CN101737615A - 用于气体储存的热学控制设备 - Google Patents

用于气体储存的热学控制设备 Download PDF

Info

Publication number
CN101737615A
CN101737615A CN200910224571A CN200910224571A CN101737615A CN 101737615 A CN101737615 A CN 101737615A CN 200910224571 A CN200910224571 A CN 200910224571A CN 200910224571 A CN200910224571 A CN 200910224571A CN 101737615 A CN101737615 A CN 101737615A
Authority
CN
China
Prior art keywords
equipment
storage
volatile liquid
heat exchange
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910224571A
Other languages
English (en)
Inventor
R·李
F·R·菲奇
S·塔哈卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer LLC
Original Assignee
Linde Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Inc filed Critical Linde Inc
Publication of CN101737615A publication Critical patent/CN101737615A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0063Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof only containing a rare earth metal and only one other metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种用于在深冷温度储存气体如氢气的设备。该氢气在处于深冷温度的储存容器中储存,通过热交换器设备维持低温,该设备提供挥发性液体在所储存氢气中的接近均匀的分布。

Description

用于气体储存的热学控制设备
发明领域
本发明涉及用于在深冷温度储存气体,尤其是氢气的设备,其中周期性地从贮藏库取出气体。更具体地说,本发明涉及通过热交换器装置提供对所储存气体的热学控制,该热交换器装置在向气体储存容器充气期间提供有效和自循环的低温制冷机理。
发明背景
氢在工业和商业领域中的应用扩展使对有效储存氢的需求更大。氢作为舰船和汽车应用的燃料选项时更是如此,这时必须将氢储存在运载工具本身,而且必须能容易地从燃料站取用。
目前最普遍的储存和运输方法包括在200-800巴压力的液氢或压缩氢气。虽然液氢提供最高的可能密度,但是制造成本高,因为这要求温度低至20K,使用约47MJ/kg H2。常规的200巴压力的压缩气体的密度相对较低。要获得相当于70%的液氢储存容量,要求在300K时约800巴的压力。作为折衷,可以使用液氮作为冷却剂,在例如77K的深冷温度下以80-100巴的中等压力储存氢气。但是,这通常要求持续制冷,而且可能消耗显著量的液氮。
还已知在例如77K的深冷温度下使用物理吸附型吸附剂,从而在中等压力提供更高的储存容量。本发明方法进一步利用通过氢提取和应用时的解吸附提供的制冷,从而维持深冷温度。结果是,只需要在容器中存在少量液氮与氢储存介质发生密切热接触,就能在不使用期间维持需要的低温。根据本发明,在80-100巴产生贮藏条件所需要的制冷和压缩总能量约为17MJ/kg氢。显著低于生产液氢所需要的约47MJ/kg的能量,而且略低于在不使用吸附剂材料时在200巴和77K条件下以可比密度储存氢所需要的能量。
本发明人发现,使用新颖的热交换器设备将不仅在充入氢气期间、而且将在储存以及该气体的随后应用期间显著改善该系统的热效率。
发明概述
在本发明的一种实施方式中,描述了一种热交换器,其包括:含有挥发性液体的储存器,该储存器具有至少一个用于输入所述挥发性液体的装置和至少一个用于排出蒸气的装置;流体连接装置;至少一个热交换元件,其位于所述储存器下方,其中,所述储存器与所述流体连接装置流体连通,而且所述至少一个热交换元件与所述流体连接装置和所述储存器流体连通。
