WO2019211921A1 - ケチミン構造を有する有機ケイ素化合物の製造方法 - Google Patents

ケチミン構造を有する有機ケイ素化合物の製造方法 Download PDF

Info

Publication number
WO2019211921A1
WO2019211921A1 PCT/JP2018/037712 JP2018037712W WO2019211921A1 WO 2019211921 A1 WO2019211921 A1 WO 2019211921A1 JP 2018037712 W JP2018037712 W JP 2018037712W WO 2019211921 A1 WO2019211921 A1 WO 2019211921A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
organosilicon compound
group
formula
chlorine atom
Prior art date
Application number
PCT/JP2018/037712
Other languages
English (en)
French (fr)
Inventor
成紀 安田
宗直 廣神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US17/051,970 priority Critical patent/US20210238206A1/en
Priority to EP18917247.1A priority patent/EP3789391A4/en
Publication of WO2019211921A1 publication Critical patent/WO2019211921A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation

Definitions

  • the present invention relates to a method for producing an organosilicon compound having a ketimine structure.
  • a silane coupling agent is a compound that has both a reactive moiety for inorganic substances (hydrolyzable group bonded to Si atoms) and a reactive and soluble moiety for organic substances in one molecule. Widely used as an agent.
  • a silane coupling agent having a ketimine structure has been studied as a modifier for conjugated diene copolymers (Patent Document 1).
  • the organosilicon compound having a ketimine structure has poor storage stability, and an organosilicon compound having an active hydrogen group is generated over time, which may adversely affect the mixed composition. For this reason, improvement of the storage stability of the organosilicon compound which has a ketimine structure is calculated
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a production method capable of obtaining an organosilicon compound having a ketimine structure with good storage stability.
  • R 1 independently represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • R 2 each independently represents an alkyl group having 1 to 10 carbon atoms
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • n is (An integer of 1 to 3, m represents an integer of 1 to 12.)
  • Step (I) a step of reacting an amino group-containing organosilicon compound represented by the following formula (2) with a carbonyl compound represented by the following formula (3); (In the formula, R 1 , R 2 , R 3 , R 4 , n and m have the same meaning as described above.)
  • the production method according to 1 or 2 wherein the step (II) includes a step of reducing a chlorine atom content using an inorganic adsorbent; 4). 3.
  • the inorganic adsorbent is one or more selected from silica, aluminum hydroxide, hydrotalcite, magnesium silicate, aluminum silicate, aluminum oxide and magnesium oxide, 5). Any one of 1 to 4 wherein R 1 is a methyl group or an ethyl group, R 3 is an isobutyl group, R 4 is a methyl group, and m and n are all 3; Manufacturing method, 6).
  • an organosilicon compound having a ketimine structure with good storage stability can be obtained.
  • the method for producing an organosilicon compound having a ketimine structure according to the present invention is a method for producing an organosilicon compound having a ketimine structure represented by the following general formula (1), comprising the following steps (I) and (II):
  • the chlorine atom content is less than 0.1 mass ppm with respect to the organosilicon compound having a ketimine structure.
  • each R 1 independently represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • R 2 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • Each represents a group or an aryl group having 6 to 10 carbon atoms
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl, i-propyl, n-butyl, isobutyl, s -Butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl group, etc. Can be mentioned.
  • aryl group having 6 to 10 carbon atoms include phenyl, ⁇ -naphthyl, ⁇ -naphthyl groups and the like.
  • R 1 and R 2 a linear alkyl group is preferable, and a methyl group and an ethyl group are more preferable.
  • R 3 and R 4 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group or an isobutyl group, and a methyl group or isobutyl group. Groups are even more preferred, and combinations of methyl and isobutyl groups are even more preferred.
  • n represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
  • m represents an integer of 1 to 12, preferably 2 or 3, and more preferably 3.
  • an organosilicon compound represented by the following formula (4) or (5) is preferable.
  • R 2 and n represent the same meaning as described above, Me represents a methyl group, and Et represents an ethyl group.
  • amino group-containing organosilicon compound represented by formula (2) used in the above step (I) include 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyltriethoxy. Silane etc. are mentioned.
  • specific examples of the carbonyl compound represented by the formula (3) include dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, acetaldehyde, benzaldehyde, propionaldehyde and the like.
  • the reaction of the amino group-containing organosilicon compound and the carbonyl compound is preferably performed under a condition that the molar ratio of the carbonyl compound is excessive.
  • This reaction proceeds even without solvent, but a solvent can also be used.
  • the solvent that can be used include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene, and xylene. These solvents may be used alone or in combination. Two or more kinds may be mixed and used, and among these, toluene is preferable.
  • the step (I) it is necessary to remove water generated by the reaction of the amino group-containing organosilicon compound and the carbonyl compound from the reaction system.
  • the method for removing water is not particularly limited, but a method of distilling off an excess of a carbonyl compound or a solvent present in the system by using a Dean-Stark apparatus or the like is preferable.
  • the reaction temperature is not particularly limited as long as water can be distilled off, but 100 to 200 ° C. is preferable.
  • a chlorine atom is used as step (II). Processing to reduce the content is performed.
  • the method for reducing the chlorine atom content is not particularly limited, and examples thereof include distillation purification, addition of alkali metal alkoxide, adsorption treatment with an inorganic adsorbent, and the like. Although only seeds may be used or two or more kinds may be used in combination, it is preferable to perform a process including an adsorption treatment with an inorganic adsorbent.
  • inorganic adsorbents that can be suitably used to reduce the chlorine atom content include silica, aluminum hydroxide, hydrotalcite, magnesium silicate, aluminum silicate, aluminum oxide, magnesium oxide, aluminum oxide / magnesium oxide solid solution, etc. These may be used alone or in combination of two or more. These inorganic adsorbents can be obtained, for example, as the commercially available Kyowa Chemical Industry Co., Ltd. Kyoward series (Kyoword 100, 200, 300, 500, 600, 700, 2000). Of these, Kyoward 500 (Mg 6 Al 2 (OH) 16 CO 3 .mH 2 O), which is a synthetic hydrotalcite, is particularly preferable from the viewpoint of processing efficiency.
