WO2019216222A1 - 電磁攪拌装置 - Google Patents

電磁攪拌装置 Download PDF

Info

Publication number
WO2019216222A1
WO2019216222A1 PCT/JP2019/017427 JP2019017427W WO2019216222A1 WO 2019216222 A1 WO2019216222 A1 WO 2019216222A1 JP 2019017427 W JP2019017427 W JP 2019017427W WO 2019216222 A1 WO2019216222 A1 WO 2019216222A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
electromagnetic
molten steel
iron core
slab
Prior art date
Application number
PCT/JP2019/017427
Other languages
English (en)
French (fr)
Inventor
信宏 岡田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980029642.5A priority Critical patent/CN112074359B/zh
Priority to KR1020207030933A priority patent/KR102354306B1/ko
Priority to US17/052,124 priority patent/US11478846B2/en
Priority to JP2020518249A priority patent/JP6930660B2/ja
Priority to BR112020020560-5A priority patent/BR112020020560B1/pt
Publication of WO2019216222A1 publication Critical patent/WO2019216222A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/45Mixing in metallurgical processes of ferrous or non-ferrous materials

Definitions

  • the present invention relates to an electromagnetic stirring device. This application claims priority on May 8, 2018 based on Japanese Patent Application No. 2018-090208 for which it applied to Japan, and uses the content here.
  • molten metal for example, molten steel
  • molten steel once stored in the tundish is poured from above into a square cylindrical mold through an immersion nozzle, where the outer peripheral surface is cooled and solidified cast slab.
  • casting is continuously performed.
  • the solidified portion of the outer peripheral surface of the slab is called a solidified shell.
  • the molten metal in the mold includes gas bubbles of inert gas (for example, Ar gas) supplied together with the molten metal to prevent clogging of the discharge holes of the immersion nozzle, non-metallic inclusions, and the like. If these impurities remain in the slab after casting, the quality of the product is deteriorated.
  • inert gas for example, Ar gas
  • the term “slab quality” simply means at least one of the surface quality of the slab and the internal quality (inner quality) of the slab.
  • the specific gravity of impurities such as gas bubbles and non-metallic inclusions is smaller than the specific gravity of the molten metal, so it is often lifted and removed in the molten metal during continuous casting.
  • an electromagnetic stirrer is widely used as a technique for more effectively removing these impurities from the molten metal in the mold.
  • the electromagnetic stirrer generates a moving magnetic field in the mold, thereby applying an electromagnetic force called Lorentz force to the molten metal in the mold, and a flow pattern that swirls the molten metal in a horizontal plane (that is, This is a device that generates a swirling flow around a vertical axis.
  • the flow of molten metal at the interface of the solidified shell is promoted by generating a swirl flow by the electromagnetic stirring device, so that impurities such as gas bubbles and non-metallic inclusions are prevented from being trapped in the solidified shell.
  • the quality of the slab can be improved.
  • the swirling flow is generated in the molten metal in the mold, and the temperature of the molten metal in the mold is made uniform, so the initial solidification position is stabilized and the occurrence of cracks in the slab is suppressed. can do.
  • the electromagnetic stirrer includes an iron core core disposed on the side of the mold and a coil wound around the iron core.
  • an alternating current is applied to the coil of the electromagnetic stirring device, a moving magnetic field can be generated in the mold.
  • Patent Document 1 discloses an electromagnetic stirrer in which an iron core around which a coil is wound is disposed only on the side of an outer surface on the long side of a mold.
  • Patent Document 2 discloses an electromagnetic stirring device in which one magnetic pole portion formed by a tooth portion provided in an iron core and a coil wound around the tooth portion is arranged for each outer surface.
  • Patent Document 3 includes an annular iron core that surrounds the mold on the side of the mold, and a coil that is wound around the iron core around the extension direction of the iron core.
  • An electromagnetic stirring device is disclosed.
  • the magnetic pole portions are arranged not only on the side of the outer side on the long side of the mold but also on the side of the outer side on the short side of the mold.
  • vertical flow can occur. Specifically, an eddy current is generated in the mold plate when magnetic flux is incident in the horizontal direction from the magnetic pole portion on the mold plate forming the outer surface of the mold.
  • the magnetic flux incident in the horizontal direction from the magnetic pole portion to the mold plate is weakened by the eddy current generated in the mold plate, and a leakage magnetic flux having a vertical component is generated.
  • a vertical flow can be generated by applying a vertical electromagnetic force to the molten metal in the mold.
  • an object of the present invention is to provide a coil around the iron core that is coaxial with the extending direction of the iron core that forms a closed loop in manufacturing.
  • An electromagnetic stirrer capable of appropriately generating a swirling flow around the vertical axis while suppressing the vertical flow with respect to the molten metal in the mold is unnecessary. is there.
  • an electromagnetic force that generates a swirling flow around a vertical axis with respect to the molten metal in the mold is generated by generating a rotating magnetic field in a rectangular cylindrical mold for continuous casting. It is the electromagnetic stirring apparatus to provide.
  • the electromagnetic stirrer includes a tooth portion that surrounds the mold on the side of the mold, and that two of the outer surfaces of the mold face each other and face the outer surface along the circumferential direction of the mold.
  • a power supply device for applying an alternating current.
  • the power supply device may apply an alternating current of 1.0 Hz to 4.0 Hz to each of the coils.
  • the process of winding a coil around the core core around the extension direction of the core core forming a closed loop when manufacturing is unnecessary, and the molten metal in the mold is not required.
  • the present invention is not limited to such an example, and may be applied to continuous casting for other metals.
  • FIG. 1 is a side sectional view schematically showing an example of a schematic configuration of a continuous casting machine 1 including an electromagnetic stirring device 100 according to the present embodiment.
  • the continuous casting machine 1 is an apparatus for continuously casting molten steel using a casting mold and producing a bloom slab.
  • the continuous casting machine 1 includes a mold 30, a ladle 4, a tundish 5, an immersion nozzle 6, a secondary cooling device 7, and a slab cutting machine 8.
  • the ladle 4 is a movable container for conveying the molten steel 2 (molten metal) from the outside to the tundish 5.
  • the ladle 4 is disposed above the tundish 5, and the molten steel 2 in the ladle 4 is supplied to the tundish 5.
  • the tundish 5 is disposed above the mold 30, stores the molten steel 2, and removes inclusions in the molten steel 2.
  • the immersion nozzle 6 extends downward from the lower end of the tundish 5 toward the mold 30, and its tip is immersed in the molten steel 2 in the mold 30. The immersion nozzle 6 continuously supplies the molten steel 2 from which inclusions have been removed by the tundish 5 into the mold 30.
  • the mold 30 has a rectangular tube shape corresponding to the long side and short side dimensions of the slab 3, and corresponds to, for example, a pair of long side mold plates (long side mold plates 31, 33 shown in FIG. )
  • a pair of short side mold plates corresponding to short side mold plates 32 and 34 shown in FIG.
  • the long side mold plate and the short side mold plate are, for example, water-cooled copper plates provided with water channels through which cooling water flows.
  • the mold 30 cools the molten steel 2 in contact with the mold plate, and manufactures the slab 3.
  • solidification of the inner unsolidified portion 3 b proceeds, and the thickness of the outer solidified shell 3 a gradually increases.
  • the slab 3 including the solidified shell 3 a and the unsolidified portion 3 b is pulled out from the lower end of the mold 30.
  • the vertical direction (that is, the direction in which the slab 3 is pulled out from the mold 30) is also referred to as the Z-axis direction.
  • the Z-axis direction is also called the vertical direction.
  • Two directions orthogonal to each other in a plane (horizontal plane) perpendicular to the Z-axis direction are also referred to as an X-axis direction and a Y-axis direction, respectively.
  • the X-axis direction is defined as a direction parallel to the long side of the mold 30 in the horizontal plane (that is, the mold long-side direction)
  • the Y-axis direction is defined in the horizontal plane to be parallel to the short side of the mold 30 (that is, the mold).
  • a direction parallel to the XY plane is also referred to as a horizontal direction.
  • the length of the member in the Z-axis direction is also called the height, and the length of the member in the X-axis direction or the Y-axis direction. Is sometimes called width.
  • an electromagnetic stirrer 100 is installed on the side of the mold 30.
  • the electromagnetic stirring device 100 applies an electromagnetic force that generates a swirling flow around the vertical axis to the molten steel 2 in the mold 30 by generating a rotating magnetic field in the mold 30.
  • the electromagnetic stirring device 100 includes a power supply device 150 and is driven using electric power supplied from the power supply device 150.
  • the electromagnetic stirring device 100 by performing continuous casting while driving the electromagnetic stirrer 100, the molten steel 2 in the mold 30 is stirred, and the quality of the slab can be improved.
  • Such an electromagnetic stirring device 100 will be described in detail later.
  • the secondary cooling device 7 is provided in the secondary cooling zone 9 below the mold 30 and cools the slab 3 drawn out from the lower end of the mold 30 while supporting and transporting it.
  • the secondary cooling device 7 supplies a plurality of pairs of support rolls (for example, a support roll 11, a pinch roll 12 and a segment roll 13) disposed on both sides in the short side direction of the slab 3, and cooling water to the slab 3.
  • the support rolls provided in the secondary cooling device 7 are arranged as a pair on both sides in the short side direction of the slab 3 and function as a support conveyance means for conveying the slab 3 while supporting it. By supporting the slab 3 from both sides in the short side direction with the support roll, breakout and bulging of the slab 3 during solidification in the secondary cooling zone 9 can be prevented.
  • this pass line is vertical immediately below the mold 30, then curves in a curved line, and finally becomes horizontal.
  • a portion where the pass line is vertical is called a vertical portion 9A
  • a curved portion is called a curved portion 9B
  • a horizontal portion is called a horizontal portion 9C.
  • the continuous casting machine 1 having such a pass line is referred to as a vertical bending type continuous casting machine 1.
  • the present invention is not limited to the vertical bending type continuous casting machine 1 as shown in FIG. 1, but can be applied to other various continuous casting machines such as a curved type or a vertical type.
  • the support roll 11 is a non-driven roll provided in the vertical portion 9A immediately below the mold 30 and supports the slab 3 immediately after being pulled out from the mold 30.
  • the slab 3 immediately after being pulled out of the mold 30 is in a state where the solidified shell 3a is thin, and therefore it is necessary to support it at a relatively short interval (roll pitch) in order to prevent breakout and bulging. Therefore, as the support roll 11, it is desirable to use a roll with a small diameter that can shorten the roll pitch.
  • three pairs of support rolls 11 made of small-diameter rolls are provided at a relatively narrow roll pitch on both sides of the slab 3 in the vertical portion 9A.
  • the pinch roll 12 is a driving roll that is rotated by a driving device such as a motor, and has a function of pulling the cast piece 3 out of the mold 30.
  • the pinch rolls 12 are respectively arranged at appropriate positions in the vertical portion 9A, the curved portion 9B, and the horizontal portion 9C.
  • the slab 3 is pulled out of the mold 30 by the force transmitted from the pinch roll 12 and is conveyed along the pass line.
  • positioning of the pinch roll 12 is not limited to the example shown in FIG. 1, The arrangement position may be set arbitrarily.
  • the segment roll 13 (also referred to as a guide roll) is a non-driven roll provided in the curved portion 9B and the horizontal portion 9C, and supports and guides the slab 3 along the pass line.
  • the segment roll 13 depends on the position on the pass line, and on either the F surface (Fixed surface, lower left surface in FIG. 1) or L surface (Loose surface, upper right surface in FIG. 1) of the slab 3 Depending on whether they are provided, they may be arranged with different roll diameters and roll pitches.
  • the slab cutting machine 8 is disposed at the end of the horizontal portion 9C of the pass line, and cuts the slab 3 conveyed along the pass line into a predetermined length.
  • the cut slab 14 is conveyed to the next process equipment by the table roll 15.
  • the schematic configuration of the continuous casting machine 1 according to this embodiment has been described above with reference to FIG.
  • an electromagnetic stirrer 100 having a configuration to be described later is installed on the mold 30, and continuous casting may be performed using the electromagnetic stirrer 100.
  • the configuration may be the same as that of a general conventional continuous casting machine. Therefore, the configuration of the continuous casting machine 1 is not limited to the illustrated one, and the continuous casting machine 1 may have any configuration.
  • FIG. 2 is a top sectional view showing an example of the electromagnetic stirring device 100 according to this embodiment.
  • FIG. 2 is a cross-sectional view of the A1-A1 cross section shown in FIG. 1 passing through the mold 30 and parallel to the XY plane.
  • FIG. 3 is a side sectional view showing an example of the electromagnetic stirring device 100 according to the present embodiment.
  • FIG. 3 is a cross-sectional view of the A2-A2 cross section shown in FIG. 2 passing through the immersion nozzle 6 and parallel to the XZ plane.
  • the electromagnetic stirring device 100 is provided on the side of the mold 30 so as to surround the mold 30.
  • the mold 30 has a rectangular cylindrical shape, and is assembled, for example, such that the pair of long side mold plates 31 and 33 sandwich the pair of short side mold plates 32 and 34 from both sides.
  • each mold plate is annularly arranged in the order of a long side mold plate 31, a short side mold plate 32, a long side mold plate 33, and a short side mold plate 34.
  • Each mold plate may be, for example, a water-cooled copper plate as described above, but is not limited to such an example, and may be formed of various materials generally used as a mold for a continuous casting machine.
  • the continuous casting of bloom is targeted, and the slab size is about 300 to 500 mm on one side (that is, the length in the X-axis direction and the Y-axis direction).
  • the width X11 in the long side direction of the slab 3 is 456 mm
  • the width Y11 in the short side direction of the slab 3 is 339 mm.
  • Each mold plate has a size corresponding to the slab size.
  • the long side mold plates 31 and 33 have a width in the long side direction longer than at least the width X11 in the long side direction of the slab 3, and the short side mold plates 32 and 34 are in the short side direction of the slab 3.
  • the width Y11 is substantially the same as the width Y11.
  • the thickness T11 of each mold plate is, for example, 25 mm.
  • the mold 30 In order to obtain the effect of improving the quality of the slab 3 by the electromagnetic stirrer 100 more effectively, it is desirable to configure the mold 30 so that the length in the Z-axis direction is as long as possible.
  • the slab 3 may be separated from the inner wall of the mold 30 due to solidification shrinkage, and cooling of the slab 3 may be insufficient.
  • the length of the mold 30 is limited to about 1000 mm at the longest from the molten steel surface.
  • each mold plate is formed so that the length from the molten steel surface to the lower end of each mold plate is about 1000 mm.
  • the electromagnetic stirring device 100 includes an iron core 110, a plurality of coils 130 (130a, 130b, 130c, 130d, 130e, 130f, 130g, and 130h), and the power source described above.
