WO2019208910A1 - 버터플라이 밸브 및 이를 제조하는 방법 - Google Patents

버터플라이 밸브 및 이를 제조하는 방법 Download PDF

Info

Publication number
WO2019208910A1
WO2019208910A1 PCT/KR2019/000975 KR2019000975W WO2019208910A1 WO 2019208910 A1 WO2019208910 A1 WO 2019208910A1 KR 2019000975 W KR2019000975 W KR 2019000975W WO 2019208910 A1 WO2019208910 A1 WO 2019208910A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
plastic layer
disk
butterfly valve
polyamide
Prior art date
Application number
PCT/KR2019/000975
Other languages
English (en)
French (fr)
Inventor
이상선
Original Assignee
Lee Sang Seon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180167460A external-priority patent/KR102216261B1/ko
Application filed by Lee Sang Seon filed Critical Lee Sang Seon
Priority to JP2019559368A priority Critical patent/JP7021256B2/ja
Priority to EP19786259.2A priority patent/EP3608565A4/en
Priority to CN201980002067.XA priority patent/CN110637182A/zh
Priority to US16/659,489 priority patent/US11199266B2/en
Publication of WO2019208910A1 publication Critical patent/WO2019208910A1/ko
Priority to US17/488,483 priority patent/US11662028B2/en
Priority to US17/488,473 priority patent/US11828368B2/en
Priority to JP2022000770A priority patent/JP7503582B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7506Valves