  • Kyoward 500 Mg 6 Al 2 (OH) 16 CO 3 .mH 2 O
  • the amount of the inorganic adsorbent used is not less than 0.1 parts by mass with respect to 100 parts by mass of the organosilicon compound represented by the formula (1) in consideration of enhancing the treatment efficiency and facilitating the removal of the inorganic adsorbent after the treatment. 005 to 5.0 parts by mass is preferable, and 0.01 to 0.2 parts by mass is more preferable.
  • the step (I) and the step (II) can obtain an organosilicon compound having a ketimine structure with good storage stability, which is the object of the present invention, regardless of which step is performed first.
  • the process which reduces the said chlorine atom content may be performed about at least one of said formula (2) used as a raw material of process (I), and (3). It is preferable to treat the amino group-containing organosilicon compound (2).
  • the storage stability of the organosilicon compound represented by the formula (1) is deteriorated.
  • the organosilicon compound represented by the formula (7) In this case, the organosilicon compounds represented by the formulas (8) to (11) are formed over time.
  • the chlorine atom content in the organosilicon compound having a ketimine structure finally obtained is reduced to less than 0.1 mass ppm by the above step (II), and the storage stability thereof is reduced.
  • the storage stability improve.
  • the chlorine atom content was measured by the following method. Chlorine atom content After mixing the sample obtained in each Example and Comparative Example or 10 g of 3-aminopropyltrimethoxysilane, 50 mL of toluene and 20 mL of pure water, stirring was performed for 1 hour, and the aqueous layer was collected under the following conditions. The water-soluble chloro ion concentration was measured by ion chromatography to obtain the chlorine atom content. Ion chromatograph: ICA-2000 manufactured by Toa DKK Co., Ltd.
  • step (I) As a result of analysis by gas chromatography, the peak of 3-aminopropyltrimethoxysilane disappeared, and 1660 g of a pale yellow transparent liquid was obtained after aging (step (I)).
  • the obtained solution was added with 1.7 g (0.1 part by mass) of KYOWARD 100 (manufactured by Kyowa Chemical Industry Co., Ltd., the same shall apply hereinafter) and stirred for 6 hours at room temperature in a nitrogen atmosphere.
  • KYOWARD 100 was removed from the solution by pressure filtration (step (II)).
  • the resulting solution was purified by distillation under conditions of 10 Torr and 170 ° C. to obtain 693 g of a colorless transparent liquid. It was confirmed by 1 H-NMR that it was an organosilicon compound represented by the above formula (6).
  • Example 2 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that the same part by weight of Kyodo 200 was used instead of Kyodo 100.
  • Example 3 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that the Kyoward 300 having the same mass part was used instead of the Kyoward 100.
  • Example 4 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that the Kyoward 500 having the same mass part was used instead of the Kyoward 100.
  • Example 5 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that the Kyoward 600 having the same mass part was used instead of the Kyoward 100.
  • Example 6 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that the same weight part of the Kyoward 700 was used instead of the Kyoward 100.
  • Example 7 An organosilicon compound represented by the above formula (6) was produced in the same manner as in Example 1 except that Kyoward 2000 having the same mass part was used instead of Kyoward 100.
  • Example 8 In a 1 L separable flask equipped with a stirrer, 600 g of 3-aminopropyltrimethoxysilane having a chlorine atom content of 5 ppm and 0.60 g (0.1 parts by mass) of Kyoward 100 were placed at room temperature under a nitrogen atmosphere. After stirring for 6 hours, Kyoward 100 was removed from 3-aminopropyltrimethoxysilane by pressure filtration (step (II)). It was confirmed that the chlorine atom content was less than 0.1 ppm.
  • step (I) As a result of analysis by gas chromatography, the peak of 3-aminopropyltrimethoxysilane disappeared, and 1650 g of a pale yellow transparent liquid was obtained after aging (step (I)).
  • the resulting solution was purified by distillation under conditions of 10 Torr and 170 ° C. to obtain 690 g of a colorless transparent liquid. It was confirmed by 1 H-NMR that it was an organosilicon compound represented by the above formula (6).
  • Example 10 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that the Kyoward 200 having the same parts by mass was used instead of the Kyoward 100.
  • Example 11 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that the Kyoward 300 having the same parts by mass was used instead of the Kyoward 100.
  • Example 12 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that the Kyoward 500 having the same mass part was used instead of the Kyoward 100.
  • Example 13 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that the Kyoward 600 having the same mass part was used instead of the Kyoward 100.
  • Example 14 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that the Kyoward 700 having the same mass part was used instead of the Kyoward 100.
  • Example 15 An organosilicon compound represented by the above formula (7) was produced in the same manner as in Example 9 except that Kyoward 2000 having the same mass part was used instead of Kyoward 100.
  • Example 16 In a 1 L separable flask equipped with a stirrer, 700 g of 3-aminopropyltriethoxysilane having a chlorine atom content of 5 ppm and 0.70 g (0.1 parts by mass) of Kyoward 100 were placed at room temperature under a nitrogen atmosphere. After stirring for 6 hours, Kyoward 100 was removed from 3-aminopropyltriethoxysilane by pressure filtration (step (II)).
  • step (I) As a result of analysis by gas chromatography, the peak of 3-aminopropyltriethoxysilane disappeared, and 2060 g of a pale yellow transparent liquid was obtained after aging (step (I)).
  • the resulting solution was purified by distillation under conditions of 10 Torr and 170 ° C. to obtain 810 g of a colorless transparent liquid. It was confirmed by 1 H-NMR that the organosilicon compound was represented by the above formula (7).
  • the organosilicon compound of each example obtained by the production method of the present invention has a chlorine atom content reduced to less than 0.1 mass ppm and a decrease in purity after long-term storage. Is small, and it can be seen that it has high storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Polymers (AREA)