在本发明的另一种实施方式中,描述了一种储存容器,其包括:容器装置,其具有流体输入装置和蒸气输出装置;热交换器装置,其包括含有挥发性液体的储存器;流体连接装置,和至少一个位于所述储存器下方的热交换元件,其中,所述储存器与所述流体连接装置流体连通,而且所述至少一个热交换元件与所述流体连接装置和所述储存器流体连通。
在本发明的进一步的实施方式中,描述了一种用于储存气体的设备,其包括:储存容器,其中含有物理吸附型吸附剂;热交换器装置,其包括含有挥发性液体的储存器,该储存器具有流体输入装置和蒸气输出装置;流体连接装置,和至少一个位于所述储存器下方的热交换元件,其中,所述储存器与所述流体连接装置流体连通,而且所述至少一个热交换元件盘管与所述流体连接装置和所述储存器流体连通;至少一个用于输入所述气体的装置和至少一个用于抽取所述气体的装置。
在本发明的又一种实施方式中,描述了一种在以升高的压力和深冷温度储存气体的方法,该方法包括:储存容器,其中含有物理吸附型吸附剂材料;如本文所述的挥发性液体容器和热交换器;其中,至少周期性地抽取所述气体,所述气体在储存期间维持在深冷温度。
附图简要说明
该图表示具有内部热交换和液体低温储存器的储存容器设备。
发明详述
本发明提供储存气体尤其是氢气的装置,该气体不仅在充入储存容器期间而且在储存该气体期间都处于深冷温度下,其中,周期性地从储存容器抽取该气体的一部分。热交换器设备将通过保证挥发性液体(例如液体冷冻剂)在热交换器设备的至少一个热交换元件中的接近均匀的分布而提供所储存气体的持续冷却。在共同转让人于2007年5月2日提交的在先美国专利申请序列第60/798804号和PCT申请PCT/US2007/010542中描述了该储存装置以及提供并维持的低温制冷,这些文献的内容通过参考结合于此。
用氢气之类的气体充入低温吸附储存容器之后,热交换器设备通过自流平分布的热交换盘管设备持续提供低温控制。
在充气期间将氢气之类的气体引入储存容器时,必须将两种热能来源移出才能获得含有约77K氢的稳定加压储存容器。第一种来源是必须从氢气、以及可能的贮藏容器内部材料移出的能量,因为它们的温度大于77K。这还可以包括将氢从室温冷却至77K时由正氢向仲氢转化所释放的能量。这种转化能量可以在用冷氢充入储存容器之前从外部移出,或者可以在合适催化剂材料的帮助下在储存容器内部移出。
第二种来源是物理吸附材料吸附氢时释放的能量(吸附热)。要求尽可能快地移出这种热能,而没有向贮藏容器不必要地引入附加质量。
参见附图,图中所示的热交换器设备包括挥发性液体(例如液氮)的顶部储存器10,在将氢充入该系统期间,通过输入装置输送管线2保持该储存器充满液氮供应(由未示出的水平检测器显示)。中央供应管流体连接装置12连接至挥发性液体储存器10的底部,该装置12将液氮供应至氢储存容器1的底部,在该底部附连由三个热交换器盘管16表示的热交换元件14。这些三个盘管16在底部附连至供应盘管14,在顶部连接至挥发性液体储存器19的底部。这种独特设备的优点是,能向热交换元件盘管16提供液氮连续流,而在盘管中加热和沸腾的液氮通过自调节的自然循环输送返回到挥发性液体储存器10。一般来说,因为移出热能而在盘管中导致的沸腾将产生两相(液-蒸气)混合物返回到挥发性液体储存器。
该两相混合物将在挥发性液体储存器10中自然分离,单相液体将供应回到供应盘管14中,而单相气体将通过用于移出氮气的通风口6(蒸气排出装置)排出。这种自调节循环促进通过盘管16的有效均匀的热传导,只要存在沸腾和热能移出就能持续进行该自调节循环。注意在供应盘管14内部也可能存在少量沸腾,但是,沸腾量将小得多,因为其表面积与三个盘管16相比有所减小。这种减少的沸腾量可以通过在供应盘管14周围引入少量绝热而进一步减少。供应盘管14中的少量沸腾不会影响上述总体循环模式。
该挥发性液体优选是低温液体。为了本发明的目的,该挥发性液体可以是液态或者是气态和液态的混合物。可以使用液氮之外的低温液体,包括氧/氮或氩的混合物用于低温制冷流体。可以使用任选的其他挥发性液体(例如烃、LNG、液态空气等)代替液氮,该挥发性液体容器可以在不同压力下运行。为了本文揭示内容的目的,液态空气定义为氧和氮的任意混合物。而且,可以使用其他制冷剂,例如经历从液体向蒸气的相变的材料。一般来说,使用备选制冷剂时,操作温度范围可以是约30-250K,但是更优选约为50-150K。最佳操作温度一般取决于具体的吸附剂材料以及这些材料的最优化和开发。