Definitions

  • the present invention relates to a butterfly valve and a method of manufacturing the same.
  • the butterfly valve Since the butterfly valve is made of steel only, the strength is strong, but it is easy to corrode and heavy, and the manufacturing cost is increased. In particular, the butterfly valve is required to be precisely processed, the precision processing is difficult because the butterfly valve is made of steel, and as a result mass production is impossible.
  • the present invention is to provide a butterfly valve and a method of manufacturing the same, which have improved strength and corrosion resistance or acid resistance while maintaining strength, and which are capable of mass production.
  • the butterfly valve is the body portion is formed insertion space; And a disk inserted into the insertion space of the body part, and the fluid flow is opened and closed according to the rotation of the disk.
  • the disk is a metal body; A first plastic layer formed on the disc body and made of a first plastic material; And a second plastic layer formed on the first plastic layer, wherein the second plastic is made of a material.
  • the melting point of the first plastic is higher than the melting point of the second plastic.
  • the disk used in the butterfly valve according to an embodiment of the present invention is a disk body made of metal; A first plastic layer formed on the disc body and made of a first plastic material; And a second plastic layer formed on the first plastic layer, wherein the second plastic is made of a material.
  • the melting point of the first plastic and the second plastic is different.
  • the body portion surrounding the disk in the butterfly valve according to an embodiment of the present invention And a lower body, and the insertion space is formed by combining the upper body and the lower body.
  • the disk is inserted into the insertion space, at least one of the upper body and the lower body includes a skeleton made of metal material and a plastic layer formed on the skeleton.
  • the fluid contact portion contacting the fluid may be made of metal, and may require mechanical processing; A first plastic layer formed on the body and made of a first plastic material; And a second plastic layer formed on the first plastic layer, wherein the second plastic is made of a material.
  • the plastic layers are formed through injection molding, and melting points of the first plastic and the second plastic are different.
  • Method for manufacturing a disk used in the butterfly valve comprises the steps of forming a first plastic layer on the disk body made of metal through injection molding; And forming a second plastic layer on the first plastic layer through injection molding.
  • the melting point of the first plastic material of the first plastic layer and the second plastic material of the second plastic layer is different.
  • the butterfly valve and the method of manufacturing the same according to the present invention uses a disc having a metal body and a plastic layer formed by injection molding on the disc body, thereby maintaining a similar strength to that of the butterfly valve made of steel. Corrosion or acid resistance can be improved.
  • the weight of the butterfly valve is reduced, the molding can be easy to mass production.
  • the precise manufacturing of the butterfly valve is also possible.
  • FIG. 1 is a perspective view showing the structure of a butterfly valve according to an embodiment of the present invention.
  • FIG. 2 is a view showing an exploded structure of a butterfly valve according to an embodiment of the present invention.
  • FIG 3 illustrates a disk according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a portion of a disk according to an embodiment of the present invention.
  • FIG. 5 is a view showing an upper body and a lower body according to an embodiment of the present invention.
  • FIG. 6 is a view showing a disk body according to another embodiment of the present invention.
  • the present invention relates to a valve, a patented butterfly valve, which can improve the life and corrosion resistance while maintaining the strength and precision compared to the butterfly valve made of metal, for example steel only, significantly lower the manufacturing cost and productivity Can significantly improve and mass production is possible.
  • butterfly valves are made of steel only, resulting in high strength but difficult machining, resulting in significantly lower productivity and higher manufacturing costs.
  • the butterfly valve is easily corroded when used in ships, water treatment devices (desalination equipment, wastewater treatment equipment) and the like there is a problem that the life is less than one year.
  • the butterfly valve of the present invention is formed of plastic on metal, for example, light metal such as steel or aluminum, to improve corrosion resistance and service life (available for more than 10 years), to reduce manufacturing costs and to significantly reduce weight.
  • this technique is not limited to butterfly valves, but may be applied to all valves as a whole.
  • FIG. 1 is a perspective view showing the structure of a butterfly valve according to an embodiment of the present invention
  • Figure 2 is a view showing an exploded structure of a butterfly valve according to an embodiment of the present invention
  • Figure 3 is a present invention
  • 4 is a view showing a partial cross-section of the disk according to an embodiment of the present invention
  • Figure 5 is a view showing an upper body and a lower body according to an embodiment of the present invention
  • 6 is a view showing a disk body according to another embodiment of the present invention.
  • the butterfly valve of this embodiment includes a disc 100, a disc support 102 and a body 104.
  • the butterfly valve may include only the disc 100 and the body 104 without the disc support 102.
  • the disk 100 may be manufactured by two consecutive injections of plastics on a metal, such as steel or light metal such as aluminum, as described below, and perform opening and closing operations of the fluid flow.
  • a metal such as steel or light metal such as aluminum, as described below.
  • the disc 100 rotates, for example, by 90 degrees, and when blocking the fluid, the disc 100 is closed as shown in FIG.
  • the disk support 102 serves to stably support the disk 100, for example, a fluorine resin, for example, polytetrafluoroethylene (PTFE), perfluoro alkyl (PFA) or polyvinylidene fluoride (PVDF). ) And the like.
  • Fluorine resin is a generic term for resins containing fluorine in the molecule, and has excellent heat resistance, chemical resistance, electrical insulation, low coefficient of friction, and no adhesion and adhesion.
  • the body 104 wraps around the disk support 102, for example polyvinyl chloride (PVC), polypropylene (PP), poly phenylene sulfide (PPS), polyphthalamide ( Polyphtalamide (PPA), polyamide (PA6), polyamide (Polyamide, PA66), polyketone (Polyketone, POK) or polyethylene (Polyethylene, PE) can be formed by mixing the glass fiber (Glass fiber) .
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS poly phenylene sulfide
  • PPA Polyphtalamide
  • PA6 polyamide
  • PA66 polyamide
  • Polyketone Polyketone
  • PE polyethylene
  • the body 104 is, for example, polyvinyl chloride (PVC), polypropylene (PP), polyphenylenesulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide (PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing the glass fibers and carbon fibers.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylenesulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the body 104 is made of, for example, polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), poly It can be formed by mixing glass fibers, carbon fibers and graphite in amide (PA66), polyketone (POK) or polyethylene (PE).
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA6 polyamide
  • PA66 polyamide
  • PA66 polyketone
  • PE polyethylene
  • the disk 100 may include an opening and closing unit 100a, an operation unit 100b, and a fixing unit 100c.
  • the opening and closing portion 100a is a member for opening and closing a fluid flow, and may have a circular shape, for example. The structure of the opening and closing portion 100a will be described later.
  • the operation unit 100b is coupled to the upper end of the opening and closing unit 100a and protrudes upward.
  • the manipulation part 100b penetrates through the hole 510 formed at the center of the upper body 104a and protrudes upward of the upper body 104a as shown in FIG. 1.
  • the operation unit 100b is combined with a control unit (not shown) and rotates under the control of the control unit. As a result, the opening and closing portion 100a rotates to perform the opening and closing operation.
  • the fixing part 100c is inserted into the hole 540 formed at the center of the lower body 104b, and as a result, the disk 100 may be stably fixed to the body 100.
  • the fixing part 100c does not protrude outward when inserted, and may have a length smaller than that of the operation part 100b.
  • the disc support 102 may include a first support 102a and a second support 102b.
  • the first support portion 102a may have the same shape as that of the opening and closing portion 100a, for example, a circular shape, and may have a size larger than the size of the opening and closing portion 100a.
  • a space (hole) 208 penetrating the front and rear surfaces is formed in the first support portion 102a, and a groove 209 is formed at the upper end of the first support portion 102a over its entire circumference.
  • a hole 200 in which the operation unit 100b is inserted is formed in the upper center portion of the first support portion 102a and a hole 202 in which the fixing portion 100c is inserted in the lower center portion thereof may be formed.
  • the second support portion 102b may also have the same shape as the opening and closing portion 100a, for example, a circular shape, and may have an opening 204 formed in the upper center portion and an opening formed in the lower center portion. Holes may be formed in the openings, respectively.
  • the hole of the opening 204 corresponds to the hole 200 formed in the upper end of the first support portion 102a
  • the hole of the opening formed in the lower center portion is formed in the hole 202 formed in the lower end of the first support portion 102a. Can be located correspondingly.
  • the second support portion 102b may be made of ethylene propylene rubber (Ethylene Propylene Diene Monomer, EPDM), fluorine rubber (Fluoro Elastomers, FKM) or silicon.
  • EPDM ethylene propylene rubber
  • FKM fluorine rubber
  • silicon silicon
  • the opening and closing portion 100a of the disc 100 is inserted into the space 208 of the first support portion 102a, and the groove 209 in which the second support portion 102b is formed at the upper end of the first support portion 102a. It can be fastened to. That is, the second support portion 102b applies pressure to the opening / closing portion 100a of the disk 100 inserted into the space 208 of the first supporting portion 102a so that the opening and closing portion 100a is stably fixed.
  • the size of the opening and closing portion 100a of the disc 100 has a size slightly larger than the space 208 of the first support portion 102a, but the outermost portion of the opening and closing portion 100a is made of plastic to provide elasticity. Therefore, the opening and closing part 100a may be inserted into the space 208 of the first support part 102a.
  • the operation unit 100b is exposed to the outside through the hole 510 formed at the upper center portion of the upper body 104a, and the fixing portion 100c is formed at the lower center portion of the lower body 104b. ) Can be inserted.
  • the operation part 100b is firmly fixed by the support parts 102a and 102b and the upper body 104a by the fastening members 242 and 246, and the fixing part 100c is fastened to the fastening member 240. It can be firmly fixed to the lower body 104b.
  • the structure for fixing and rotating the disk 100 for opening and closing may be variously modified without being limited to the above structure.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • the upper plastic layer 560 formed by mixing glass fibers and the like with polyphthalamide (PPA), polyamide (PA6), polyamide (PA66), polyketone (POK), or polyethylene (PE) may be included.
  • the upper base may include an upper armature 500, a receiving portion 502, a head 504, a plurality of pipe coupling portions 506, and bottom portions 508a and 508b on both sides.
  • the upper armature 500 is a frame, for example, both the top and bottom may have a semi-circular shape, it may be made of metal, in particular hard metal.
  • the upper skeleton 500 and the lower skeleton 530 may form a space in which the disk support 102 supporting the disk 100 can be inserted.
  • the groove 520 may be formed on the lower outer surface of the upper armature 500, and the groove 550 may be formed on the inner surface of the lower armature 530.
  • the central portion of the upper armature 500 may extend in length in the direction in which the receiving portion 502 intersects with the upper armature 500, preferably in a vertical direction, and may be made of metal.
  • a hole 510 is formed in the accommodation portion 502, and the operation unit 100b of the disc 100 may pass through the hole 510 and be exposed to the outside.
  • the head 504 is connected to the end of the receiving portion 502, may be made of metal, and may have a larger size than the receiving portion 502.
  • the operation unit 100b may protrude above the head 504.
