WO2020199550A1 - 一种用于制作层状冷生构造冻土试样的装置与方法 - Google Patents

一种用于制作层状冷生构造冻土试样的装置与方法 Download PDF

Info

Publication number
WO2020199550A1
WO2020199550A1 PCT/CN2019/111148 CN2019111148W WO2020199550A1 WO 2020199550 A1 WO2020199550 A1 WO 2020199550A1 CN 2019111148 W CN2019111148 W CN 2019111148W WO 2020199550 A1 WO2020199550 A1 WO 2020199550A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
temperature control
temperature
sample
refrigeration
Prior art date
Application number
PCT/CN2019/111148
Other languages
English (en)
French (fr)
Inventor
马冬冬
马芹永
黄坤
苏晴晴
张蓉蓉
袁璞
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Priority to ZA201908588A priority Critical patent/ZA201908588B/en
Publication of WO2020199550A1 publication Critical patent/WO2020199550A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation

Definitions

  • the patent of the invention relates to a device and a method for preparing frozen soil samples of layered cold-grown structure.
  • Frozen soil is a multi-phase complex composed of soil particles, liquid water, ice and gas.
  • soil with a temperature of 0°C or below and containing ice is called frozen soil.
  • Frozen soil can be seen everywhere in nature.
  • the ice-forming effect of the water in the soil during freezing depends on the strength and speed of the combined action of internal and external stresses, and the difference in strength and speed
  • the spatial arrangement and combination of ice crystals or ice layers and mineral particles are very different, which will result in different cold-grown structures of frozen soil.
  • frozen soil cold structure in "Frozen Soil Mechanics" (by Ma Wei, Wang Dayan)
  • frozen soil can be divided into monolithic structure, layered structure, and network structure, as shown in Figure 1.
  • step (3) Put the wet soil treated in step (2) into the mold of the required size several times. After compacting and wiping, put it in a low temperature test box and freeze for more than 48 hours (mould freezing or freezing with mould. Yes), prepare the frozen soil samples required for the test.
  • frozen soil samples with monolithic structures can be prepared, but frozen soil samples with layered structures cannot be produced.
  • Patent authorization in China CN 106226499 B published a frozen soil test device with a combination of temperature gradients, including a test box, a sample tube, a cold air pump, a pressurized cover, an air duct, a cold circulation tube, and a control center.
  • the air deflector can be beneficial to Conduct cold air to the frozen soil sample to quickly adjust the temperature of the frozen soil sample.
  • the diameter of the air deflector is gradually reduced from top to bottom, and the refrigerant in the cold circulation tube circulates from top to bottom.
  • the measures can enable the frozen soil samples to achieve a combined temperature gradient.
  • Patent authorization in China CN A uniaxial creep test method for frozen soil with temperature gradient is published in 103091180 B. Through the cooperation of pressure hood, height adjustment cushion, convex base, upper and lower refrigeration panels and heat insulation panels, the creep of frozen soil with temperature gradient can be studied. The purpose of the feature. The above two methods can achieve the purpose of controlling the temperature gradient inside the frozen soil, but neither can control the distribution or structural state of ice crystals in the frozen soil.
  • Patent authorization in China CN 103471884 B discloses an artificial unidirectional freezing and layering sample preparation device suitable for frozen soil with high water (ice) content. The temperature at the bottom of the sample cylinder is controlled by a temperature control system and a constant temperature control box, and the soil in a fluid plastic state is controlled.
  • the uniform mixture of water is added in stages from the upper end of the mold, and then by adjusting the temperature of the bottom of the cylinder, the constant temperature time and the thickness of the uniform mixture of soil and water, a layered or monolithic structure of high water (ice) frozen soil samples can be produced purpose.
  • the prepared frozen soil samples are mainly for frozen soil with high water (ice) content and cannot be applied to frozen soil with less than saturated water (ice) content;
  • the purpose of the present invention is to provide a device and method for preparing frozen soil samples with layered cold structure, by which a frozen soil sample with layered cold structure can be prepared in a laboratory.
  • the invention has the characteristics of simple structure and convenient operation.
  • a device for making layered cold-grown structure frozen soil samples is composed of a main body of an incubator, an upper cover of an incubator, a sample tube, an upper cover of the sample tube, a temperature control tube, a vacuum tube, a refrigeration tube, a base, a temperature sensor, It is composed of moisture sensor and temperature control system.
  • the temperature control tube, vacuum tube, and refrigeration tube are all annular and form a closed loop with the temperature control system, and are arranged on the outer wall surface of the sample cylinder.
