统,16-PLC控制系统。
实现本发明的最佳方式
深低温保存(或称为超低温保存,cryopreservation),是指将生物、生命组织、或细胞等有机物质和其他物质在-196℃或以下的低温保存的一种科技。一般来说,深低温保存是泛指在低于-196℃(即低于77K)的低温下保存生物材料或物质。在此温度下,所有生物活动,理论上都会停止,包括一些会使细胞死亡的生物化学活动。
多孔材料内大部分孔为通孔,也包括部分的盲孔和闭孔。在用多孔材料吸附液氮过程中,会出现15%的孔自由体积的不能被完全填充,这可能是由于被困在孔内的残余空气和不完全浸润造成的。在干式杜瓦罐传统充装过程中,液氮在多孔材料中吸附缓慢,且罐装质量不稳定,同一条件下罐装的杜瓦罐保温时间差异也较大。通过本发明提供的一种充装干式杜瓦罐的方法,在液氮过冷态下(标准大气压下,低于-196℃),使被困于孔内的空气,特别是空气中的氮气液化(氧的沸点在标准大气压下是-183℃,在充装过程中早已被液氮液化),加快液氮的填充速度和填充度。
本发明中低温液体被多孔材料充分吸附,对于液氮来说,是指在液氮的充装过程中,多孔材料内未被完全填充的15%的孔自由体积部分或全部被液氮填充。
本发明中用于充装杜瓦罐的低温液体包括但不限于液氮。
本发明中固液混合态产生是指在低温液体降温过程中,产生固态物质。对于液氮来说,从-196℃降温至-210℃,达到氮的三相点温度,液氮表面或液氮中会形成固态氮。
本发明中在液氮从-196℃降温至-210℃的过程中,在多孔材料表面会出 现莱顿弗罗斯特效应,影响液氮在多孔材料内的填充,将液氮的温度降低至可避免莱顿弗罗斯特效应的温度而获得所述过冷态,将更有利于液氮在多孔材料内的填充。对于不同的多孔材料,传热系数各有不同,故对液氮填充来讲,可避免莱顿弗罗斯特效应的温度随材料不同而有所区别。对于酚醛树脂多孔材料,填充液氮的温度降低至约-203℃,即比沸点温度过冷7℃时,就已观测不到明显的莱顿弗罗斯特效应。
下面结合附图进一步详细描述本发明,但本发明不仅仅局限于下述实施例。图1描绘了本发明的非限制性的实施例,图1为本发明一个实施例中的液氮杜瓦罐(1)的结构示意图,包含置于其内腔的用于吸附低温液体(如液氮)的多孔吸附材料,其中多孔吸附材料2为酚醛树脂,其孔隙率为90%,在其他实施例中,多孔材料也可选择气凝胶、氧化铝陶瓷多孔材料、氧化锆陶瓷多孔材料、二氧化钛陶瓷多孔材料、泡沫金属等,其中气凝胶的空隙率可高达99%,可使干式杜瓦罐1内外压力平衡的罐盖4。图2是本发明中一个实施例中的充装干式杜瓦罐的设备的结构示意图,包含干式杜瓦罐1,设置于其内腔的多孔吸附材料2为酚醛树脂,其中多孔吸附材料用于吸附低温液体,一个使干式杜瓦罐内的低温液体达到其过冷态的过冷装置3,用于排出未被吸附的多余低温液体的管路11。其中过冷装置3包含真空泵6和用于将真空泵6和干式杜瓦罐1的内腔密封连接的密封头5及管路,用于观测干式杜瓦罐内腔的观测窗9或一个测量干式杜瓦罐内低温液体温度的温度测量装置7,其中密封头5通过顶法兰O圈12与干式杜瓦罐1密封,此外还包含一个置于干式杜瓦罐内腔用于搅拌的搅拌器8,搅拌器由置于杜瓦瓶外的电机驱动(图中未示出),和一个用于测量杜瓦罐内腔压力的压力表。图3是本发明中另一个实施例中的充装干式杜瓦罐的设备的结构示意图,包含干式杜瓦罐1,设置于其内腔的多孔吸附材料2,其中多孔吸附材料用于吸附低温液体,一个使干式杜瓦罐内的低温液体达到其过冷态的过冷装置3,用于排出未被吸附的多余低温液体的管路11。其中过冷装置3包含一液氦加入装置10,用于观测干式杜瓦罐内腔的观测窗9和一个测量干式杜瓦罐内低温液体温度的温度测量装置7,此外还包含一个置于干式杜瓦罐内腔用于搅拌的搅拌器8。
