JP2018103198A - 連続鋳造方法 - Google Patents

連続鋳造方法 Download PDF

Info

Publication number
JP2018103198A
JP2018103198A JP2016249754A JP2016249754A JP2018103198A JP 2018103198 A JP2018103198 A JP 2018103198A JP 2016249754 A JP2016249754 A JP 2016249754A JP 2016249754 A JP2016249754 A JP 2016249754A JP 2018103198 A JP2018103198 A JP 2018103198A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
molten steel
bubbles
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016249754A
Other languages
English (en)
Inventor
森下 雅史
Masafumi Morishita
雅史 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016249754A priority Critical patent/JP2018103198A/ja
Publication of JP2018103198A publication Critical patent/JP2018103198A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】凝固界面付近の気泡及び介在物を十分に洗い流しつつ、フラックスの巻き込みを抑止する。【解決手段】電磁撹拌装置3により、鋳型1内においてメニスカスからの距離が0.25m以下の溶鋼に交流移動磁場を発生させる。鋳型1内の交流移動磁場の磁束密度の最大値Bmaxを0.15T以上0.20T以下とし、下記式で表される位相速度Vを0.3m/s以上1.0m/s以下とする。V=2・f・Pここで、fは交流移動磁場の周波数(Hz)であり、Pはポールピッチ(m)である。【選択図】図1