  • the tubing coupling 506 is used to connect the tubing and may be, for example, a rib projecting from the upper armature 500 and may be made of metal.
  • the pipe coupling portion 506 may be formed with a hole 512, after positioning the pipes on both sides of the butterfly valve and fastening the fixing member such as bolts through the pipes and the butterfly valve By doing so, a butterfly valve can be coupled to the pipes. At this time, the bolt may pass through the pipe coupling portion 506 of the butterfly valve. That is, the pipe coupling portion 506 is used to couple the butterfly valve and the pipes.
  • the bottoms 508a and 508b are formed at both ends of the upper armature 500, respectively, and may be used for coupling with the lower body 104b, and may be made of metal.
  • screw insertion portions 230a and 232a may be formed in the bottom portions 508a and 508b.
  • the upper plastic layer 560 is formed on the upper base, and may be formed on the upper base through insert injection molding, for example.
  • the upper plastic layer 560 may be made of polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide ( PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing the glass fibers.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the upper plastic layer 560 is made of polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide ( PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing glass fibers and carbon fibers, or glass fibers, carbon fibers and graphite.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the top plastic layer 560 is polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide (PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing the carbon fiber or carbon fiber and graphite. As a result, the strength, impact resistance, and mechanical properties of the upper base can be improved.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the upper base may form the upper armature 500 made of steel in a thin thickness while maintaining the overall strength similar to that of the upper base made of steel by mixing the glass fiber with the upper plastic layer 560. As a result, the upper base can maintain its strength while being light in weight.
  • the lower body 104b may include a lower base and a lower plastic layer 562.
  • the lower base may include a lower armature 530, a receiving portion 532, a pipe coupling portion 534, and bottom portions 536a and 536b.
  • the lower armature 530 may have a shape corresponding to the upper armature 500, for example, a semi-circle shape, and may be made of a metal, for example, a hard metal such as steel or aluminum.
  • the accommodating part 532 is a part for accommodating the fixing part 100c of the disk 100, and a hole 540 is formed to insert the fixing part 100c and may be made of metal.
  • the pipe coupling part 534 performs the same function as the pipe coupling part 506, and may protrude from the lower armature 530, for example, and may be made of metal. Holes 542 may be formed in the pipe coupling part 534.
  • the bottoms 536a and 536b are formed at both ends of the lower armature 530, respectively, and may be used for coupling with the upper body 104a and may be made of metal.
  • threaded inserts 234a and 236a may be formed in the respective bottom portions 536a and 368b. As the screws (bolts) 220 are inserted into the screw inserts 230a, 232a, 234a, and 236a as shown in FIG. 2, the upper body 104a and the lower body 104b may be coupled.
  • the lower plastic layer 562 is formed on the lower base, and may be formed on the lower base through insert injection molding, for example.
  • the lower plastic layer 562 may be made of polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide ( PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing the glass fibers.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the lower plastic layer 562 may be made of polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide ( PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing glass fibers and carbon fibers, or glass fibers, carbon fibers and graphite.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the lower plastic layer 562 is polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide (PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing the carbon fibers, or carbon fibers and graphite.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the strength, impact resistance, and mechanical properties of the upper base can be improved.
  • the lower base may maintain the overall strength similar to the lower base made of steel by mixing the glass fiber with the lower plastic layer 562 while using the thin lower armature 530 made of steel. As a result, the lower base can be lighter in weight while maintaining strength.
  • the opening and closing portion 100a of the disc 100 may include a disc body 300, a first plastic layer 302, and a second plastic layer 304. Although only two plastic layers 302 and 304 are illustrated in the drawings, the opening and closing part 100a may include three or more plastic layers.
  • the disc body 300 is a basic skeleton of the disc 100 and may be made of a metal, for example, a light metal such as steel or aluminum.
  • the disk body 300 may have a circular shape as shown in FIG. 3, and at least one hole 310 may be formed.
  • the disk body 300 is not limited to the structure of Figure 3, it may have a skeleton structure (300a) having a circular shape as shown in Figure 6 but having a lot of space therein.
  • the first plastic layer 302 may be formed on the disc body 300 through injection molding. In this case, the first plastic layer 302 may cover the entire disk body 300.
  • the first plastic layer 302 may be made of high strength plastic, such as engineering plastic or super engineering plastic.
  • the first plastic layer 302 may be made of a polyphenylene ether resin composition comprising a polyphenylene ether resin and a polystyrene resin, or may be made of POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE, and the like, and combinations thereof.
  • the second plastic layer 304 may be formed on the first plastic layer 302 through injection molding. In this case, the second plastic layer 304 may cover the entire first plastic layer 302 and fill holes formed on the disc body 300 and the first plastic layer 302.
  • the second plastic layer 304 may be made of a fluorine resin, for example, polytetrafluoroethylene (PTFE), perfluoro alkyl (PFA), polyvinylidene fluoride (PVDF), or the like.
  • PTFE polytetrafluoroethylene
  • PFA perfluoro alkyl
  • PVDF polyvinylidene fluoride
  • the second plastic layer 304 may be made of plastic having a lower melting point than the first plastic layer 302.
  • the second plastic layer 304 may be made of polytetrafluoroethylene (PTFE).
  • the first plastic layer 302 and the second plastic layer 304 may be made of plastics having different melting points.
  • the corrosion resistance or acid resistance characteristics of the second plastic constituting the second plastic layer 304 is superior to the corrosion resistance or acid resistance characteristics of the first plastic constituting the first plastic layer 302, and the first The strength property of the plastic may be superior to that of the second plastic. That is, the first plastic may enhance the strength of the disk 100 and the second plastic may function to prevent corrosion or oxidation due to the fluid.
  • the opening and closing portion 100a of the disk 100 may include a disk body 300, a first plastic layer 302, and a second plastic layer 304 that are sequentially formed.
  • the disc 100 of the present invention forms only the disc body 300, which is the basic skeleton, of metal and forms plastic layers 302 and 304 on the disc body 300 through two injection moldings.
  • the disc body 300 is considerably thinner than a conventional disc, it is easy to precisely process the desired shape even if machining.
  • the precise shape of the disk 100 can be realized by the first plastic layer 302, the disk body 300 does not have to be precisely processed. Thus, mass production may be possible.
  • the plastic layers 302 and 304 can significantly improve the corrosion and acid resistance of the disc 100 and provide excellent strength properties.
  • the first plastic layer 302 is made of an engineering plastic or a super engineering plastic
  • the disk 100 can be made ultralight while maintaining similar strength as the conventional disk.
  • a conventional butterfly valve made of steel is 1 kg
  • the butterfly valve of the present invention may have a weight of about 350 g while maintaining similar strength. That is, ultra-light weight is possible.
  • the second plastic layer 304 made of polytetrafluoroethylene (PTFE) without the first plastic layer 302 may be formed directly on the disk body 300 made of steel, in this case formed on the metal.
  • PTFE polytetrafluoroethylene
  • the valve manufacturing method of the present invention uses high strength plastics (e.g., engineering plastics or super engineering plastics) that are easy to fabricate precise shapes on metal. That is, the valve manufacturing method may realize a precise shape by forming the first plastic layer 302 made of high strength plastic on the disk body 300 made of metal.
  • high strength plastics e.g., engineering plastics or super engineering plastics
  • the valve manufacturing method may form a second plastic layer 304 made of polytetrafluoroethylene (PTFE) on the first plastic layer 302 made of high strength plastic.
  • PTFE polytetrafluoroethylene
  • the polytetrafluoroethylene (PTFE) may be formed to a predetermined thickness on the high strength plastic.
  • the opening and closing portion 100a of the disk 100 can significantly improve productivity, significantly reduce weight, and significantly reduce manufacturing costs while maintaining the precise shape and processing as conventional disks.
  • mass production of the butterfly valve may be possible.
  • the fluid contact portion may include a body made of metal, a first plastic layer formed on the body and made of high-strength plastic, and a second plastic layer formed on the first plastic layer and made of fluorine resin.
  • plastic layers 560 and 562 of the body 104 will be described. However, since the components of the plastic layers 560 and 562 are the same, only the plastic layer 560 will be described.
  • the plastic layer 560 may be formed by mixing PP and glass fiber.
  • the glass fiber may be contained in more than 0% 40% or less, and PP has a content ratio of more than 60% of the total.
  • Table 1 The experimental results are shown in Table 1 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 25 One 10 54 2 15 59 3 20 78 4 30 83 5 40 94
  • the plastic layer 560 may be formed by mixing PPS and glass fiber.
  • the glass fiber may be contained in more than 0% 40% or less than the total, PPS has a content ratio of more than 60% relative to the total.
  • the experimental results are shown in Table 2 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 70 One 30 140 2 40 200
  • the plastic layer 560 may be formed by mixing PPA and glass fiber.
  • the glass fiber may be contained in more than 0% 55% or less than the total, PPA has a content ratio of more than 45% relative to the total.
  • the experimental results are shown in Table 3 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 105 One 25 170 2 35 210 3 45 250 4 55 270
  • the tensile strength of the plastic layer 560 is significantly higher than that of the PPA-only plastic layer without glass fiber. Can be. That is, the mechanical and chemical properties can be improved to form the plastic layer 560 lightly and hardly while improving the mechanical properties. However, when the content ratio of the glass fiber exceeds 55%, the characteristics of the injection process for manufacturing the plastic layer 560 is deteriorated, making it difficult to manufacture the plastic layer 560 in a desired shape.
  • the plastic layer 560 may be formed by mixing PA (Polyamide, PA6) and glass fiber.
  • PA Polyamide, PA6
  • the glass fiber may be contained in more than 0% 50% or less than the total, PA has a content ratio of more than 50% relative to the total.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 70 One 15 125 2 20 145 3 30 170 4 33 180 5 35 185 6 40 192 7 45 200 8 50 220
  • the plastic layer 560 may be formed by mixing PA (Polyamide, PA66) and glass fiber.
  • PA Polyamide, PA66
  • the glass fiber may be contained in more than 0% 50% or less than the total, PA has a content ratio of more than 50% relative to the total.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 80 One 25 165 2 30 186 3 33 196 4 35 200 5 50 245
  • the plastic layer 560 is formed by mixing PA and glass fiber, it is confirmed that the tensile strength of the plastic layer 560 is significantly higher than the plastic layer made of only PA without glass fiber. Can be. That is, the mechanical and chemical properties can be improved to form the plastic layer 560 lightly and hardly while improving the mechanical properties. However, when the content ratio of the glass fiber exceeds 50%, the characteristics of the injection process for manufacturing the plastic layer 560 is deteriorated, making it difficult to manufacture the plastic layer 560 in a desired shape.
  • the plastic layer 560 may be formed by mixing POK (Polyketone) and glass fiber.
  • POK Polyketone
  • the glass fiber may be contained in more than 0% 40% or less compared to the total, PA has a content ratio of more than 60% relative to the total.
  • Table 6 The experimental results are shown in Table 6 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa @ 23 ° C) [ASTM D638] For comparison 0 60 One 15 100 2 20 125 3 30 140 4 40 165