在本发明的一个实施例中,具体操作步骤如下:A)向在内腔设有吸附 低温液体的多孔吸附材料2的6L的干式杜瓦罐1内充入少量液氮以冷却干式杜瓦罐内腔;B)向干式杜瓦罐1内充入液氮至杜瓦罐颈管处,放置10mins,液氮液位会下降;C)再加入液氮至颈管处;可选择地重复B)和C)步骤2-5次;D)使用密封头5封闭干式杜瓦罐1,开启通过管路和干式杜瓦罐1内腔连接的真空泵,开始抽真空,监测温度测量装置7的读数,发现干式杜瓦罐内液氮温度很快降至-206℃,监测测量杜瓦罐内腔压力的压力表,发现杜瓦罐内腔压力很快降至50kPa左右,继续抽真空,大约50mins后,杜瓦罐内腔压力降至12.5kPa左右;E)关闭真空泵,打开密封头;F)开启搅拌,间歇式地搅拌干式杜瓦罐1内腔中的液氮;G)排出未被多孔吸附材料2吸附的液氮(肉眼观测大约有67vol%的液氮剩余),将干式杜瓦罐1封闭。随着抽真空的进行,杜瓦罐内压力不断下降,直至低于此刻液氮所对应的饱和压力,液氮发生自沸腾,沸腾过程中不断吸收附近液氮的显热将其作为汽化所需要的潜热进而使液氮温度不断下降,干式杜瓦罐中的部分液氮会气化被泵抽出,随着抽真空的进行,剩余液氮的温度会继续降低,当温度降至-210℃时,固态氮就会产生。其中步骤D)中过冷态的温度监控,可以使用一个用于观测干式杜瓦罐1内腔的观测窗9来进行,通过观测窗9查看干式杜瓦罐1内腔中是否有固态氮生成,固态氮生成标志着过冷态早已达到。
在本发明的另一个实施例中,A’)向在内腔设有吸附低温液体的多孔吸附材料2的干式杜瓦罐1内充入少量液氮以冷却干式杜瓦罐内腔;B’)向干式杜瓦罐1内充入液氮至杜瓦罐颈管处,放置10mins,液氮液位会下降;C’)再加入液氮至颈管处;D’)使用密封头5封闭干式杜瓦罐1,开启通过管路和干式杜瓦罐1内腔连接的真空泵,抽真空,监测温度测量装置7的读数,至干式杜瓦罐内液氮温度降至并稳定在-203℃,对于液氮,在这个温度下可以避免莱顿弗罗斯特效应;E’)关闭真空泵,打开密封头;F’)排出未被多孔吸附材料2吸附的液氮,将干式杜瓦罐1封闭,使其内外压力平衡。随着抽真空的进行,干式杜瓦罐中的部分液氮会气化被泵抽出。
在本发明的又一个实施例中,A)向在内腔设有吸附低温液体的多孔吸附材料2的干式杜瓦罐1内充入少量液氮以冷却干式杜瓦罐内腔;C)向干式杜瓦罐内加入过冷态的液氮或氮的固液混合物;D)可选地重复步骤C,其中,过冷态是指温度低于氮的气液平衡的温度且高于氮的三相点温度。E)排出未被多 孔吸附材料2吸附的液氮,将干式杜瓦罐1封闭,使其内外压力平衡。如可将图4中的低温液体储罐14连接过冷装置3,将低温液体储罐中的液氮制成其过冷态后直接通过管道充入干式杜瓦罐1。
表1为使用一定质量的酚醛树脂作为吸附材料来对比过冷态液氮和普通液氮的吸附效果。可见,相比气液平衡条件下(-196℃),过冷条件下(低于-196℃且高于-210℃)酚醛树脂对液氮的吸附量约增加了14wt%。过冷液氮应能帮助加速多孔吸附材料吸附液氮的过程,并增加约14wt%的液氮吸附量。
Figure PCTCN2018086850-appb-000001
表1.过冷液氮和液氮吸附对比
对于不同种类的多孔吸附材料,其吸附液氮的速率会有很大区别。同一种多孔吸附材料,相对气液平衡状态(-196℃)下的液氮,过冷态(低于-196℃且高于-210℃)的液氮会自带过冷量,可以液化多孔材料里的残存的空气,特别是空气中的氮气,这样空气就不会作为残留气泡留在多孔材料里,可以增加液氮载多孔材料中的填充量。填充液氮的增量和多孔吸附材料的种类以及孔隙率有关。
市场上干式杜瓦罐的填充步骤和时间,常规的填充时间为2天,冷罐条件下填充时间约需要8小时。使用本发明中的上述实施例的方法进行填 充,可将整罐填充时间缩短至4小时。
使用本发明的充装干式杜瓦罐的方法,同比条件下可使液氮的充装量明显增加,相应地,干式杜瓦罐的工作时间也明显增加。其中液氮的实际蒸发率和静态保温时长受存储样本自然性质,周围环境条件,罐体使用情况和测量误差的影响。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (27)