  • a device 150 and a case 170 are provided. 2 and 3, the power supply device 150 is not shown for easy understanding, and the iron core 110 and the plurality of coils 130 housed in the case 170 are transmitted through the case 170. It is shown as
  • the iron core 110 includes a pair of long side main body portions 111 and 113, a pair of short side main body portions 112 and 114 (hereinafter, may be collectively referred to as main body portions), and a plurality of teeth portions 119 (119a, 119b, and 119c). , 119d, 119e, 119f, 119g, 119h).
  • the iron core 110 is formed by laminating electromagnetic steel sheets, for example.
  • a coil 130 is wound around each tooth portion 119 of the iron core 110, and an alternating current is applied to each coil 130 to generate a magnetic field.
  • the tooth part 119 and the coil 130 wound around the tooth part 119 are magnetic pole parts 120 (120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h) that function as magnetic poles when an alternating current is applied. ).
  • the long side main body portions 111 and 113 are provided on the outside of the mold 30 so as to face the long side mold plates 31 and 33, respectively.
  • the short side main body portions 112 and 114 are provided to face the short side mold plates 32 and 34 on the outside of the mold 30, respectively.
  • the adjacent long-side main body and short-side main-body are connected, for example, by being fastened with their ends overlapped. Thereby, a closed loop surrounding the mold 30 is formed on the side of the mold 30 by the pair of long side main body portions 111 and 113 and the pair of short side main body portions 112 and 114.
  • each main body is arranged in a ring shape along the circumferential direction of the mold 30 in the order of the long-side main body 111, the short-side main-body 112, the long-side main-body 113, and the short-side main-body 114.
  • Two teeth portions 119 are juxtaposed along the circumferential direction of the mold 30 at a portion of each main body on the mold 30 side.
  • teeth portions 119 a and 119 b are provided along the circumferential direction of the mold 30 at a portion of the long-side main body 111 facing the long-side mold plate 31.
  • teeth portions 119 c and 119 d are provided along a circumferential direction of the mold 30 at a portion of the short side main body portion 112 facing the short side mold plate 32.
  • teeth portions 119e and 119f are provided along the circumferential direction of the mold 30 at a portion of the long-side main body 113 facing the long-side mold plate 33.
  • teeth portions 119 g and 119 h are provided along the circumferential direction of the mold 30 at a portion of the short side main body 114 facing the short side mold plate 34. Specifically, the teeth portions 119 are annularly arranged along the circumferential direction of the mold 30 in the order of the teeth portions 119a, 119b, 119c, 119d, 119e, 119f, 119g, and 119h.
  • the iron core 110 has two teeth portions 119 arranged in parallel along the circumferential direction of the mold 30 so as to face the outer surface of each of the outer surfaces of the mold 30. Therefore, in the electromagnetic stirring device 100 according to the present embodiment, the magnetic pole portion 120 formed by the tooth portion 119 of the iron core 110 and the coil 130 wound around the tooth portion 119 is formed on each of the outer surfaces of the mold 30. Two are arranged along 30 circumferential directions. The inventor appropriately arranges the magnetic pole portion 120 with respect to the mold 30 in this manner, and appropriately controls the swirling flow around the vertical axis while suppressing the vertical flow with respect to the molten steel 2 in the mold 30. It has been found that it can be generated. The flow generated in the molten steel 2 in the mold 30 by the electromagnetic stirring device 100 according to the present embodiment will be described in detail later.
  • the teeth portion 119 protrudes in a rectangular parallelepiped shape in the horizontal direction from the main body portion toward the mold 30 side, and is provided at intervals from each other along the circumferential direction of the mold 30.
  • the height of the teeth part 119 in the Z-axis direction is, for example, approximately the same as that of the main body part.
  • the width X1 in the long side direction of the teeth portions 119a, 119b, 119e, and 119f (hereinafter also referred to as long side teeth portions) provided in the long side main body portion is, for example, 240 mm.
  • the width Y1 in the short side direction of the tooth portions 119c, 119d, 119g, and 119h (hereinafter also referred to as the short side tooth portion) provided in the short side main body portion is, for example, 190 mm.
  • the long side width X1 of the long side teeth portion and the short side width Y1 of the short side teeth portions do not necessarily coincide with each other, but the vertical axis of the molten steel 2 in the mold 30 is around the vertical axis. In order to generate a more stable swirl flow, it is desirable to have the same degree.
  • An interval X2 between the long side teeth portions (for example, between the teeth portion 119a and the teeth portion 119b) is, for example, 140 mm.
  • interval Y2 between the teeth part 119g (for example, between the teeth part 119g and the teeth part 119h) is 140 mm, for example.
  • the distance X3 between the magnetic pole parts 120 facing in the mold long side direction is, for example, 775 mm.
  • an interval Y3 between the magnetic pole portions 120 (for example, between the magnetic pole portion 120b and the magnetic pole portion 120e) facing each other in the mold short side direction is, for example, 670 mm.
  • the vertical position and size of the teeth portion 119 (that is, the vertical position and size of the iron core 110) are appropriately set according to the position and size of the immersion nozzle 6 and the position of the molten steel 2 surface.
  • the vertical distance Z1 between the upper surface of the teeth portion 119 and the molten steel 2 is, for example, 280 mm. Moreover, the distance Z2 of the perpendicular direction of the lower surface of the teeth part 119 and the hot_water
  • molten_metal surface of the molten steel 2 is 580 mm, for example.
  • the vertical distance Z11 between the bottom surface of the immersion nozzle 6 and the molten steel 2 is, for example, 250 mm.
  • the inner diameter D11 of the immersion nozzle 6 is 90 mm, for example.
  • the outer diameter D12 of the immersion nozzle 6 is 145 mm, for example.
  • height Z12 from the bottom part of the discharge hole 61 of the immersion nozzle 6 is 85 mm, for example.
  • the width D13 of the discharge hole 61 of the immersion nozzle 6 is, for example, 80 mm.
  • the discharge hole 61 of the immersion nozzle 6 is inclined upward by 15 ° as it goes from the inside of the nozzle to the outside of the nozzle, for example.
  • the immersion nozzle 6 is provided with a pair of such discharge holes 61 at positions facing the short side mold plates 32 and 34.
  • the coil 130 is wound around each tooth portion 119 with the protruding direction of each tooth portion 119 as the winding axis direction (that is, the coil 130 is magnetized so that each tooth portion 119 is magnetized in the protruding direction of each tooth portion 119. Is wound).
  • coils 130a, 130b, 130c, 130d, 130e, 130f, 130g, and 130h are wound around the teeth portions 119a, 119b, 119c, 119d, 119e, 119f, 119g, and 119h, respectively.
  • the magnetic pole portions 120a, 120b, 120c, 120d, 120e, 120f, 120g, and 120h are formed.
  • the coil 130 is wound with the Y-axis direction as the winding axis direction for the long side teeth portion, and the coil 130 is wound with the X axis direction as the winding axis direction for the short side teeth portion. .
  • the conducting wire forming the coil 130 for example, a copper wire having a cross section of 10 mm ⁇ 10 mm and a cooling water passage having a diameter of about 5 mm inside is used. When a current is applied, the conductor is cooled using the cooling water channel.
  • the conductive wire has an insulating surface that is insulated with insulating paper or the like, and can be wound in layers. For example, each coil 130 is formed by winding the conductive wire about 2 to 4 layers.
  • the power supply device 150 shown in FIG. 1 is connected to each of such a plurality of coils 130.
  • the power supply device 150 applies an alternating current to each coil 130 by shifting the phase by 90 ° in the order of arrangement of the coils 130 so as to generate a rotating magnetic field in the mold 30. Thereby, an electromagnetic force that generates a swirling flow around the vertical axis can be applied to the molten steel 2 in the mold 30.
  • the power supply device 150 preferably applies an alternating current of 1.0 Hz to 6.0 Hz to each coil 130, and more preferably applies an alternating current of 1.0 Hz to 4.0 Hz. .
  • the driving of the power supply device 150 can be appropriately controlled by a control device (not shown) including a processor or the like operating according to a predetermined program.
  • a control device including a processor or the like operating according to a predetermined program.
  • the intensity of the electromagnetic force applied to the molten steel 2 can be controlled by controlling the current value (effective value) and the frequency applied to each coil 130 by the control device.
  • the method for applying an alternating current to each coil 130 will be described in detail later.
  • the case 170 is an annular hollow member that covers the iron core 110 and the coil 130.
  • the size of the case 170 can be appropriately determined so that a desired electromagnetic force can be applied to the molten steel 2 by the electromagnetic stirring device 100. Further, in the magnetic field generated by the electromagnetic stirrer 100, the magnetic flux is incident from the coil 130 through the side wall of the case 170 and into the mold 30. Therefore, as the material of the case 170, for example, non-magnetic stainless steel or FRP (Fiber) Reinforced Non-magnetic and strong members such as plastics) can be used.
  • FIG. 4 is a top cross-sectional view showing an example of a state in which an alternating current is applied to each coil 130 of the electromagnetic stirring device 100.
  • FIG. 4 is a cross-sectional view of the A1-A1 cross section shown in FIG. 1 passing through the mold 30 and parallel to the XY plane.
  • FIG. 5 is a diagram for describing the phase of the alternating current applied to each coil 130 of the electromagnetic stirring device 100.
  • the power supply device 150 applies an alternating current to each coil 130 so that the phase is shifted by 90 ° in the order of arrangement of the coils 130.
  • the power supply device 150 applies a two-phase alternating current (+ U, + V) whose phases are shifted from each other by 90 ° to the coil 130.
  • the power supply apparatus 150 can apply four types of alternating currents of + U, + V, ⁇ U, and ⁇ V that are out of phase by 90 ° to the coil 130.
  • FIG. 5 schematically shows the phases of these four types of alternating currents.
  • the position on the circumference represents the phase between the alternating currents.
  • + V indicates that the phase is delayed by 90 ° from + U.
  • a + U alternating current is applied to one coil 130
  • a + V alternating current is applied to the adjacent coil 130
  • a -U alternating current is applied to the adjacent coil 130
  • an alternating current of ⁇ V is applied to the adjacent coil 130.
  • the alternating currents of + U, + V, ⁇ U, and ⁇ V are sequentially applied to the coils 130 arranged next to the adjacent coil 130.
  • AC currents of + U, + V, ⁇ U, ⁇ V, + U, + V, ⁇ U, and ⁇ V are applied to the coils 130a, 130b, 130c, 130d, 130e, 130f, 130g, and 130h, respectively.
  • a swirling flow around the vertical axis is generated with respect to the molten steel 2 at a lower cost than when a three-phase alternating current power source is used. Can be made.
  • a two-phase alternating current it is necessary to apply an alternating current to each coil 130 so that the phase is shifted by 90 ° in the order in which the coils 130 are arranged, so the number of coils 130 is a multiple of four. It is desirable to do so.
  • Simulation 1 Simulation 1
  • Simulation 2 Simulation 2
  • an electromagnetic field analysis simulation was performed for each of the electromagnetic stirring device 100 according to the present embodiment and the electromagnetic stirring device 900 according to the comparative example.
  • FIG. 6 is a top sectional view showing an electromagnetic stirring device 900 according to a comparative example. Specifically, FIG. 6 is a cross-sectional view of the A1-A1 cross section shown in FIG. 1 when the electromagnetic stirring device 900 is applied to the continuous casting machine 1 instead of the electromagnetic stirring device 100.
  • the teeth portion 919 (919a, 919b, 919c, 919d) on one side of the main body portion of the iron core 910 is on one side.
  • the difference is that only one is provided. Therefore, in the electromagnetic stirrer 900 according to the comparative example, the magnetic pole portion 920 (920a) formed by the tooth portion 919 of the iron core 910 and the coil 930 (930a, 930b, 930c, 930d) wound around the tooth portion 919. , 920b, 920c, 920d), one for each of the outer surfaces of the mold 30.
  • teeth portions 919a, 919b, 919c, and 919d are provided on portions of the long side main body portion 111, the short side main body portion 112, the long side main body portion 113, and the short side main body portion 114 that face the corresponding mold plates. Each is provided.
  • coils 930a, 930b, 930c, and 930d are wound around the teeth portions 919a, 919b, 919c, and 919d, respectively.
  • magnetic pole portions 920a, 920b, 920c, and 920d are formed.
  • the width X91 in the long side direction of the long side teeth portions 919a, 919c is 625 mm.
  • the short side width Y91 of the short side teeth portions 919b, 919d is 520 mm.
  • the phase is shifted by 90 ° in order of the arrangement of the coils 930 so that the rotating magnetic field is generated in the mold 30.
  • an alternating current is applied.
  • an electromagnetic force that generates a swirling flow around the vertical axis can be applied to the molten steel 2 in the mold 30.
  • the conditions of the electromagnetic field analysis simulation for this embodiment are as follows. An electromagnetic field analysis simulation was performed assuming that the iron core 110 was made of a silicon steel plate and no eddy current was generated in the iron core 110.
  • the electromagnetic field analysis simulation conditions for the comparative example were the conditions in which the following conditions X91 and Y91 were added by deleting the conditions X1, Y1, X2, and Y2 from the conditions for the present embodiment.
  • FIG. 7 is a diagram showing an example of the distribution of electromagnetic force applied to the molten steel 2 in the mold 30 in the horizontal plane at the center position in the vertical direction of the iron core 110 obtained by the electromagnetic field analysis simulation for the present embodiment. is there.
  • FIG. 8 is a diagram illustrating an example of a distribution of electromagnetic force applied to the molten steel 2 in the mold 30 in the vicinity of the inner surface of the long side mold plate 33 obtained by the electromagnetic field analysis simulation for the present embodiment.
  • FIG. 9 is a diagram showing an example of the distribution of electromagnetic force applied to the molten steel 2 in the mold 30 in the horizontal plane at the center position in the vertical direction of the iron core 910 obtained by the electromagnetic field analysis simulation for the comparative example. .
  • FIG. 10 is a diagram showing an example of the distribution of electromagnetic force applied to the molten steel 2 in the mold 30 in the vicinity of the inner surface of the long side mold plate 33 obtained by an electromagnetic field analysis simulation for the comparative example.
  • the Lorentz force density vector representing the electromagnetic force (N / m 3 ) acting per unit volume of the molten steel 2 as a vector quantity is indicated by arrows.
  • the electromagnetic force is distributed so as to generate a swirling flow around the vertical axis with respect to the molten steel 2 in the mold 30.
  • an electromagnetic force having a relatively large vertical component is confirmed.
  • a relatively large amount of electromagnetic force directed upward is confirmed as shown in FIG.
  • a relatively large amount of electromagnetic force directed downward is confirmed as shown in FIG.
  • the vertical direction of the electromagnetic force applied to the molten steel 2 in the mold 30 The maximum value of the component was 479 N / m 3 , the minimum value was ⁇ 378 N / m 3 , and the average value was 57 N / m 3 .
  • template 30 is typically shown.
  • the magnetic pole part 203 is formed by a tooth part 201 of an iron core and a coil 202 wound around the tooth part 201.
  • the magnetic flux 221 enters the mold plate 230 from the magnetic pole portion 203 in the horizontal direction.
  • an eddy current 211 is generated in the mold plate 230 due to the time change of the magnetic flux passing through the mold plate 230 in the horizontal direction.