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

강도를 유지하면서 내부식성 또는 내산성을 향상시키며 감소된 무게를 가지며 대량 생산이 가능한 버터플라이 밸브 및 이를 제조하는 방법이 개시된다. 상기 버터플라이 밸브는 삽입 공간이 형성되는 바디부 및 상기 바디부의 삽입 공간으로 삽입되는 디스크를 포함하고, 상기 디스크의 회전에 따라 유체 흐름이 개폐된다. 여기서, 상기 디스크는 금속인 디스크 바디 및 상기 디스크 바디 위에 형성된 적어도 하나의 플라스틱층을 가진다.

Description

버터플라이 밸브 및 이를 제조하는 방법
본 발명은 버터플라이 밸브 및 이를 제조하는 방법에 관한 것이다.
종래 버터플라이 밸브는 스틸로만 이루어졌기 때문에, 강도는 강하나 부식되기 쉽고 무거우며 제조 단가가 상승하였다. 특히, 상기 버터플라이 밸브는 정밀 가공이 요구되는데, 상기 버터플라이 밸브가 스틸로 이루어지기 때문에 정밀 가공이 어려웠으며, 그 결과 대량 생산이 불가능하다.
본 발명은 강도를 유지하면서 내부식성 또는 내산성을 향상시키며 감소된 무게를 가지며 대량 생산이 가능한 버터플라이 밸브 및 이를 제조하는 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 버터플라이 밸브는 삽입 공간이 형성되는 바디부; 및 상기 바디부의 삽입 공간으로 삽입되는 디스크를 포함하고, 상기 디스크의 회전에 따라 유체 흐름이 개폐된다. 상기 디스크는 금속인 디스크 바디; 상기 디스크 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및 상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함한다. 여기서, 상기 제 1 플라스틱의 녹는점이 상기 제 2 플라스틱의 녹는점보다 높다.
본 발명의 일 실시예에 따른 버터플라이 밸브에 사용되는 디스크는 금속이 재질인 디스크 바디; 상기 디스크 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및 상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함한다. 여기서, 상기 제 1 플라스틱와 상기 제 2 플라스틱의 녹는점이 다르다.
본 발명의 일 실시예에 따른 버터플라이 밸브에서 디스크를 감싸는 바디부는 상부 바디; 및 하부 바디를 포함하며, 상기 상부 바디와 상기 하부 바디를 결합시키면 상기 삽입 공간이 형성된다. 여기서, 상기 디스크는 상기 삽입 공간으로 삽입되고, 상기 상부 바디와 상기 하부 바디 중 적어도 하나는 금속이 재질인 뼈대 및 상기 뼈대 위에 형성되는 플라스틱층을 포함한다.
본 발명의 일 실시예에 따른 밸브에서 유체와 접촉하는 유체 접촉부는 금속을 재질로 하며, 기계적 가공이 필요한 바디; 상기 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및 상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함한다. 여기서, 상기 플라스틱층들은 사출 성형을 통하여 형성되며, 상기 제 1 플라스틱과 상기 제 2 플라스틱의 녹는점이 다르다.
본 발명의 일 실시예에 따른 버터플라이 밸브에 사용되는 디스크를 제조하는 방법은 금속을 재질로 하는 디스크 바디 위에 사출 성형을 통하여 제 1 플라스틱층을 형성하는 단계; 및 상기 제 1 플라스틱층 위에 사출 성형을 통하여 제 2 플라스틱층을 형성하는 단계를 포함한다. 여기서, 상기 제 1 플라스틱층의 재질인 제 1 플라스틱과 상기 제 2 플라스틱층의 재질인 제 2 플라스틱의 녹는점이 다르다.
본 발명에 따른 버터플라이 밸브 및 이를 제조하는 방법은 금속으로 이루어진 디스크 바디와 상기 디스프 바디 위에 사출 성형되어 형성된 플라스틱층들을 가지는 디스크를 사용하므로, 스틸로만 이루어진 버터플라이 밸브와 유사한 강도를 유지하면서도 내부식성 또는 내산성을 향상시킬 수 있다.
또한, 상기 버터플라이 밸브의 무게가 감소하고, 성형이 용이하여 대량 생산이 가능할 수 있다. 물론, 상기 버터플라이 밸브의 정밀한 제작도 가능하다.
도 1은 본 발명의 일 실시예에 따른 버터플라이 밸브의 구조를 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 버터플라이 밸브의 분해 구조를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 디스크를 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 디스크의 일부 단면을 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 상부 바디 및 하부 바디를 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 디스크 바디를 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 발명은 밸브, 특허 버터플라이 밸브에 관한 것으로서, 금속, 예를 들어 스틸로만 이루어지는 버터플라이 밸브와 비교하여 강도 및 정밀도는 유지시키면서 수명 및 내부식성 등을 향상시킬 수 있으며, 제조 단가를 상당히 낮추고 생산성을 상당히 향상시키며 대량 생산이 가능할 수 있다.
기존 버터플라이 밸브는 스틸로만 이루어졌으며, 그 결과 강도는 높았으나 정밀 가공이 어려워서 생산성이 상당히 낮았고 제조 단가가 높았다. 또한, 버터플라이 밸브가 선박, 수처리 장치(담수화 장비, 폐수 처리 장비) 등에 사용될 때 쉽게 부식되어 수명이 1년도 안되는 문제점이 있다.
반면에, 본 발명의 버터플라이 밸브는 금속, 예를 들어 스틸 또는 알루미늄 등의 경금속 위에 플라스틱을 성형하여 내부식성 및 수명(10년 이상 사용 가능)을 향상시키고 제조 단가를 낮추며 무게를 상당히 줄였다.
물론, 후술하는 바와 같이 이러한 기술은 버터플라이 밸브에만 한정되지는 않으며, 전반적인 밸브에 모두 적용될 수 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술하겠다.
도 1은 본 발명의 일 실시예에 따른 버터플라이 밸브의 구조를 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 버터플라이 밸브의 분해 구조를 도시한 도면이며, 도 3은 본 발명의 일 실시예에 따른 디스크를 도시한 도면이다. 도 4는 본 발명의 일 실시예에 따른 디스크의 일부 단면을 도시한 도면이고, 도 5는 본 발명의 일 실시예에 따른 상부 바디 및 하부 바디를 도시한 도면이다. 도 6은 본 발명의 다른 실시예에 따른 디스크 바디를 도시한 도면이다.
도 1을 참조하면, 본 실시예의 버터플라이 밸브는 디스크(100), 디스크 지지부(102) 및 바디(104)를 포함한다. 실시예에 따라서는, 상기 버터플라이 밸브는 디스크 지지부(102) 없이 디스크(100) 및 바디(104)만을 포함할 수도 있다.
디스크(100)는 후술하는 바와 같이 금속, 예를 들어 스틸 또는 알루미늄 등의 경금속 위에 플라스틱들을 2번의 연속적인 사출에 의해 제조될 수 있으며, 유체 흐름의 개폐 동작을 수행한다. 유체를 통과시킬 때에는 디스크(100)가 예를 들어 90도 회전하여 개방되고, 유체를 차단할 때에는 디스크(100)가 도 1에 도시된 바와 같이 폐쇄된다.
디스크 지지부(102)는 디스크(100)를 안정적으로 지지하는 역할을 수행하며, 예를 들어 불소 수지, 예를 들어 폴리테트라 플루오로에틸렌(Polytetrafluoroethylene, PTFE), PFA(Perfluoro alkyl) 또는 PVDF(Polyvinylidene fluoride) 등으로 이루어질 수 있다. 불소 수지는 분자 안에 불소를 함유한 수지를 총칭하는 것으로서, 내열성, 내약품성, 전기 절연성이 뛰어나고 마찰계수가 작으며 접착 및 점착성이 없다.
바디(104)는 디스크 지지부(102)를 감싸며, 예를 들어 폴리염화비닐(Polyvinyl Chloride, PVC), 폴리프로필렌(polypropylene, PP), 폴리페닐렌설파이드(Poly Phenylene sulfide, PPS), 폴리프탈아미드(Polyphtalamide, PPA), 폴리아미드(Polyamide, PA6), 폴리아미드(Polyamide, PA66), 폴리케톤(Polyketone, POK) 또는 폴리에틸렌(Polyethylene, PE)에 유리섬유(Glass fiber)를 혼합함에 의해 형성될 수 있다. 이렇게 바디(104)를 제조하면, 바디(104)의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다. 이로 인한 효과에 대한 자세한 설명은 후술하겠다.
다른 실시예에 따르면, 바디(104)는 예를 들어 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유 및 탄소섬유를 혼합함에 의해 형성될 수 있다. 이렇게 바디(104)를 제조하면, 바디(104)의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다.
또 다른 실시예에 따르면, 바디(104)는 예를 들어 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유, 탄소섬유 및 그라파이트를 혼합함에 의해 형성될 수 있다. 이렇게 바디(104)를 제조하면, 바디(104)의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다.
이하, 본 발명의 버터플라이 밸브의 구성요소들의 자세한 구조 및 결합 관계를 살펴보겠다.
도 2 내지 도 5를 참조하면, 디스크(100)는 개폐부(100a), 조작부(100b) 및 고정부(100c)를 포함할 수 있다.
개폐부(100a)는 유체 흐름을 개폐하는 부재로서, 예를 들어 원형 형상을 가질 수 있다. 개폐부(100a)의 구조는 후술하겠다.
조작부(100b)는 개폐부(100a)의 상단에 결합되며, 상부 방향으로 돌출된다. 이러한 조작부(100b)는 상부 바디(104a)의 중앙부에 형성된 홀(510)을 관통하여 도 1에 도시된 바와 같이 상부 바디(104a)의 상측으로 돌출된다. 이러한 조작부(100b)는 제어부(미도시)와 결합되며, 상기 제어부의 제어에 따라 회전한다. 결과적으로, 개폐부(100a)가 회전하게 되어 개폐 동작을 수행한다.
고정부(100c)는 하부 바디(104b)의 중앙부에 형성된 홀(540)로 삽입되며, 그 결과 디스크(100)가 바디(100)에 안정적으로 고정될 수 있다. 고정부(100c)는 삽입시 외부로 돌출되지 않으며, 조작부(100b)보다 작은 길이를 가질 수 있다.