Abstract

式(1)(R1,R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を、R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を、nは1~3の整数、mは1~12の整数を表す。) で表されるケチミン構造を有する有機ケイ素化合物の製造方法であって、工程(I)および工程(II)を含み、式(1)の有機ケイ素化合物に対して塩素原子含有量を0.1質量ppm未満とする製造方法によれば、保存安定性が良好なケチミン構造を有する有機ケイ素化合物を得ることができる。工程(I):式(2)で表されるアミノ基含有有機ケイ素化合物と式(3)で表されるカルボニル化合物を反応させる工程。(R1~R4、n、mは前記と同じ。) 工程(II):塩素原子含有量を低減する工程

Description

ケチミン構造を有する有機ケイ素化合物の製造方法
 本発明は、ケチミン構造を有する有機ケイ素化合物の製造方法に関する。
 シランカップリング剤は、無機物に対する反応性を有する部分(Si原子に結合した加水分解性基)と、有機物に対する反応性や溶解性に富む部分とを1分子内に併せ持つ化合物であり、樹脂改質剤として広く利用されている。
 中でも、ケチミン構造を有するシランカップリング剤は、共役ジエン共重合体の変性剤として検討されている(特許文献1)。
 しかし、ケチミン構造を有する有機ケイ素化合物は保存安定性が悪く、経時で活性水素基を有する有機ケイ素化合物が発生してしまい、混合組成物に悪影響を及ぼす可能性がある。
 このため、ケチミン構造を有する有機ケイ素化合物の保存安定性の改善が求められている。
特開平11-349632号公報
 本発明は、上記事情に鑑みなされたもので、保存安定性が良好なケチミン構造を有する有機ケイ素化合物を得ることができる製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、塩素原子含有量を低減することで保存安定性が良好なケチミン構造を有する有機ケイ素化合物が得られることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 下記式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、nは、1~3の整数、mは、1~12の整数を表す。)
で表されるケチミン構造を有する有機ケイ素化合物の製造方法であって、
 下記工程(I)および工程(II)を含み、前記式(1)で表される有機ケイ素化合物に対して塩素原子含有量を0.1質量ppm未満とすることを特徴とするケチミン構造を有する有機ケイ素化合物の製造方法。
工程(I):下記式(2)で表されるアミノ基含有有機ケイ素化合物と下記式(3)で表されるカルボニル化合物を反応させる工程、
Figure JPOXMLDOC01-appb-C000005
(式中、R1、R2、R3、R4、nおよびmは、前記と同じ意味を表す。)
工程(II):塩素原子含有量を低減する工程
2. 前記工程(II)が、前記工程(I)の後に行われる1の製造方法、
3. 前記工程(II)が、無機吸着剤を用いて塩素原子含有量を低減する工程を含む1または2の製造方法、
4. 前記無機吸着剤が、シリカ、水酸化アルミニウム、ハイドロタルサイト、ケイ酸マグネシウム、ケイ酸アルミニウム、酸化アルミニウムおよび酸化マグネシウムから選ばれる1種または2種以上である3の製造方法、
5. 前記R1が、メチル基またはエチル基であり、前記R3が、イソブチル基であり、前記R4が、メチル基であり、前記mおよびnが、いずれも3である1~4のいずれかの製造方法、
6. 下記式(1)で表され、その中の塩素原子含有量が0.1質量ppm未満である有機ケイ素化合物、
Figure JPOXMLDOC01-appb-C000006
(式中、R1は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、nは、1~3の整数、mは、1~12の整数を表す。)
を提供する。
 本発明の製造方法によれば、保存安定性が良好なケチミン構造を有する有機ケイ素化合物を得ることができる。
 以下、本発明について具体的に説明する。
 本発明に係るケチミン構造を有する有機ケイ素化合物の製造方法は、下記一般式(1)で示されるケチミン構造を有する有機ケイ素化合物の製造方法であって、下記工程(I)および工程(II)を含み、ケチミン構造を有する有機ケイ素化合物に対して塩素原子含有量を0.1質量ppm未満とすることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
工程(I):下記式(2)で表されるアミノ基含有有機ケイ素化合物と下記式(3)で表されるカルボニル化合物を反応させる工程
工程(II):塩素原子含有量を低減する工程
Figure JPOXMLDOC01-appb-C000008
 上記各式において、R1は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を表す。