通过输送管线4将氢充入储存容器1之后,仍然需要在储存和周期性取出氢期间维持该储存容器的温度。如待审查的专利申请PCT/US2007/010542中所述,本发明的热交换和储存器机理结合了必要的“挥发性液体容器”。本发明提供的该附加特征使得能够在应用期间放空液体储存器的,而在该储存容器中保持基本均匀分布的冷却效果。这种效果通过按图中所示设置挥发性液体储存器位于该储存容器的上部区域中的紧凑型容器中而实现。该储存容器的大部分通过热交换盘管冷却,这些盘管成其容积比挥发性液体储存器的容积小得多(挥发性液体储存器的容积至少是热交换盘管容积的约2倍)。在储存期间,将液氮部分蒸发以维持储存容器中的低温条件时,挥发性液体储存器、供应盘管和热交换器盘管的排列保证了这些盘管中的均匀液氮分布。
热交换元件是能够通过与其周围环境的热传导至少部分地蒸发挥发性液体的任何装置。图中所示为三个盘管,但是可以对热交换盘管的数量和排列进行改进,事实上可以不是盘管或者甚至为圆形。不要求它们是同心盘管,而是可以为在水平或垂直方向以规则距离间隔的独立管/导管/盘管。盘管上可以装有翼片,或者可以将盘管埋入任何其他类型的强化热传导介质例如金属泡沫材料中。
整个容器可以为任何形状和取向。挥发性液体储存器可以居中或者位于容器上部区域中的任何位置。本文的重要设计标准是,挥发性液体储存器位于流体连接装置和供应盘管的上方。而且,还可以在气体储存容器中结合真空隔绝装置(图中18)。
图中显示为物理吸附材料的吸附材料可以选自各种物理吸附型材料或者各种材料的组合。它们的形状和结构可以是粉末、球粒、或单块之类的固体结构形式。这些材料可以与高热导率材料密切混合,从而加强通过吸附剂质量的热传导。
可以使用宽范围的吸附剂材料,包括物理吸附剂材料,其包括高表面积碳,例如KOH或热活化的碳,碱金属夹入、分层的纳米层叠或鱼骨状石墨碳,碳纳米构形如纳米管、纳米角、纳米洋葱,Buckminster富勒烯“巴基球(buckball)”以及它们的金属装饰或异质取代的类似物;结晶微孔材料例如沸石、粘土和ALPO-4以及它们的杂原子取代的类似物;中孔性硅石,例如MCM系列以及它们的杂原子类似物;高表面积有机金属或有机骨架材料;以及其他晶体,例如某些六氰基高铁酸盐材料,以及非晶态的高表面积材料。
优选的材料包括:高表面积碳例如Anderson Development Corporation提供的AX-21TM和Kansai Coke Corporation提供的MAXSORB;和有机金属骨架材料例如密歇根大学的Omar Yaghi教授开发的MOF-177、IRMOF-1(MOF-5)和IRMOF-20。另外,可以有利地使用吸附剂材料的组合,从而优化储存容量和解吸附的制冷效果。这种组合可以包括物理吸附剂材料以及其他吸附剂材料例如金属氢化物,甚至非吸附剂热传导材料例如金属或石墨。
封闭在储存容器中的物理吸附剂材料的量(或体积)一般是可用的最大量。没有被吸附剂材料占据的空间量一般包括吸附剂材料为球粒或珠粒形式时存在的间隙空间。对于球粒或珠粒,间隙空间约为可用容积的33%。或者,可以制造完全占据空间的吸附剂材料(例如单块型结构),这时间隙空间少得多。根据本发明,对所述物理吸附剂材料上吸附的氢以及间隙空间中存在的氢的相对量进行最优化,使得该系统的储存容量最大化同时提供充分制冷并使总体系统的成本最小化。
为了说明目的,考虑了A.G.Wong-Foy,A.J.Matzger和0.M.Yaghi的《微孔金属-有机物骨架材料中的异常H2饱和吸收(Exceptional H2 SaturationUptake in Microporous Metal-Organic Frameworks)》,J.Am.Chem.Soc.128,第3494-3495页(2006)中讨论类型的有机金属骨架材料(MOF)。MOF-177的性能显示了物理吸附材料适用于氢储存的吸附特性。在约80巴和77K的条件下,MOF-177将吸附约32千克/立方米。考虑晶体间隙空间中储存的气体时,该储存容量增加至约49千克/立方米氢。如果由于吸附剂材料的堆积特征存在进一步的储存系统空隙量,对于33%堆积空隙量,则有效储存容量将进一步降低至约43千克/立方米。物理吸附型材料的吸附/解吸附特征一般保证氢解吸附时仅压力有所降低而且温度发生相关的适度降低。温度降低是解吸附热产生的致冷的直接结果。
氢可以在从低于大气压至几千psi或以上的压力范围下储存。
待储存的气体可以是能够被吸附在物理吸附型材料上的任何气体,例如甲烷。
液氮可以在从低于大气压至几百psi或以上的压力范围下引入和储存。液氮压力在从初始冷却和热量移出至储存和应用氢的期间各不相同。可以在氮管道上引入合适的压力控制阀,包括氮气排放管线上的背压控制阀(从而维持升高的压力)。另外,可以在氮气排放口上引入止回阀从而允许压力在抽取氢和冷却期间因为解吸附而下降,并由此允许温度下降。
虽然已经就其具体实施方式描述了本发明,但是本发明的许多其他形式和改进对本领域技术人员而言是显而易见的。本发明所附权利要求一般应理解为覆盖所有这些落在本发明范围之内的显而易见的形式和改进。