디스크 지지부(102)는 제 1 지지부(102a) 및 제 2 지지부(102b)를 포함할 수 있다.
제 1 지지부(102a)는 개폐부(100a)와 동일한 형상, 예를 들어 원형 형상을 가지며, 개폐부(100a)의 사이즈보다 큰 사이즈를 가질 수 있다.
일 실시예에 따르면, 제 1 지지부(102a)에 전면 및 후면을 관통하는 공간(홀, 208)이 형성되고, 제 1 지지부(102a)의 상단에는 둘레 전체에 걸쳐서 홈(209)이 형성될 수 있다.
일 실시예에 따르면, 제 1 지지부(102a)의 상단 중앙부에 조작부(100b)가 삽입되는 홀(200)이 형성되고 하단 중앙부에 고정부(100c)가 삽입되는 홀(202)이 형성될 수 있다.
제 2 지지부(102b) 또한 개폐부(100a)와 동일한 형상, 예를 들어 원형 형상을 가질 수 있으며, 상단 중앙부에 개구부(204)가 형성되고 하단 중앙부에 개구부가 형성될 수 있으며, 개구부(204) 및 상기 개구부에 각기 홀이 형성될 수 있다. 여기서, 개구부(204)의 홀은 제 1 지지부(102a)의 상단에 형성된 홀(200)에 대응하고, 하단 중앙부에 형성된 개구부의 홀은 제 1 지지부(102a)의 하단에 형성된 홀(202)에 대응하여 위치할 수 있다.
일 실시예에 따르면, 제 2 지지부(102b)는 에틸렌프로필렌고무(Ethylene Propylene Diene Monomer, EPDM), 불소고무(Fluoro Elastomers, FKM) 또는 실리콘 등으로 이루어질 수 있다.
이러한 구조에서, 디스크(100)의 개폐부(100a)가 제 1 지지부(102a)의 공간(208)으로 삽입되고, 제 2 지지부(102b)가 제 1 지지부(102a)의 상단에 형성된 홈(209)으로 체결될 수 있다. 즉, 제 2 지지부(102b)는 제 1 지지부(102a)의 공간(208)에 삽입된 디스크(100)의 개폐부(100a)에 압력을 가하여 개폐부(100a)가 안정적으로 고정되도록 한다.
일 실시예에 따르면, 디스크(100)의 개폐부(100a)의 사이즈는 제 1 지지부(102a)의 공간(208)보다 약간 큰 사이즈를 가지되, 개폐부(100a)의 최외각이 플라스틱으로 이루어져 탄성을 가지므로 개폐부(100a)부 제 1 지지부(102a)의 공간(208)으로 삽입될 수 있다.
이러한 구조에서, 조작부(100b)는 상부 바디(104a)의 상단 중앙부에 형성된 홀(510)을 관통하여 외부로 노출되고, 고정부(100c)는 하부 바디(104b)의 하단 중앙부에 형성된 홀(540)로 삽입될 수 있다.
이 때, 조작부(100b)는 체결 부재들(242 및 246)에 의해 지지부들(102a 및 102b) 및 상부 바디(104a)에 의해 견고하게 고정되며, 고정부(100c)는 체결 부재(240)에 의해 하부 바디(104b)에 견고하게 고정될 수 있다.
다만, 이러한 디스크(100)를 고정시키고 개폐를 위하여 회전시키는 구조는 위의 구조로 한정되지는 않고 다양하게 변형될 수 있다.
도 5를 참조하여 상부 바디(104a)를 살펴보면, 금속, 예를 들어 스틸 또는 알루미늄 등의 경금속으로 이루어진 상부 베이스 및 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유 등을 혼합함에 의해 형성된 상부 플라스틱층(560)을 포함할 수 있다.
상기 상부 베이스는 상부 뼈대(500), 수용부(502), 헤드(504), 복수의 배관 결합부들(506) 및 양 측면의 바닥부들(508a 및 508b)을 포함할 수 있다.
상부 뼈대(500)는 틀로서 예를 들어 상단 및 하단이 모두 반원 형상을 가질 수 있으며, 금속, 특히 경금속으로 이루어질 수 있다. 여기서, 상부 뼈대(500)와 하부 뼈대(530)는 디스크(100)를 지지하는 디스크 지지부(102)가 삽입될 수 있는 공간을 형성할 수 있다. 디스크 지지부(102)를 안정적으로 고정시키기 위하여, 상부 뼈대(500)의 하부 외측면에 홈(520)이 형성되고, 하부 뼈대(530)의 내측면에 홈(550)이 형성될 수 있다.
상부 뼈대(500)의 중앙부에는 수용부(502)가 상부 뼈대(500)와 교차하는 방향, 바람직하게는 수직한 방향으로 하여 길이 연장될 수 있으며, 금속으로 이루어질 수 있다.
수용부(502)에는 홀(510)이 형성되며, 디스크(100)의 조작부(100b)가 홀(510)을 관통하여 외부로 노출될 수 있다.
헤드(504)는 수용부(502)의 종단에 연결되고, 금속으로 이루어지며, 수용부(502)보다 큰 사이즈를 가질 수 있다. 여기서, 조작부(100b)는 헤드(504) 위로 돌출될 수 있다.
배관 결합부(506)는 배관들을 연결하기 위해 사용되며, 예를 들어 상부 뼈대(500)로부터 돌출된 리브일 수 있고, 금속으로 이루어질 수 있다.
일 실시예에 따르면, 배관 결합부(506)에는 홀(512)이 형성될 수 있고, 버터플라이 밸브의 양측에 배관들을 위치시킨 후 볼트 등의 고정 부재를 배관들과 버터플라이 밸브를 관통시켜 체결함에 의해 버터플라이 밸브가 상기 배관들에 결합될 수 있다. 이 때, 상기 볼트는 상기 버터플라이 밸브 중 배관 결합부(506)를 관통할 수 있다. 즉, 배관 결합부(506)는 상기 버터플라이 밸브와 배관들을 결합시키기 위해 사용된다.
바닥부들(508a 및 508b)은 상부 뼈대(500)의 양 종단들에 각기 형성되며, 하부 바디(104b)와의 결합을 위해 사용될 수 있고, 금속으로 이루어질 수 있다. 예를 들어, 각 바닥부들(508a 및 508b)에 나사 삽입부들(230a 및 232a)이 형성될 수 있다.
상부 플라스틱층(560)은 상기 상부 베이스 위에 형성되며, 예를 들어 인서트 사출 성형을 통하여 상기 상부 베이스 위에 형성될 수 있다.
일 실시예에 따르면, 상부 플라스틱층(560)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유를 혼합함에 의해 형성될 수 있다.
다른 실시예에 따르면, 상부 플라스틱층(560)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유 및 탄소섬유, 또는 유리섬유, 탄소섬유 및 그라파이트를 혼합함에 의해 형성될 수 있다.
또 다른 실시예에 따르면, 상부 플라스틱층(560)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 탄소섬유 또는 탄소섬유 및 그라파이트를 혼합함에 의해 형성될 수 있다. 결과적으로, 상기 상부 베이스의 강도, 내충격성, 기계적 특성을 향상시킬 수 있다.
즉, 상기 상부 베이스는 스틸로 이루어지는 상부 뼈대(500)를 얇은 두께로 형성하면서도 상부 플라스틱층(560)을 상기 유리섬유 등을 혼합하여 전체적인 강도를 스틸로만 이루어진 상부 베이스와 유사하게 유지시킬 수 있다. 결과적으로, 상기 상부 베이스는 중량은 가벼워지면서도 강도를 유지할 수 있다.
도 5를 참조하여 하부 바디(104b)를 살펴보면, 하부 바디(104b)는 하부 베이스 및 하부 플라스틱층(562)을 포함할 수 있다. 여기서, 상기 하부 베이스는 하부 뼈대(530), 수용부(532), 배관 결합부(534) 및 바닥부들(536a 및 536b)을 포함할 수 있다.
하부 뼈대(530)는 상부 뼈대(500)에 대응하는 형상, 예를 들어 반원 형상을 가질 수 있으며, 금속, 예를 들어 스틸 또는 알루미늄 등의 경금속으로 이루어질 수 있다.
수용부(532)는 디스크(100)의 고정부(100c)를 수용하는 부분으로서, 고정부(100c)가 삽입될 수 있도록 홀(540)이 형성되고, 금속으로 이루어질 수 있다.
배관 결합부(534)는 배관 결합부(506)와 동일한 기능을 수행하며, 예를 들어 하부 뼈대(530)로부터 돌출될 수 있으며, 금속으로 이루어질 수 있다. 배관 결합부(534)에는 홀(542)이 형성될 수 있다.
바닥부들(536a 및 536b)은 하부 뼈대(530)의 양 종단들에 각기 형성되며, 상부 바디(104a)와의 결합을 위해 사용될 수 있고, 금속으로 이루어질 수 있다. 예를 들어, 각 바닥부들(536a 및 368b)에 나사 삽입부들(234a 및 236a)이 형성될 수 있다. 나사들(볼트, 220)이 도 2에 도시된 바와 같이 나사 삽입부들(230a, 232a, 234a 및 236a)로 삽입됨에 따라 상부 바디(104a)와 하부 바디(104b)가 결합될 수 있다.
하부 플라스틱층(562)은 상기 하부 베이스 위에 형성되며, 예를 들어 인서트 사출 성형을 통하여 상기 하부 베이스 위에 형성될 수 있다.
일 실시예에 따르면, 하부 플라스틱층(562)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유를 혼합함에 의해 형성될 수 있다.
다른 실시예에 따르면, 하부 플라스틱층(562)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유 및 탄소섬유, 또는 유리섬유, 탄소섬유 및 그라파이트를 혼합함에 의해 형성될 수 있다.
또 다른 실시예에 따르면, 하부 플라스틱층(562)은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66) , 폴리케톤(POK) 또는 폴리에틸렌(PE)에 탄소섬유, 또는 탄소섬유와 그라파이트를 혼합함에 의해 형성될 수 있다.
결과적으로, 상기 상부 베이스의 강도, 내충격성, 기계적 특성을 향상시킬 수 있다.
즉, 상기 하부 베이스는 스틸로 이루어지는 얇은 하부 뼈대(530)를 사용하면서도 하부 플라스틱층(562)을 상기 유리섬유 등을 혼합하여 전체적인 강도를 스틸로만 이루어진 하부 베이스와 유사하게 유지시킬 수 있다. 결과적으로, 상기 하부 베이스는 중량은 가벼워지면서도 강도는 유지시킬 수 있다.
이하, 디스크(100)의 구조를 자세히 살펴보겠다.
도 3 및 도 4를 참조하면, 디스크(100)의 개폐부(100a)는 디스크 바디(300), 제 1 플라스틱층(302) 및 제 2 플라스틱층(304)을 포함할 수 있다. 도면들에서는 2개의 플라스틱층들(302 및 304)만이 형성되는 것으로 도시하였으나, 개폐부(100a)는 3개 이상의 플라스틱층들을 포함할 수도 있다.
디스크 바디(300)는 디스크(100)의 기본 뼈대로서, 금속, 예를 들어 스틸 또는 알루미늄 등의 경금속으로 이루어질 수 있다.
일 실시예에 따르면, 디스크 바디(300)은 도 3에 도시된 바와 같이 원형 형상을 가질 수 있고, 적어도 하나의 홀들(310)이 형성될 수 있다. 한편, 디스크 바디(300)는 도 3의 구조로 제한되지는 않으며, 도 6에 도시된 바와 같이 원형 형상이되 내부에 많은 공간을 가지는 뼈대 구조(300a)를 가질 수도 있다.