 炭素数1~10のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。
 炭素数6~10のアリール基の具体例としては、フェニル、α-ナフチル、β-ナフチル基等が挙げられる。
 これらの中でも、R1およびR2としては、直鎖のアルキル基が好ましく、メチル基、エチル基がより好ましい。
 また、R3およびR4としては、水素原子、炭素数1~6のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基がより好ましく、メチル基、イソブチル基がより一層好ましく、メチル基およびイソブチル基の組み合わせがさらに好ましい。
 nは1~3の整数を表すが、2または3が好ましく、3がより好ましい。
 mは1~12の整数を表すが、2または3が好ましく、3がより好ましい。
 特に、本発明においては、下記式(4)または(5)で表される有機ケイ素化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、R2、nは、上記と同じ意味を表し、Meは、メチル基を、Etは、エチル基を意味する。)
 上記工程(I)で用いられる式(2)で表されるアミノ基含有有機ケイ素化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。
 一方、式(3)で表されるカルボニル化合物の具体例としては、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、アセトアルデヒド、ベンズアルデヒド、プロピオンアルデヒド等が挙げられる。
 工程(I)において、上記アミノ基含有有機ケイ素化合物と上記カルボニル化合物の反応は、モル比にしてカルボニル化合物が過剰の条件で行うことが好ましい。
 この反応は無溶媒でも進行するが、溶媒を用いることもできる。使用可能な溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒などが挙げられ、これらの溶媒は、1種を単独で用いても、2種以上を混合して用いてもよく、これらの中でもトルエンが好ましい。
 工程(I)では、アミノ基含有有機ケイ素化合物とカルボニル化合物の反応により生成する水を反応系内から除く必要がある。
 水を除く方法は、特に限定されるものではないが、系内に過剰に存在するカルボニル化合物または溶媒を、Dean-Stark装置等を用いて還流することにより留去する方法が好ましい。
 反応温度は、水を留去できる限り特に限定されるものではないが、100~200℃が好ましい。
 式(1)で示されるケチミン構造を有する有機ケイ素化合物は、それに含まれる塩素原子含有量を低減することで、その保存安定性が改善されるため、本発明では、工程(II)として塩素原子含有量を低減する処理を行う。
 この場合、塩素原子含有量を低減する方法としては特に限定されるものではなく、蒸留精製、アルカリ金属アルコキシドの添加、無機吸着剤による吸着処理等が挙げられ、本発明では、これらの処理を1種のみ行ってもよく、2種類以上を併用してもよいが、無機吸着剤による吸着処理を含む工程を行うことが好ましい。
 塩素原子含有量の低減に好適に使用できる無機吸着剤としては、例えば、シリカ、水酸化アルミニウム、ハイドロタルサイト、ケイ酸マグネシウム、ケイ酸アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化アルミニウム・酸化マグネシウム固溶体等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの無機吸着剤は、例えば、市販の協和化学工業(株)製キョーワードシリーズ(キョーワード100、200、300、500、600、700、2000)として入手できる。中でも、処理効率の観点から、合成ハイドロタルサイトであるキョーワード500(Mg6Al2(OH)16CO3・mH2O)が特に好ましい。
 無機吸着剤の使用量は、処理効率を高めるとともに、処理後の無機吸着剤の除去を容易にすることを考慮すると、式(1)で表される有機ケイ素化合物100質量部に対し、0.005~5.0質量部が好ましく、0.01~0.2質量部がより好ましい。
 本発明の製造方法において、工程(I)と工程(II)は、どちらの工程を先に行っても本発明の目的である保存安定性の良好なケチミン構造を有する有機ケイ素化合物を得ることが可能であるが、工程(I)の後に工程(II)を行うことで、工程(I)の反応時間を短くすることが可能であるため、工程(I)を先に行うことが好ましい。
 なお、工程(II)を先に行う場合、工程(I)の原料として用いる上記式(2)および(3)の少なくとも一方について、上記塩素原子含有量を低減する処理を行えばよいが、式(2)のアミノ基含有有機ケイ素化合物を処理することが好ましい。
 低減後の塩素原子含有量が0.1質量ppm以上であると、式(1)で表される有機ケイ素化合物の保存安定性が悪くなり、例えば、式(7)で表される有機ケイ素化合物の場合、経時により式(8)~(11)で表される有機ケイ素化合物が生成する。
Figure JPOXMLDOC01-appb-C000010