  1. 一种充装干式杜瓦罐的方法,包括步骤:
    (a)提供一个干式杜瓦罐(1),包含置于干式杜瓦罐内腔的用于吸附低温液体的多孔吸附材料(2);
    (b)提供一个使干式杜瓦罐(1)内的低温液体达到其过冷态的过冷装置(3);
    (c)可选择地将干式杜瓦罐进行预冷却;
    (d)向干式杜瓦罐内充入低温液体;
    (e)启用过冷装置(3)使干式杜瓦罐内的低温液体达到其过冷态;
    (f)可选地重复步骤(d)~(e),直到低温液体被多孔材料充分吸附;
    (g)排出未被多孔吸附材料(2)吸附的低温液体;
    (h)将干式杜瓦罐(1)封闭,使其内外压力平衡。
  2. 如权利要求1所述的方法,其中,所述步骤(d)~(f)可由步骤(i)替代,步骤(i)为向干式杜瓦罐内加入过冷态的低温液体或该低温液体的固液混合物。
  3. 如权利要求2所述的方法,其中,可选地重复步骤(i)。
  4. 如权利要求1所述的方法,其中,所述使干式杜瓦罐(1)内的低温液体达到其过冷态的过冷装置(3),包含真空泵(6)和用于将真空泵(6)和干式杜瓦罐(1)的内腔密封连接的密封头(5)及管路,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置(7)和/或用于观测干式杜瓦罐内腔的观测窗(9),可选地包含置于干式杜瓦罐内腔用于搅拌的搅拌器(8),可选地包含用于测量杜瓦罐内压力的压力表。
  5. 如权利要求1所述的方法,其中,所述使干式杜瓦罐(1)内的低温液体达到其过冷态的过冷装置(3),包含一液氦加入装置(10),可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置(7)和/或用于观测干式杜瓦罐内腔的观测窗(9),可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器(8)。
  6. 如权利要求1-5所述的方法,其中,所述多孔吸附材料包括但不限于酚醛树脂、气凝胶、氧化铝陶瓷多孔材料、氧化锆陶瓷多孔材料、二氧化钛陶瓷多孔材料、泡沫金属等。
  7. 如权利要求6所述的方法,其中,所述多孔吸附材料的孔隙率为50%-99%。
  8. 如权利要求7所述的方法,其中,所述多孔吸附材料的孔隙率为50%-94%。
  9. 如权利要求1-5所述的方法,其中,所述低温液体包括但不限于液氮。
  10. 如权利要求4所述的方法,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低至低于氮在标准大气压下的沸点温度(-196℃)而获得所述过冷态。
  11. 如权利要求4所述的方法,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低至可避免莱顿弗罗斯特效应的温度而获得所述过冷态。
  12. 如权利要求4所述的方法,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低并稳定在氮的三相点温度(-210℃)或使干式杜瓦罐内温度降低至氮的固液混合态产生而获得所述过冷态。
  13. 如权利要求12所述的方法,其中,所述过冷态达到后,继续运行过冷装置(3)使干式杜瓦罐温度保持在氮的三相点温度(-210℃),可选地用搅拌器(8)进行搅拌,生成氮的固液混合物,该氮的固液混合物可取出作为冷源。
  14. 如权利要求2-3所述的方法,其中,过冷态是指温度低于一定压力下低温液体的气液平衡的温度且高于或等于该低温液体三相点的温度。
  15. 一种充装干式杜瓦罐(1)的设备,包含:
    (a)干式杜瓦罐(1),包含设置于其内腔的多孔吸附材料(2),其中多孔吸附材料用于吸附低温液体;
    (b)一个使干式杜瓦罐内的低温液体达到其过冷态的过冷装置(3);
    (c)可选地包含用于排出未被吸附的多余低温液体的管路(11)。
  16. 如权利要求15所述的设备,其中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置(3),包含真空泵(6)和用于将真空泵(6)和干式杜瓦罐(1)的内腔密封连接的密封头(5)及管路,可选地包含测量干式杜瓦罐内低温液体温度的温度测量装置(7)和/或用于观测干式杜瓦罐内腔的观测窗(9),可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器(8),可选地包含用于测量杜瓦罐内压力的压力表。
  17. 如权利要求15所述的设备,其中,所述使干式杜瓦罐内的低温液体达到其过冷态的过冷装置(3),包含一液氦加入装置(10),可选地包含测量干式 杜瓦罐内低温液体温度的温度测量装置(7)和/或用于观测干式杜瓦罐内腔的观测窗(9),可选地包括置于干式杜瓦罐内腔用于搅拌的搅拌器(8)。
  18. 如权利要求15-17所述的设备,其中,所述多孔吸附材料包括但不限于酚醛树脂、气凝胶、氧化铝陶瓷多孔材料、氧化锆陶瓷多孔材料、二氧化钛陶瓷多孔材料、泡沫金属等。
  19. 如权利要求18所述的设备,其中,所述多孔吸附材料的孔隙率为50%-99%。
  20. 如权利要求18所述的设备,其中,所述多孔吸附材料的孔隙率为50%-94%。
  21. 如权利要求15-17所述的设备,其中,所述低温液体包括但不限于液氮。
  22. 如权利要求21所述的设备,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低至低于氮在标准大气压下的沸点温度(-196℃)而获得所述过冷态。
  23. 如权利要求21所述的设备,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低至可避免莱顿弗罗斯特效应的温度而获得所述过冷态。
  24. 如权利要求21所述的设备,其中,通过启动过冷装置(3)将干式杜瓦罐内温度降低并稳定在氮的三相点温度(-210℃)或使干式杜瓦罐(1)内温度降低至氮的固液混合态产生而获得所述过冷态。
  25. 一种干式杜瓦罐(1),包含置于其内腔的吸附了低温液体的多孔吸附材料(2),可使干式杜瓦罐(1)内外压力平衡的罐盖(4),其特征在于,被多孔吸附材料(2)吸附的低温液体为其过冷态。
  26. 如权利要求25所述的干式杜瓦罐,其中,过冷态是指温度低于一定压力下低温液体的气液平衡的温度且高于或等于该低温液体三相点的温度。
  27. 如权利要求25-26所述的干式杜瓦罐,其中,所述低温液体包括但不限于液氮。
PCT/CN2018/086850 2018-05-15 2018-05-15 一种充装干式杜瓦罐的方法及装置 WO2019218143A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/086850 WO2019218143A1 (zh) 2018-05-15 2018-05-15 一种充装干式杜瓦罐的方法及装置
CN201880093349.0A CN112105862B (zh) 2018-05-15 2018-05-15 一种充装干式杜瓦罐的方法及装置
PCT/CN2019/086791 WO2019218997A1 (zh) 2018-05-15 2019-05-14 一种充装干式杜瓦罐的方法及装置
CN201980031485.1A CN112105863B (zh) 2018-05-15 2019-05-14 一种充装干式杜瓦罐的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086850 WO2019218143A1 (zh) 2018-05-15 2018-05-15 一种充装干式杜瓦罐的方法及装置

Publications (1)

Publication Number Publication Date
WO2019218143A1 true WO2019218143A1 (zh) 2019-11-21

Family

ID=68539257

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/086850 WO2019218143A1 (zh) 2018-05-15 2018-05-15 一种充装干式杜瓦罐的方法及装置
PCT/CN2019/086791 WO2019218997A1 (zh) 2018-05-15 2019-05-14 一种充装干式杜瓦罐的方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086791 WO2019218997A1 (zh) 2018-05-15 2019-05-14 一种充装干式杜瓦罐的方法及装置

Country Status (2)

Country Link
CN (2) CN112105862B (zh)
WO (2) WO2019218143A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020372A1 (en) * 2020-07-22 2022-01-27 Cryoport, Inc. Dewar drying device
CN114621489A (zh) * 2022-03-24 2022-06-14 上海生生物流有限公司 一种液氮吸附材料及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344213A (zh) * 2020-12-08 2021-02-09 岳阳凯美特电子特种稀有气体有限公司 一种回收气瓶内余气的装置和方法
CN115568932A (zh) * 2021-07-22 2023-01-06 海杰亚(北京)医疗器械有限公司 肿瘤微创治疗电气控制系统
CN114962997A (zh) * 2022-05-26 2022-08-30 清远市联升空气液化有限公司 液态气体分装系统
CN116464904A (zh) * 2023-06-12 2023-07-21 浙江大学 一种车载液氢绝热储存容器及其液氢加注方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU649647A1 (ru) * 1961-12-11 1979-02-28 Libinzon Yurij M Аппарат дл тонкой очистки водорода
JPH08283010A (ja) * 1995-04-07 1996-10-29 Nippon Steel Corp ヘリウム3クライオスタットおよび低温生成方法
CN101737615A (zh) * 2008-11-13 2010-06-16 琳德有限公司 用于气体储存的热学控制设备
CN203686567U (zh) * 2013-11-15 2014-07-02 苏州金宏气体股份有限公司 新型液氮杜瓦瓶充装装置
CN206530870U (zh) * 2017-03-07 2017-09-29 鄂尔多斯市新杭能源有限公司 一种新型低温液体贮槽

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041010A1 (fr) * 1998-02-17 1999-08-19 Kanebo, Limited Carbone active pour adsorption et stockage d'un compose gazeux
JP2000223755A (ja) * 1999-01-29 2000-08-11 Sumitomo Heavy Ind Ltd 真空断熱装置
US6257835B1 (en) * 1999-03-22 2001-07-10 Quantachrome Corporation Dry vacuum pump system for gas sorption analyzer
CN1101913C (zh) * 1999-06-08 2003-02-19 天津大学 吸附天然气储罐及灌装工艺
CN2739386Y (zh) * 2004-09-09 2005-11-09 中国科学院上海技术物理研究所 一种用于微型杜瓦的微型冷凝吸附泵
CN100338360C (zh) * 2004-12-23 2007-09-19 上海交通大学 利用气体协同交换原理对容器抽真空的方法
FR2896028B1 (fr) * 2006-01-06 2008-07-04 Air Liquide Procede et dispositif de remplissage de conteneurs de gaz sous pression
EP2021713A4 (en) * 2006-05-04 2012-02-22 Linde Inc METHODS OF HYDROGEN STORAGE AND REFRIGERATION
CN103277662B (zh) * 2013-05-15 2015-09-02 中国科学院电工研究所 一种用于交流超导磁体的中空结构非金属杜瓦
CN103900869B (zh) * 2014-03-03 2016-04-13 复旦大学 低温分子筛吸附泵装置
EP3026322A1 (de) * 2014-11-27 2016-06-01 Linde Aktiengesellschaft Speichereinrichtung für unterkühlte kryogene Flüssigkeiten
EA036536B1 (ru) * 2015-03-13 2020-11-20 Сенерджи Солюшнс Инк. Увеличенная вместимость резервуаров высокого давления для хранения газа
CN106512640A (zh) * 2016-11-16 2017-03-22 中国科学院理化技术研究所 纯化装置
CN106958738B (zh) * 2017-02-28 2019-05-07 浙江大学 一种带有多孔介质的低温液体储罐
CN206694819U (zh) * 2017-03-15 2017-12-01 淄博安泽特种气体有限公司 低温储氢罐

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU649647A1 (ru) * 1961-12-11 1979-02-28 Libinzon Yurij M Аппарат дл тонкой очистки водорода
JPH08283010A (ja) * 1995-04-07 1996-10-29 Nippon Steel Corp ヘリウム3クライオスタットおよび低温生成方法
CN101737615A (zh) * 2008-11-13 2010-06-16 琳德有限公司 用于气体储存的热学控制设备
CN203686567U (zh) * 2013-11-15 2014-07-02 苏州金宏气体股份有限公司 新型液氮杜瓦瓶充装装置
CN206530870U (zh) * 2017-03-07 2017-09-29 鄂尔多斯市新杭能源有限公司 一种新型低温液体贮槽

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022020372A1 (en) * 2020-07-22 2022-01-27 Cryoport, Inc. Dewar drying device
GB2611945A (en) * 2020-07-22 2023-04-19 Cryoport Inc Dewar drying device
GB2611945B (en) * 2020-07-22 2024-03-20 Cryoport Inc Dewar drying device
CN114621489A (zh) * 2022-03-24 2022-06-14 上海生生物流有限公司 一种液氮吸附材料及其制备方法和应用
CN114621489B (zh) * 2022-03-24 2024-07-30 上海生生物流有限公司 一种液氮吸附材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112105863B (zh) 2022-01-18
CN112105863A (zh) 2020-12-18
WO2019218997A1 (zh) 2019-11-21
CN112105862A (zh) 2020-12-18
CN112105862B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019218143A1 (zh) 一种充装干式杜瓦罐的方法及装置
US20190029248A1 (en) Method and system for freezing biopharmaceutical fluid
US8794013B2 (en) Method and system for nucleation control in a controlled rate freezer (CRF)
WO2020199550A1 (zh) 一种用于制作层状冷生构造冻土试样的装置与方法
WO2020124660A1 (zh) 一种储存天然气水合物的方法
US11503845B2 (en) Processes and devices for freezing organic products
CN114295665A (zh) 一种水滴结冰可视化实验装置及其应用
CN111263585A (zh) 低温保存方法和设备
JP2012049413A (ja) 超電導部材冷却装置、及び断熱容器内のサブクール液体窒素の温度維持方法
CN110118678B (zh) 一种含天然气水合物土制样设备及其成样方法
JP2015224210A (ja) 生体構成物の非凍結保存輸送方法
CN208211346U (zh) 梯度降温盒
US8047703B2 (en) Apparatus and method for gelling liquefied gasses
CN110411118B (zh) 一种超低温冷源材料及其制备方法
US20220256840A1 (en) Method and apparatus for storage of biological material
CN2682849Y (zh) 小型低温生物冷冻仪
CN110835566A (zh) 一种高含气率甲烷水合物球及其制备方法
JPS625630Y2 (zh)
CN218879922U (zh) 一种超声循环冷却装置
CN209165922U (zh) 一种集成恒温、冷却及真空冻干的低温系统
RU2776567C2 (ru) Способ криоохлаждения поверхности образца гистологических и иммуногистохимических исследований
CN111795909A (zh) 一种筛选控冰材料的方法
EP3096614B1 (en) Method and apparatus for preserving biological material
JPS6372601A (ja) 生体細胞の凍結装置
CN113261555A (zh) 一种漂浮式精液冷冻方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919126

Country of ref document: EP

Kind code of ref document: A1