제 1 플라스틱층(302)은 사출 성형을 통하여 디스크 바디(300) 위에 형성될 수 있다. 이 때, 제 1 플라스틱층(302)은 디스크 바디(300) 전체를 덮을 수 있다.
일 실시예에 따르면, 제 1 플라스틱층(302)은 고강도 플라스틱, 예를 들어 엔지니어링 플라스틱 또는 수퍼 엔지니어링 플라스틱으로 이루어질 수 있다. 예를 들어, 제 1 플라스틱층(302)은 폴리페닐렌에테르계 수지와 폴리스티렌계 수지를 성분으로 한 폴리페닐렌에테르계 수지 조성물로 이루어지거나, POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE 등 및 이들의 조합물로 이루어질 수도 있다.
제 2 플라스틱층(304)은 사출 성형을 통하여 제 1 플라스틱층(302) 위에 형성될 수 있다. 이 때, 제 2 플라스틱층(304)은 제 1 플라스틱층(302) 전체를 덮을 수 있으며, 디스크 바디(300) 및 제 1 플라스틱층(302) 상에 형성된 홀들을 채울 수 있다.
일 실시예에 따르면, 제 2 플라스틱층(304)은 불소 수지, 예를 들어 폴리테트라 플루오로에틸렌(PTFE), PFA(Perfluoro alkyl) 또는 PVDF(Polyvinylidene fluoride) 등으로 이루어질 수 있다.
다른 실시예에 따르면, 제 2 플라스틱층(304)은 제 1 플라스틱층(302)보다 낮은 녹는점을 가지는 플라스틱으로 이루어질 수 있다. 예를 들어, 제 2 플라스틱층(304)은 폴리테트라 플루오로에틸렌(PTFE)으로 이루어질 수 있다.
제 1 플라스틱층(302)과 제 2 플라스틱층(304)은 다른 녹는점을 가지는 플라스틱들로 이루어질 수 있다.
일 실시예에 따르면, 제 2 플라스틱층(304)을 이루는 제 2 플라스틱의 내부식성 또는 내산성 특성이 제 1 플라스틱층(302)을 이루는 제 1 플라스틱의 내부식성 또는 내산성 특성보다 우수하고, 상기 제 1 플라스틱의 강도 특성이 상기 제 2 플라스틱의 강도 특성보다 우수할 수 있다. 즉, 상기 제 1 플라스틱은 디스크(100)의 강도를 강화시키고 상기 제 2 플라스틱은 유체로 인한 부식 또는 산화를 방지하는 기능을 수행할 수 있다.
정리하면, 디스크(100)의 개폐부(100a)는 순차적으로 형성된 디스크 바디(300), 제 1 플라스틱층(302) 및 제 2 플라스틱층(304)으로 이루어질 수 있다.
종래의 디스크는 모두 스틸로 이루어졌으며, 그 결과 기계 가공으로 제작되었다. 그러나, 이러한 기계 제작시 스틸을 원하는 형상으로 정밀하게 가공하기가 어려워서 디스크의 생산성이 많이 저하되었다. 결과적으로, 대량 생산이 불가능하였다. 물론, 상기 디스크가 모두 스틸로 이루어지므로, 강도는 높았지만 무게가 무겁고 제조 단가가 고가였으며 부식되기 쉬웠다.
반면에, 본 발명의 디스크(100)는 기본 뼈대인 디스크 바디(300)만 금속으로 형성하고 2번의 사출 성형을 통하여 디스크 바디(300) 위에 플라스틱층들(302 및 304)을 형성한다.
디스크 바디(300)는 종래의 디스크에 비하여 상당히 얇으므로, 기계 가공을 하더라도 원하는 형상으로 정밀하게 가공하기가 용이하다. 특히, 디스크(100)의 정밀한 형상을 제 1 플라스틱층(302)으로 실현할 수 있으므로, 디스크 바디(300)를 정밀하게 가공하지 않아도 된다. 따라서, 대량 생산이 가능할 수 있다.
또한, 플라스틱층들(302 및 304)로 인하여 디스크(100)의 내부식성 및 내산성이 상당히 향상되고 강도 특성이 우수할 수 있다. 구체적으로, 제 1 플라스틱층(302)이 엔지니어링 플라스틱 또는 수퍼 엔지니어링 플라스틱으로 이루어지므로, 디스크(100)는 종래 디스크와 유사한 강도를 유지하면서도 초경량화될 수 있다. 예를 들어, 스틸로만 이루어진 종래의 버터플라이 밸브가 1㎏이라고 하면, 본 발명의 버터플라이 밸브는 강도는 유사하게 유지하면서 350g 정도의 무게를 가질 수 있다. 즉, 초경량화가 가능하다.
한편, 제 1 플라스틱층(302) 없이 폴리테트라 플루오로에틸렌(PTFE)으로 이루어진 제 2 플라스틱층(304)을 스틸로 이루어진 디스크 바디(300) 위에 직접적으로 형성할 수도 있지만, 이 경우 상기 금속 위에 형성된 폴리테트라 플루오로에틸렌(PTFE)의 두께가 일정하지 못하는 문제점이 있다. 즉, 정밀한 디스크 형상을 제작할 수가 없다.
따라서, 본 발명의 밸브 제조 방법은 금속 위에서 정밀한 형상의 제작이 용이한 고강도 플라스틱(예를 들어, 엔지니어링 플라스틱 또는 수퍼 엔지니어링 플라스틱)을 사용한다. 즉, 상기 밸브 제조 방법은 금속으로 이루어진 디스크 바디(300) 위에 고강도 플라스틱으로 이루어진 제 1 플라스틱층(302)을 형성하여 정밀한 형상을 실현할 수 있다.
이어서, 상기 밸브 제조 방법은 고강도 플라스틱으로 이루어진 제 1 플라스틱층(302) 위에 폴리테트라 플루오로에틸렌(PTFE)으로 이루어진 제 2 플라스틱층(304)을 형성할 수 있다. 여기서, 상기 폴리테트라 플루오로에틸렌(PTFE)은 상기 고강도 플라스틱 위에 일정한 두께로 형성될 수 있다.
요컨대, 디스크(100)의 개폐부(100a)는 기존 디스크만큼 정밀한 형상 및 가공을 유지하면서도 생산성을 상당히 향상시키고 무게를 상당히 감소시키고 제조 단가를 상당히 낮출 수 있다. 또한, 상기 버터플라이 밸브의 대량 생산이 가능할 수 있다.
한편, 위에서는 디스크(100)만 언급하였지만, 버터플라이 밸브 외에도 다른 밸브들에서 우수한 내부식성이 필요한 유체와 접촉하는 유체 접촉부에 디스크(100)의 구조가 모두 적용될 수 있다. 즉, 상기 유체 접촉부는 금속으로 이루어진 바디, 상기 바디 위에 형성되며 고강도 플라스틱으로 이루어진 제 1 플라스틱층 및 상기 제 1 플라스틱층 위에 형성되며 불소 수지로 이루어진 제 2 플라스틱층을 포함할 수 있다.
이하, 바디(104)의 플라스틱층들(560 및 562)에 대하여 살펴보겠다. 다만, 플라스틱층들(560 및 562)의 성분이 동일하므로, 플라스틱층(560)만을 설명하겠다.
일 실시예에 따르면, 플라스틱층(560)은 PP와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PP는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 1과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 25
1 10 54
2 15 59
3 20 78
4 30 83
5 40 94
위 표 1에서 확인할 수 있는 바와 같이, PP와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 PP만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
또 다른 실시예에 따르면, 플라스틱층(560)은 PPS와 glass fiber의 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PPS는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 2와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 70
1 30 140
2 40 200
위 표 2에서 확인할 수 있는 바와 같이, PPS와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 PPS만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 플라스틱층(560)을 형성할 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
또 다른 실시예에 따르면, 플라스틱층(560)은 PPA와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 55% 이하로 함유될 수 있으며, PPA는 전체 대비 45%보다 큰 함량비를 가진다. 실험 결과는 하기 표 3과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 105
1 25 170
2 35 210
3 45 250
4 55 270
위 표 3에서 확인할 수 있는 바와 같이, PPA와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 PPA만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 플라스틱층(560)을 형성할 수 있다. 다만, glass fiber의 함량비가 55%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
또 다른 실시예에 따르면, 플라스틱층(560)은 PA(Polyamide, PA6)와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 50% 이하로 함유될 수 있으며, PA는 전체 대비 50%보다 큰 함량비를 가진다. 실험 결과는 하기 표 4와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 70
1 15 125
2 20 145
3 30 170
4 33 180
5 35 185
6 40 192
7 45 200
8 50 220
위 표 4에서 확인할 수 있는 바와 같이, PA와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 PA만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 플라스틱층(560)을 형성할 수 있다. 다만, glass fiber의 함량비가 50%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
또 다른 실시예에 따르면, 플라스틱층(560)은 PA(Polyamide, PA66)와 glass fiber을 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 50% 이하로 함유될 수 있으며, PA는 전체 대비 50%보다 큰 함량비를 가진다. 실험 결과는 하기 표 5와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 80
1 25 165
2 30 186
3 33 196
4 35 200
5 50 245