 したがって、本発明の製法では、上記工程(II)によって、最終的に得られるケチミン構造を有する有機ケイ素化合物中の塩素原子含有量を0.1質量ppm未満まで低減させて、その保存安定性を向上させる。なお、塩素原子含有量を0.1質量ppm未満まで低減させるため、工程(II)を複数回行ってもよい。
 また、さらに保存安定性を高めるために、式(1)で表される化合物を蒸留精製して純度を98%以上にすることが好ましい。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、塩素原子含有量は以下の手法によって測定した。
塩素原子含有量
 各実施例および比較例で得られたサンプルまたは3-アミノプロピルトリメトキシシラン10g、トルエン50mLおよび純水20mLを混合後、一時間撹拌を行い、水層を採取して下記条件でイオンクロマトグラフにより水溶性クロルイオン濃度を測定し、塩素原子含有量とした。
 イオンクロマトグラフ:東亜DKK(株)製 ICA-2000
 分離カラム:TOA-DKK PCI-230
 ガードカラム:TOA-DKK PCI-205G
 サプレッサ:ケミカルサプレッサ 6810690K
 検出器:電気伝導度検出器
 溶離液:4mmol/LNa2CO3、2mmol/LNaHCO3
 溶離液量:0.9mL/min
 注入液量:100μL
 注入口温度:250℃
 検出器温度:300℃
 キャリアガス:He
 キャリアガス流量:3.0mL/min
[実施例1]有機ケイ素化合物(6)の製造
Figure JPOXMLDOC01-appb-C000011
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、メチルイソブチルケトン2028g(18.4モル)を納め、塩素原子含有量が5ppmである3-アミノプロピルトリメトキシシラン540g(3.01モル)を内温105~110℃で1時間かけて滴下した後、115℃で6時間撹拌した。滴下中、熟成中は、生成する水をメチルイソブチルケトンと共に還流させることによって抜き出した。ガスクロマトグラフで分析した結果、3-アミノプロピルトリメトキシシランのピークが消滅しており、熟成後に1660gの淡黄色透明液体が得られた(工程(I))。
 得られた溶液に、キョーワード100(協和化学工業(株)製、以下同様)1.7g(0.1質量部)を添加し、窒素雰囲気下、室温で6時間撹拌した後、得られた溶液から加圧濾過によりキョーワード100を除いた(工程(II))。得られた溶液を10Torr、170℃の条件下で蒸留精製し、無色透明液体693gを得た。1H-NMRにより、上記式(6)で表される有機ケイ素化合物であることを確認した。
[実施例2]
 キョーワード100に代えて同質量部のキョーワード200を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例3]
 キョーワード100に代えて同質量部のキョーワード300を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例4]
 キョーワード100に代えて同質量部のキョーワード500を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例5]
 キョーワード100に代えて同質量部のキョーワード600を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例6]
 キョーワード100に代えて同重量部のキョーワード700を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例7]
 キョーワード100に代えて同質量部のキョーワード2000を使用した以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例8]
 撹拌機を備えた1Lセパラブルフラスコに、塩素原子含有量が5ppmである3-アミノプロピルトリメトキシシラン600gとキョーワード100 0.60g(0.1質量部)を納め、窒素雰囲気下、室温で6時間撹拌した後、加圧濾過により、3-アミノプロピルトリメトキシシランからキョーワード100を除いた(工程(II))。塩素原子含有量が0.1ppm未満であることを確認した。
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、メチルイソブチルケトン2028g(18.4モル)を納め、上記で得られた3-アミノプロピルトリメトキシシラン540g(3.01モル)を内温105~110℃で1時間かけて滴下した後、115℃で12時間撹拌した。滴下中、熟成中は、生成する水をメチルイソブチルケトンと共に還流させることによって抜き出した。ガスクロマトグラフで分析した結果、3-アミノプロピルトリメトキシシランのピークが消滅しており、熟成後に1650gの淡黄色透明液体が得られた(工程(I))。
 得られた溶液を10Torr、170℃の条件下で蒸留精製し、無色透明液体690gを得た。1H-NMRにより、上記式(6)で表される有機ケイ素化合物であることを確認した。
[比較例1]
 キョーワード100を用いた工程(II)を実施しなかった以外は、実施例1と同様にして上記式(6)で表される有機ケイ素化合物を製造した。
[実施例9]有機ケイ素化合物(7)の製造
Figure JPOXMLDOC01-appb-C000012
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、メチルイソブチルケトン2028g(18.4モル)を納め、塩素原子含有量が5ppmである3-アミノプロピルトリエトキシシラン667g(3.01モル)を内温105~110℃で1時間かけて滴下した後、115℃で6時間撹拌した。滴下中、熟成中は、生成する水をメチルイソブチルケトンと共に還流させることによって抜き出した。ガスクロマトグラフで分析した結果、3-アミノプロピルトリエトキシシランのピークが消滅しており、熟成後に2070gの淡黄色透明液体が得られた(工程(I))。
 得られた溶液にキョーワード100 2.1g(0.1質量部)を添加し、窒素雰囲気下、室温で6時間撹拌した後、得られた溶液から加圧濾過によりキョーワード100を除いた(工程(II))。
 得られた溶液を10Torr、170℃の条件下で蒸留精製し、無色透明液体802gを得た。1H-NMRにより、上記式(7)で表される有機ケイ素化合物であることを確認した。
[実施例10]
 キョーワード100に代えて同質量部のキョーワード200を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例11]
 キョーワード100に代えて同質量部のキョーワード300を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例12]
 キョーワード100に代えて同質量部のキョーワード500を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例13]
 キョーワード100に代えて同質量部のキョーワード600を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例14]
 キョーワード100に代えて同質量部のキョーワード700を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例15]
 キョーワード100に代えて同質量部のキョーワード2000を使用した以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
[実施例16]
 撹拌機を備えた1Lセパラブルフラスコに、塩素原子含有量が5ppmである3-アミノプロピルトリエトキシシラン700gとキョーワード100 0.70g(0.1質量部)を納め、窒素雰囲気下、室温で6時間撹拌した後、加圧濾過により、3-アミノプロピルトリエトキシシランからキョーワード100を除いた(工程(II))。
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた5Lセパラブルフラスコに、メチルイソブチルケトン2028g(18.4モル)を納め、上記で得られた3-アミノプロピルトリエトキシシラン667g(3.01モル)を内温105~110℃で1時間かけて滴下した後、115℃で12時間撹拌した。滴下中、熟成中は、生成する水をメチルイソブチルケトンと共に還流させることによって抜き出した。ガスクロマトグラフで分析した結果、3-アミノプロピルトリエトキシシランのピークが消滅しており、熟成後に2060gの淡黄色透明液体が得られた(工程(I))。
 得られた溶液を10Torr、170℃の条件下で蒸留精製し、無色透明液体810gを得た。1H-NMRにより、上記式(7)で表される有機ケイ素化合物であることを確認した。
[比較例2]
 キョーワード100を用いた工程(II)を実施しなかった以外は、実施例9と同様にして上記式(7)で表される有機ケイ素化合物を製造した。
 上記各実施例および比較例で得られた有機ケイ素化合物について、上記手法により塩素原子含有量を測定した。結果を表1に示す。
 また、上記各実施例および比較例で得られた有機ケイ素化合物を密閉容器に充填し、25℃で保管した。蒸留精製直後の純度と6カ月後の純度を、ガスクロマトグラフを用いて下記条件で測定した。結果を表1に併せて示す。
純度測定
 ガスクロマトグラフ:アジレント・テクノロジー(株)製 HP7890B
 検出器:熱伝導度型検出器(TCD)
 カラム:DB-5 (長さ30m×内径0.530mm×膜厚1.50μm)
 カラム温度:100℃→昇温15℃/分→300℃(10分保持)
       測定時間 計23.3分
 注入口温度:250℃
 検出器温度:300℃
 キャリアガス:He
 キャリアガス流量:3.0mL/min
Figure JPOXMLDOC01-appb-T000013
 表1に示されるように、本発明の製造方法で得られた各実施例の有機ケイ素化合物は、塩素原子含有量が0.1質量ppm未満まで低減されているとともに、長期保存後の純度低下が小さく、高い保存安定性を有していることがわかる。