  • the eddy current 211 generated in the mold plate 230 flows in a direction to generate a magnetic field that weakens the magnetic flux 221 incident in the horizontal direction from the magnetic pole portion 203 to the mold plate 230.
  • the magnetic flux 222 incident in the horizontal direction from the mold plate 230 to the magnetic pole portion 203 acts on the magnetic flux 221, so that the magnetic flux 221 incident in the horizontal direction from the magnetic pole portion 203 to the mold plate 230 is weakened.
  • the magnetic flux incident in the horizontal direction from the magnetic pole portion 203 to the mold plate 230 is weakened, and a leakage magnetic flux 223 having a vertical component is generated.
  • each of the Lorentz force density vectors basically has a horizontal component.
  • the vertical direction component of the electromagnetic force given to the molten steel 2 in the mold 30 is reduced as compared with the comparative example.
  • the maximum value of the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 is 323 N / m 3 and the minimum value is ⁇ It was 212 N / m 3 and the average value was 7.5 N / m 3 .
  • the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 is reduced as compared with the comparative example.
  • leakage magnetic flux is generated due to the eddy current generated in the mold plate.
  • the eddy current generated in the mold plate increases as the magnetic flux incident in the horizontal direction from the magnetic pole portion to the mold plate increases.
  • the effect that the magnetic flux incident in the horizontal direction from the magnetic pole part to the mold plate is weakened by the eddy current is increased. Therefore, the more the magnetic flux that enters the mold plate from the magnetic pole portion in the horizontal direction becomes stronger, the more leakage magnetic flux is generated.
  • the electromagnetic stirring device 100 unlike the comparative example, two magnetic pole portions 120 are arranged along the circumferential direction of the mold 30 for each of the outer surfaces of the mold 30. Therefore, the magnetic field generated by one magnetic pole portion 120 can be weakened. Thereby, since the magnetic flux which is incident on the mold plate from the magnetic pole part 120 in the horizontal direction can be weakened, generation of leakage magnetic flux can be suppressed. For this reason, in the present embodiment, it is considered that the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 is reduced as compared with the comparative example.
  • FIG. 12 schematically shows an electric wire 301 and an electric wire 302 through which currents in opposite directions flow.
  • a current flows through the electric wire 301 from the front side to the back side. Therefore, a clockwise magnetic field 311 is generated around the electric wire 301.
  • a current flows through the electric wire 302 from the back side to the front side. Therefore, a magnetic field 312 counterclockwise on the paper surface is generated around the electric wire 302.
  • the magnetic field 311 and the magnetic field 312 strengthen each other between the electric wire 301 and the electric wire 302, so that the magnetic flux between the electric wire 301 and the electric wire 302 is increased. 321 becomes relatively strong.
  • the magnetic field 311 and the magnetic field 312 cancel each other between the electric wire 301 and the electric wire 302.
  • the magnetic flux 322 in between is relatively weak.
  • each magnetic pole portion 120 in the circumferential direction of the mold 30 is small and the distance between the currents flowing in the opposite directions in each coil 130 is short as compared with the comparative example. Adjacent magnetic fields cancel each other. Therefore, the magnetic flux that enters the mold plate from each magnetic pole portion 120 becomes weak. Therefore, the eddy current generated in the mold plate is reduced.
  • the range of the eddy current generated in the mold plate is also small in the circumferential direction of the mold 30 and the distance between the currents flowing in opposite directions in each eddy current is short, so that adjacent magnetic fields cancel each other. obtain.
  • an effect of making the magnetic flux generated by the eddy current very weak can be obtained.
  • production of leakage magnetic flux can be suppressed.
  • the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 is reduced as compared with the comparative example.
  • the effect of weakening the magnetic flux generated by the eddy current generated in the mold plate is further improved as the width of each magnetic pole part 120 in the circumferential direction of the mold 30 is reduced.
  • the magnetic field that can be generated by one magnetic pole part 120 becomes excessively weak due to the size of each magnetic pole part 120 being reduced, it is difficult to ensure the electromagnetic force applied to the molten steel 2.
  • the magnetic pole portions 120 are arranged along the circumferential direction of the mold 30 for each of the outer surfaces of the mold 30, it may be difficult to ensure the electromagnetic force applied to the molten steel 2.
  • an electromagnetic force can be applied to the molten steel 2 in the mold 30 so as to generate a swirling flow around the vertical axis. Furthermore, the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 can be reduced. Therefore, the process of winding a coil around the iron core core that is coaxial with the extending direction of the iron core that forms a closed loop is not necessary when manufacturing, and the vertical flow of the molten steel 2 in the mold 30 is prevented. It is possible to appropriately generate a swirling flow around the vertical axis while suppressing.
  • FIG. 13 shows an example of the relationship between the current frequency and the average value of the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30 obtained by the electromagnetic field analysis simulation for each of the present embodiment and the comparative example.
  • FIG. FIG. 14 is a diagram showing an example of the relationship between the current frequency and the average electromagnetic force applied to the molten steel 2 in the mold 30 obtained by the electromagnetic field analysis simulation for the present embodiment.
  • Table 1 shows the average value of the vertical component of the electromagnetic force and the value of the average electromagnetic force for each current frequency obtained by the electromagnetic field analysis simulation for this embodiment.
  • the average electromagnetic force corresponds to the average value of the absolute value (magnitude) of the electromagnetic force applied to the molten steel 2.
  • the average value of the vertical component of the electromagnetic force basically decreases as the current frequency decreases.
  • the magnetic field generated by the magnetic pole part 120 becomes weaker as the current frequency is lower, the magnetic flux incident in the horizontal direction from the magnetic pole part 120 to the mold plate becomes weaker. Therefore, the occurrence of leakage flux in the magnetic field generated by the magnetic pole part 120 is suppressed. Thereby, it is considered that the average value of the vertical component of the electromagnetic force decreases as the current frequency decreases.
  • the average value of the vertical component of the electromagnetic force takes the maximum value when the current frequency is around 4.3 Hz, and the current frequency becomes high in the region where the current frequency exceeds around 4.3 Hz. It turns out that it becomes small gradually as it goes.
  • the current frequency is relatively high, the effect that the magnetic flux incident in the horizontal direction from the magnetic pole part 120 to the mold plate is weakened by the eddy current generated in the mold plate is increased, so The magnetic flux passing through and reaching the mold is reduced.
  • the average value of the vertical component of the electromagnetic force gradually decreases as the current frequency increases in a region where the current frequency is high enough to exceed the vicinity of 4.3 Hz.
  • the average electromagnetic force basically decreases as the current frequency decreases. As described above, this is considered to be caused by the fact that the magnetic field generated by the magnetic pole part 120 becomes weaker as the current frequency is lower.
  • the average electromagnetic force takes a maximum value when the current frequency is in the vicinity of 3.9 Hz, and gradually decreases as the current frequency increases in the region where the current frequency exceeds 3.9 Hz. I understand. As described above, this is considered to be caused by a decrease in the magnetic flux that passes through the mold plate from the magnetic pole portion 120 and reaches the mold in the region where the current frequency is high enough to exceed about 3.9 Hz. It is done.
  • a continuous casting machine (same configuration as the continuous casting machine 1 shown in FIG. 1) that uses the electromagnetic stirring device having the same configuration as the electromagnetic stirring device 100 according to the present embodiment described above for actual operation. And continuously casting while changing the value of the current frequency of the alternating current applied to the coil 130 in various ways. And about the slab obtained after casting, surface quality and internal quality were investigated by visual inspection and ultrasonic flaw detection, respectively.
  • the conditions for continuous casting are as follows.
  • Table 2 shows the results of the actual machine test.
  • “ ⁇ ” is indicated when defects are almost not found and maintenance is unnecessary, and “ ⁇ ” is indicated when defects are found and maintenance is required. Even when many defects are found and care is taken, if it is not usable as a quality strict material, it is expressed by attaching “x”.
  • the average electromagnetic force applied to the molten steel 2 in the mold 30 gradually decreases as the current frequency increases in the region where the current frequency exceeds the vicinity of 3.9 Hz.
  • the power consumption in the electromagnetic stirring device 100 increases as the current frequency increases, the advantage of increasing the current frequency above 4.0 Hz is not recognized. Therefore, by applying an alternating current of 1.0 Hz to 4.0 Hz to the coil 130, power consumption can be suppressed while effectively improving the quality of the slab.
  • the conditions of the thermal fluid analysis simulation for this embodiment are as follows.
  • FIG. 15 shows the distribution of the temperature and stirring flow rate of the molten steel 2 in the mold 30 in a cross section passing through the center line of the immersion nozzle 6 and parallel to the long side direction of the mold, obtained by the thermal flow analysis simulation of this embodiment. It is a figure which shows an example.
  • FIG. 16 shows the temperature and stirring flow rate of the molten steel 2 in the mold 30 in a horizontal plane (horizontal plane above the iron core 110) 50 mm away from the molten metal surface obtained by the thermal flow analysis simulation for this embodiment. It is a figure which shows an example of distribution of.
  • FIG. 15 shows the distribution of the temperature and stirring flow rate of the molten steel 2 in the mold 30 in a cross section passing through the center line of the immersion nozzle 6 and parallel to the long side direction of the mold, obtained by the thermal flow analysis simulation of this embodiment. It is a figure which shows an example.
  • FIG. 16 shows the temperature and stirring flow rate of the molten steel 2 in the mold 30 in a horizontal plane (horizontal
  • FIG. 17 shows the temperature of the molten steel 2 in the mold 30 in a horizontal plane (horizontal plane at the center position in the vertical direction of the iron core 110) that is 430 mm away from the molten metal surface, obtained by a thermal flow analysis simulation for this embodiment. It is a figure which shows an example of distribution of stirring flow velocity.
  • the flux vector expressing the flow velocity (m / s) at each position of the molten steel 2 as a vector quantity is indicated by arrows.
  • the temperature distribution is shown by grayscale shading, and the darker the region, the higher the temperature.
  • FIG. 15 it is confirmed that the molten steel 2 sent into the mold 30 through the immersion nozzle 6 is discharged from the discharge hole 61 in the horizontal direction.
  • FIGS. 16 and 17 it is confirmed that the molten steel 2 is being stirred around the vertical axis after being discharged from the discharge hole 61.
  • FIG. 17 it is confirmed that a swirling flow around the vertical axis is generated in the molten steel 2 in the mold 30 in the horizontal plane at the center position in the vertical direction of the iron core 110.
  • FIG. 16 it can be similarly confirmed that a swirling flow around the vertical axis is generated in the molten steel 2 in the mold 30 even in a horizontal plane above the iron core 110.
  • the electromagnetic stirring device 100 As described above, according to the electromagnetic stirring device 100 according to the present embodiment, it is confirmed in more detail that it is possible to appropriately generate a swirling flow around the vertical axis with respect to the molten steel 2 in the mold 30. It was.
  • FIG. 18 shows the result of the thermal fluid analysis simulation.
  • FIG. 18 is a diagram showing an example of the relationship between the distance from the molten metal surface and the stirring flow velocity of the molten steel 2 in the mold 30 obtained by the thermal fluid analysis simulation for each of the present embodiment and the comparative example.
  • FIG. 18 shows results for the present embodiment and results for the comparative example when the current frequency is set to 1.0 Hz, 1.8 Hz, 2.5 Hz, and 4.0 Hz, respectively.
  • the case where the stirring flow rate takes a negative value corresponds to the case where the molten steel 2 is flowing in the direction opposite to the rotating direction of the rotating magnetic field generated by the electromagnetic stirring device.
  • FIG. 18 for the comparative example, it is confirmed that a stirring flow velocity of 0.15 m / s to 0.4 m / s is generated in the region between the upper surface and the lower surface of the iron core.
  • the stirring flow rate is significantly reduced as compared with the present embodiment.
  • the stirring flow velocity has turned to a negative value in the region near the hot water surface. This is considered to be due to the fact that the vertical flow of the molten steel 2 is relatively easy to occur in the molten steel 2 in the comparative example, and the swirling flow around the vertical axis is suppressed by the vertical flow of the molten steel 2.
  • the stirring flow rate can be sufficiently generated in the molten steel 2 even in the region above the iron core 110 in the mold 30.
  • the swirling flow around the vertical axis can be appropriately generated in the molten steel 2 in the mold 30.
  • an alternating current of 1.0 Hz to 4.0 Hz is applied to the coil 130, it was confirmed that a swirling flow around the vertical axis can be appropriately generated in the molten steel 2 in the mold 30.
  • the electromagnetic stirring device 100 in the electromagnetic stirring device 100 according to the present embodiment, two iron cores 110 are arranged in parallel along the circumferential direction of the mold 30 so as to face the outer surface of each of the outer surfaces of the mold 30.
  • the teeth portion 119 is provided. Therefore, in the electromagnetic stirring device 100 according to the present embodiment, the magnetic pole portion 120 formed by the tooth portion 119 of the iron core 110 and the coil 130 wound around the tooth portion 119 is formed on each of the outer surfaces of the mold 30. Two are arranged along 30 circumferential directions. Thereby, it is possible to obtain an effect of extremely weakening the magnetic flux generated by the eddy current generated in the mold plate by the magnetic flux entering the mold plate from the magnetic pole part 120.
  • the electromagnetic force can be applied to the molten steel 2 so as to generate a swirling flow around the vertical axis while reducing the vertical component of the electromagnetic force applied to the molten steel 2 in the mold 30. Therefore, a process of winding a coil around the core core around the extension direction of the iron core that forms a closed loop is not necessary when manufacturing, and the vertical flow of the molten steel 2 in the mold 30 is prevented. It is possible to appropriately generate a swirling flow around the vertical axis while suppressing.
  • the process of winding the coil around the core core around the extension direction of the core core forming a closed loop when manufacturing is unnecessary, and the vertical direction with respect to the molten metal in the mold It is possible to provide an electromagnetic stirrer that can appropriately generate a swirling flow around the vertical axis while suppressing the flow of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)