Description

本発明は、鋳型内溶鋼に磁場を発生させる連続鋳造方法に関する。
従来より、鋳型内溶鋼に移動磁場を発生させ、水平方向に旋回撹拌流を形成することで、凝固界面に到達して凝固殻に捕捉されかかった気泡及び介在物を洗い流している。これにより鋳片表層部の品質を高めることができる(特許文献1参照)。
特開2007−98398号公報
しかし、本発明者の研究から、鋳型内溶鋼に移動磁場を発生させても、気泡及び介在物を十分に洗い流すことができないことがわかった。また、気泡及び介在物を洗い流すことだけを目的に移動磁場の磁束密度の大きさを決定すると、凝固界面から離れた溶鋼本体の最大流速が過大になり、溶鋼湯面が乱れ、溶鋼湯面上に浮いたフラックスを巻き込むことがある。
そこで、本発明の目的は、鋳型内において、凝固界面に到達した気泡及び介在物が凝固殻に捕捉されないように十分に洗い流しつつ、フラックスの巻き込みを抑止する方法を提供することである。
本発明の連続鋳造方法は、鋳型の互いに対向する1対の長辺部に沿って配置された電磁撹拌装置を用いたスラブの連続鋳造方法であり、前記電磁撹拌装置により、メニスカスからの距離が0.25m以下の溶鋼に、時間軸に対して磁束密度を正弦波状に振動させ、且つ、磁束密度のピーク位置が鋳型の長辺に平行な方向に移動する交流移動磁場を、静磁場と重畳させることなく単独で発生させ、前記1対の長辺部のうち一方の長辺部と他方の長辺部とで、交流移動磁場の移動方向を互いに逆向きにする事で溶鋼を旋回撹拌し、鋳型内の交流移動磁場の磁束密度の最大値Bmaxを0.15T以上0.20T以下とし、下記式で算出される交流移動磁場の位相速度Vを0.3m/s以上1.0m/s以下とする。
V=2・f・P
ここで、fは交流移動磁場の周波数(Hz)である。
本発明では、上記条件で鋳型内溶鋼に交流移動磁場を発生させることで、凝固界面付近の気泡及び介在物を十分に洗い流しつつ、フラックスの巻き込みを抑止することができる。これにより気泡及び介在物欠陥を低減できるとともにフラックス欠陥を低減できるため、高品質な鋳片を製造することができる。
連続鋳造機の構成の一部を示す斜視図である。 鋳型及び電磁撹拌装置の平面図(図1のII矢視図)ある。 電磁撹拌装置の他の例を示す平面図である。 電磁撹拌装置の他の例を示す平面図である。 連続鋳造機の構成の一部を示す模式断面図(図1のIV-IVの面における断面図)である。 従来の鋳型内溶鋼の流速分布を示す図である。 従来の鋳型内溶鋼と他の鋳型内溶鋼の流速分布を示す図である。 実験の調査方法を説明する図である。 実験調査方法を説明する図であり、図7Aに示すサンプルの1つの拡大正面図である。 電磁撹拌装置の変形例を示す平面図である。 電磁撹拌装置の他の変形例を示す平面図である。
以下、本発明の好適な実施形態について説明する。
連続鋳造機の鋳型1は、図1に示すように、互いに対向する一対の長辺部11,12と、互いに対向する一対の短辺部13,14とを有する。鋳型1の中央付近には浸漬ノズル2の下部が配置されている。また、電磁撹拌装置3が一対の長辺部11,12に沿って配置されている。
図2には、3相電流を用い、ポール数N=6で、極間巻きの電磁撹拌装置を用いた場合を図示している。電磁撹拌装置3は、長辺部11に沿って配置された第1リニアモータ3aと、長辺部12に沿って配置された第2リニアモータ3bとを有する。第1リニアモータ3aは、鋳型1の平面視において電磁撹拌装置3の長辺に平行な方向に延在した鉄芯21と、鉄芯21に巻回された複数のコイル22−1,22−2,・・・,22−18とを有する。各コイルは、鋳型1の平面視において電磁撹拌装置3の長辺に平行な方向に配置されている。第2リニアモータ3bは、第1リニアモータ3aと同様な構成であり、鉄心31と、鉄心31に巻回された複数のコイル32−1,32−2,32−2,・・・,32−17,32−18とを有する。各コイルには図示しない交流電源が接続されている。以後、概略長方形である鋳型内鋳片横断面の長辺に平行な方向(鋳型の平面視において長辺に平行な方向)を長辺方向(幅方向)、鋳型長辺方向、又は単に長辺方向と呼ぶ。
電磁撹拌装置には、2相の電流や3相の電流を用いる方式などがある。2相電流を用いる電磁撹拌装置は90°ずつ位相が異なる電流コイル4つで、移動磁場のN極とS極を一組形成するものであり、N極の位置は夫々の電流コイルに通電する交流電流の位相が90°変化する毎にコイル電流の中心間隔Cに相当する距離だけ移動する。これに対して3相の電磁撹拌装置は60°ずつ位相が異なる電流コイル6つで、移動磁場のN極とS極を一組形成するものであり、N極の位置は夫々の電流コイルに通電する交流電流の位相が60°変化する毎に、コイル電流の中心間隔C(例えば図2の中心間隔C参照)に相当する距離だけ移動する。スラブの連続鋳造用電磁撹拌装置では、鋳型長辺方向(幅方向)に電流コイルを多数並べることにより、N極とS極とが交互に配置される。
尚、電磁撹拌装置には、図3Aに示すように、電流が鉄芯121の本体部121Tを周回するように電流コイル122−1,122−2・・・,122−18を配置する極間巻き方式と、図3Bに示すように、鉄芯221の本体221Tから溶鋼側に櫛の歯状に突き出した鉄芯突極部221a,221b・・・,221rを電流が周回するように電流コイル222−1,222−2・・・,222−18を配置する突極巻き方式がある。図2及び図3Aにはいずれも極間巻き方式の装置を示しているが、図2ではコイル間に鉄芯の突極部が設けられていない例を示し、図3Aではコイル間に鉄芯の突極部を有する例を示している。本発明は極間巻き方式に限定されるものではなく、突極巻き方式を用いても良い。また、極間巻き方式を用いるときは、図3Aに示すように鉄芯121に櫛の歯状の突極121a,121b・・・を設ける方式を用いてもよく、図2に示すように突極を設けない方式を用いても良い。
各コイルに交流電流を流すと、鋳型1内の溶鋼に交流移動磁場が発生する。この磁場は、時間軸に対して磁束密度が正弦波状に振動し、且つ、磁束密度の位置が電磁撹拌装置3の長辺に平行な長辺方向に互いに逆向きに移動する磁場である。これにより長辺部11近傍の溶鋼と長辺部12近傍の溶鋼とが電磁撹拌装置3の長辺に平行な方向(長辺方向)に互いに逆向きに駆動されて、溶鋼が旋回撹拌される。図2には、3相電流を用い、ポール数N=6で、極間巻きで鉄芯21に突極を設けない方式の電磁撹拌装置を使用する場合を例として、ある時点を基準(電流の位相=0°)として、その時点での磁極の位置と、電流の位相が進んだときに磁力線が移動する方向、および、溶鋼が、移動磁場に駆動されて撹拌される方向を示している。2相電流、3相電流、何れを用いた場合でも、電流の位相が180°変化すると、N極とS極の位置が入れ替わり、電流の位相が360°変化すると、N極とS極の位置が電流の位相が0°だった元の状態と同じ位置に戻る。電流の位相が0°から360°まで変化する所要時間が周期T(s)、周期Tの逆数、f=1/T(Hz、1/s)が周波数なので、磁場が(磁束密度のピーク位置が)、距離Pだけ移動して、N極とS極の位置が入れ替わる所要時間は、T/2=1/(2・f)となり、磁場の移動速度(位相速度)Vは、V=2・P・fと表される。
なお、鋳型1内の溶鋼に、交流移動磁場に重畳して静磁場を発生させなくてよい。交流移動磁場を単独で発生させることで、静磁場を重畳して発生させる場合に比べて、電磁撹拌装置3の構造が複雑化せず、消費電力の低減及び設備コスト低減を図ることができる。
図2に示すように、鋳型長辺方向(幅方向)に隣り合うN極とS極の間の距離をP(m)、電流コイル中心間距離をC(m)とすると、2相の電磁撹拌装置ではP=2・Cとなり、3相の電磁撹拌装置ではP=3・Cとなる。
図2に示すW(m)は、鋳型長辺方向に並んだ電流コイルの数Nc(−)と、鋳型長辺方向に隣り合う電流コイルの中心間隔C(m)とを用いて、W=Nc・Cと表す事ができる。図3A及び図3BにもW(=Nc・C)の範囲を示している。以下では、Wを鋳型内電磁撹拌装置の鋳型長辺方向長さWと呼ぶことがある。
鋳型内電磁撹拌装置の鋳型長辺方向長さW(m)とポールピッチ(隣り合うN極とS極の間の距離)P(m)から、ポール数N(−)は下記式で表される。
N=W/P
連続鋳造鋳片では、鋳片幅方向両端部(鋳型長辺方向の両端部に対応)にも気泡が捕捉される事があるので、Wは鋳型幅以上確保する事が望ましく、鋳型幅が可変の場合、Wは最大鋳型幅と同等以上確保する事が望ましい。
一般的に、各リニアモータではN極とS極の数が等しいため、ポール数Nは偶数である。ポール数Nは特に限定されないが、4以上とすることが好ましく、例えば4以上12以下とする。
図4に示すように、鋳型1内の溶鋼5上には、フラックス6が浮遊している。溶鋼5が鋳型1によって冷却されることで、鋳型1の壁面に沿って凝固殻7が形成されている。鋳型内に注入される溶鋼には、注入ノズルの閉塞を防止する目的で、Ar等の不活性ガスが吹き込まれる事が多く、吹き込まれたガス気泡や、もともと溶鋼中に存在した介在物8の一部は、凝固殻の溶鋼側表面(凝固界面)9に到達し、凝固界面9に接触する。凝固界面に気泡や介在物が界面に接触したまま凝固が進行すると、気泡や介在物が凝固殻に捕捉され、鋳片に気泡や介在物が残り、製品の欠陥の原因となる。
電磁撹拌装置3は、鋳型内のメニスカスレベルが±30mm程度変化してもメニスカスからの距離が0.25m以下の領域Rの溶鋼に交流移動磁場が発生するように配置されている。領域Rは鋳片表面から7mmの範囲が凝固する領域であり、この範囲に気泡及び介在物が存在するとスリバー欠陥となり得る。そこで領域Rに磁場を発生させて、領域Rの凝固界面9に接触して捕捉されかかった気泡及び介在物8を洗い流す。なお、鋳片表面から深さ1mm未満の最表層には、電磁撹拌を適用しても気泡・介在物が残存する事があるが、鋳片表面から深さ1mm未満の領域に存在する気泡及び介在物は、圧延前に加熱炉中で酸化除去されて無害化されるので、気泡の評価対象から除外することができる。また鋳片表面から7mm以上深い領域の気泡・介在物は、鋼板製品の表面に露出しにくく、スリバー欠陥となりにくいので、メニスカスからの距離が0.25m以上の溶鋼に交流移動磁場を発生させる意義はより小さくなるが、メニスカスからの距離が0.25m以下の領域の溶鋼だけでなく、0.25m以上の領域の溶鋼に磁場が発生してもよい。
図5には、従来法で撹拌したときの鋳型1内で領域Rに位置する溶鋼の鋳型短辺に平行な方向全体の流速分布と、凝固界面近傍部のみを拡大した流速分布を示している。図5の縦軸は溶鋼流速であり、横軸は鋳型の一対の長辺部11,12間における凝固界面間の距離(例えば図4のA地点からB地点まで)を示しており、拡大図はA地点の近傍の流速分布である。
連続鋳造における凝固界面のような壁面近傍には、壁面から遠い主流部とは異なる境界層流れが生じる。境界層の中には、流速が壁面からの距離に比例する粘性底層や、流速が壁面からの距離の対数と直線関係にある遷移層等が存在する事が知られているが、ここでは、後で説明するハルトマン境界層における境界層厚みの表現方法に合わせて、境界層外の主流の最大流速Uと境界層内の流速vとの差U−vが主流の最大流速Uの1/eとなる位置((U−v)/U=1/eとなる位置)までの壁からの距離を境界層厚みδと表す事にする。ただし、eは自然対数の底(e=2.71828・・・)である。
気泡・介在物が、溶鋼の流れに乗って凝固界面に到達して接触したとき、接触点における溶鋼と凝固殻の相対速度はゼロであるが、気泡・介在物の接触点と正反対側(主流に近い側)の点においては凝固殻と溶鋼の相対速度がゼロではなく、気泡・介在物を流し続けようとする抗力が働く。凝固界面近傍の境界層内では溶鋼の速度勾配が大きいため、気泡・介在物の直径が境界層厚みδに比べて十分に大きい場合(d2≫δ)は、気泡・介在物の主流側表面の流速upaも大きくなり、気泡・介在物が凝固殻に捕捉されないように容易に洗い流される。一方、気泡・介在物の直径が境界層厚みに比べ、はるかに小さい時(d1≪δ)は、気泡・介在物の主流側表面における流速upbすら十分ではなくなり、洗い流すことが難しくなる。
本発明者の研究から、従来の電磁撹拌における流速分布では、極めて重篤な欠陥の原因となる直径3mm以上の気泡・介在物が凝固界面に接したときには、気泡・介在物の主流側表面における溶鋼流速は洗い流しに十分な流速となるが、極めてとは言わないまでも重篤な欠陥原因となり得る直径1mm程度の気泡・介在物が凝固界面に接したときには、十分に洗い流すことができないことがわかった。そしてこれが原因で重篤なスリバー欠陥が生じることがわかった。
磁場が作用しない境界層流れについては、流速が壁面からの距離に比例する粘性底層や、粘性底層と主流部の間に遷移層が存在する事が知られているが、簡単のため、遷移層を無視して、壁に相当する凝固界面と、主流との間に、流速が凝固界面からの距離に比例して変化する境界層のみが存在する単純な境界モデルを採用して近似すると、気泡・介在物の直径が、境界層の厚みより小さいとき、凝固界面に接した気泡・介在物の主流側表面における溶鋼流速upは、先に定義した境界層の厚みδを用いて、以下のように表される。
up=(du/dy)・d ≒ U・(e−1)/e/δ・d
ここで、du/dy:境界層内の速度勾配
d:気泡・介在物の直径
U:境界層外の最大流速
δ:凝固界面から主流までの境界層の厚み
d:気泡・介在物の直径
e:自然対数の底
である。
凝固界面に接した気泡・介在物を洗い流すためには、upを大きくする必要がある。上記式においてUとdが一定の条件下でupを大きくするためには、du/dyを大きくする、すなわち、境界層厚みδを小さくする必要がある。
他方、壁面近傍を溶鋼のような導電性の液体が流れ、壁面に垂直で強い静磁場が作用する場合は、壁面近傍にハルトマン境界層と呼ばれる境界層が形成される事が知られており、ハルトマン境界層厚みδH(m)は、静磁場の磁束密度B(T)、導電性流体の電気伝導度σ(S/m)、導電性流体の粘性係数μ(Pa・s)を用いて、
δH=1/(B・(σ/μ)0.5)・・・(1)
と見積もられる。
ハルトマン境界層が形成されている場合でも、壁面(この場合は凝固界面)に接触した気泡・介在物の主流側表面における流速を大きくするためには、境界層厚みδHを薄くする必要がある事は、磁場が存在しない場合と同じである。しかしながら、ハルトマン境界層内の速度勾配は一定ではなく、気泡・介在物主流側表面における流速は、
up=U・(1−exp(−d/δH))・・・(2)
によって見積もる事ができる。
上記(2)式から、境界層外の主流の最大速度Uや、気泡・介在物の直径dが同一であっても、磁束密度を十分確保して、ハルトマン境界層厚みδHを小さく制御すれば、磁束密度が小さい時に比べて、凝固界面に接触した気泡・介在物の主流側表面における流速upを大きくする事ができ、気泡・介在物が凝固殻に捕捉されないように、洗い流す事が可能となることがわかる。
上記ハルトマン境界層は静磁場での考えであるが、本実施形態では鋳型内溶鋼に交流移動磁場を発生させている。そこで交流移動磁場を発生させた場合について検討した結果、本発明者は、静磁場ではなく交流移動磁場を用いるスラブ連続鋳造の鋳型内電磁撹拌においても、交流移動磁場が壁面に垂直に作用する長辺鋳型凝固界面で、通常のハルトマン境界層と類似した、交流移動磁場ハルトマン境界層とも呼ぶべき、一種のハルトマン境界層が形成され、凝固界面から気泡・介在物を洗い流す効果には、この交流移動磁場ハルトマン境界層の厚みが影響する事を見出した。
交流移動磁場ハルトマン境界層厚みδHaは、通常のハルトマン境界層との類推から、静磁場ハルトマン境界層厚みδHを見積もる(1)式における静磁場の磁束密度Bの代わりに、交流移動磁場の最大磁束密度Bmax、ないしは、交流移動磁場の磁束密度の実効値Beff=Bmax/(√2)を用いて、
δHa=1/(Beff・(σ/μ)0.5
=1/(Bmax・(σ/μ/2)0.5)・・・(3)
と見積もる事ができると考えられる。
上記より、鋳型内溶鋼に交流移動磁場を発生させた場合の境界層厚みδは、上記(3)式で表される交流移動磁場ハルトマン境界層厚みδHaにほぼ等しいことがわかった。(3)式においてσとμは溶鋼の物性値であり、制御不能であるため、最大磁束密度Bmaxを大きくして交流移動磁場ハルトマン境界層厚みδHaを小さくする。交流移動磁場ハルトマン境界層厚みδHaが小さくなると、凝固界面に接した気泡・介在物の主流側表面における溶鋼流速upが交流移動磁場ハルトマン境界層外の主流の最大流速Uにより近づくので、速くなる。
凝固界面に接した小さな気泡・介在物の主流側表面の流速を、従来の洗い流しに不十分な流速up1から十分に洗い流す事ができる流速up2まで増大させる目的で、最大磁束密度Bmaxを大きくすると、例えば流速分布をA地点近傍について拡大して示した図6の流速分布A及び流速分布Bのような分布が得られる。流速分布Aの境界層厚みδA及び流速分布Bの境界層厚みδBは、何れも従来の流速分布の境界層厚みδより小さくなっている。
しかしながら、溶鋼流速v(m/s)の大きさがある限界流速J(m/s)を超え、v<−Jまたはv>Jとなると、溶鋼面上に浮遊したフラックスを巻き込む領域(フラックス巻き込み発生流速域)Xが存在する。
流速分布Bは、従来の鋳型内電磁撹拌と同様な周波数f、ポールピッチPを適用したまま、最大磁束密度Bmaxを大きくした結果、主流部の最大流速Uが過大となり、領域Xに入ってしまった例であり、フラックス欠陥が生じる。したがって、気泡・介在物を洗い流すことを目的に、Bmaxを大きくして境界層厚みδを小さくするためには、最大磁束密度Bmaxを大きくしても、主流部の最大流速Uがフラックス欠陥が生じる領域Xに入らない流速分布Aのような様な流速分布が得られるように対策を講じる必要がある。
上記知見を基に実験を行ったところ、鋳型内において交流移動磁場の最大磁束密度Bmaxを0.15T以上0.20T以下とし、且つ、位相速度Vを0.3m/s以上1.0m/s以下とすることで、大きな気泡及び介在物だけでなく小さな気泡及び介在物も十分に洗い流しつつ、フラックスの巻き込みを抑止することができるという知見を得た。これにより気泡及び介在物欠陥を低減できるとともにフラックス欠陥を低減できるため、高品質な鋳片を製造することができることがわかった。
なお、上記知見について別の観点から検討したところ、以下のことがわかった。
電磁力Fは、交流移動磁場の位相速度V(V=2・f・P)を用いて、簡易的にF=Beff2・Vと見積もる事ができる。スラブ連続鋳造の旋回式電磁撹拌では、一般的に周波数fが2〜4Hz程度であり、ポールピッチPが450〜900mm程度であるため、位相速度Vが、1.8〜7.2m/sと大きい。このように、大きな位相速度Vを適用したまま、最大磁束密度Bmaxを大きくすると(例えば1500Gauss以上)、電磁力Fが過大となって、フラックスの巻き込みが生じる。
そこで最大磁束密度Bmaxの増大にともない、位相速度Vを抑制する必要がある。しかし、位相速度Vを抑制しすぎると、最大磁束密度Bmaxが大きくても十分な電磁力を確保できなくなるため、気泡・介在物を十分に洗い流すことができない。
したがって、気泡及び介在物欠陥を低減し且つフラックス欠陥を低減するためには、最大磁束密度Bmaxを大きくするだけでなく、位相速度Vを適切に制御する必要があることがわかった。
次に、上記知見を得るために行った実験を説明する。
垂直部長さが約2.9mの垂直曲げ型連続鋳造機を用いて、表1に示す鋼種のスラブ鋳片を鋳造した。溶鋼の電気伝導度は7×105S/mであり、溶鋼の粘性係数は0.0056Pa・sであった。鋳型には、鋳型内寸の長辺長さが1230〜2100mmであり、短辺長さが240〜290mmであるものを用いた。鋳型銅板の厚みは約25mmであり、電気伝導度はIACS40〜60%であった。
Figure 2018103198
タンディッシュから鋳型へ溶鋼を注入する経路に、Arガスを3〜10NL/minで吹き込んだ。タンディッシュ内の溶鋼目標温度を液相線温度+25℃に設定し、目標温度±10℃以内に制御できた鋳造について、気泡及び鋳型フラックス起因の欠陥の調査を実施した。
鋳型内磁束密度については、溶鋼が存在する鋳造中に測定する事が困難である事、および、溶鋼が存在する場合と磁束密度はあまり大きくは異ならないと考えられる事から、溶鋼が存在せず鋳型内空間に空気のみが存在する状態で測定を行った。
電磁撹拌装置には、全幅(鋳型長辺方向長さ)が1800mm又は2100mmのリニアモータを用いた。リニアモータの鉄芯の上端をメニスカスの平均レベルと同じ高さに配置し、リニアモータの鉄芯の下端をメニスカスの平均レベルから0.3m下の位置に配置することで、メニスカスレベルが±30mm程度変化しても常にメニスカスからの距離が0.25m以下の領域において、時間軸に対して磁束密度を正弦波状に振動させた。また、交流移動磁場を静磁場と重畳させることなく発生させた。
(鋳型内磁束密度測定方法)
センサーの耐熱温度等の点から溶鋼中の磁束密度を実際に測定することは難しい。また、使用する交流移動磁場の周波数が低いために、溶鋼による磁場の減衰は比較的小さい。溶鋼中の磁束密度は、鋳型内に溶鋼が存在しない、鋳型内空間の大気中での磁束密度とほぼ等しいと見なせる事から、溶鋼が存在しない大気中で、サーチコイルを用い、時間軸に対して正弦波状に振動する磁束密度鋳型幅方向成分のピーク値を測定した。測定位置を下記とした。
鉛直方向についてリニアモータ鉄芯中心の高さで、鋳型長辺部の銅板内壁から対向する長辺部に向かって10mmの位置において、鋳型長辺方向長さに50mmピッチで測定した。
全ての測定位置の磁束密度のなかで、最大値を最大磁束密度Bmaxとした。
(鋳片表層の気泡調査方法)
図7Aに示すように、鋳造方向長さが約250mmのスラブ鋳片サンプルを採取する。図7Aには鋳片幅が1500mmの例を示している。このサンプルの全周部において、表面から深さ8mmの表層サンプルを切り出した。図7Bには、表層サンプルの(図7Aの表層サンプルs)の拡大図を示している。実操業において鋳片の表層1mmの範囲は酸化除去されることで無害化されるため、各表層サンプルの表面側の表層1mmをフライスで除去した。また、各表層サンプルの裏面側(鋳片の厚み中心側)もフライス除去し、厚み6mmのX線透過撮影用サンプルtを得た。このX線透過撮影用サンプルtをフィルム上に設置し、サンプル表面に垂直な方向からX線を照射する事によりX線透過撮影を行い、フィルムを現像後、フィルムの撮影像の濃淡から気泡を検出した。この方法で、スリバー欠陥に特に有害な、鋳片表面から1〜7mmの範囲の気泡の有無を評価できる。尚、鋳片表層に存在する気泡は、直径が0.5mm程度の大きさでも、製品で軽微なスリバー欠陥の原因となる場合があるが、今回は、重篤なスリバー欠陥の原因となり得る直径1mm以上の気泡を対象にした。表2には、気泡が検出されなかったときを○とし、対象となる気泡が検出されたときを×としている。
(鋳型フラックス系欠陥の調査方法)
鋳造したスラブにおいて鋳造方向長さ約20m分のスラブ表面を目視観察し、フラックスを噛み込んだ欠陥が存在するかを確認した。表2には、フラックスを噛み込んだ欠陥が検出されなかったときを○とし、フラックスを噛み込んだ欠陥が検出されたときを×としている。
(総合評価)
表2では、対象となる気泡が検出されず、且つ、フラックスを噛み込んだ欠陥が未検出であったときを○とした。一方、気泡欠陥及びフラックス欠陥の少なくとも一方を検出したときを×としている。
表2には、実験条件及び調査結果等を示している。
Figure 2018103198
表2から、以下の結果がわかった。
(スラブ表層の気泡)
No.2〜No.4,No.7〜No.12,No.15〜No.17及びNo.20〜No.23では、スラブ表層に対象となる気泡が検出されなかった。これらの交流移動磁場ハルトマン境界層厚みδHaは0.63mm以上0.84mm以下であった。このときの最大磁束密度Bmaxは0.15T以上0.20T以下の範囲であった。
一方、No.1,No.5,No.6,No.14及びNo.19では、スラブ表層に対象となる気泡が検出された。これらの交流移動磁場ハルトマン境界層厚みδHaは0.90mm以上であり、気泡が検出されなかったときよりも厚かった。このときの最大磁束密度Bmaxは、0.14T以下であった。
なお、No.13及びNo.18でもスラブ表層に対象となる気泡が検出されたが、これらの交流移動磁場ハルトマン境界層厚みδHaは0.63mmであり、気泡が検出されなかったときの交流移動磁場ハルトマン境界層厚みδHa(No.10,No.11,No.17)と同じ厚みであった。
しかし位相速度Vに着目すると、気泡が検出されたNo.13及びNo.18の位相速度Vは0.2m/sと小さいが、気泡が検出されなかったNo.10,No.11及びNo.17の位相速度は0.5m/s及び1.1m/sと大きかった。
これらから交流移動磁場ハルトマン境界層厚みδHaを薄くしても、位相速度Vが小さいと、気泡・介在物を十分に洗い流すことができないことがわかった。
上記より、気泡・フラックスを十分に洗い流すためには、交流移動磁場ハルトマン境界層厚みδHaを0.84mm以下とし且つ位相速度Vを0.2m/sより大きくする必要があることがわかった。また、このときの交流移動磁場の最大磁束密度Bmaxは0.15T以上0.20T以下であることがわかった。
(フラックス欠陥)
No.4〜No.10,No.14〜No.16,No.21〜No.23では、フラックス欠陥が検出されなかった。これらの位相速度Vは0.3m/s以上1.0m/s以下であった。
一方、No.1〜No.3,No.11〜No.13及びNo.17〜No.20では、フラックス欠陥が検出された。これらの位相速度Vは0.2m/s及び1.1m/s以上であった。
上記より、フラックス欠陥の発生を抑止するためには、位相速度Vを0.3m/s以上1.0m/s以下にする必要があることがわかった。
以上より、鋳型内において交流移動磁場の最大磁束密度Bmaxを0.15T以上0.20T以下とし、且つ、位相速度Vを0.3m/s以上1.0m/s以下とすることで、大きな気泡及び介在物だけでなく小さな気泡及び介在物も十分に洗い流しつつ、フラックスの巻き込みを抑止することができることがわかった。これにより気泡及び介在物欠陥を低減できるとともにフラックス欠陥を低減できるため、高品質な鋳片を製造することができることがわかった。
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
例えば、図2では、電磁撹拌装置の構成としてポール数N=6のものを示したが、電磁撹拌装置にはポール数N=4の構成のものを用いてもよく、ポール数Nが8以上の構成のものを用いてもよい。図8Aには、ポール数N=4の電磁撹拌装置(突極巻き方式)を利用した場合を図示している。また、図8Bには、ポール数N=8の極間巻き方式(コイル間に鉄芯の突極部を有する極間巻き方式)を利用した場合を図示している。
本発明は、鋼を鋳造する際に利用することができる。
1 鋳型
2 浸漬ノズル
3 電磁撹拌装置
3a 第1リニアモータ
3b 第2リニアモータ
11,12 長辺部
13,14 短辺部
21,31 鉄芯
22−1,22−2,22−18 コイル
32−1,32−2,32−18 コイル

Claims (1)

  1. 鋳型の互いに対向する1対の長辺部に沿って配置された電磁撹拌装置を用いたスラブの連続鋳造方法であり、
    前記電磁撹拌装置により、
    メニスカスからの距離が0.25m以下の溶鋼に、時間軸に対して磁束密度を正弦波状に振動させ、且つ、磁束密度のピーク位置が鋳型の長辺に平行な方向に移動する交流移動磁場を、静磁場と重畳させることなく単独で発生させ、前記1対の長辺部のうち一方の長辺部と他方の長辺部とで、交流移動磁場の移動方向を互いに逆向きにする事で溶鋼を旋回撹拌し、
    鋳型内の交流移動磁場の磁束密度の最大値Bmaxを0.15T以上0.20T以下とし、
    下記式で算出される交流移動磁場の位相速度Vを0.3m/s以上1.0m/s以下とすることを特徴とするスラブの連続鋳造方法。
    V=2・f・P
    ここで、fは交流移動磁場の周波数(Hz)である
JP2016249754A 2016-12-22 2016-12-22 連続鋳造方法 Pending JP2018103198A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249754A JP2018103198A (ja) 2016-12-22 2016-12-22 連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249754A JP2018103198A (ja) 2016-12-22 2016-12-22 連続鋳造方法

Publications (1)

Publication Number Publication Date
JP2018103198A true JP2018103198A (ja) 2018-07-05

Family

ID=62786367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249754A Pending JP2018103198A (ja) 2016-12-22 2016-12-22 連続鋳造方法

Country Status (1)

Country Link
JP (1) JP2018103198A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369682A (zh) * 2019-08-26 2019-10-25 上海大学 一种基于熔渣保护多层浇注磁场电流复合处理制备大铸锭的装置及方法
WO2019216222A1 (ja) * 2018-05-08 2019-11-14 日本製鉄株式会社 電磁攪拌装置
WO2020249004A1 (zh) * 2019-06-12 2020-12-17 宝山钢铁股份有限公司 板坯连铸二冷区的电磁搅拌装置及方法
JP2021030290A (ja) * 2019-08-28 2021-03-01 株式会社神戸製鋼所 スラブの連続鋳造方法
JPWO2022138002A1 (ja) * 2020-12-25 2022-06-30
JP7385116B2 (ja) 2020-01-09 2023-11-22 日本製鉄株式会社 電磁撹拌装置
JP7389339B2 (ja) 2020-01-09 2023-11-30 日本製鉄株式会社 電磁撹拌装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216222A1 (ja) * 2018-05-08 2019-11-14 日本製鉄株式会社 電磁攪拌装置
US11772153B2 (en) 2019-06-12 2023-10-03 Baoshan Iron & Steel Co., Ltd. Electromagnetic stirring device and method for secondary cooling zone during slab continuous casting
WO2020249004A1 (zh) * 2019-06-12 2020-12-17 宝山钢铁股份有限公司 板坯连铸二冷区的电磁搅拌装置及方法
CN110369682A (zh) * 2019-08-26 2019-10-25 上海大学 一种基于熔渣保护多层浇注磁场电流复合处理制备大铸锭的装置及方法
CN110369682B (zh) * 2019-08-26 2021-07-06 上海大学 一种基于熔渣保护多层浇注磁场电流复合处理制备大铸锭的装置及方法
JP2021030290A (ja) * 2019-08-28 2021-03-01 株式会社神戸製鋼所 スラブの連続鋳造方法
JP7218259B2 (ja) 2019-08-28 2023-02-06 株式会社神戸製鋼所 スラブの連続鋳造方法
JP7385116B2 (ja) 2020-01-09 2023-11-22 日本製鉄株式会社 電磁撹拌装置
JP7389339B2 (ja) 2020-01-09 2023-11-30 日本製鉄株式会社 電磁撹拌装置
WO2022138002A1 (ja) * 2020-12-25 2022-06-30 Jfeスチール株式会社 鋼の連続鋳造方法
JP7283633B2 (ja) 2020-12-25 2023-05-30 Jfeスチール株式会社 鋼の連続鋳造方法
JPWO2022138002A1 (ja) * 2020-12-25 2022-06-30
EP4234120A4 (en) * 2020-12-25 2024-04-03 Jfe Steel Corp CONTINUOUS CASTING PROCESS FOR STEEL

Similar Documents

Publication Publication Date Title
JP2018103198A (ja) 連続鋳造方法
WO2011058769A1 (ja) 鋼の連続鋳造方法
JP4438705B2 (ja) 鋼の連続鋳造方法
KR102354306B1 (ko) 전자 교반 장치
JP5321528B2 (ja) 鋼の連続鋳造用装置
EP1508389A2 (en) Method and apparatus for continuous casting of metals
JPH10305353A (ja) 鋼の連続鋳造方法
EP0445328B1 (en) Method for continuous casting of steel
JP4591156B2 (ja) 鋼の連続鋳造方法
BR112018004704B1 (pt) Métodos de lingotamento contínuo de chapa usando uma máquina de lingotamento contínuo de chapa
JP2008055431A (ja) 鋼の連続鋳造方法
JP4669367B2 (ja) 溶鋼流動制御装置
JP2005238276A (ja) 電磁攪拌鋳造装置
JP5772767B2 (ja) 鋼の連続鋳造方法
JP7218259B2 (ja) スラブの連続鋳造方法
JP2007260727A (ja) 極低炭素鋼スラブ鋳片の連続鋳造方法
JP2009066619A (ja) 鋼の連続鋳造方法及び連続鋳造装置
JP4983320B2 (ja) 鋼の連続鋳造方法及び装置
JP4492333B2 (ja) 鋼の連続鋳造方法
JP2008173644A (ja) 連続鋳造鋳型用電磁コイル
JP2010110766A (ja) 鋼の連続鋳造装置及び鋼の連続鋳造方法
JP2006000896A (ja) 連続鋳造方法
JP2002120052A (ja) 鋳型内溶鋼流動制御装置ならびに方法
JP6623793B2 (ja) 連続鋳造方法
JP5018144B2 (ja) 鋼の連続鋳造方法