Claims (6)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     nは、1~3の整数、mは、1~12の整数を表す。)
    で表されるケチミン構造を有する有機ケイ素化合物の製造方法であって、
     下記工程(I)および工程(II)を含み、前記式(1)で表される有機ケイ素化合物に対して塩素原子含有量を0.1質量ppm未満とすることを特徴とするケチミン構造を有する有機ケイ素化合物の製造方法。
    工程(I):下記式(2)で表されるアミノ基含有有機ケイ素化合物と下記式(3)で表されるカルボニル化合物を反応させる工程。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、R3、R4、nおよびmは、前記と同じ意味を表す。)
    工程(II):塩素原子含有量を低減する工程
  2.  前記工程(II)が、前記工程(I)の後に行われる請求項1記載のケチミン構造を有する有機ケイ素化合物の製造方法。
  3.  前記工程(II)が、無機吸着剤を用いて塩素原子含有量を低減する工程を含む請求項1または2記載のケチミン構造を有する有機ケイ素化合物の製造方法。
  4.  前記無機吸着剤が、シリカ、水酸化アルミニウム、ハイドロタルサイト、ケイ酸マグネシウム、ケイ酸アルミニウム、酸化アルミニウムおよび酸化マグネシウムから選ばれる1種または2種以上である請求項3記載のケチミン構造を有する有機ケイ素化合物の製造方法。
  5.  前記R1が、メチル基またはエチル基であり、前記R3が、イソブチル基であり、前記R4が、メチル基であり、前記mおよびnがいずれも3である請求項1~4のいずれか1項記載のケチミン構造を有する有機ケイ素化合物の製造方法。
  6.  下記式(1)で表され、その中の塩素原子含有量が0.1質量ppm未満である有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     R2は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     R3およびR4は、それぞれ独立して、水素原子、炭素数1~10のアルキル基または炭素数6~10のアリール基を表し、
     nは、1~3の整数、mは、1~12の整数を表す。)
PCT/JP2018/037712 2018-05-01 2018-10-10 ケチミン構造を有する有機ケイ素化合物の製造方法 WO2019211921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/051,970 US20210238206A1 (en) 2018-05-01 2018-10-10 Production method for organic silicon compound having ketimine structure
EP18917247.1A EP3789391A4 (en) 2018-05-01 2018-10-10 PROCESS FOR THE PREPARATION OF AN ORGANIC SILICON COMPOUND WITH KETIME STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018088059A JP6555385B1 (ja) 2018-05-01 2018-05-01 ケチミン構造を有する有機ケイ素化合物の製造方法
JP2018-088059 2018-05-01