Abstract

この電磁攪拌装置は、連続鋳造用の四角筒状の鋳型内に回転磁界を発生させることによって、前記鋳型内の溶融金属に対して鉛直軸回りの旋回流を生じさせる電磁力を付与する電磁撹拌装置であって、前記鋳型の側方において前記鋳型を囲み、前記鋳型の外側面の各々について前記外側面と対向して前記鋳型の周方向に沿って2つ並設されるティース部を有する鉄芯コアと、前記鉄芯コアの前記ティース部の各々に巻回されるコイルと、前記回転磁界を発生させるように、前記コイルの配列順に位相を90°ずつずらして前記コイルの各々に対して交流電流を印加する電源装置と、を備える。

Description

電磁攪拌装置
 本発明は、電磁撹拌装置に関する。
 本願は、2018年5月8日に、日本に出願された特願2018-090208号に基づき優先権を主張し、その内容をここに援用する。
 連続鋳造では、タンディッシュに一旦貯留された溶融金属(例えば、溶鋼)を、浸漬ノズルを介して四角筒状の鋳型内に上方から注入し、そこで外周面が冷却され凝固した鋳片を鋳型の下端から引き抜くことにより、連続的に鋳造が行われる。鋳片のうち外周面の凝固した部位は、凝固シェルと呼ばれる。
 ここで、鋳型内の溶融金属中には、浸漬ノズルの吐出孔の詰まり防止のために溶融金属とともに供給される不活性ガス(例えば、Arガス)のガス気泡や、非金属介在物等が含まれており、鋳造後の鋳片にこれらの不純物が残存していると、製品の品質を劣化させる原因となる。なお、本明細書において、単に鋳片の品質といった場合には、鋳片の表面品質及び鋳片の内部品質(内質)の少なくともいずれかを意味する。
 一般的に、ガス気泡や非金属介在物等の不純物の比重は、溶融金属の比重よりも小さいため、連続鋳造中に溶融金属内で浮上して除去されることが多いが、鋳片の品質をより向上させるために、鋳型内の溶融金属からこれらの不純物をより効果的に除去するための技術として、電磁撹拌装置が広く用いられている。
 電磁撹拌装置は、鋳型内に移動磁界を発生させることにより、鋳型内の溶融金属にローレンツ力と呼ばれる電磁力を付与し、当該溶融金属に対して水平面内において旋回するような流動パターン(すなわち、鉛直軸回りの旋回流)を生じさせる装置である。電磁撹拌装置によって旋回流を生じさせることにより、凝固シェル界面での溶融金属の流動が促進されるため、上述したガス気泡や非金属介在物等の不純物が凝固シェル内に捕捉されることが抑制され、鋳片の品質を向上させることができる。さらに、鋳型内の溶融金属に旋回流が生じることによって、鋳型内における溶融金属の温度が均一化されるため、初期凝固位置が安定化されることにより、鋳片の内部における割れの発生を抑制することができる。
 電磁撹拌装置は、具体的には、鋳型の側方に配置された鉄芯コアと、当該鉄芯コアに巻回されたコイルとを含んで構成される。電磁撹拌装置のコイルに交流電流が印加されることによって、鋳型内に移動磁界が発生し得る。例えば、特許文献1には、コイルが巻回された鉄芯コアが鋳型の長辺側の外側面の側方にのみ配置される電磁撹拌装置が開示されている。また、例えば、特許文献2には、鉄芯コアに設けられるティース部及び当該ティース部に巻回されるコイルにより形成される磁極部が各外側面について1つ配置される電磁撹拌装置が開示されている。また、例えば、特許文献3には、鋳型の側方において鋳型を囲む環状の鉄芯コアと、当該鉄芯コアの延在方向と同軸回りに当該鉄芯コアに巻回されたコイルとを備える電磁撹拌装置が開示されている。
日本国特開昭63-252651号公報 日本国特開平6-304719号公報 日本国特開昭58-215250号公報
 しかしながら、特許文献1に開示されている技術では、コイルが巻回された鉄芯コアが鋳型の長辺側の外側面の側方にのみ配置されるので、鋳型の長辺と短辺の差が比較的小さい場合において鋳型内の溶融金属に対して鉛直軸回りの旋回流を十分に生じさせることが困難となる。具体的には、ブルームと称される鋳片を製造する連続鋳造では、鋳型の長辺と短辺の差が比較的小さい(例えば、短辺は長辺の50%~80%の長さを有する)ので、鉛直軸回りの旋回流を十分に生じさせることが困難となる。
 また、特許文献2に開示されている技術では、鋳型の長辺側の外側面の側方のみならず鋳型の短辺側の外側面の側方についても磁極部が配置されるものの、鋳型内の溶融金属において鉛直方向の流動が生じ得る。具体的には、鋳型の外側面を形成する鋳型板に対して磁極部から水平方向に磁束が入射することによって、鋳型板内に渦電流が生じる。このように鋳型板内に生じる渦電流によって、磁極部により発生する磁界において、磁極部から鋳型板へ水平方向に入射する磁束が弱められ、鉛直方向成分を有する漏れ磁束が発生する。それにより、鋳型内の溶融金属に鉛直方向の電磁力が付与されることによって、鉛直方向の流動が生じ得る。
 ここで、鉛直方向の流動が顕著に生じると、湯面に浮上しているガス気泡及び非金属介在物、更には溶融パウダーが溶融金属内に巻き込まれてしまい、これらを原因とする欠陥が発生する可能性がある。さらに、鉛直方向の流動が生じることによって、鋳型内における溶融金属の温度が不均一になるため、初期凝固位置が不安定になることにより、鋳片の内部における割れの発生が生じるおそれがある。
 また、特許文献3に開示されている技術では、電磁撹拌装置の製作において閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程が必要となるので、電磁撹拌装置を製作することが困難となり得る。ゆえに、電磁撹拌装置についてのさらなる提案が望まれている。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製作するに際して閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程を不要とし、鋳型内の溶融金属に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能な電磁撹拌装置を提供することにある。
(1)本発明の一態様は、連続鋳造用の四角筒状の鋳型内に回転磁界を発生させることによって、前記鋳型内の溶融金属に対して鉛直軸回りの旋回流を生じさせる電磁力を付与する電磁撹拌装置である。この電磁攪拌装置は、前記鋳型の側方において前記鋳型を囲み、前記鋳型の外側面の各々について前記外側面と対向して前記鋳型の周方向に沿って2つ並設されるティース部を有する鉄芯コアと、前記鉄芯コアの前記ティース部の各々に巻回されるコイルと、前記回転磁界を発生させるように、前記コイルの配列順に位相を90°ずつずらして前記コイルの各々に対して交流電流を印加する電源装置と、を備える。
(2)上記(1)に記載の電磁攪拌装置では、前記電源装置は、1.0Hz~4.0Hzの交流電流を前記コイルの各々に対して印加してもよい。
 上記の電磁攪拌装置によれば、製作するに際して閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程を不要とし、鋳型内の溶融金属に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能となる。
本発明の実施形態に係る電磁攪拌装置を含む連続鋳造機の概略構成の一例を模式的に示す側面断面図である。 同実施形態に係る電磁撹拌装置の一例を示す上面断面図である。 同実施形態に係る電磁撹拌装置の一例を示す側面断面図である。 電磁撹拌装置の各コイルに交流電流が印加されている様子の一例を示す上面断面図である。 電磁撹拌装置の各コイルに印加される交流電流の位相について説明するための図である。 比較例に係る電磁撹拌装置を示す上面断面図である。 同実施形態についての電磁場解析シミュレーションによって得られた、鉄芯コアの鉛直方向中心位置の水平面内における鋳型内の溶鋼に付与される電磁力の分布の一例を示す図である。 同実施形態についての電磁場解析シミュレーションによって得られた、長辺鋳型板の内側面近傍における鋳型内の溶鋼に付与される電磁力の分布の一例を示す図である。 比較例についての電磁場解析シミュレーションによって得られた、鉄芯コアの鉛直方向中心位置の水平面内における鋳型内の溶鋼に付与される電磁力の分布の一例を示す図である。 比較例についての電磁場解析シミュレーションによって得られた、長辺鋳型板の内側面近傍における鋳型内の溶鋼に付与される電磁力の分布の一例を示す図である。 コイルにより発生する磁界における漏れ磁束について説明するための図である。 隣り合う磁界の相互作用について説明するための図である。 同実施形態及び比較例の各々についての電磁場解析シミュレーションによって得られた、電流周波数と鋳型内の溶鋼に付与される電磁力の鉛直方向成分の平均値との関係性の一例を示す図である。 同実施形態についての電磁場解析シミュレーションによって得られた、電流周波数と鋳型内の溶鋼に付与される平均電磁力との関係性の一例を示す図である。 同実施形態についての熱流動解析シミュレーションによって得られた、浸漬ノズルの中心線を通り鋳型の長辺方向に平行な断面内における鋳型内の溶鋼の温度及び撹拌流速の分布の一例を示す図である。 同実施形態についての熱流動解析シミュレーションによって得られた、湯面から下方に50mm離れた水平面内における鋳型内の溶鋼の温度及び撹拌流速の分布の一例を示す図である。 同実施形態についての熱流動解析シミュレーションによって得られた、湯面から下方に430mm離れた水平面内における鋳型内の溶鋼の温度及び撹拌流速の分布の一例を示す図である。 同実施形態及び比較例の各々についての熱流動解析シミュレーションによって得られた、湯面からの距離と鋳型内の溶鋼の撹拌流速との関係性の一例を示す図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、複数の構成要素の各々に同一符号のみを付する。
 なお、本明細書において参照する各図面では、説明のため、一部の構成部材の大きさを誇張して表現している場合がある。各図面において図示される各部材の相対的な大きさは、必ずしも実際の部材間における大小関係を正確に表現するものではない。
 また、以下では、溶融金属が溶鋼である例について説明するが、本発明は、このような例に限定されず、他の金属に対する連続鋳造に対して適用されてもよい。
 <1.連続鋳造機の概略構成>
 まず、図1を参照して、本発明の実施形態に係る電磁攪拌装置100を含む連続鋳造機1の概略構成について説明する。
 図1は、本実施形態に係る電磁攪拌装置100を含む連続鋳造機1の概略構成の一例を模式的に示す側面断面図である。
 連続鋳造機1は、連続鋳造用の鋳型を用いて溶鋼を連続鋳造し、ブルームの鋳片を製造するための装置である。連続鋳造機1は、例えば、図1に示すように、鋳型30と、取鍋4と、タンディッシュ5と、浸漬ノズル6と、二次冷却装置7と、鋳片切断機8とを備える。
 取鍋4は、溶鋼2(溶融金属)を外部からタンディッシュ5まで搬送するための可動式の容器である。取鍋4は、タンディッシュ5の上方に配置され、取鍋4内の溶鋼2がタンディッシュ5に供給される。タンディッシュ5は、鋳型30の上方に配置され、溶鋼2を貯留して、当該溶鋼2中の介在物を除去する。浸漬ノズル6は、タンディッシュ5の下端から鋳型30に向けて下方に延び、その先端は鋳型30内の溶鋼2に浸漬されている。当該浸漬ノズル6は、タンディッシュ5にて介在物が除去された溶鋼2を鋳型30内に連続供給する。
 鋳型30は、鋳片3の長辺及び短辺の寸法に応じた四角筒状であり、例えば、一対の長辺鋳型板(後述する図2等に示す長辺鋳型板31,33に対応する)で一対の短辺鋳型板(後述する図2等に示す短辺鋳型板32,34に対応する)を両側から挟むように組み立てられる。長辺鋳型板及び短辺鋳型板(以下、鋳型板と総称することがある)は、例えば冷却水が流動する水路が設けられた水冷銅板である。鋳型30は、鋳型板と接触する溶鋼2を冷却して、鋳片3を製造する。鋳片3が鋳型30下方に向かって移動するにつれて、内部の未凝固部3bの凝固が進行し、外殻の凝固シェル3aの厚さは、徐々に厚くなる。凝固シェル3aと未凝固部3bとを含む鋳片3は、鋳型30の下端から引き抜かれる。
 なお、以下の説明では、上下方向(すなわち、鋳型30から鋳片3が引き抜かれる方向)を、Z軸方向とも呼称する。Z軸方向のことを鉛直方向とも呼称する。また、Z軸方向と垂直な平面(水平面)内における互いに直交する2方向を、それぞれX軸方向及びY軸方向とも呼称する。また、X軸方向を水平面内において鋳型30の長辺と平行な方向(すなわち、鋳型長辺方向)として定義し、Y軸方向を水平面内において鋳型30の短辺と平行な方向(すなわち、鋳型短辺方向)として定義する。X-Y平面と平行な方向のことを水平方向とも呼称する。また、以下の説明では、各部材の大きさを表現する際に、当該部材のZ軸方向の長さのことを高さともいい、当該部材のX軸方向又はY軸方向の長さのことを幅ともいうことがある。
 ここで、鋳型30の側方には、電磁撹拌装置100が設置される。電磁撹拌装置100は、鋳型30内に回転磁界を発生させることによって、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせる電磁力を付与する。具体的には、電磁撹拌装置100は、電源装置150を含んで構成され、電源装置150から供給される電力を用いて駆動される。本実施形態では、電磁撹拌装置100を駆動させながら連続鋳造を行うことによって、鋳型30内の溶鋼2が撹拌され、鋳片の品質を向上させることが可能になる。このような電磁撹拌装置100については、後述にて詳細に説明する。
 二次冷却装置7は、鋳型30の下方の二次冷却帯9に設けられ、鋳型30下端から引き抜かれた鋳片3を支持及び搬送しながら冷却する。二次冷却装置7は、鋳片3の短辺方向両側に配置される複数対の支持ロール(例えば、サポートロール11、ピンチロール12及びセグメントロール13)と、鋳片3に対して冷却水を噴射する複数のスプレーノズル(図示せず)とを有する。
 二次冷却装置7に設けられる支持ロールは、鋳片3の短辺方向両側に対となって配置され、鋳片3を支持しながら搬送する支持搬送手段として機能する。当該支持ロールにより鋳片3を短辺方向両側から支持することで、二次冷却帯9において凝固途中の鋳片3のブレイクアウトやバルジングを防止できる。
 支持ロールであるサポートロール11、ピンチロール12及びセグメントロール13は、二次冷却帯9における鋳片3の搬送経路(パスライン)を形成する。このパスラインは、図1に示すように、鋳型30の直下では垂直であり、次いで曲線状に湾曲して、最終的には水平になる。二次冷却帯9において、当該パスラインが垂直である部分を垂直部9A、湾曲している部分を湾曲部9B、水平である部分を水平部9Cと称する。このようなパスラインを有する連続鋳造機1は、垂直曲げ型の連続鋳造機1と呼称される。なお、本発明は、図1に示すような垂直曲げ型の連続鋳造機1に限定されず、湾曲型又は垂直型など他の各種の連続鋳造機にも適用可能である。