Claims (12)

1.一种用于储存气体的设备,该设备包括:储存容器,所述储存容器中含有物理吸附型吸附剂;热交换器装置,其包括含有挥发性液体的储存器,该储存器具有流体输入装置和蒸气输出装置;流体连接装置,和至少一个位于所述储存器下方的热交换元件,其中,所述储存器与所述流体连接装置流体连通,所述至少一个热交换元件与所述流体连通装置和所述储存器流体连通;至少一个用于输入所述气体的装置和至少一个用于取出所述气体的装置。
2.如权利要求1所述的设备,其特征在于,所述挥发性液体是选自氮、氩、以及氧和氮的混合物的液体冷冻剂。
3.如权利要求1所述的设备,其特征在于,所述挥发性液体是选自烃、液化天然气和液态空气的制冷剂。
4.如权利要求1所述的设备,其特征在于,所述流体连接装置是管道。
5.如权利要求1所述的设备,其特征在于,所述热交换元件是能够至少部分蒸发挥发性液体的装置。
6.如权利要求5所述的设备,其特征在于,所述热交换元件选自管、导管和盘管。
7.如权利要求6所述的设备,其特征在于,所述盘管在水平或垂直方向上以规则距离间隔。
8.如权利要求1所述的设备,其特征在于,所述储存器的挥发性液体容积是所述热交换元件的容积的至少两倍。
9.如权利要求1所述的设备,其特征在于,所述储存器与所述气体和所述吸附剂材料处于密切热传导关系。
10.如权利要求1所述的设备,其特征在于,所述物理吸附型材料选自下组:高表面积碳,KOH或热活化的碳,碱金属夹入、分层的纳米层叠或鱼骨状石墨碳,选自纳米管、纳米角、纳米洋葱的碳纳米构型,Buckminster富勒烯以及它们的金属装饰或异质取代的类似物;晶体微孔材料例如沸石、粘土和ALPO-4以及它们的杂原子取代的类似物;中孔性硅石,选自MCM系列和它们的杂原子类似物;高表面积金属-有机或有机骨架材料;以及它们的混合物。
11.如权利要求1所述的设备,其特征在于,所述气体在10-500巴的压力下储存。
12.如权利要求1所述的设备,其特征在于,所述挥发性液体容器含有温度为30-250K的挥发性液体。
CN200910224571A 2008-11-13 2009-11-12 用于气体储存的热学控制设备 Pending CN101737615A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/269,913 US20100115970A1 (en) 2008-11-13 2008-11-13 Thermal management apparatus for gas storage
US12/269,913 2008-11-13

Publications (1)

Publication Number Publication Date
CN101737615A true CN101737615A (zh) 2010-06-16