Publications (1)

Publication Number Publication Date
WO2019211921A1 true WO2019211921A1 (ja) 2019-11-07

Family

ID=67539749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037712 WO2019211921A1 (ja) 2018-05-01 2018-10-10 ケチミン構造を有する有機ケイ素化合物の製造方法

Country Status (5)

Country Link
US (1) US20210238206A1 (ja)
EP (1) EP3789391A4 (ja)
JP (1) JP6555385B1 (ja)
TW (1) TWI787373B (ja)
WO (1) WO2019211921A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322762B2 (ja) * 2020-03-13 2023-08-08 信越化学工業株式会社 ケチミン構造を有する有機ケイ素化合物の製造方法
JP2023022908A (ja) * 2021-08-04 2023-02-16 信越化学工業株式会社 ケチミン構造を有する有機ケイ素化合物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278834A (en) * 1975-12-22 1977-07-02 Dow Corning Process for manufacturing organic silylamine
JPH07247295A (ja) * 1994-03-11 1995-09-26 Shin Etsu Chem Co Ltd ケチミン構造含有有機けい素化合物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942019A (en) * 1956-10-12 1960-06-21 Union Carbide Corp Organosilicon methylideneamino compounds and process for producing the same
US4832748A (en) * 1986-10-21 1989-05-23 Toagosei Chemical Industry Co., Ltd. Coating composition
JP4054957B2 (ja) * 2001-12-07 2008-03-05 信越化学工業株式会社 テトラキス(ジメチルアミノ)シランの塩素分低減方法
JP3764722B2 (ja) * 2002-12-27 2006-04-12 横浜ゴム株式会社 プライマー組成物
JP4948813B2 (ja) * 2005-09-22 2012-06-06 東レ・ダウコーニング株式会社 ケチミン構造含有アルコキシシランの製造方法
JP5508000B2 (ja) * 2007-04-24 2014-05-28 株式会社カネカ 硬化性組成物
CN102597122B (zh) * 2009-10-30 2015-09-02 株式会社钟化 固化性组合物
JP2017066335A (ja) * 2015-10-02 2017-04-06 信越化学工業株式会社 ウレタン接着剤組成物
KR102487691B1 (ko) * 2016-07-15 2023-01-12 모멘티브 퍼포먼스 머티리얼즈 인크. 이미노-관능성 실란의 안정화 방법
WO2018234266A1 (de) * 2017-06-19 2018-12-27 Sika Technology Ag Aldiminosilane
JP7322762B2 (ja) * 2020-03-13 2023-08-08 信越化学工業株式会社 ケチミン構造を有する有機ケイ素化合物の製造方法
JP2023022908A (ja) * 2021-08-04 2023-02-16 信越化学工業株式会社 ケチミン構造を有する有機ケイ素化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278834A (en) * 1975-12-22 1977-07-02 Dow Corning Process for manufacturing organic silylamine
JPH07247295A (ja) * 1994-03-11 1995-09-26 Shin Etsu Chem Co Ltd ケチミン構造含有有機けい素化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789391A4 *

Also Published As

Publication number Publication date
TWI787373B (zh) 2022-12-21
EP3789391A4 (en) 2022-03-02
EP3789391A1 (en) 2021-03-10
US20210238206A1 (en) 2021-08-05
JP2019194161A (ja) 2019-11-07
JP6555385B1 (ja) 2019-08-07
TW201945376A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
TWI754626B (zh) 高純度三矽烷胺、製造方法、及用途
US20150246937A1 (en) Organoaminosilanes and methods for making same
JP3543352B2 (ja) 含硫黄有機珪素化合物の製造方法
EP1945649B1 (en) Method for producing ketimine structure-containing alkoxysilane
JP6555385B1 (ja) ケチミン構造を有する有機ケイ素化合物の製造方法
KR101013394B1 (ko) 신규 에폭시 화합물 및 그 제조방법
US9181283B2 (en) Methods of preparing low molecular weight carbosilanes and precursors thereof
EP3149011A1 (en) Process of synthesizing diisopropylaminw-disilanes
JP5115729B2 (ja) トリアルキルシリル基で保護されたアセト酢酸エステル基含有有機ケイ素化合物及びその製造方法
EP0472438A1 (en) Processes for the preparation of y-methacryloxypropylsilane compounds
US20230059783A1 (en) Method for Producing Organosilicon Compound Having Ketimine Structure
JP3104872B2 (ja) オルガノシランから不純物を除去する方法
JP7322762B2 (ja) ケチミン構造を有する有機ケイ素化合物の製造方法
JP2875735B2 (ja) ケチミン構造含有有機けい素化合物の製造方法
US20230041322A1 (en) Increasing the molecular weight of low molecular weight a,w-polysiloxanediols
JPS6332336B2 (ja)
JP4054957B2 (ja) テトラキス(ジメチルアミノ)シランの塩素分低減方法
US20100113812A1 (en) Process for preparing organic silane compounds having beta-cyano ester group
KR20070083182A (ko) 고순도 하프늄아미드의 제조방법
JP4768589B2 (ja) アミノアルコキシシラン化合物の合成方法
JP2024097464A (ja) (メタ)アクリル官能性有機ケイ素化合物の精製方法、及び(メタ)アクリル官能性有機ケイ素化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018917247

Country of ref document: EP

Effective date: 20201201