 サポートロール11は、鋳型30の直下の垂直部9Aに設けられる無駆動式ロールであり、鋳型30から引き抜かれた直後の鋳片3を支持する。鋳型30から引き抜かれた直後の鋳片3は、凝固シェル3aが薄い状態であるため、ブレイクアウトやバルジングを防止するために比較的短い間隔(ロールピッチ)で支持する必要がある。そのため、サポートロール11としては、ロールピッチを短縮することが可能な小径のロールが用いられることが望ましい。図1に示す例では、垂直部9Aにおける鋳片3の両側に、小径のロールからなる3対のサポートロール11が、比較的狭いロールピッチで設けられている。
 ピンチロール12は、モータ等の駆動装置により回転する駆動式ロールであり、鋳片3を鋳型30から引き抜く機能を有する。ピンチロール12は、垂直部9A、湾曲部9B及び水平部9Cにおいて適切な位置にそれぞれ配置される。鋳片3は、ピンチロール12から伝達される力によって鋳型30から引き抜かれ、上記パスラインに沿って搬送される。なお、ピンチロール12の配置は図1に示す例に限定されず、その配置位置は任意に設定されてよい。
 セグメントロール13(ガイドロールともいう)は、湾曲部9B及び水平部9Cに設けられる無駆動式ロールであり、上記パスラインに沿って鋳片3を支持及び案内する。セグメントロール13は、パスライン上の位置によって、及び、鋳片3のF面(Fixed面、図1では左下側の面)とL面(Loose面、図1では右上側の面)のいずれに設けられるかによって、それぞれ異なるロール径やロールピッチで配置されてよい。
 鋳片切断機8は、上記パスラインの水平部9Cの終端に配置され、当該パスラインに沿って搬送された鋳片3を所定の長さに切断する。切断された鋳片14は、テーブルロール15により次工程の設備に搬送される。
 以上、図1を参照して、本実施形態に係る連続鋳造機1の概略構成について説明した。なお、本実施形態では、鋳型30に対して後述する構成を有する電磁撹拌装置100が設置され、電磁撹拌装置100を用いて連続鋳造が行われればよく、連続鋳造機1における電磁撹拌装置100以外の構成は、一般的な従来の連続鋳造機と同様であってよい。従って、連続鋳造機1の構成は図示したものに限定されず、連続鋳造機1としては、あらゆる構成のものが用いられてよい。
 <2.電磁撹拌装置の構成>
 続いて、図2及び図3を参照して、本実施形態に係る電磁撹拌装置100の構成について説明する。
 図2は、本実施形態に係る電磁撹拌装置100の一例を示す上面断面図である。具体的には、図2は、鋳型30を通りX-Y平面と平行な図1に示すA1-A1断面についての断面図である。図3は、本実施形態に係る電磁撹拌装置100の一例を示す側面断面図である。具体的には、図3は、浸漬ノズル6を通りX-Z平面と平行な図2に示すA2-A2断面についての断面図である。
 本実施形態では、鋳型30の側方において鋳型30を囲むように電磁撹拌装置100が設けられる。
 鋳型30は、上述したように、四角筒状であり、例えば、一対の長辺鋳型板31,33で一対の短辺鋳型板32,34を両側から挟むように組み立てられる。具体的には、各鋳型板は、長辺鋳型板31、短辺鋳型板32、長辺鋳型板33、短辺鋳型板34の順に環状に配置される。各鋳型板は、例えば、上述したように水冷銅板であってもよいが、このような例に限定されず、一般的に連続鋳造機の鋳型として用いられる各種の材料によって形成されてもよい。
 ここで、本実施形態では、ブルームの連続鋳造を対象としており、その鋳片サイズは、一辺(すなわち、X軸方向及びY軸方向の長さ)300~500mm程度である。例えば、鋳片3の長辺方向の幅X11は456mmであり、鋳片3の短辺方向の幅Y11は339mmである。
 各鋳型板は、当該鋳片サイズに対応した大きさを有する。例えば、長辺鋳型板31,33は、少なくとも鋳片3の長辺方向の幅X11よりも長い長辺方向の幅を有し、短辺鋳型板32,34は、鋳片3の短辺方向の幅Y11と略同一の短辺方向の幅を有する。各鋳型板の厚みT11は、例えば、25mmである。
 電磁撹拌装置100による鋳片3の品質向上の効果をより効果的に得るために、Z軸方向の長さが可能な限り長くなるように鋳型30を構成することが望ましい。一般的に、鋳型30内で溶鋼2の凝固が進行すると、凝固収縮のために鋳片3が鋳型30の内壁から離れてしまい、当該鋳片3の冷却が不十分になる場合があることが知られている。そのため、鋳型30の長さは、溶鋼湯面から、長くても1000mm程度が限界とされている。本実施形態では、かかる事情を考慮して、例えば、溶鋼湯面から各鋳型板の下端までの長さが1000mm程度となるように、各鋳型板を形成する。
 電磁撹拌装置100は、例えば、図2及び図3に示すように、鉄芯コア110と、複数のコイル130(130a,130b,130c,130d,130e,130f,130g,130h)と、上述した電源装置150と、ケース170とを備える。なお、図2及び図3では、理解を容易にするために、電源装置150の図示が省略されており、ケース170の内部に収容される鉄芯コア110及び複数のコイル130がケース170を透過して示されている。
 鉄芯コア110は、一対の長辺本体部111,113及び一対の短辺本体部112,114(以下、本体部と総称することがある)と、複数のティース部119(119a,119b,119c,119d,119e,119f,119g,119h)とを有する中実の部材である。鉄芯コア110は、例えば、電磁鋼板を積層することにより形成される。鉄芯コア110の各ティース部119にコイル130が巻回され、コイル130の各々に交流電流が印加されることによって磁界が発生する。このように、ティース部119及び当該ティース部119に巻回されるコイル130は、交流電流の印加時において磁極として機能する磁極部120(120a,120b,120c,120d,120e,120f,120g,120h)を形成する。
 長辺本体部111,113は、鋳型30の外側において長辺鋳型板31、33とそれぞれ対向して設けられる。短辺本体部112,114は、鋳型30の外側において短辺鋳型板32,34とそれぞれ対向して設けられる。隣り合う長辺本体部及び短辺本体部は、例えば、互いに端部が重ね合された状態で締結されることによって接続される。それにより、一対の長辺本体部111,113と一対の短辺本体部112,114とによって、鋳型30の側方において鋳型30を囲む閉ループが形成される。具体的には、各本体部は、長辺本体部111、短辺本体部112、長辺本体部113、短辺本体部114の順に鋳型30の周方向に沿って環状に配置される。
 各本体部における鋳型30側の部分には、鋳型30の周方向に沿ってティース部119が2つ並設される。例えば、長辺本体部111における長辺鋳型板31と対向する部分には、鋳型30の周方向に沿ってティース部119a,119bが設けられる。また、短辺本体部112における短辺鋳型板32と対向する部分には、鋳型30の周方向に沿ってティース部119c,119dが設けられる。また、長辺本体部113における長辺鋳型板33と対向する部分には、鋳型30の周方向に沿ってティース部119e,119fが設けられる。また、短辺本体部114における短辺鋳型板34と対向する部分には、鋳型30の周方向に沿ってティース部119g,119hが設けられる。具体的には、各ティース部119は、ティース部119a,119b,119c,119d,119e,119f,119g,119hの順に鋳型30の周方向に沿って環状に配置される。
 このように、鉄芯コア110は、鋳型30の外側面の各々について外側面と対向して鋳型30の周方向に沿って2つ並設されるティース部119を有する。ゆえに、本実施形態に係る電磁撹拌装置100では、鉄芯コア110のティース部119及び当該ティース部119に巻回されるコイル130により形成される磁極部120が鋳型30の外側面の各々について鋳型30の周方向に沿って2つ配置される。本発明者は、鋳型30に対してこのように磁極部120を配置することによって、鋳型30内の溶鋼2に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能となることを見出した。本実施形態に係る電磁撹拌装置100により鋳型30内の溶鋼2に生じる流動については、後述にて詳細に説明する。
 ティース部119は、本体部から鋳型30側へ向かって水平方向に直方体状に突出し、鋳型30の周方向に沿って互いに間隔を空けて設けられる。ティース部119のZ軸方向の高さは、例えば、本体部と同程度である。上述したように、ティース部119及び当該ティース部119に巻回されるコイル130は交流電流の印加時において磁極として機能するので、各ティース部119の大きさ及び各ティース部119間の位置関係は電磁撹拌装置100によって発生する磁界に影響を与える。ゆえに、各ティース部119の大きさ及び各ティース部119間の位置関係は、電磁撹拌装置100によって溶鋼2に対して所望の電磁力を付与し得るように、適宜決定され得る。
 長辺本体部に設けられるティース部119a,119b,119e,119f(以下、長辺側ティース部とも呼称する)の長辺方向の幅X1は、例えば、240mmである。また、短辺本体部に設けられるティース部119c,119d,119g,119h(以下、短辺側ティース部とも呼称する)の短辺方向の幅Y1は、例えば、190mmである。なお、長辺側ティース部の長辺方向の幅X1と短辺側ティース部の短辺方向の幅Y1とは、必ずしも一致しなくともよいが、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流をより安定して生じさせるために、同程度とすることが望ましい。
 長辺側ティース部間(例えば、ティース部119aとティース部119bとの間)の間隔X2は、例えば、140mmである。また、短辺側ティース部間(例えば、ティース部119gとティース部119hとの間)の間隔Y2は、例えば、140mmである。
 鋳型長辺方向に対向する磁極部120間(例えば、磁極部120dと磁極部120gとの間)の間隔X3は、例えば、775mmである。また、鋳型短辺方向に対向する磁極部120間(例えば、磁極部120bと磁極部120eとの間)の間隔Y3は、例えば、670mmである。
 ティース部119の鉛直方向の位置及び大きさ(すなわち、鉄芯コア110の鉛直方向の位置及び大きさ)は、浸漬ノズル6の位置及び大きさや溶鋼2の湯面の位置に応じて適宜設定される。
 ティース部119の上面と溶鋼2の湯面との鉛直方向の距離Z1は、例えば、280mmである。また、ティース部119の下面と溶鋼2の湯面との鉛直方向の距離Z2は、例えば、580mmである。
 なお、浸漬ノズル6の底面と溶鋼2の湯面との鉛直方向の距離Z11は、例えば、250mmである。また、浸漬ノズル6の内径D11は、例えば、90mmである。また、浸漬ノズル6の外径D12は、例えば、145mmである。また、浸漬ノズル6の吐出孔61の底部からの高さZ12は、例えば、85mmである。また、浸漬ノズル6の吐出孔61の幅D13は、例えば、80mmである。また、浸漬ノズル6の吐出孔61は、例えば、ノズル内側からノズル外側へ向かうにつれて上向きに15°傾いている。浸漬ノズル6には、このような吐出孔61が短辺鋳型板32,34に対向する位置に一対設けられる。
 コイル130は、各ティース部119に対して各ティース部119の突出方向を巻回軸方向として巻回される(すなわち、各ティース部119を各ティース部119の突出方向に磁化するようにコイル130が巻回される)。例えば、ティース部119a,119b,119c,119d,119e,119f,119g,119hに対してコイル130a,130b,130c,130d,130e,130f,130g,130hがそれぞれ巻回される。それにより、磁極部120a,120b,120c,120d,120e,120f,120g,120hが形成される。長辺側ティース部に対してはY軸方向を巻回軸方向としてコイル130が巻回され、短辺側ティース部に対してはX軸方向を巻回軸方向としてコイル130が巻回される。
 コイル130を形成する導線としては、例えば断面が10mm×10mmで、内部に直径5mm程度の冷却水路を有する銅製のものが用いられる。電流印加時には、当該冷却水路を用いて当該導線が冷却される。当該導線は、絶縁紙等によりその表層が絶縁処理されており、層状に巻回することが可能である。例えば、各コイル130は、当該導線を2~4層程度巻回することにより形成される。
 図1に示した電源装置150は、このような複数のコイル130の各々と接続される。電源装置150は、鋳型30内に回転磁界を発生させるように、コイル130の配列順に位相を90°ずつずらして各コイル130に対して交流電流を印加する。それにより、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせる電磁力が付与され得る。電源装置150は、具体的には、1.0Hz~6.0Hzの交流電流を各コイル130に対して印加するのが好ましく、1.0Hz~4.0Hzの交流電流を印加するのがさらに好ましい。
 電源装置150の駆動は、プロセッサ等からなる制御装置(図示せず)が所定のプログラムに従って動作することにより、適宜制御され得る。具体的には、当該制御装置により、各コイル130に印加される電流値(実効値)及び周波数が制御されることによって、溶鋼2に対して付与される電磁力の強さが制御され得る。なお、各コイル130に対する交流電流の印加方法については、後述にて詳細に説明する。
 ケース170は、鉄芯コア110及びコイル130を覆う環状の中空の部材である。ケース170の大きさは、電磁撹拌装置100によって溶鋼2に対して所望の電磁力を付与し得るように、適宜決定され得る。また、電磁撹拌装置100により発生する磁界では、コイル130からケース170の側壁を通過して鋳型30内へ磁束が入射されるため、ケース170の材料としては、例えば非磁性体ステンレス又はFRP(Fiber Reinforced
 Plastics)等の、非磁性で、かつ強度が確保可能な部材が用いられる。
 <3.電磁撹拌装置の動作>
 続いて、図4及び図5を参照して、本実施形態に係る電磁撹拌装置100の動作について説明する。
 図4は、電磁撹拌装置100の各コイル130に交流電流が印加されている様子の一例を示す上面断面図である。具体的には、図4は、鋳型30を通りX-Y平面と平行な図1に示すA1-A1断面についての断面図である。図5は、電磁撹拌装置100の各コイル130に印加される交流電流の位相について説明するための図である。
 電磁撹拌装置100では、電源装置150は、上述したように、コイル130の配列順に位相が90°ずつずれるように、各コイル130に対して交流電流を印加する。例えば、電源装置150は、図4に示されるように、互いに位相が90°ずつずれた2相交流電流(+U、+V)をコイル130に対して印加する。電流の向きまで考慮すると、電源装置150は、+U、+V、-U、-Vの、90°ずつ位相がずれた4種類の交流電流をコイル130に対して印加することができる。図5では、これら4種類の交流電流の位相を概略的に図示している。図5において、円周上の位置が各交流電流間の位相を表しており、例えば、+Vは、+Uよりも90°だけ位相が遅れていることを示している。
 ある1つのコイル130に対して+Uの交流電流が印加されると、その隣のコイル130には+Vの交流電流が印加され、更にその隣のコイル130には-Uの交流電流が印加され、更にその隣のコイル130には-Vの交流電流が印加される。その隣のコイル130から先に並ぶコイル130には、同様に、順次+U、+V、-U、-Vの交流電流がそれぞれ印加される。例えば、コイル130a,130b,130c,130d,130e,130f,130g,130hに対して、+U、+V、-U、-V、+U、+V、-U、-Vの交流電流がそれぞれ印加される。
 各コイル130に対してこのような位相差で交流電流が印加されることにより、鋳型30内に鋳型30の周方向に回転する回転磁界が生じることとなる。それにより、鋳型30内の溶鋼2に対して鋳型30の周方向に沿った電磁力が付与されるので、溶鋼2において鉛直軸回りの旋回流が発生することとなる。
 また、2相交流電流を用いて電磁撹拌装置100によって回転磁界を発生させることによって、3相交流電源を用いる場合と比較して、より安価に溶鋼2に対して鉛直軸回りの旋回流を発生させることができる。2相交流電流を用いる場合には、コイル130の配列順に位相が90°ずつずれるように、各コイル130に対して交流電流を印加する必要があるため、コイル130の数が4の倍数となるようにすることが望ましい。
 本実施形態において鋳型30内の溶鋼2に生じる流動を確認するために行った電磁場解析シミュレーションの結果について説明する。
  (シミュレーション1)
 各種シミュレーション条件を後述するように設定し、本実施形態に係る電磁撹拌装置100及び比較例に係る電磁撹拌装置900の各々について電磁場解析シミュレーションを行った。
 ここで、図6を参照して、比較例に係る電磁撹拌装置900について説明する。図6は、比較例に係る電磁撹拌装置900を示す上面断面図である。具体的には、図6は、連続鋳造機1に対して電磁撹拌装置100に替えて電磁撹拌装置900を適用した場合における図1に示すA1-A1断面についての断面図である。
 比較例に係る電磁撹拌装置900では、上述した電磁撹拌装置100と比較して、鉄芯コア910において各本体部における鋳型30側の部分にティース部919(919a,919b,919c,919d)が一辺について1つのみ設けられる点が異なる。ゆえに、比較例に係る電磁撹拌装置900では、鉄芯コア910のティース部919及び当該ティース部919に巻回されるコイル930(930a,930b,930c,930d)により形成される磁極部920(920a,920b,920c,920d)が鋳型30の外側面の各々について1つ配置される。
 具体的には、長辺本体部111、短辺本体部112、長辺本体部113及び短辺本体部114における対応する鋳型板と対向する部分には、ティース部919a,919b,919c,919dがそれぞれ設けられる。また、ティース部919a,919b,919c,919dに対してコイル930a,930b,930c,930dがそれぞれ巻回される。それにより、磁極部920a,920b,920c,920dが形成される。長辺側ティース部919a,919cの長辺方向の幅X91は、625mmである。また、短辺側ティース部919b,919dの短辺方向の幅Y91は、520mmである。
 なお、比較例に係る電磁撹拌装置900において、上述した電磁撹拌装置100と同様に、鋳型30内に回転磁界を発生させるように、コイル930の配列順に位相を90°ずつずらして各コイル930に対して交流電流が印加される。それにより、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせる電磁力が付与され得る。
 本実施形態についての電磁場解析シミュレーションの条件は以下の通りである。なお、鉄芯コア110の材質をケイ素鋼板とし、鉄芯コア110内に渦電流が発生しないものとして電磁場解析シミュレーションを行った。
  鋳片の長辺方向の幅X11:456mm
  鋳片の短辺方向の幅Y11:339mm
  鋳型板の厚みT11:25mm
  長辺側ティース部の長辺方向の幅X1:240mm
  短辺側ティース部の短辺方向の幅Y1:190mm
  長辺側ティース部間の間隔X2:140mm
  短辺側ティース部間の間隔Y2:140mm
  鋳型長辺方向に対向する磁極部間の間隔X3:775mm
  鋳型短辺方向に対向する磁極部間の間隔Y3:670mm
  ティース部の上面と溶鋼の湯面との鉛直方向の距離Z1:280mm
  ティース部の下面と溶鋼の湯面との鉛直方向の距離Z2:580mm
  鋳型板の導電率:7.14×10S/m
  溶鋼の導電率:2.27×10S/m
  コイルにおける巻き線:36ターン
  コイルに印加される交流電流の電流値(実効値):640A
  コイルに印加される交流電流の電流周波数:1.8Hz
 また、比較例についての電磁場解析シミュレーションの条件は、本実施形態についての条件からX1、Y1、X2及びY2の条件を削除し、以下のX91及びY91の条件を追加した条件とした。
  長辺側ティース部の長辺方向の幅X91:625mm
  短辺側ティース部の短辺方向の幅Y91:520mm
 上記の電磁場解析シミュレーションの結果を、図7~図10に示す。図7は、本実施形態についての電磁場解析シミュレーションによって得られた、鉄芯コア110の鉛直方向中心位置の水平面内における鋳型30内の溶鋼2に付与される電磁力の分布の一例を示す図である。図8は、本実施形態についての電磁場解析シミュレーションによって得られた、長辺鋳型板33の内側面近傍における鋳型30内の溶鋼2に付与される電磁力の分布の一例を示す図である。図9は、比較例についての電磁場解析シミュレーションによって得られた、鉄芯コア910の鉛直方向中心位置の水平面内における鋳型30内の溶鋼2に付与される電磁力の分布の一例を示す図である。図10は、比較例についての電磁場解析シミュレーションによって得られた、長辺鋳型板33の内側面近傍における鋳型30内の溶鋼2に付与される電磁力の分布の一例を示す図である。図7~図10では、溶鋼2の単位体積当たりに作用する電磁力(N/m)をベクトル量として表したローレンツ力密度ベクトルが矢印によって示されている。
 比較例について、図9を参照すると、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせるように電磁力が分布していることが確認される。しかしながら、図10を参照すると、比較例では、比較的大きな鉛直方向成分を有する電磁力が確認される。例えば、鋳型30内の上方側の領域R1では、図10に示すように、上方向を向く電磁力が比較的多く確認される。また、鋳型30内の下方側の領域R2では、図10に示すように、下方向を向く電磁力が比較的多く確認される。具体的には、比較例についての電磁場解析シミュレーションの結果によれば、正方向及び負方向をそれぞれ上方向及び下方向と定義した場合、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分の最大値は479N/mであり、最小値は-378N/mであり、平均値は57N/mであった。
 ここで、図11を参照して、コイルにより発生する磁界における漏れ磁束について説明する。図11では、鋳型30の側方に位置する磁極部203が模式的に示されている。磁極部203は、鉄芯コアのティース部201及び当該ティース部201に巻回されたコイル202により形成される。
 コイル202に交流電流が印加されると、まず、磁束221が磁極部203から鋳型板230へ水平方向に入射する。それにより、鋳型板230を水平方向に通過する磁束が時間変化することに起因して、鋳型板230内に渦電流211が生じる。ここで、鋳型板230内に生じる渦電流211は、磁極部203から鋳型板230へ水平方向に入射する磁束221を弱める磁界を発生させる向きに流れる。ゆえに、鋳型板230から磁極部203へ水平方向に入射する磁束222が磁束221に作用することによって、磁極部203から鋳型板230へ水平方向に入射する磁束221が弱められる。それにより、磁極部203により発生する磁界において、磁極部203から鋳型板230へ水平方向に入射する磁束が弱められ、鉛直方向成分を有する漏れ磁束223が発生する。
 比較例では、このような漏れ磁束が比較的多く発生することに起因して、比較的大きな鉛直方向成分を有する電磁力が鋳型30内の溶鋼2に付与されるものと考えられる。
 本実施形態について、図7を参照すると、比較例と同様に、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせるように電磁力が分布していることが確認される。ここで、図8を参照すると、ローレンツ力密度ベクトルの各々が基本的に水平方向成分を主として有することが確認される。このように、本実施形態では、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分が比較例と比較して低減されていることが確認される。具体的には、本実施形態についての電磁場解析シミュレーションの結果によれば、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分の最大値は323N/mであり、最小値は-212N/mであり、平均値は7.5N/mであった。このことからも、本実施形態では、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分が比較例と比較して低減されていることがわかる。
 電磁撹拌装置の磁極部により発生する磁界において、上述したように、鋳型板において生じる渦電流に起因して漏れ磁束が発生する。ここで、磁極部から鋳型板へ水平方向に入射する磁束が強くなるほど、鋳型板において生じる渦電流が大きくなる。それにより、磁極部から鋳型板へ水平方向に入射する磁束が渦電流によって弱められる効果が大きくなる。ゆえに、磁極部から鋳型板へ水平方向に入射する磁束が強くなるほど、漏れ磁束が多く発生する。
 本実施形態に係る電磁撹拌装置100では、比較例と異なり、磁極部120が鋳型30の外側面の各々について鋳型30の周方向に沿って2つ配置される。ゆえに、1つあたりの磁極部120により発生させる磁界を弱めることができる。それにより、磁極部120から鋳型板へ水平方向に入射する磁束を弱めることができるので、漏れ磁束の発生を抑制することができる。このような理由から、本実施形態では、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分が比較例と比較して低減されると考えられる。
 ここで、図12を参照して、隣り合う磁界の相互作用について説明する。図12では、互いに逆向きの電流が流れる電線301及び電線302が模式的に示されている。電線301には、紙面表側から紙面裏側へ向けて電流が流れる。ゆえに、電線301の周囲には、紙面時計回りの磁界311が生じる。一方、電線302には、紙面裏側から紙面表側へ向けて電流が流れる。ゆえに、電線302の周囲には、紙面反時計回りの磁界312が生じる。
 電線301と電線302との間の距離が比較的長い距離L1である場合、電線301と電線302との間において磁界311及び磁界312は互いに強めあうので、電線301と電線302との間における磁束321は比較的強くなる。一方、電線301と電線302との間の距離が比較的短い距離L2である場合、電線301と電線302との間において磁界311及び磁界312は互いに打消しあうので、電線301と電線302との間における磁束322は比較的弱くなる。
 このように、互いに逆方向に流れる電流によって生じる隣り合う磁界が比較的近い場合、双方の磁界が互いに打ち消し合う効果を奏し得る。本実施形態に係る電磁撹拌装置100では、比較例と比較して、各磁極部120の鋳型30の周方向における幅が小さく、各コイル130において互いに逆方向に流れる電流の間の距離が短いので、隣り合う磁界が互いに打ち消し合う。そのため、各磁極部120から鋳型板へ入射する磁束は弱くなる。そのため、鋳型板に生じる渦電流は小さくなる。さらに、鋳型板に生じる渦電流の範囲についても鋳型30の周方向における幅が小さく、各渦電流において互いに逆方向に流れる電流の間の距離が短いので、隣り合う磁界が互いに打ち消し合う効果を奏し得る。その結果として、渦電流により発生する磁束を非常に弱くする効果を奏し得る。それにより、漏れ磁束の発生を抑制することができる。このような理由からも、本実施形態では、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分が比較例と比較して低減されると考えられる。
 なお、各磁極部120の鋳型30の周方向における幅を小さくするほど、鋳型板に生じる渦電流により発生する磁束を弱くする効果をより向上させることが期待される。しかしながら、各磁極部120の寸法が小さくなることにより1つあたりの磁極部120が発生可能な磁界が過剰に弱くなることによって、溶鋼2へ付与される電磁力を確保することが困難となる場合がある。例えば、磁極部120を鋳型30の外側面の各々について鋳型30の周方向に沿って3つ以上配置する場合、溶鋼2へ付与される電磁力を確保することが困難となるおそれがある。一方、磁極部120が鋳型30の外側面の各々について鋳型30の周方向に沿って2つ配置される本実施形態では、図7を参照して説明したように、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を生じさせるように電磁力が分布していることが確認された。
 上記のように、本実施形態に係る電磁撹拌装置100によれば、鋳型30内の溶鋼2に対して、鉛直軸回りの旋回流を生じさせるように電磁力を付与することができる。さらに、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分を低減することができる。ゆえに、製作するに際して閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程を不要とし、鋳型30内の溶鋼2に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能となる。
  (シミュレーション2)
 次に、本実施形態及び比較例の各々について、上述したシミュレーション条件からコイルに印加される交流電流の電流周波数を様々に変更しながら電磁場解析シミュレーションを行った。
 電磁場解析シミュレーションの結果を、図13、図14及び表1に示す。図13は、本実施形態及び比較例の各々についての電磁場解析シミュレーションによって得られた、電流周波数と鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分の平均値との関係性の一例を示す図である。図14は、本実施形態についての電磁場解析シミュレーションによって得られた、電流周波数と鋳型30内の溶鋼2に付与される平均電磁力との関係性の一例を示す図である。表1は本実施形態についての電磁場解析シミュレーションによって得られた、各電流周波数についての電磁力の鉛直方向成分の平均値及び平均電磁力の値を示す。なお、平均電磁力は、溶鋼2に付与される電磁力の絶対値(大きさ)の平均値に相当する。
Figure JPOXMLDOC01-appb-T000001
 図13を参照すると、本実施形態では、各電流周波数について、比較例と比較して、電磁力の鉛直方向成分の平均値が低くなっていることが確認された。このことから、本実施形態では、電流周波数によらず、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分が比較例と比較して低減されていることがわかる。
 図13及び表1を参照すると、電磁力の鉛直方向成分の平均値は、基本的に電流周波数が低くなるにつれて小さくなることがわかる。ここで、電流周波数が低いほど、磁極部120により発生する磁界は弱くなるので、磁極部120から鋳型板へ水平方向に入射する磁束が弱くなる。ゆえに、磁極部120により発生する磁界において漏れ磁束が発生することが抑制される。それにより、電流周波数が低くなるにつれて電磁力の鉛直方向成分の平均値が小さくなるものと考えられる。
 なお、本実施形態について、電磁力の鉛直方向成分の平均値は、電流周波数が4.3Hz近傍の場合に最大値をとり、電流周波数が4.3Hz近傍を超える領域において、電流周波数が高くなるにつれて緩やかに小さくなることがわかる。ここで、電流周波数が比較的高い場合、磁極部120から鋳型板へ水平方向に入射する磁束が鋳型板に生じる渦電流によって弱められる効果が大きくなることに起因して、磁極部120から鋳型板を通過して鋳型内へ到達する磁束が減少する。それにより、電流周波数が4.3Hz近傍を超える程度に高い領域において、電流周波数が高くなるにつれて電磁力の鉛直方向成分の平均値が緩やかに小さくなるものと考えられる。
 図14及び表1を参照すると、平均電磁力は、基本的に電流周波数が低くなるにつれて小さくなることがわかる。このことは、上述したように、電流周波数が低いほど磁極部120により発生する磁界が弱くなることに起因するものと考えられる。
 なお、本実施形態について、平均電磁力は、電流周波数が3.9Hz近傍の場合に最大値をとり、電流周波数が3.9Hz近傍を超える領域において、電流周波数が高くなるにつれて緩やかに小さくなることがわかる。このことは、上述したように、電流周波数が3.9Hz近傍を超える程度に高い領域において、磁極部120から鋳型板を通過して鋳型内へ到達する磁束が減少することに起因するものと考えられる。
 上記のように、電流周波数が低くなるにつれて、電磁力の鉛直方向成分の平均値が小さくなるので、鋳型30内の溶鋼2に生じる鉛直方向の流動を抑制する効果が大きくなる。一方、電流周波数が低くなるにつれて、平均電磁力が小さくなるので、鋳型30内の溶鋼2に対して旋回流を生じさせて溶鋼2を撹拌する効果が小さくなる。このように、溶鋼2に生じる鉛直方向の流動を抑制する効果と溶鋼2に対して旋回流を生じさせて溶鋼2を撹拌する効果との間には、トレードオフの関係がある。
 本実施形態において製造される鋳片の品質を確認するために行った実機試験の結果について説明する。具体的には、上述した本実施形態に係る電磁撹拌装置100と同様の構成を有する電磁撹拌装置を、実際に操業に用いている連続鋳造機(図1に示す連続鋳造機1と同様の構成を有するもの)に設置し、コイル130に印加する交流電流の電流周波数の値を様々に変更しながら連続鋳造を行った。そして、鋳造後に得られた鋳片について、表面品質及び内質を目視及び超音波探傷検査によってそれぞれ調査した。連続鋳造の条件は、以下の通りである。
  鋳片の長辺方向の幅X11:456mm
  鋳片の短辺方向の幅Y11:339mm
  鋳型板の厚みT11:25mm
  長辺側ティース部の長辺方向の幅X1:240mm
  短辺側ティース部の短辺方向の幅Y1:190mm
  長辺側ティース部間の間隔X2:140mm
  短辺側ティース部間の間隔Y2:140mm
  鋳型長辺方向に対向する磁極部間の間隔X3:775mm
  鋳型短辺方向に対向する磁極部間の間隔Y3:670mm
  ティース部の上面と溶鋼の湯面との鉛直方向の距離Z1:280mm
  ティース部の下面と溶鋼の湯面との鉛直方向の距離Z2:580mm
  コイルにおける巻き線:36ターン
  コイルに印加される交流電流の電流値(実効値):640A
  浸漬ノズル6の底面と溶鋼2の湯面との鉛直方向の距離Z11:250mm
  浸漬ノズル6の内径D11:90mm
  浸漬ノズル6の外径D12:145mm
  浸漬ノズル6の吐出孔61の底部からの高さZ12:85mm
  浸漬ノズル6の吐出孔61の幅D13:80mm
  浸漬ノズル6の吐出孔61の傾き:ノズル内側からノズル外側へ向かうにつれて上向きに15°
 実機試験の結果を表2に示す。表2においては、鋳片の品質について、欠陥がほぼ発見されず手入れが不要なレベルであった場合には「○」を、欠陥が発見され手入れが必要であった場合には「△」を、欠陥が多く発見され手入れを行った場合であっても品質厳格材としては使用不可であった場合には「×」を付すことにより表現している。
Figure JPOXMLDOC01-appb-T000002
 表2を参照すると、電流周波数が1.0Hz~6.0Hzである場合、鋳片の品質は表面品質及び内部品質の双方について良好であることが確認された。ゆえに、コイル130に対して1.0Hz~6.0Hzの交流電流を印加することによって、鋳片の品質を効果的に向上させることができることがわかる。これは、電流周波数が1.0Hz~6.0Hzである場合、溶鋼2に生じる鉛直方向の流動を抑制する効果及び溶鋼2に対して旋回流を生じさせて溶鋼2を撹拌する効果の双方が効果的に得られることによるものと考えられる。
 ところで、鋳型30内の溶鋼2に付与される平均電磁力は、上述したように、電流周波数が3.9Hz近傍を超える領域において、電流周波数が高くなるにつれて緩やかに小さくなる。また、電磁撹拌装置100における消費電力は、電流周波数が高いほど大きくなるため、電流周波数を4.0Hzよりも高くする利点は認められない。ゆえに、コイル130に対して1.0Hz~4.0Hzの交流電流を印加することによって、鋳片の品質を効果的に向上させつつ、消費電力を抑制することができる。
 本実施形態において鋳型30内の溶鋼2に生じる流動をさらに詳細に確認するために行った熱流動解析シミュレーションの結果について説明する。
  (シミュレーション1)
 電流周波数を1.2Hzに設定して行った本実施形態に係る電磁撹拌装置100についての上述した電磁場解析シミュレーションによって得られた溶鋼2に付与される電磁力の分布の結果を用いて、熱流動解析シミュレーションを行った。
 本実施形態についての熱流動解析シミュレーションの条件は以下の通りである。
  鋳片の長辺方向の幅X11:456mm
  鋳片の短辺方向の幅Y11:339mm
  浸漬ノズル6の底面と溶鋼2の湯面との鉛直方向の距離Z11:250mm
  浸漬ノズル6の内径D11:90mm
  浸漬ノズル6の外径D12:145mm
  浸漬ノズル6の吐出孔61の底部からの高さZ12:85mm
  浸漬ノズル6の吐出孔61の幅D13:80mm
  浸漬ノズル6の吐出孔61の傾き:ノズル内側からノズル外側へ向かうにつれて上向きに15°
  鋳造速度(鋳片が引き抜かれる速度):0.6m/min
 上記の熱流動解析シミュレーションの結果を、図15~図17に示す。図15は、本実施形態についての熱流動解析シミュレーションによって得られた、浸漬ノズル6の中心線を通り鋳型の長辺方向に平行な断面内における鋳型30内の溶鋼2の温度及び撹拌流速の分布の一例を示す図である。図16は、本実施形態についての熱流動解析シミュレーションによって得られた、湯面から下方に50mm離れた水平面(鉄芯コア110より上方の水平面)内における鋳型30内の溶鋼2の温度及び撹拌流速の分布の一例を示す図である。図17は、本実施形態についての熱流動解析シミュレーションによって得られた、湯面から下方に430mm離れた水平面(鉄芯コア110の鉛直方向中心位置の水平面)内における鋳型30内の溶鋼2の温度及び撹拌流速の分布の一例を示す図である。図15~図17では、溶鋼2の各位置についての流速(m/s)をベクトル量として表した流束ベクトルが矢印によって示されている。また、図15~図17では、グレースケールの濃淡によって温度分布が示されており、濃い部分ほど温度が高い領域であることを示している。
 図15を参照すると、浸漬ノズル6内を通って鋳型30内へ送られた溶鋼2が吐出孔61から水平方向に吐出されている様子が確認される。また、図16及び図17を参照すると、溶鋼2が吐出孔61から吐出され後において鉛直軸回りに撹拌されている様子が確認される。具体的には、図17を参照すると、鉄芯コア110の鉛直方向中心位置の水平面内において、鋳型30内の溶鋼2に鉛直軸回りの旋回流が生じている様子が確認される。さらに、図16を参照すると、鉄芯コア110より上方の水平面内においても、鋳型30内の溶鋼2に鉛直軸回りの旋回流が生じている様子が同様に確認される。
 上記のように、本実施形態に係る電磁撹拌装置100によれば、鋳型30内の溶鋼2に対して鉛直軸回りの旋回流を適切に生じさせることが可能であることがより詳細に確認された。
  (シミュレーション2)
 次に、電流周波数を様々に変更しながら行った本実施形態についての電磁場解析シミュレーションの結果の各々を用いた熱流動解析シミュレーションを行った。具体的には、電流周波数を1.0Hz、1.8Hz、2.5Hz、4.0Hzにそれぞれ設定した場合の本実施形態についての電磁場解析シミュレーションの結果の各々を用いた熱流動解析シミュレーションを行った。なお、比較対象として、電流周波数を1.8Hzに設定して行った比較例についての電磁場解析シミュレーションの結果を用いた熱流動解析シミュレーションも行った。
 熱流動解析シミュレーションの結果を、図18に示す。図18は、本実施形態及び比較例の各々についての熱流動解析シミュレーションによって得られた、湯面からの距離と鋳型30内の溶鋼2の撹拌流速との関係性の一例を示す図である。具体的には、図18では、電流周波数を1.0Hz、1.8Hz、2.5Hz、4.0Hzにそれぞれ設定した場合の本実施形態についての結果と、比較例についての結果とがそれぞれ示されている。図18において、撹拌流速が負の値をとる場合は、電磁撹拌装置により発生した回転磁界の回転方向と反対方向に溶鋼2が流動している場合に相当する。
 本実施形態について、図18を参照すると、鉄芯コアの上面から下面の間の領域では、0.15m/s~0.4m/sの撹拌流速が生じていることが各電流周波数において確認される。さらに、鉄芯コアより上方の領域では、0.1m/s~0.35m/sの撹拌流速が生じていることが各電流周波数において確認される。
 一方、比較例について、図18を参照すると、鉄芯コアの上面から下面の間の領域では、0.15m/s~0.4m/sの撹拌流速が生じていることが確認される。しかしながら、鉄芯コアより上方の領域では、本実施形態と比較して、撹拌流速が顕著に低下していることが確認される。特に、湯面近傍の領域では、撹拌流速が負の値に転じていることが確認される。このことは、比較例では、溶鋼2において鉛直方向の流動が比較的生じやすいので、溶鋼2の鉛直方向の流動によって鉛直軸回りの旋回流が抑制されたことによるものと考えられる。
 上記のように、本実施形態では、鋳型30内の鉄芯コア110より上方の領域においても溶鋼2に撹拌流速を十分に生じさせることができることが確認された。このように、本実施形態では、鋳型30内の溶鋼2に鉛直軸回りの旋回流を適切に生じさせることができることが確認された。特に、コイル130に対して1.0Hz~4.0Hzの交流電流を印加した場合において、鋳型30内の溶鋼2に鉛直軸回りの旋回流を適切に生じさせることができることが確認された。
 <4.まとめ>
 以上説明したように、本実施形態に係る電磁撹拌装置100では、鉄芯コア110は、鋳型30の外側面の各々について外側面と対向して鋳型30の周方向に沿って2つ並設されるティース部119を有する。ゆえに、本実施形態に係る電磁撹拌装置100では、鉄芯コア110のティース部119及び当該ティース部119に巻回されるコイル130により形成される磁極部120が鋳型30の外側面の各々について鋳型30の周方向に沿って2つ配置される。それにより、磁極部120から鋳型板へ入射する磁束によって鋳型板に生じる渦電流により発生する磁束を非常に弱くする効果を奏することができる。ゆえに、漏れ磁束の発生を抑制することができる。よって、鋳型30内の溶鋼2に付与される電磁力の鉛直方向成分を低減しつつ、溶鋼2に対して鉛直軸回りの旋回流を生じさせるように電磁力を付与することができる。したがって、製作するに際して閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程を不要とし、鋳型30内の溶鋼2に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能となる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は係る例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は応用例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲
に属するものと了解される。
 本発明によれば、製作するに際して閉ループを形成する鉄芯コアの延在方向と同軸回りに当該鉄芯コアにコイルを巻回する工程を不要とし、鋳型内の溶融金属に対して、鉛直方向の流動を抑制しつつ、鉛直軸回りの旋回流を適切に生じさせることが可能な電磁撹拌装置を提供することができる。
1 連続鋳造機
2 溶鋼
3 鋳片
3a 凝固シェル
3b 未凝固部
4 取鍋
5 タンディッシュ
6 浸漬ノズル
7 二次冷却装置
8 鋳片切断機
9 二次冷却帯
11 サポートロール
12 ピンチロール
13 セグメントロール
14 鋳片
15 テーブルロール
30 鋳型
31,33 長辺鋳型板
32,34 短辺鋳型板
61 吐出孔
100 電磁撹拌装置
110 鉄芯コア
111,113 長辺本体部
112,114 短辺本体部
119 ティース部
120 磁極部
130 コイル
150 電源装置
170 ケース

Claims (2)

  1.  連続鋳造用の四角筒状の鋳型内に回転磁界を発生させることによって、前記鋳型内の溶融金属に対して鉛直軸回りの旋回流を生じさせる電磁力を付与する電磁撹拌装置であって、
     前記鋳型の側方において前記鋳型を囲み、前記鋳型の外側面の各々について前記外側面と対向して前記鋳型の周方向に沿って2つ並設されるティース部を有する鉄芯コアと、
     前記鉄芯コアの前記ティース部の各々に巻回されるコイルと、
     前記回転磁界を発生させるように、前記コイルの配列順に位相を90°ずつずらして前記コイルの各々に対して交流電流を印加する電源装置と、
    を備えることを特徴とする電磁撹拌装置。
  2.  前記電源装置は、1.0Hz~4.0Hzの交流電流を前記コイルの各々に対して印加することを特徴とする請求項1に記載の電磁撹拌装置。
PCT/JP2019/017427 2018-05-08 2019-04-24 電磁攪拌装置 WO2019216222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980029642.5A CN112074359B (zh) 2018-05-08 2019-04-24 电磁搅拌装置
KR1020207030933A KR102354306B1 (ko) 2018-05-08 2019-04-24 전자 교반 장치
US17/052,124 US11478846B2 (en) 2018-05-08 2019-04-24 Electromagnetic stirring device
JP2020518249A JP6930660B2 (ja) 2018-05-08 2019-04-24 電磁攪拌装置
BR112020020560-5A BR112020020560B1 (pt) 2018-05-08 2019-04-24 Dispositivo de agitação eletromagnética

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018090208 2018-05-08
JP2018-090208 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019216222A1 true WO2019216222A1 (ja) 2019-11-14

Family

ID=68468275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017427 WO2019216222A1 (ja) 2018-05-08 2019-04-24 電磁攪拌装置

Country Status (6)

Country Link
US (1) US11478846B2 (ja)
JP (1) JP6930660B2 (ja)
KR (1) KR102354306B1 (ja)
CN (1) CN112074359B (ja)
TW (1) TW201946710A (ja)
WO (1) WO2019216222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281096A (zh) * 2020-10-10 2021-01-29 内蒙古科技大学 一种电磁能晶粒细化装置及铝合金晶粒细化的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080631A1 (ko) 2020-10-16 2022-04-21 (주) 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
US20240042515A1 (en) * 2020-12-25 2024-02-08 Jfe Steel Corporation Continuous casting method of steel
CN115647335A (zh) * 2022-10-26 2023-01-31 山东大学 一种多物理场耦合作用的金属凝固装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103263A (en) * 1979-01-30 1980-08-07 Cem Comp Electro Mec Electromagnetic induction device for generating spiral field
JPS63286257A (ja) * 1987-05-19 1988-11-22 Sumitomo Metal Ind Ltd 電磁撹拌方法
US4877079A (en) * 1987-10-09 1989-10-31 Westinghouse Electric Corp. Counterflow electromagnetic stirring method and apparatus for continuous casting
JP2001179409A (ja) * 1999-12-24 2001-07-03 Kobe Steel Ltd 電磁撹拌装置
JP2004058092A (ja) * 2002-07-29 2004-02-26 Jfe Steel Kk 鋼の連続鋳造方法
JP2018103198A (ja) * 2016-12-22 2018-07-05 株式会社神戸製鋼所 連続鋳造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834305A1 (de) * 1978-08-03 1980-02-14 Aeg Elotherm Gmbh Einrichtung zum elektromagnetischen ruehren der fluessigen schmelze in einer stranggiessanlage
JPS5851779B2 (ja) * 1980-04-01 1983-11-18 株式会社神戸製鋼所 連続鋳造設備における溶鋼撹拌方法
GB2109724A (en) * 1981-11-20 1983-06-08 British Steel Corp Improvements in or relating to electromagnetic stirring in the continuous casting of steel
JPS58215254A (ja) * 1982-06-08 1983-12-14 Kawasaki Steel Corp 連続鋳造用鋳型の下方に配設される電磁攪拌装置
JPS58215250A (ja) 1982-06-09 1983-12-14 Toshiba Corp 回転磁界形電磁撹拌器
JPS6024254A (ja) * 1983-07-19 1985-02-06 Mitsubishi Electric Corp 連続鋳造設備における電磁撹拌装置
JPS61199559A (ja) * 1985-03-01 1986-09-04 Sumitomo Metal Ind Ltd 連続鋳造設備における電磁撹拌装置
JPS63252651A (ja) 1987-04-06 1988-10-19 Mitsubishi Heavy Ind Ltd 電磁撹拌装置
IT1221724B (it) * 1987-11-24 1990-07-12 Danieli Off Mecc Dispositivo potenziatore del campo magnetico in lingottiera
JPH01271056A (ja) * 1988-04-22 1989-10-30 Shinko Electric Co Ltd 電磁攪拌装置
JPH049255A (ja) 1990-04-25 1992-01-14 Sumitomo Metal Ind Ltd 連続鋳造方法
JP3102967B2 (ja) 1993-04-23 2000-10-23 新日本製鐵株式会社 連続鋳造用鋳型の溶湯の制動方法およびブレーキ兼用電磁撹拌装置
SE513627C2 (sv) * 1994-12-15 2000-10-09 Abb Ab Sätt och anordning vid gjutning i kokill
JP3132987B2 (ja) * 1995-07-19 2001-02-05 三菱重工業株式会社 金属片の連続鋳造方法及び金属片の連続鋳造用電磁ブレーキ装置
JP3570601B2 (ja) * 1997-02-20 2004-09-29 株式会社安川電機 電磁攪拌装置
JP2000052006A (ja) * 1998-08-13 2000-02-22 Mitsubishi Heavy Ind Ltd 金属片の連続鋳造装置および連続鋳造方法
SE516850C2 (sv) * 2000-07-05 2002-03-12 Abb Ab Förfarande och anordning för styrning av omröring i en gjutsträng
KR100419757B1 (ko) * 2001-08-22 2004-02-21 김춘식 연속주조장치에 있어서의 전자기 교반장치
KR100553577B1 (ko) * 2002-12-23 2006-02-22 주식회사 포스코 몰드 주위에 자기장 스크린체를 구비한 연속 주조기
JP2005066613A (ja) * 2003-08-21 2005-03-17 Yaskawa Electric Corp 電磁攪拌装置
JP4441435B2 (ja) * 2005-04-12 2010-03-31 新日本製鐵株式会社 直線移動磁界式の電磁撹拌装置
JP5076465B2 (ja) 2006-11-30 2012-11-21 Jfeスチール株式会社 鋼の連続鋳造方法及び設備
JP4967856B2 (ja) * 2007-06-28 2012-07-04 住友金属工業株式会社 鋼の連続鋳造方法
JP5167867B2 (ja) 2008-03-03 2013-03-21 新日鐵住金株式会社 表面性状に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP5604970B2 (ja) 2009-05-20 2014-10-15 新日鐵住金株式会社 表面性状に優れた合金化溶融亜鉛めっき鋼板の製造方法
CN105728679B (zh) * 2016-04-26 2017-05-03 湖南中科电气股份有限公司 具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法
CN107116191B (zh) * 2017-05-15 2020-09-29 东北大学 一种复合式螺旋电磁搅拌器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103263A (en) * 1979-01-30 1980-08-07 Cem Comp Electro Mec Electromagnetic induction device for generating spiral field
JPS63286257A (ja) * 1987-05-19 1988-11-22 Sumitomo Metal Ind Ltd 電磁撹拌方法
US4877079A (en) * 1987-10-09 1989-10-31 Westinghouse Electric Corp. Counterflow electromagnetic stirring method and apparatus for continuous casting
JP2001179409A (ja) * 1999-12-24 2001-07-03 Kobe Steel Ltd 電磁撹拌装置
JP2004058092A (ja) * 2002-07-29 2004-02-26 Jfe Steel Kk 鋼の連続鋳造方法
JP2018103198A (ja) * 2016-12-22 2018-07-05 株式会社神戸製鋼所 連続鋳造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281096A (zh) * 2020-10-10 2021-01-29 内蒙古科技大学 一种电磁能晶粒细化装置及铝合金晶粒细化的方法
CN112281096B (zh) * 2020-10-10 2022-03-04 内蒙古科技大学 一种电磁能晶粒细化装置及铝合金晶粒细化的方法

Also Published As

Publication number Publication date
KR102354306B1 (ko) 2022-01-21
CN112074359A (zh) 2020-12-11
JPWO2019216222A1 (ja) 2021-02-12
CN112074359B (zh) 2022-03-18
US20210138534A1 (en) 2021-05-13
BR112020020560A2 (pt) 2021-01-12
US11478846B2 (en) 2022-10-25
TW201946710A (zh) 2019-12-16
KR20200134309A (ko) 2020-12-01
JP6930660B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2019216222A1 (ja) 電磁攪拌装置
US20080164004A1 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
JP5321528B2 (ja) 鋼の連続鋳造用装置
JP4441435B2 (ja) 直線移動磁界式の電磁撹拌装置
JP4591156B2 (ja) 鋼の連続鋳造方法
JP5565538B1 (ja) 電磁攪拌装置及び連続鋳造方法
JP4669367B2 (ja) 溶鋼流動制御装置
WO2019164004A1 (ja) 鋳型設備
JP2005238276A (ja) 電磁攪拌鋳造装置
JP7436820B2 (ja) 連続鋳造方法
JP7265129B2 (ja) 連続鋳造方法
JP2006110598A (ja) 電磁攪拌コイル
JP6915747B2 (ja) 鋳型設備及び連続鋳造方法
JP5124873B2 (ja) スラブの連続鋳造方法
JP2018061976A (ja) 電磁ブレーキ装置及び連続鋳造方法
JP2008173644A (ja) 連続鋳造鋳型用電磁コイル
JP2010264483A (ja) 鋳型内とその下方に亘って気泡介在物洗浄効果が得られる、ブルームの連続鋳造方法
JP2002120052A (ja) 鋳型内溶鋼流動制御装置ならびに方法
BR112020020560B1 (pt) Dispositivo de agitação eletromagnética
JP5359653B2 (ja) 鋼の連続鋳造方法
JP5018144B2 (ja) 鋼の連続鋳造方法
JP2020175416A (ja) 鋳型設備及び連続鋳造方法
JP5079663B2 (ja) 鋳型狭面の上昇流に対して静磁場を作用させるスラブの連続鋳造方法
JP2020157330A (ja) 連続鋳造方法
JPH07204787A (ja) 金属の連続鋳造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518249

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020020560

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207030933

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020020560

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201007

122 Ep: pct application non-entry in european phase

Ref document number: 19800159

Country of ref document: EP

Kind code of ref document: A1