Family

ID=41665658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910224571A Pending CN101737615A (zh) 2008-11-13 2009-11-12 用于气体储存的热学控制设备

Country Status (5)

Country Link
US (1) US20100115970A1 (zh)
EP (1) EP2187108A2 (zh)
CN (1) CN101737615A (zh)
AU (1) AU2009236045A1 (zh)
CA (1) CA2684143A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426169A (zh) * 2018-03-08 2018-08-21 西安交通大学 一种基于热量自平衡型固态氢源反应器的氢动力系统
CN108644604A (zh) * 2018-05-16 2018-10-12 中国科学院理化技术研究所 低温杜瓦容器以及低温高压储氢系统
CN110296570A (zh) * 2019-05-18 2019-10-01 宜兴市压力容器厂有限公司 一种用于压力容器的动态调节型低温冷却器
WO2019218997A1 (zh) * 2018-05-15 2019-11-21 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
CN111470472A (zh) * 2019-01-24 2020-07-31 中国科学院大连化学物理研究所 一种可自检的正仲氢转换装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040947A1 (de) * 2009-09-11 2011-03-24 E.On Ruhrgas Ag Behälter und Verfahren zum Speichern von Gas
JP5876678B2 (ja) * 2011-07-01 2016-03-02 Kyb株式会社 水素貯蔵容器
US8899096B2 (en) 2012-02-24 2014-12-02 Ford Global Technologies, Llc High-throughput modular hydrogen storage engineering properties analyzer
WO2014020586A2 (en) * 2012-08-01 2014-02-06 Heliofocus Ltd. Auxiliary conduit assembly
US9006137B2 (en) * 2013-05-13 2015-04-14 Ford Global Technologies, Llc Adsorbent material with anisotropic layering
CN112113132A (zh) * 2020-09-11 2020-12-22 华南理工大学 一种新型移动式水合物储气装置及方法
CN113483589B (zh) * 2021-07-12 2023-05-09 中国工程物理研究院激光聚变研究中心 一种基于分形树状肋片的储热换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436781A (en) * 1944-03-08 1948-02-24 Southern Steel Co Method of and apparatus for dispensing liquefied petroleum gas
US5005362A (en) * 1990-03-20 1991-04-09 The Boc Group, Inc. Cryogenic storage container
US5375423A (en) * 1992-10-21 1994-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic reservoir
US6725683B1 (en) * 2003-03-12 2004-04-27 General Electric Company Cryogenic cooling system for rotor having a high temperature super-conducting field winding
US20050145378A1 (en) * 2002-07-22 2005-07-07 Toyota Jidosha Kabushiki Kaisha Hydrogen-storage container and method of occluding hydrogen
CN1927711A (zh) * 2005-09-07 2007-03-14 波克股份有限公司 气体纯化的方法
CN1985120A (zh) * 2004-05-19 2007-06-20 葛莱格利·J·伊根 低温容器、超导磁能储存系统、以及用于屏蔽低温流体的方法
CN101253361A (zh) * 2005-09-02 2008-08-27 丰田自动车株式会社 氢储存装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470926B1 (en) * 2001-09-14 2002-10-29 The Boeing Company Zero gravity liquid-vapor separation system
JP4220762B2 (ja) * 2002-11-15 2009-02-04 株式会社豊田自動織機 固体充填タンク
US20040226301A1 (en) * 2003-05-14 2004-11-18 Airwars Defense Lp, A Colorado Limited Partnership Liquid nitrogen enabler
US20070051238A1 (en) * 2005-09-07 2007-03-08 Ravi Jain Process for gas purification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436781A (en) * 1944-03-08 1948-02-24 Southern Steel Co Method of and apparatus for dispensing liquefied petroleum gas
US5005362A (en) * 1990-03-20 1991-04-09 The Boc Group, Inc. Cryogenic storage container
US5375423A (en) * 1992-10-21 1994-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic reservoir
US20050145378A1 (en) * 2002-07-22 2005-07-07 Toyota Jidosha Kabushiki Kaisha Hydrogen-storage container and method of occluding hydrogen
US6725683B1 (en) * 2003-03-12 2004-04-27 General Electric Company Cryogenic cooling system for rotor having a high temperature super-conducting field winding
CN1985120A (zh) * 2004-05-19 2007-06-20 葛莱格利·J·伊根 低温容器、超导磁能储存系统、以及用于屏蔽低温流体的方法
CN101253361A (zh) * 2005-09-02 2008-08-27 丰田自动车株式会社 氢储存装置
CN1927711A (zh) * 2005-09-07 2007-03-14 波克股份有限公司 气体纯化的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426169B (zh) * 2018-03-08 2020-07-28 西安交通大学 一种基于热量自平衡型固态氢源反应器的氢动力系统
CN108426169A (zh) * 2018-03-08 2018-08-21 西安交通大学 一种基于热量自平衡型固态氢源反应器的氢动力系统
CN112105862A (zh) * 2018-05-15 2020-12-18 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
WO2019218997A1 (zh) * 2018-05-15 2019-11-21 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
WO2019218143A1 (zh) * 2018-05-15 2019-11-21 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
CN112105863A (zh) * 2018-05-15 2020-12-18 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
CN112105862B (zh) * 2018-05-15 2022-01-11 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
CN112105863B (zh) * 2018-05-15 2022-01-18 乔治洛德方法研究和开发液化空气有限公司 一种充装干式杜瓦罐的方法及装置
CN108644604B (zh) * 2018-05-16 2020-11-13 中国科学院理化技术研究所 低温杜瓦容器以及低温高压储氢系统
CN108644604A (zh) * 2018-05-16 2018-10-12 中国科学院理化技术研究所 低温杜瓦容器以及低温高压储氢系统
CN111470472A (zh) * 2019-01-24 2020-07-31 中国科学院大连化学物理研究所 一种可自检的正仲氢转换装置
CN110296570A (zh) * 2019-05-18 2019-10-01 宜兴市压力容器厂有限公司 一种用于压力容器的动态调节型低温冷却器
CN110296570B (zh) * 2019-05-18 2021-01-29 宜兴市压力容器厂有限公司 一种用于压力容器的动态调节型低温冷却器

Also Published As

Publication number Publication date
CA2684143A1 (en) 2010-05-13
US20100115970A1 (en) 2010-05-13
EP2187108A2 (en) 2010-05-19
AU2009236045A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
CN101737615A (zh) 用于气体储存的热学控制设备
US6834508B2 (en) Hydrogen storage and supply system
US7976620B2 (en) Methods for hydrogen storage and refrigeration
US7517396B2 (en) Apparatus for optimal adsorption and desorption of gases utilizing highly porous gas storage materials
US6709497B2 (en) Honeycomb hydrogen storage structure
US20050211573A1 (en) Modular metal hydride hydrogen storage system
US6986258B2 (en) Operation of a hydrogen storage and supply system
US20080289591A1 (en) Vehicle for Filing a Hydrogen Storage Vessel at Enhanced Flow Rates
KR20070005697A (ko) 흡착성 가스 연료용 저장 시스템과 그 제작 방법
US20030209149A1 (en) Honeycomb hydrogen storage structure
US6708546B2 (en) Honeycomb hydrogen storage structure with restrictive neck
CA2780731A1 (en) Hydrogen storage tank having metal hydrides
Wu et al. Adsorbed natural gas storage for onboard applications
JP2008075697A (ja) 水素貯蔵装置及び水素供給方法
US7611566B2 (en) Direct gas recirculation heater for optimal desorption of gases in cryogenic gas storage containers
WO2015022623A2 (en) Sorption store with improved heat transfer
WO2011159259A1 (en) Method and system for storing natural gas
WO2015022633A1 (en) Sorption store for gas with multiple adsorbent media
JP3710594B2 (ja) 自動車用燃料ガスタンク及び自動車用燃料ガススタンド
JP2023017272A (ja) ヘリウムコンテナ
Arora et al. Storage of natural gas by adsorption process
RU2648387C1 (ru) Адсорбционный газовый терминал
Ilisca Microporous Materials for Hydrogen Liquefiers and Storage Vessels
Vasiliev et al. Sorption systems with heat pipe thermal management for hydrogenous gas storage and transportation
JP2000213695A (ja) 吸着式ガスホルダ―およびガス貯蔵・供給システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100616