위 표 5에서 확인할 수 있는 바와 같이, PA와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 PA만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 플라스틱층(560)을 형성할 수 있다. 다만, glass fiber의 함량비가 50%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
또 다른 실시예에 따르면, 플라스틱층(560)은 POK(Polyketone)와 glass fiber을 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PA는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 6과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 60
1 15 100
2 20 125
3 30 140
4 40 165
위 표 6에서 확인할 수 있는 바와 같이, POK와 glass fiber를 혼합하여 플라스틱층(560)을 형성하는 경우, 플라스틱층(560)의 인장 강도가 glass fiber 없이 POK만으로 이루어진 플라스틱층에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 플라스틱층(560)을 형성할 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 플라스틱층(560)을 제조하기 위한 사출 공정의 특성이 저하되어 플라스틱층(560)을 원하는 형상으로 제조하기 어려웠다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 삽입 공간이 형성되는 바디부; 및
    상기 바디부의 삽입 공간으로 삽입되는 디스크를 포함하고,
    상기 디스크의 회전에 따라 유체 흐름이 개폐되며,
    상기 디스크는
    금속인 디스크 바디;
    상기 디스크 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및
    상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함하되,
    상기 제 1 플라스틱의 녹는점이 상기 제 2 플라스틱의 녹는점보다 높은 것을 특징으로 하는 버터플라이 밸브.
  2. 제1항에 있어서, 상기 제 1 플라스틱층은 엔지니어링 플라스틱 또는 수퍼 엔지니어링 플라스틱으로 이루어지고, 상기 제 2 플라스틱층은 불소 수지로 이루어지되,
    상기 불소 수지는 폴리테트라 플루오로에틸렌(PTFE), PFA(Perfluoro alkyl) 또는 PVDF(Polyvinylidene fluoride)인 것을 특징으로 하는 버터플라이 밸브.
  3. 제1항에 있어서, 상기 제 2 플라스틱의 내부식성 또는 내산성 특성이 상기 제 1 플라스틱의 내부식성 또는 내산성 특성보다 우수하고, 상기 제 1 플라스틱의 강도 특성이 상기 제 2 플라스틱의 강도 특성보다 우수한 것을 특징으로 하는 버터플라이 밸브.
  4. 제1항에 있어서, 상기 바디부는,
    상부 바디; 및
    하부 바디를 포함하며,
    상기 상부 바디와 상기 하부 바디를 결합시키면 상기 삽입 공간이 형성되되,
    상기 상부 바디와 상기 하부 바디 중 적어도 하나는 스틸로 이루어진 뼈대 및 상기 뼈대 위에 형성되는 플라스틱층을 포함하며,
    상기 뼈대에는 상기 버터플라이 밸브를 배관에 결합시키기 위한 홀이 형성된 배관 결합부가 돌출되는 것을 특징으로 하는 버터플라이 밸브.
  5. 제4항에 있어서, 상기 플라스틱층은 폴리염화비닐(Polyvinyl Chloride, PVC), 폴리프로필렌(polypropylene, PP), 폴리페닐렌설파이드(Poly Phenylene sulfide, PPS), 폴리프탈아미드(Polyphtalamide, PPA), 폴리아미드(Polyamide, PA6), 폴리아미드(Polyamide, PA66), 폴리케톤(Polyketone, POK) 또는 폴리에틸렌(Polyethylene, PE)에 유리섬유(Glass fiber)를 혼합함에 의해 형성되는 것을 특징으로 하는 버터플라이 밸브.
  6. 제4항에 있어서, 상기 플라스틱층은 상기 폴리프로필렌(PP)과 상기 유리섬유(glass fiber)를 혼합시킴에 의해 형성되되,
    상기 폴리프로필렌이 60 초과 중량 퍼센트를 가질 때 상기 유리섬유는 0 초과 40 이하 중량 퍼센트를 가지는 것을 특징으로 하는 버터플라이 밸브.
  7. 제4항에 있어서, 상기 플라스틱층은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS),폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유(Glass fiber) 및 탄소섬유를 혼합함에 의해 형성되는 것을 특징으로 하는 버터플라이 밸브.
  8. 제4항에 있어서, 상기 플라스틱층은 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS),폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유(Glass fiber), 탄소섬유 및 그라파이트를 혼합함에 의해 형성되는 것을 특징으로 하는 버터플라이 밸브.
  9. 제1항에 있어서,
    상기 삽입 공간 내에서 상기 디스크를 지지하며 불소 수지로 이루어진 디스크 지지부를 더 포함하되,
    상기 디스크 지지부는,
    제 1 지지부; 및
    제 2 지지부를 포함하며,
    상기 제 1 지지부의 전면과 후면을 관통하여 공간이 형성되고, 상기 디스크 바디가 상기 공간에 삽입되며, 상기 제 2 지지부는 상기 제 1 지지부의 상단에 형성된 홈에 결합되어 상기 디스크의 바디에 압력을 가하여 상기 디스크의 바디를 상기 제 1 지지부에 안정적으로 고정시키고,
    상기 디스크 중 상기 디스크 바디의 상단에 돌출된 조작부가 상기 지지부들의 상단들의 홀들을 관통하여 외부로 노출되며, 상기 디스크 중 상기 디스크 바디의 하단에 돌출된 고정부가 상기 지지부들의 홀들을 관통하여 상기 바디부의 홈으로 삽입되고, 상기 조작부를 회전시킴에 따라 상기 디스크가 회전되어 상기 유체 흐름을 개폐시키는 것을 특징으로 하는 버터플라이 밸브.
  10. 버터플라이 밸브에 사용되는 디스크에 있어서,
    금속이 재질인 디스크 바디;
    상기 디스크 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및
    상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함하되,
    상기 제 1 플라스틱와 상기 제 2 플라스틱의 녹는점이 다른 것을 특징으로 하는 디스크.
  11. 제10항에 있어서, 상기 제 1 플라스틱층은 엔지니어링 플라스틱 또는 수퍼 엔지니어링 플라스틱으로 이루어지고, 상기 제 2 플라스틱층은 불소 수지로 이루어지되,
    상기 불소 수지는 폴리테트라 플루오로에틸렌(PTFE), PFA(Perfluoro alkyl) 또는 PVDF(Polyvinylidene fluoride)인 것을 특징으로 하는 디스크.
  12. 버터플라이 밸브에서 디스크를 감싸는 바디부에 있어서,
    상부 바디; 및
    하부 바디를 포함하며,
    상기 상부 바디와 상기 하부 바디를 결합시키면 상기 삽입 공간이 형성되되,
    상기 디스크는 상기 삽입 공간으로 삽입되고, 상기 상부 바디와 상기 하부 바디 중 적어도 하나는 금속이 재질인 뼈대 및 상기 뼈대 위에 형성되는 플라스틱층을 포함하는 것을 특징으로 하는 바디부.
  13. 제12항에 있어서, 상기 플라스틱층은 폴리염화비닐(Polyvinyl Chloride, PVC), 폴리프로필렌(polypropylene, PP), 폴리페닐렌설파이드(Poly Phenylene sulfide, PPS), 폴리프탈아미드(Polyphtalamide, PPA), 폴리아미드(Polyamide, PA6), 폴리아미드(Polyamide, PA66), 폴리케톤(Polyketone, POK) 또는 폴리에틸렌(Polyethylene, PE)에 유리섬유(Glass fiber)를 혼합함에 의해 형성되는 것을 특징으로 하는 바디부.
  14. 밸브에서 유체와 접촉하는 유체 접촉부에 있어서,
    금속을 재질로 하며, 기계적 가공이 필요한 바디;
    상기 바디 위에 형성되며, 제 1 플라스틱이 재질인 제 1 플라스틱층; 및
    상기 제 1 플라스틱층 위에 형성되며, 제 2 플라스틱이 재질인 제 2 플라스틱층을 포함하되,
    상기 플라스틱층들은 사출 성형을 통하여 형성되며, 상기 제 1 플라스틱과 상기 제 2 플라스틱의 녹는점이 다른 것을 특징으로 하는 유체 접촉부.
  15. 버터플라이 밸브에 사용되는 디스크를 제조하는 방법에 있어서,
    금속을 재질로 하는 디스크 바디 위에 사출 성형을 통하여 제 1 플라스틱층을 형성하는 단계; 및
    상기 제 1 플라스틱층 위에 사출 성형을 통하여 제 2 플라스틱층을 형성하는 단계를 포함하되,
    상기 제 1 플라스틱층의 재질인 제 1 플라스틱과 상기 제 2 플라스틱층의 재질인 제 2 플라스틱의 녹는점이 다른 것을 특징으로 하는 디스크 제조 방법.
PCT/KR2019/000975 2018-04-25 2019-01-23 버터플라이 밸브 및 이를 제조하는 방법 WO2019208910A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019559368A JP7021256B2 (ja) 2018-04-25 2019-01-23 バタフライバルブ及びこれを製造する方法
EP19786259.2A EP3608565A4 (en) 2018-04-25 2019-01-23 THROTTLE VALVE AND METHOD OF MANUFACTURING THEREOF
CN201980002067.XA CN110637182A (zh) 2018-04-25 2019-01-23 蝶形阀及其制造方法
US16/659,489 US11199266B2 (en) 2018-04-25 2019-10-21 Butterfly valve and method of manufacturing the same
US17/488,483 US11662028B2 (en) 2018-04-25 2021-09-29 Butterfly valve and method of manufacturing the same
US17/488,473 US11828368B2 (en) 2018-04-25 2021-09-29 Butterfly valve and method of manufacturing the same
JP2022000770A JP7503582B2 (ja) 2018-04-25 2022-01-05 バタフライバルブのボディ部