  • the temperature control tube, vacuum tube, and refrigeration tube are all connected to their respective temperature control systems. It can control the temperature of the circulating fluid inside the temperature control tube, the vacuum tube and the refrigeration tube; the main body of the incubator is provided with pipe holes for the passage of the temperature control tube, the vacuum tube and the refrigeration tube and fix their positions.
  • the main body of the incubator, the upper cover of the incubator, the sample cylinder, and the upper cover of the sample cylinder are all circular.
  • the sample cylinder and the upper cover of the sample cylinder are made of epoxy resin.
  • the base is an adjustable height type.
  • a method for making a layered cold-grown structure frozen soil sample including the following steps:
  • the first step is to arrange the temperature control tube, vacuum tube, and refrigeration tube in the main body of the incubator so that they are arranged from top to bottom in the order of temperature control tube, vacuum tube, and refrigeration tube.
  • the tube is connected to the respective temperature control system;
  • the second step is to add water of the required quality to the dry soil several times in an appropriate amount. After mixing, it is sealed and placed for more than 48 hours to make each part of the soil sample evenly water;
  • the third step is to open the upper cover of the sample cylinder and add the wet soil to the sample cylinder several times in an appropriate amount.
  • temperature sensors and moisture sensors are embedded at different heights of the soil sample to test the moisture and temperature changes of different layers;
  • the fourth step after smoothing the top surface of the soil sample, cover the upper cover of the sample cylinder, open the upper cover of the incubator, place the sample cylinder on the base inside the main body of the incubator, and adjust the positions of the temperature control tube, vacuum tube and refrigeration tube , Make it close to the outer wall surface of the sample cylinder, and cover the upper cover of the incubator to reduce the temperature fluctuation inside the main body of the incubator;
  • the fifth step is to turn on the temperature control system, vacuum all the vacuum tubes without circulating the circulating fluid, and adjust the temperature of the circulating fluid in the other two tubes as follows: set the circulating fluid temperature in the temperature control tube to 1 °C, and the circulating fluid temperature in the refrigeration tube Set to -30 °C;
  • the sixth step according to the real-time data fed back by the temperature sensor and the moisture sensor, combined with the thickness of the ice-containing layer of the frozen layered frozen soil sample prepared for the test, control the duration of the circulating fluid in the temperature control tube and the refrigeration tube and proceed recording;
  • the seventh step is to adjust the temperature of the circulating fluid in the temperature control tube, the vacuum tube, and the refrigeration tube to set the target temperature of the frozen soil sample. Freeze for more than 24 hours.
  • the layered cold structure frozen soil sample containing the temperature sensor and the moisture sensor The production is complete.
  • the eighth step is to remove the prepared frozen soil sample. Repeat steps 1 to 7, but no longer bury temperature sensors and moisture sensors, and the duration of the temperature control tube and the circulating fluid in the refrigeration tube set in step 6 is the same Same as before, you can make frozen soil samples with layered cold structure
  • the moisture in the wet soil at the level of the refrigerating tube is first frozen to form a freezing front.
  • the vacuum tube can reduce the cooling capacity of the low-temperature circulating fluid in the refrigeration tube to lose to the surroundings.
  • the temperature control tube can ensure that the moisture inside the wet soil at the level of the temperature control tube is in an unfrozen state; according to the knowledge of frozen soil mechanics, the moisture inside the frozen soil It will migrate to the freezing front.
  • the moisture in the wet soil at the upper and lower positions of the refrigeration tube can migrate to the refrigeration tube layer, thereby accumulating a large amount of ice in the refrigeration tube layer.
  • Crystal after that, by adjusting the temperature of the circulating fluid in the temperature control tube, vacuum tube, and refrigeration tube again as the target temperature, the moisture in other positions of the frozen soil sample is frozen, and finally the cold structure inside the frozen soil sample can be realized as a layered For the purpose of distribution, and prepare frozen soil samples with layered cold structure.
  • Figure 1 is a schematic diagram of the overall structure, layered structure, and network structure of frozen soil.
  • Fig. 2 is a cross-sectional view of the structure of the device for preparing a layered cold-green structure frozen soil sample according to the present invention.
  • Figure 3 is a schematic diagram of the piping structure of temperature control tubes, vacuum tubes and refrigeration tubes.
  • FIG. 2 is a device for making layered cold-grown structure frozen soil samples. It consists of the main body of the incubator 4, the upper cover of the incubator 5, the sample cylinder 6, the upper cover of the sample cylinder 7, the temperature control tube 8, and the vacuum tube. 9. Refrigeration pipe 10, base 11, temperature sensor 12, moisture sensor 13, temperature control system 14. Among them, the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10 are all ring-shaped and form a closed loop with the temperature control system 14, and are arranged on the outer wall surface of the sample cylinder 6. The temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10 are all connected to their respective The temperature control system 14 is connected.
  • the temperature control system 14 can control the temperature of the circulating liquid in the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10; the main body 4 of the incubator is provided with pipe holes for the temperature control tube 8, the vacuum tube 9, and refrigeration The tube 10 passes through and fixes its position; the incubator body 4, the incubator upper cover 5, the sample cylinder 6, and the sample cylinder upper cover 7 are all round; the sample cylinder 6, the sample cylinder upper cover 7 are made of epoxy resin;
  • the base 11 is an adjustable height type;
  • a method for making a layered cold-grown structure frozen soil sample including the following steps:
  • the first step is to arrange the positions of the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10 in the main body 4 of the incubator, so that they are arranged from top to bottom in the order of the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10.
  • the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10 are connected to their respective temperature control systems 14;
  • the second step is to add water of the required quality to the dry soil several times in an appropriate amount. After mixing, it is sealed and placed for more than 48 hours to make each part of the soil sample evenly water;
  • the third step is to open the upper cover 7 of the sample cylinder, and add the wet soil to the sample cylinder 6 in several suitable amounts. Among them, the temperature sensor 14 and the moisture sensor 13 are buried at different heights of the soil sample to test the moisture and moisture content of different layers. temperature change;
  • the fourth step after smoothing the top surface of the soil sample, cover the upper cover 7 of the sample cylinder, open the upper cover 5 of the incubator, adjust the height of the base 11, place the sample cylinder 6 on the base 11 inside the main body 4 of the incubator, adjust Position the temperature control tube 8, the vacuum tube 9, and the refrigeration tube 10 so that they are close to the outer wall surface of the sample cylinder 6, and cover the upper cover 5 of the incubator to reduce temperature fluctuations in the main body 4 of the incubator;
  • the fifth step is to turn on the temperature control system 14, vacuum all the vacuum tubes 9 without circulating fluid circulation, and adjust the temperature of the circulating fluid in the remaining two tubes as follows: the circulating fluid temperature in the temperature control tube 8 is set to 1 °C, and the refrigeration tube The temperature of the internal circulating fluid in 10 is set to -30 °C. According to this setting method, the moisture in the wet soil at the level of the refrigeration pipe 10 can be frozen first to form a freezing front. The setting of the vacuum pipe 9 can reduce the refrigeration pipe 10 The cold capacity of the low-temperature circulating fluid inside is lost to the surroundings. The temperature control tube 8 can ensure that the moisture inside the wet soil at the position of the temperature control tube 8 is in an unfrozen state.
  • the moisture inside the frozen soil will move towards the freezing front Migration, through the cooperation of the above temperature control tube 8, vacuum tube 9, and refrigeration tube 10, the moisture in the wet soil located at the upper and lower positions of the refrigeration tube level 10 can migrate to the refrigeration tube 10 level, thereby accumulating a large amount in the refrigeration tube 10 level position Ice crystals
  • the sixth step is to control the circulating fluid in the temperature control tube 8 and the refrigeration tube 10 according to the real-time data fed back from the temperature sensor 14 and the moisture sensor 13 and combined with the thickness of the ice-containing layer of the layered cold-green structure frozen soil sample prepared for the test.
  • the seventh step is to adjust the temperature of the circulating fluid in the temperature control tube 8, the vacuum tube 9, and the refrigerating tube 10, and set them to the target temperature of the frozen soil sample. Freeze for more than 24 hours.
  • the layered cooling containing the temperature sensor 14 and the moisture sensor 13 The preparation of the frozen soil sample of the biotectonics is completed.
  • the eighth step is to remove the prepared frozen soil sample, repeat steps one to seven, but no longer embed the temperature sensor 14 and the moisture sensor 13, and the temperature control tube 8 and the refrigeration tube 10 set in the sixth step are internally circulating
  • the duration of the liquid is the same as before, and a frozen soil sample with a layered cold structure can be produced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种用于制作层状冷生构造冻土试样的装置与方法,由保温箱主体(4)、保温箱上盖(5)、样品筒(6)、样品筒上盖(7)、控温管(8)、真空管(9)、制冷管(10)、底座(11)、温度传感器(12)、水分传感器(13)、温度控制系统(14)组成。其中,控温管(8)、真空管(9)、制冷管(10)均为环形并与温度控制系统(14)形成闭合回路,且布置在样品筒(6)外壁表面,控温管(8)、真空管(9)、制冷管(10)均与各自的温度控制系统(14)相连,温度控制系统(14)能够控制控温管(8)、真空管(9)、制冷管(10)内部循环液的温度;保温箱主体(4)上开设有管孔用于供控温管(8)、真空管(9)、制冷管(10)通过并固定其位置,该装置具有结构简单、操作方便等特点。

Description

一种用于制作层状冷生构造冻土试样的装置与方法 技术领域
本发明专利涉及一种用于制作层状冷生构造冻土试样的装置与方法。
背景技术
冻土,是一种由土颗粒、液态水、冰和气体组成的多相复合体,通常将温度在0℃或其以下并含有冰的土称为冻土。在自然界中,冻土随处可见,在土的冻结过程中,由于土中的水分在冻结时的成冰作用取决于内应力和外应力共同作用的强度和速度,而这种强度和速度的不同会使得土中的水在冻结成冰的过程中,冰晶或冰层与矿物颗粒在空间上的排列和组合形态有很大不同,这会导致冻土的冷生构造有所不同。按照《冻土力学》(马巍,王大雁著)中对冻土冷生构造的划分,可将冻土分为整体状构造、层状构造、网状构造,见图1所示。
在实验室内开展冻土物理力学性能测试时,通常采用重塑土进行试验,具体步骤如下:
(1)    将原状土颗粒破碎,过所需粒径的筛网,再将筛分后的土颗粒烘干;
(2)    在干土中分多次适量地加入所需质量的水,拌和后密封放置48h以上,使土样各部分含水均匀;
(3)    将步骤(2)处理后的湿土分多次加入到所需尺寸的模具中,经压实、抹平等步骤处理后,放入低温试验箱中冻结48h以上(拆模冻结或带模冻结均可),制备出试验所需的冻土试样。
通过对土样进行上述处理后,就能够制备出整体状构造的冻土试样,但是,却无法制作出层状构造的冻土试样。在中国专利授权书,CN 106226499 B中公布了一种组合温度梯度的冻土试验装置,包括试验箱体、样品筒、冷气泵、加压盖、导风管、冷循环管、控制中心,通过设置导风板能够有利于对冻土试样进行导冷风,使冻土试样快速的实现温度调节,通过设置导风板自上而下的直径逐渐减少,以及冷循环管中的冷媒剂自上而下进行循环两种措施能够使得冻土试样实现组合温度梯度。在中国专利授权书,CN 103091180 B中公布了一种温度梯度冻土单轴蠕变试验方法,通过压力罩、高度调节垫块、凸形底座、上下制冷板和隔热板的配合,能够实现研究温度梯度冻土蠕变特性的目的。以上两种方法均能够实现控制冻土内部温度梯度的目的,但都无法控制冻土内部冰晶的分布或构造状态。在中国专利授权书,CN 103471884 B中公布了一种适用于高含水(冰)量冻土的人工单向冻结分层制样装置,通过温控系统和恒温控制箱控制试样筒底部温度,将呈流塑态的土、水均匀混合物由模具上端分次加入,再通过调节筒底温度、恒温时间和土、水均匀混合物厚度,实现制作出具有层状或整体状构造的高含水(冰)量冻土试样的目的。
技术问题
上述层状或整体状构造的高含水(冰)量冻土试样制作方法有以下三个方面的缺点:
(1)所制作出的冻土试样主要针对高含水(冰)量冻土,无法适用于低于饱和含水(冰)量的冻土;
(2)无法实现控制含冰层位置的目的;
(3)操作复杂,冻结温度、冻结时间、以及土、水均匀混合物高度均不易控制。
鉴于此,需要发明一种用于制作层状冷生构造冻土试样的装置与方法,以实现在室内实验室制作层状冷生构造冻土试样的目的。
技术解决方案
本发明的目的是为了提供一种用于制作层状冷生构造冻土试样的装置与方法,利用该装置,能够在实验室制备出具有层状冷生构造的冻土试样。本发明具有结构简单、操作方便等特点。
为了达到上述目的,本发明的技术方案是这样实现的:
一种用于制作层状冷生构造冻土试样的装置,是由保温箱主体、保温箱上盖、样品筒、样品筒上盖、控温管、真空管、制冷管、底座、温度传感器、水分传感器、温度控制系统组成。其中,控温管、真空管、制冷管均为环形并与温度控制系统形成闭合回路,且布置在样品筒外壁表面,控温管、真空管、制冷管均与各自的温度控制系统相连,温度控制系统能够控制控温管、真空管、制冷管内部循环液的温度;保温箱主体上开设有管孔用于供控温管、真空管、制冷管通过并固定其位置。
上述装置中,所述保温箱主体、保温箱上盖、样品筒、样品筒上盖均为圆形。
上述装置中,所述样品筒、样品筒上盖制作材料均为环氧树脂。
上述装置中,所述底座为可调节高度型。
一种用于制作层状冷生构造冻土试样的方法,包括以下步骤:
第一步,在保温箱主体内布置好控温管、真空管、制冷管的位置,使其按照控温管、真空管、制冷管的顺序自上而下依次排列,将控温管、真空管、制冷管与各自的温度控制系统相连;
第二步,在干土中分多次适量地加入所需质量的水,拌和后密封放置48h以上,使土样各部分含水均匀;
第三步,打开样品筒上盖,将湿土分多次适量地加入到样品筒中,其中,在土样不同高度埋设温度传感器和水分传感器,以测试不同层位的水分和温度变化;
第四步,将土样上表面抹平后,盖上样品筒上盖,打开保温箱上盖,将样品筒放置在保温箱主体内部的底座上,调整控温管、真空管、制冷管的位置,使其紧贴样品筒外壁表面,盖上保温箱上盖,以减少保温箱主体内部的温度波动;
第五步,打开温度控制系统,将所有真空管内抽真空且不进行循环液循环,调节其余两种管内循环液的温度如下:将控温管内循环液温度设置为1 ℃,制冷管内循环液温度设置为-30 ℃;
第六步,根据温度传感器和水分传感器反馈的实时数据,结合试验所需制备的层状冷生构造冻土试样的含冰层厚度,控制控温管和制冷管内循环液的持续时间并进行记录;
第七步,调节控温管、真空管、制冷管内循环液的温度,均设置成冻土试样的目标温度,冻结24h以上,内含温度传感器和水分传感器的层状冷生构造冻土试样即制作完成。
第八步,将制作好的冻土试样移出,重复步骤一~步骤七,但不再埋设温度传感器和水分传感器,且第六步中设置的控温管和制冷管内循环液的持续时间与之前相同,即可制作出层状冷生构造的冻土试样
有益效果
与现有技术相比,本发明的有益效果:
通过设置控温管、真空管、制冷管,并将其设置成所述布置方式,配合温度控制系统,使得位于制冷管层位位置的湿土内的水分率先冻结,使其形成冻结锋面,通过设置真空管能够减少制冷管内的低温循环液的冷量向周围散失,通过设置控温管能够保证位于控温管层位位置的湿土内部水分处于未冻结状态;根据冻土力学知识,冻土内部水分会向冻结锋面迁移,通过以上控温管、真空管、制冷管的配合,能够使位于制冷管层位上下位置湿土的水分向制冷管层位迁移,从而在制冷管层位位置聚集大量的冰晶体;此后,通过再次调节控温管、真空管、制冷管内循环液的温度为目标温度,使得冻土试样其它位置的水分冻结,最终能够实现使冻土试样内部的冷生构造呈层状分布的目的,并制备出层状冷生构造的冻土试样。
附图说明
图1是冻土整体状构造、层状构造、网状构造示意图。
图2是本发明的用于制作层状冷生构造冻土试样的装置结构剖面图。
图3是控温管、真空管、制冷管的管道结构示意图。
图中标号说明:1-整体状构造,2-层状构造,3-网状构造,4-保温箱主体,5-保温箱上盖,6-样品筒,7-样品筒上盖,8-控温管,9-真空管,10-制冷管,11-底座,12-温度传感器,13-水分传感器,14-温度控制系统,15-控温管、真空管、制冷管的管道结构。
本发明的实施方式
以下将结合附图和具体实施例对本发明专利做进一步的详细说明,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
如图2是一种用于制作层状冷生构造冻土试样的装置,是由保温箱主体4、保温箱上盖5、样品筒6、样品筒上盖7、控温管8、真空管9、制冷管10、底座11、温度传感器12、水分传感器13、温度控制系统14组成。其中,控温管8、真空管9、制冷管10均为环形并与温度控制系统14形成闭合回路,且布置在样品筒6外壁表面,控温管8、真空管9、制冷管10均与各自的温度控制系统14相连,温度控制系统14能够控制控温管8、真空管9、制冷管10内部循环液的温度;保温箱主体4上开设有管孔用于供控温管8、真空管9、制冷管10通过并固定其位置;保温箱主体4、保温箱上盖5、样品筒6、样品筒上盖7均为圆形;样品筒6、样品筒上盖7制作材料均为环氧树脂;底座11为可调节高度型;
一种用于制作层状冷生构造冻土试样的方法,包括以下步骤:
第一步,在保温箱主体4内布置好控温管8、真空管9、制冷管10的位置,使其按照控温管8、真空管9、制冷管10的顺序自上而下依次排列,将控温管8、真空管9、制冷管10与各自的温度控制系统14相连;
第二步,在干土中分多次适量地加入所需质量的水,拌和后密封放置48h以上,使土样各部分含水均匀;
第三步,打开样品筒上盖7,将湿土分多次适量地加入到样品筒6中,其中,在土样不同高度埋设温度传感器14和水分传感器13,以测试不同层位的水分和温度变化;
第四步,将土样上表面抹平后,盖上样品筒上盖7,打开保温箱上盖5,调节底座11高度,将样品筒6放置在保温箱主体4内部的底座11上,调整控温管8、真空管9、制冷管10的位置,使其紧贴样品筒6外壁表面,盖上保温箱上盖5,以减少保温箱主体4内部的温度波动;
第五步,打开温度控制系统14,将所有真空管9内抽真空且不进行循环液循环,调节其余两种管内循环液的温度如下:控温管8内循环液温度设置为1 ℃,制冷管10内循环液温度设置为-30 ℃,按照此种设置方式,能够使得位于制冷管10层位位置的湿土内的水分率先冻结,使其形成冻结锋面,真空管9的设置能够减少制冷管10内的低温循环液的冷量向周围散失,控温管8能够保证位于控温管8层位位置的湿土内部水分处于未冻结状态,根据冻土力学知识,冻土内部水分会向冻结锋面迁移,通过以上控温管8、真空管9、制冷管10的配合,能够使位于制冷管层位10上下位置湿土的水分向制冷管10层位迁移,从而在制冷管10层位位置聚集大量的冰晶体;
第六步,根据温度传感器14和水分传感器13反馈的实时数据,结合试验所需制备的层状冷生构造冻土试样的含冰层厚度,控制控温管8和制冷管10内循环液的持续时间并进行记录;
第七步,调节控温管8、真空管9、制冷管10内循环液的温度,均设置成冻土试样的目标温度,冻结24h以上,内含温度传感器14和水分传感器13的层状冷生构造冻土试样即制作完成。
第八步,将制作好的冻土试样移出,重复步骤一~步骤七,但不再埋设温度传感器14和水分传感器13,且第六步中设置的控温管8和制冷管10内循环液的持续时间与之前相同,即可制作出层状冷生构造的冻土试样。

Claims (4)

  1. 一种用于制作层状冷生构造冻土试样的方法,包括以下步骤:
    第一步,在保温箱主体(4)内布置好控温管(8)、真空管(9)、制冷管(10)的位置,使其按照控温管(8)、真空管(9)、制冷管(10)的顺序自上而下依次排列,将控温管(8)、真空管(9)、制冷管(10)与各自的温度控制系统(14)相连;
    第二步,在干土中分多次适量地加入所需质量的水,拌和后密封放置48h以上,使土样各部分含水均匀;
    第三步,打开样品筒上盖(7),将湿土分多次适量地加入到样品筒(6)中,其中,在土样不同高度埋设温度传感器(14)和水分传感器(13),以测试不同层位的水分和温度变化;
    第四步,将土样上表面抹平后,盖上样品筒上盖(7),打开保温箱上盖(5),将样品筒(6)放置在保温箱主体(4)内部的底座(11)上,调整控温管(8)、真空管(9)、制冷管(10)的位置,使其紧贴样品筒(6)外壁表面,盖上保温箱上盖(5),以减少保温箱主体(4)内部的温度波动;
    第五步,打开温度控制系统(14),将所有真空管(9)内抽真空且不进行循环液循环,调节其余两种管内循环液温度如下:控温管(8)内循环液温度设置为1 ℃,制冷管(10)内循环液温度设置为-30 ℃;
    第六步,根据温度传感器(14)和水分传感器(13)反馈的实时数据,结合试验所需制备的层状冷生构造冻土试样的含冰层厚度,控制控温管(8)和制冷管(10)内循环液的持续时间并进行记录;
    第七步,调节控温管(8)、真空管(9)、制冷管(10)内循环液的温度,均设置成冻土试样的目标温度,冻结24h以上,内含温度传感器(14)和水分传感器(13)的层状冷生构造冻土试样即制作完成。
    第八步,将制作好的冻土试样移出,重复步骤一~步骤七,但不再埋设温度传感器(14)和水分传感器(13),且第六步中设置的控温管(8)和制冷管(10)内循环液的持续时间与之前相同,即可制作出层状冷生构造的冻土试样。
  2. 一种用于实现权利要求1所述用于制作层状冷生构造冻土试样的方法的装置,是由保温箱主体(4)、保温箱上盖(5)、样品筒(6)、样品筒上盖(7)、控温管(8)、真空管(9)、制冷管(10)、底座(11)、温度传感器(12)、水分传感器(13)、温度控制系统(14)组成。其中,控温管(8)、真空管(9)、制冷管(10)均为环形并与温度控制系统(14)形成闭合回路,且布置在样品筒(6)外壁表面,控温管(8)、真空管(9)、制冷管(10)均与各自的温度控制系统(14)相连,温度控制系统(14)能够控制控温管(8)、真空管(9)、制冷管(10)内部循环液的温度;保温箱主体(4)上开设有管孔用于供控温管(8)、真空管(9)、制冷管(10)通过并固定其位置。
  3. 根据权利要求2所述的一种用于实现权利要求1所述用于制作层状冷生构造冻土试样的方法的装置,其特征在于:所述保温箱主体(4)、保温箱上盖(5)、样品筒(6)、样品筒上盖(7)均为圆形。
  4. 根据权利要求2所述的一种用于实现权利要求1所述用于制作层状冷生构造冻土试样的方法的装置,其特征在于:所述样品筒(6)、样品筒上盖(7)制作材料均为环氧树脂。
PCT/CN2019/111148 2019-04-03 2019-10-15 一种用于制作层状冷生构造冻土试样的装置与方法 WO2020199550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA201908588A ZA201908588B (en) 2019-04-03 2019-12-23 Device and method for preparing frozen soil sample with layered cryostructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910265272.7 2019-04-03
CN201910265272.7A CN109827827B (zh) 2019-04-03 2019-04-03 一种用于制作层状冷生构造冻土试样的装置与方法

Publications (1)

Publication Number Publication Date
WO2020199550A1 true WO2020199550A1 (zh) 2020-10-08

Family

ID=66874685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111148 WO2020199550A1 (zh) 2019-04-03 2019-10-15 一种用于制作层状冷生构造冻土试样的装置与方法

Country Status (3)

Country Link
CN (1) CN109827827B (zh)
WO (1) WO2020199550A1 (zh)
ZA (1) ZA201908588B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827827B (zh) * 2019-04-03 2021-05-18 安徽理工大学 一种用于制作层状冷生构造冻土试样的装置与方法
CN110595869A (zh) * 2019-10-29 2019-12-20 上海映晓电子科技有限公司 一种真空环境下基于接触热传导技术制备冻土样品的设备
CN114235597B (zh) * 2021-11-01 2023-09-29 安徽理工大学 一种基于温度梯度的冻土真三轴刚性加载模具及操作方法
CN114910323B (zh) * 2022-05-07 2024-04-09 安徽理工大学 一种制作高含冰量冻土试样的装置及使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471884A (zh) * 2013-08-21 2013-12-25 中国科学院寒区旱区环境与工程研究所 一种适用于高含水(冰)量冻土的人工单向冻结分层制样装置
CN104297030A (zh) * 2014-10-15 2015-01-21 河海大学 一种模拟冻土自然形成过程的制样装置及制样方法
CN105910868A (zh) * 2016-06-15 2016-08-31 浙江大学城市学院 一种重塑土成土及冻结一体化试验设备
KR101675368B1 (ko) * 2015-08-10 2016-11-11 한국건설기술연구원 투명 삼축온도제어형 셀을 이용한 흙의 동결융해 시험장치 및 이를 이용한 흙의 동결융해 시험방법
CN106644653A (zh) * 2017-02-07 2017-05-10 中国科学院寒区旱区环境与工程研究所 一种冻土样品的制备和测量装置及其方法
CN207764217U (zh) * 2018-02-02 2018-08-24 中国地质大学(北京) 一种封闭式模拟冻土一维水热盐运移的土柱装置
CN109239124A (zh) * 2018-09-04 2019-01-18 安徽理工大学 不同土性的人工冻土与井壁共同作用的试验装置及方法
CN109827827A (zh) * 2019-04-03 2019-05-31 安徽理工大学 一种用于制作层状冷生构造冻土试样的装置与方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202486125U (zh) * 2012-01-05 2012-10-10 中国科学院寒区旱区环境与工程研究所 室内冻土冻融循环过程试验装置
CN103091180B (zh) * 2013-01-11 2015-07-29 中国矿业大学 温度梯度冻土单轴蠕变试验方法
CN103884581B (zh) * 2014-03-24 2016-01-20 中国矿业大学 一种空心冻土试验装置及其使用方法
CN104215749B (zh) * 2014-09-15 2015-08-26 中国矿业大学 一种冻土中组合温度梯度的实现方法
CN104597222B (zh) * 2015-01-13 2016-08-24 河南大学 具有补水功能和冻胀测试功能的大型冻土模型试验系统
CN105044147B (zh) * 2015-07-10 2018-01-05 中国矿业大学 一种近相变区冻土导热系数测定装置与方法
CN108956386B (zh) * 2018-07-12 2020-08-04 东南大学 一种模拟季节冻土中有机污染物运移的模型试验方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471884A (zh) * 2013-08-21 2013-12-25 中国科学院寒区旱区环境与工程研究所 一种适用于高含水(冰)量冻土的人工单向冻结分层制样装置
CN104297030A (zh) * 2014-10-15 2015-01-21 河海大学 一种模拟冻土自然形成过程的制样装置及制样方法
KR101675368B1 (ko) * 2015-08-10 2016-11-11 한국건설기술연구원 투명 삼축온도제어형 셀을 이용한 흙의 동결융해 시험장치 및 이를 이용한 흙의 동결융해 시험방법
CN105910868A (zh) * 2016-06-15 2016-08-31 浙江大学城市学院 一种重塑土成土及冻结一体化试验设备
CN106644653A (zh) * 2017-02-07 2017-05-10 中国科学院寒区旱区环境与工程研究所 一种冻土样品的制备和测量装置及其方法
CN207764217U (zh) * 2018-02-02 2018-08-24 中国地质大学(北京) 一种封闭式模拟冻土一维水热盐运移的土柱装置
CN109239124A (zh) * 2018-09-04 2019-01-18 安徽理工大学 不同土性的人工冻土与井壁共同作用的试验装置及方法
CN109827827A (zh) * 2019-04-03 2019-05-31 安徽理工大学 一种用于制作层状冷生构造冻土试样的装置与方法

Also Published As

Publication number Publication date
ZA201908588B (en) 2020-11-25
CN109827827B (zh) 2021-05-18
CN109827827A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2020199550A1 (zh) 一种用于制作层状冷生构造冻土试样的装置与方法
CN104297030B (zh) 一种模拟冻土自然形成过程的制样装置及制样方法
CN207764217U (zh) 一种封闭式模拟冻土一维水热盐运移的土柱装置
CN106525661A (zh) 非饱和土气态水迁移特性测试装置及其测试方法
CN110390176B (zh) 一种无砟轨道冻结与损伤行为计算方法
CN104749011A (zh) 一种单向冻融循环土样的制备装置
WO2019218143A1 (zh) 一种充装干式杜瓦罐的方法及装置
CN105606514A (zh) 利用两端独立控温的圆筒装置进行水盐迁移实验的方法
CN103471884A (zh) 一种适用于高含水(冰)量冻土的人工单向冻结分层制样装置
Du et al. Using strain to evaluate influence of air content on frost resistance of concrete
CN104949473B (zh) 一种真空冷冻干燥机及真空冷冻干燥方法
CN204678810U (zh) 一种带温度控制的真空冷冻干燥机
CN108426823A (zh) 一种水泥基材料盐冻-干湿循环耦合试验装置及方法
CN206235522U (zh) 一种土体冻融循环‑动荷载耦合的三轴试验装置
CN105937833B (zh) 冬虫夏草冻干工艺
CN204536073U (zh) 一种制备单向冻融循环土样的装置
CN111896359B (zh) 一种冻土试样饱和冻结一体化装置及其使用方法
CN105910868B (zh) 一种重塑土成土及冻结一体化试验设备
CN101587116B (zh) 大型低温土工模拟试验系统
CN109442878A (zh) 多功能真空冷冻干燥机及其使用方法
CN114910323B (zh) 一种制作高含冰量冻土试样的装置及使用方法
CN114235597B (zh) 一种基于温度梯度的冻土真三轴刚性加载模具及操作方法
CN207586232U (zh) 一种土体微观结构测试试样的快速冷冻及保存装置
CN109632634A (zh) 一种拉拔式评价混凝土早期受冻性能的方法
CN110534004A (zh) 一种低温控制实验平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922937

Country of ref document: EP

Kind code of ref document: A1