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR20180048160 2018-04-25
KR10-2018-0048160 2018-04-25
KR1020180167460A KR102216261B1 (ko) 2018-04-25 2018-12-21 밸브 및 이를 제조하는 방법
KR1020180167459A KR20190124125A (ko) 2018-04-25 2018-12-21 버터플라이 밸브 및 이를 제조하는 방법
KR10-2018-0167459 2018-12-21
KR10-2018-0167205 2018-12-21
KR1020180167458A KR102216260B1 (ko) 2018-04-25 2018-12-21 버터플라이 밸브 및 이를 제조하는 방법
KR1020180167205A KR102216263B1 (ko) 2018-04-25 2018-12-21 버터플라이 밸브 및 이를 제조하는 방법
KR10-2018-0167460 2018-12-21
KR1020180167461A KR102216262B1 (ko) 2018-04-25 2018-12-21 버터플라이 밸브 및 이를 제조하는 방법
KR10-2018-0167461 2018-12-21
KR10-2018-0167458 2018-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/659,489 Continuation US11199266B2 (en) 2018-04-25 2019-10-21 Butterfly valve and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019208910A1 true WO2019208910A1 (ko) 2019-10-31

Family

ID=68293867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000975 WO2019208910A1 (ko) 2018-04-25 2019-01-23 버터플라이 밸브 및 이를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2019208910A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008981A1 (en) * 2019-12-27 2023-01-12 Kitz Corporation Lined butterfly valve and method for manufacturing lined butterfly valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002512A (ja) * 2006-06-20 2008-01-10 Asahi Organic Chem Ind Co Ltd バルブ用締結部材及びそれを用いたバタフライバルブ
JP4412963B2 (ja) * 2003-10-10 2010-02-10 旭有機材工業株式会社 バルブ用樹脂製部材
KR101241998B1 (ko) * 2012-10-16 2013-03-12 주식회사피앤엔피 버터플라이 밸브
JP2017032062A (ja) * 2015-07-31 2017-02-09 株式会社キッツ ライニング形バタフライバルブの弁体とその成形装置並びに成形方法及びバタフライバルブ
KR101749350B1 (ko) * 2010-04-22 2017-06-20 스미토모덴코파인폴리머 가부시키가이샤 불소 수지 피복재 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412963B2 (ja) * 2003-10-10 2010-02-10 旭有機材工業株式会社 バルブ用樹脂製部材
JP2008002512A (ja) * 2006-06-20 2008-01-10 Asahi Organic Chem Ind Co Ltd バルブ用締結部材及びそれを用いたバタフライバルブ
KR101749350B1 (ko) * 2010-04-22 2017-06-20 스미토모덴코파인폴리머 가부시키가이샤 불소 수지 피복재 및 그 제조 방법
KR101241998B1 (ko) * 2012-10-16 2013-03-12 주식회사피앤엔피 버터플라이 밸브
JP2017032062A (ja) * 2015-07-31 2017-02-09 株式会社キッツ ライニング形バタフライバルブの弁体とその成形装置並びに成形方法及びバタフライバルブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608565A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008981A1 (en) * 2019-12-27 2023-01-12 Kitz Corporation Lined butterfly valve and method for manufacturing lined butterfly valve

Similar Documents

Publication Publication Date Title
WO2019208910A1 (ko) 버터플라이 밸브 및 이를 제조하는 방법
US20200011467A1 (en) Unbonded flexible pipe and an end-fitting
CN113906224B (zh) 具有阻尼效果的紧固装置和具有该紧固装置的部件连接结构
JPH09500736A (ja) 楕円ポートシール
WO2017135723A9 (ko) 플라즈마 처리를 통한 표면이 개질된 탄소섬유를 구비한 탄소 섬유 강화 폴리머 복합재 및 그 제조 방법
CN210128141U (zh) 一种内外喷涂的钢塑复合管
CN1264183A (zh) 电解装置的端子密封
WO2018016825A1 (ko) 뒤틀림을 방지할 수 있는 플라스틱 밸브
KR102388185B1 (ko) 버터플라이 밸브 및 이를 제조하는 방법
WO2017039113A1 (ko) 와류 방지가 가능한 밸브 및 이에 사용되는 코어
WO2017039070A1 (ko) 아연 이온 수처리기 및 이의 제조 방법
WO2020153627A1 (ko) 뒤틀림을 방지할 수 있는 케이싱 및 이를 포함하는 펌프
WO2014133253A1 (ko) 원터치식 배관 연결장치
WO2020153531A1 (ko) 유선형 유체 이송공을 가지는 밸브
WO2021194279A1 (ko) 잠금 기능을 가지는 밸브
TWI832914B (zh) 蝶形閥、用於其之本體部、流體接觸部與圓盤及圓盤的製造方法
WO2024111690A1 (ko) 이중관
KR20220100208A (ko) 메커니컬 실, 이의 제작 방법 및 이의 구동 방법
WO2020153545A1 (ko) 뒤틀림을 방지할 수 있는 피팅
KR200439212Y1 (ko) 기밀성과 수밀성이 우수한 펌프용 모터에 사용되는메커니컬씰
CN219623457U (zh) 一种法兰装置
WO2021149959A1 (ko) 마그네틱 드라이브 및 이를 포함하는 하이브리드 펌프
CN218118842U (zh) 一种浸塑u型管卡及其管卡本体
WO2020153530A1 (ko) 플라스틱 밸브
WO2020138609A1 (ko) 배관 이음구

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559368

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019786259

Country of ref document: EP

Effective date: 20191021

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE