WO2017039070A1 - 아연 이온 수처리기 및 이의 제조 방법 - Google Patents

아연 이온 수처리기 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017039070A1
WO2017039070A1 PCT/KR2015/013089 KR2015013089W WO2017039070A1 WO 2017039070 A1 WO2017039070 A1 WO 2017039070A1 KR 2015013089 W KR2015013089 W KR 2015013089W WO 2017039070 A1 WO2017039070 A1 WO 2017039070A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
block
ion water
zinc ion
fluororesin
Prior art date
Application number
PCT/KR2015/013089
Other languages
English (en)
French (fr)
Inventor
심학섭
이덕수
정연임
김슬기
Original Assignee
주식회사 진행워터웨이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진행워터웨이 filed Critical 주식회사 진행워터웨이
Priority to US15/756,087 priority Critical patent/US20180244546A1/en
Priority to CN201580084193.6A priority patent/CN108349765A/zh
Publication of WO2017039070A1 publication Critical patent/WO2017039070A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/10Electrodes characterised by the structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/16Electrodes characterised by the combination of the structure and the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/004Seals, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/32Pipes

Definitions

  • the present invention relates to a zinc ion water treatment device including a zinc block and a fluororesin block and a method of manufacturing the same.
  • FIG. 1 shows a sectional view of a conventional ion water treatment machine.
  • the ion water processor generates a potential electrostatic charge by using a flow of a zinc block 20 and a fluid forming a sacrificial anode inside a brass body 10 and a fluorine resin which induces precipitation of harmful substances contained in the fluid.
  • Block 30 is configured to be installed therein.
  • the zinc block 20 and the fluororesin block 30 are formed with a plurality of through holes 21 and 31 for the flow of the fluid.
  • the zinc block 20 exhibits an excellent effect on extending the service life and improving the water quality of the old pipe by using the sacrificial anode method, and the fluororesin block 30 neutralizes the charged colloid in the water. This provides the advantage of making it easier to filter foreign matter using filters by allowing them to aggregate and settle.
  • the ion water treatment unit is provided as an independent structure, and is installed between two neighboring pipes, and flanges 41 are formed at both ends of the ion water processor for coupling with the pipes.
  • the flange 41 is fixed to the body 10 of the ion water processor, when the ion water processor is to be additionally installed in an existing pipe, the hole of the flange 41 provided in the pipe and the ion water processor are provided. If the holes of the flanges 41 do not coincide, there is a problem that a lot of difficulties in installing the ion water treatment.
  • zinc plates for scale busters are generally manufactured by naturally cooling liquid zinc in air, and since zinc is easily dissolved in liquid zinc and binds with zinc, zinc oxide (ZnO) may be easily generated. Since zinc oxide has a property of being insoluble in water even in a liquid, it has a problem of reducing the amount of zinc ions and electrons that may occur in the same volume of zinc metal.
  • the body of the ion water processor is made of a brass material, while the pipe connected to it is made of a different material, there is a problem that potential corrosion occurs in the connection portion, and the insulation of the connection portion is not sufficiently made fluorine resin There is a problem in that the loss of the potential static charge generated from the block is generated, thereby degrading the performance of the ion water processor.
  • One aspect of the present invention by increasing the contact area of the body and fluid of the zinc ion water processor and the area of the zinc block adjacent to the body, zinc ion water which can further increase the concentration of zinc ions released from the zinc block To provide a handler.
  • solid zinc is calcined in a vacuum chamber to be made of liquid zinc, and then cooled to room temperature in the vacuum chamber to form a zinc block, thereby preventing zinc oxide (ZnO) from being generated in the zinc block.
  • Another object of the present invention is to provide a zinc ion water processor and a method of manufacturing the same, which can increase the amount of zinc ions and electrons generated in the same block of zinc.
  • the flanges provided at both ends of the zinc ion water processor are rotatable so that the fastening holes between the flanges can be more easily aligned. It is to provide a zinc ion water treatment having.
  • Another aspect of the present invention provides a zinc ion water processor having a rotary flange formed by forming an insulating layer between the body and the flange of the zinc ion water processor, so that potential corrosion does not occur due to the material difference between the zinc ion water processor and the pipe. I would like to.
  • the side of the fluororesin block is fluid It provides a zinc ion water treatment device, which is provided in a concave-convex shape to flow in contact with the body and the fluororesin block.
  • a rotatable flange coupled to both ends of the body of the zinc ion water processor, the rotatable flange having a plurality of fastening holes for coupling with a flange of a neighboring pipe; Fixing members installed at both ends of the body of the zinc ion water processor to fix the rotatable flange to the body; It is formed on the inner surface of the rotary flange includes an insulating layer to prevent the rotary flange is in direct contact with the body and the fixing member to prevent potential corrosion caused by the contact of different metals, the outer surface of both ends of the body is rotatable It is preferable that the locking jaw is formed to fix the position of the flange so that the rotatable flange rotates while being positioned between the locking jaw and the fixing member.
  • the side area of the fluororesin block adjacent to the body is preferably 30 to 90% of the total side area of the body.
  • the ratio of the length of the fluororesin block and the length of the zinc block is preferably 1: 2 to 1: 5.
  • the insulating layer is preferably formed to extend from one side of the rotary flange corresponding to the locking step to the other side corresponding to the fixing member through the inner surface of the rotary flange.
  • the fixing member is preferably screwed to the body.
  • O-ring for maintaining the airtightness is preferably installed between the body and the fixing member.
  • the zinc block is preferably produced by calcining solid zinc at 400 to 800 ° C. in a vacuum chamber and cooling it at room temperature in the vacuum chamber.
  • Another embodiment of the present invention in the method of manufacturing a zinc ion water treatment device having a zinc block having a plurality of through holes and a plurality of through holes in the body of the zinc ion water treatment device, zinc block and fluorine resin And sequentially providing blocks to the inside of the body, wherein a side of the fluororesin block is provided in a concave-convex shape such that a fluid flows in contact with the body and the fluororesin block, and the zinc block includes solid zinc in a vacuum chamber. After calcining at a liquid zinc, and then prepared by cooling to room temperature in the vacuum chamber, provides a method for producing a zinc ion water treatment.
  • the solid zinc is preferably calcined at a temperature of 400 to 800 ° C. in a vacuum chamber and made of liquid zinc.
  • the zinc ion water treatment device of the present invention is characterized by reducing the width of the portion where the fluororesin block is adjacent to the body, increasing the width of the portion where the body is adjacent to the fluid, and increasing the area where the zinc block is adjacent to the body.
  • the content of zinc ions released from the block can be greatly increased, thereby improving the life span and improving the water quality of the aged pipes.
  • the flange for coupling the zinc ion water treatment machine to the existing pipe is rotatable, so that even if the fastening hole formed in the flange of the pipe and the flange of the zinc ion water treatment device does not match, the fastening hole is rotated. It can be easily matched to improve workability.
  • an insulating layer is formed between the body of the zinc ion water treatment device made of brass and the rotary flange to prevent potential corrosion due to contact of dissimilar metals. It can be blocked to prevent the loss of static electricity generated between the fluororesin block and the fluid.
  • solid zinc is calcined in a vacuum chamber to form liquid zinc, which is cooled to room temperature in the vacuum chamber to form zinc blocks, thereby suppressing the formation of zinc oxide (ZnO) in the zinc blocks, and It is possible to provide a zinc ion water treatment device and a method of manufacturing the same that can increase the amount of zinc ions and electrons generated in the zinc block.
  • FIG. 1 is a cross-sectional view of a conventional ion water processor.
  • FIG. 2 is a cross-sectional view of a conventional ion water processor.
  • FIG 3 is a cross-sectional view of a zinc ion water processor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a zinc ion water processor according to an embodiment of the present invention.
  • FIGS. 1 and 2 are cross-sectional views of a conventional ion water treatment device
  • FIGS. 3 and 4 are cross-sectional views of a zinc ion water treatment device according to an embodiment of the present invention.
  • the side surface of the fluororesin block 30 is provided with a zinc ion water treatment device, which is provided in a concave-convex shape so that a fluid flows in contact with the body 10 and the fluororesin block 30.
  • the zinc ion water treatment device of the present invention is installed on a pipe through which a fluid flows to remove scale and rust in the pipe and to prevent scale or rust, and is disposed inside the cylindrical body 10 and the body 10. It is preferable to include a zinc block 20 and a fluororesin block 30 disposed inside the body 10.
  • the body 10 is a cylindrical pipe made of a brass material, both ends of the body 10 may be configured to have an outer diameter corresponding to the inner diameter of the flange so that the rotary flange 140 is coupled to both ends.
  • the engaging jaw constraining one side of the rotatable flange 140 is formed at both ends.
  • the zinc block 20 is installed inside the body 10, it is preferable that a plurality of through holes for the flow of the fluid is formed.
  • the zinc block 20 forms a sacrificial anode in the brass body 10 to prevent corrosion of the pipe, and melts in a fluid flowing through the zinc ion water processor to prevent rust and various bacteria in the pipe. It can be suppressed.
  • the fluororesin block 30 is installed inside the body 10 at another position from the zinc block 20, and a plurality of through holes for fluid flow are formed.
  • the fluororesin block 30 generates a potential electrostatic charge as the fluid flows to the surface, and neutralizes the charged colloids inside the fluid to cause them to aggregate, thereby filtering foreign matter contained in the fluid. It will increase the efficiency.
  • the form of the fluororesin block 30 is, as shown in Figures 3 and 4, the side of the fluororesin block 30 so that the fluid flows in contact with the body 10 and the fluororesin block 30 It is preferable to show this uneven
  • the area in which the flowing fluid can contact the body 10, ie, brass, can be increased, and at the same time, the zinc block 20 adjacent to the brass It is possible to increase the area of the, it is possible to greatly increase the amount of zinc ions emitted from the zinc block 20.
  • the side area of the fluororesin block 30 adjacent to the body 10 is preferably 30% to 90% of the total side area of the body 10.
  • the side area of the fluororesin block 30 adjacent to the body 10 is less than 30%, it is difficult to manufacture the fluororesin block 30, manufacturing cost There is a problem that increases, if the area is more than 90%, cracks are likely to occur as the processing area of the fluororesin material increases, and there is a problem that the manufacturing cost is increased.
  • the ratio of the length of the fluororesin block 30 and the length of the zinc block 20 is preferably 1: 2 to 1: 5.
  • the length of the zinc block 20 represents a length of 1: 2 or more, a sufficient amount of zinc may be eluted in a zinc ion water treatment device, and the length of the zinc block 20 may be 1: 5.
  • the zinc elution amount can be reduced.
  • the zinc ion water treatment device of the present invention is preferably a zinc ion water treatment device having a rotary flange 140, specifically, is coupled to rotatable to both ends of the body 10 of the zinc ion water treatment device, A rotary flange 140 having a plurality of fastening holes 141 for coupling with the flanges 101 and 102 of the pipe; A fixing member 150 installed at both ends of the body 10 of the zinc ion water processor to fix the rotatable flange 140 to the body 10; Insulation layer formed on the inner surface of the rotary flange 140 to prevent the rotary flange 140 is in direct contact with the body 10 and the fixing member 150 to prevent potential corrosion due to contact of different metals ( It includes a 160, the outer surface of both ends of the body 10 is formed with a locking jaw for fixing the position of the rotary flange 140, the rotary flange 140 is located between the locking jaw and the fixing member 150 It is preferred that the zinc ion water treatment device be configured
  • the rotary flange 140 is a circular plate having a ring shape, and consists of a plurality of fastening holes 141 into which bolts for coupling with the flanges 101 and 102 of the pipe are formed, and the body 10 It is preferable to be coupled to rotate the body 10 as an axis. Two rotary flanges 140 are preferably provided to be coupled to both ends of the body 10, respectively.
  • the fixing member 150 is screwed to the end of the body 10 to restrain the rotary flange 140 so that the rotary flange 140 coupled to the body 10 does not escape.
  • the outer surface of the end of the body 10 and the inner surface of the fixing member 150 for the coupling of the fixing member 150 and the body 10 is preferably provided with screws fastened to each other.
  • the O-ring 170 is preferably installed between the fixing member 150 and the body 10 to improve the airtightness between the fixing member 150 and the body 10.
  • the insulating layer 160 is preferably formed on the inner surface of the rotary flange 140 to prevent the potential corrosion occurs in the portion to which the rotary flange 140 is coupled. More specifically, the insulating layer 160 from one side of the rotary flange 140 corresponding to the locking step of the body 10 to the other side corresponding to the fixing member 150 through the inner surface of the rotary flange 140 It is preferable that the rotatable flange 140 is formed to extend to maintain a completely non-contact state with the body 10 and the fixing member 150.
  • the insulating layer 160 may be made of urethane resin.
  • the insulating layer 160 is formed on the rotary flange 140 as described above, even when the rotary flange 140 is formed of the same material as the pipe to be connected, the coupling portion of the body 10 and the rotary flange 140 is provided. It is possible to prevent the potential corrosion to occur, which in turn can provide the advantage of increasing the freedom of design by widening the choice of the material of the rotary flange 140.
  • the fastening holes of the two flanges do not coincide. Since the rotary flange 140 is rotated around the body 10, the fastening holes of the two flanges can be easily matched, and thus the zinc ion water processor can be installed more easily.
  • the insulating layer 160 formed between the rotary flange 140 and the body 10 not only causes dislocation corrosion between the rotary flange 140 and the body 10, but also the rotary flange 140 and the body 10. It also provides a function to protect the two components from friction generated between the (10), in particular to prevent the loss of the potential electrostatic charge generated between the fluororesin block 30 and the water to prevent the reduction of the performance of the zinc ion water processor Done.
  • the zinc block 20 of the present invention is preferably produced by firing the solid zinc in a vacuum chamber, at room temperature cooling in the vacuum chamber.
  • solid zinc is calcined at a temperature of 400 to 800 °C temperature to become liquid zinc, by producing a zinc block by cooling the liquid zinc at room temperature in the same vacuum chamber, the oxygen present in the air is combined to produce zinc oxide. It is possible to suppress the formation and increase the amount of zinc ions and electrons that can be generated in the same volume of zinc blocks.
  • the zinc ion water having a zinc block 20 having a plurality of through holes 21 and a fluorine resin block 30 having another plurality of through holes 31 in the body comprises the step of sequentially provided inside the body, the side of the fluororesin block 30 is a fluid is the body and the fluororesin
  • the zinc block 20 is provided in a concave-convex shape to flow in contact with the block 30, and the zinc block 20 is manufactured by sintering solid zinc in a vacuum chamber and cooling it at room temperature in the vacuum chamber. It provides a manufacturing method.
  • the said baking is baked at the temperature of 400-800 degreeC.
  • the firing temperature is less than 400 °C
  • the melting point of the zinc is about 420 °C
  • mold the calcined zinc (mold) There is a problem that a lot of bubbles occur when put into the cooling to reduce the quality of the product.
  • a fixed flange 41 is included, and the fluororesin block 30 and the zinc block 20 are sequentially disposed on the body 10, wherein the fluororesin block 30 is three pieces.
  • the zinc block 20 prepared the zinc ion water treatment device provided with two (comparative example 1). At this time, the number of through holes 21 and 31 included in the fluororesin block 30 and the zinc block 20 was the same.
  • the fluororesin block 30 and the zinc block 20 are sequentially disposed on the body 10, wherein the fluororesin block 30 Four zinc and three zinc blocks 20 were prepared to prepare a zinc ion water treatment device of Example 1 (Example 1). At this time, in the fluid flow direction, the length of the zinc block 20 was formed to be twice the length of the length of the fluororesin block 30.
  • the side surface of the fluororesin block 30 is formed in a concave-convex shape so that a fluid flows in contact with the body 10 and the fluororesin block 30, wherein the nonaqueous resin block 30 is the body ( The area of the portion adjacent to 10) is formed uneven to correspond to 30% of the area of the body 10 provided with the fluororesin block 30.
  • Raw water was supplied to the zinc ion water treatment devices of Example 1 and Comparative Example 1, and the content of zinc ions according to the treatment time was measured, and the results are shown in FIG. 5.
  • Comparative Example 1 increased the concentration of zinc ions from 0.002 mg / L to 0.144 mg / L from the reaction for 60 minutes, while Example 1 showed the concentration of zinc ions from the reaction for 60 minutes.
  • Example 1 showed the concentration of zinc ions from the reaction for 60 minutes.
  • the fluororesin block 30 processes the side surface adjacent to the body 10 with irregularities, thereby increasing the area in which the fluid contacts the body 10, that is, the brass, and thus the zinc block. Since the amount of zinc ions emitted from (20) can be increased, it can be seen that the life extension effect and the water quality improvement effect of the aged pipe by the zinc ion water treatment machine can be increased.
  • Example 2 Six zinc blocks prepared by a natural cooling method of cooling in air were prepared.
  • a zinc ion water treatment device of the same type as in Example 1 was prepared except that the prepared zinc block was included. That is, Comparative Examples 2 to 7, which are zinc ion water treatment devices including zinc blocks prepared by natural cooling, were prepared.
  • Example 2 which are zinc ion water treatment devices including zinc blocks prepared by firing and cooling in a vacuum chamber, were prepared.
  • the zinc elution amount from 0.2 mg / L raw water when using a zinc ion water treatment device (Comparative Examples 2 to 7) equipped with a zinc block produced by a conventional natural cooling method
  • the zinc elution amount increased to 0.27-0.38 mg / L after 1 hour, but the zinc elution amount of the zinc ion water treatment device (Examples 2 to 3) equipped with the zinc block produced by vacuum chamber cooling was 0.69-0.76. increased to mg / L.
  • the zinc ion water treatment device of Examples 2 to 3 can increase the zinc elution amount by about three times or more, compared to the zinc ion water treatment device having the zinc block manufactured by the conventional natural cooling method. .
  • fixing member 160 insulating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 아연 이온 수처리기에 관한 것으로, 몸체의 내부에 다수 개의 관통공을 갖는 아연 블록 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록을 구비하는 아연 이온 수처리기에 있어서, 상기 불소 수지 블록의 측면은 요철 형상으로 구비된, 아연 이온 수처리기에 관한 것이다.

Description

아연 이온 수처리기 및 이의 제조 방법
본 발명은 아연 블록과 불소 수지 블록을 포함하는 아연 이온 수처리기 및 이를 제조하는 방법에 관한 것이다.
일반적으로 유체가 유동하는 배관 내의 스케일 또는 녹을 제거하거나 방지하기 위한 목적으로 주로 약품을 사용하여 왔으나, 최근에는 스케일 버스터라 불리는 이온 수처리기가 사용되고 있다.
도 1은 종래의 이온 수처리기의 단면도를 나타내고 있다. 상기 이온 수처리기는 황동 재질의 몸체(10) 내부에 희생양극을 형성하는 아연 블록(20) 및 유체의 흐름을 이용하여 전위 정전하를 발생시켜 유체에 포함된 유해물질의 침전을 유도하는 불소 수지 블록(30)이 내부에 설치된 것으로 구성되어 있다. 여기서 상기 아연 블록(20)과 불소 수지 블록(30)에는 유체의 유동을 위하여 다수개의 관통공(21, 31)이 형성되어 있다.
상기와 같은 이온 수처리기는 아연 블록(20)이 희생 양극법을 이용하여 노후 배관의 수명 연장과 수질 개선에 탁월한 효과를 나타내며, 또한 불소 수지 블록(30)은 물 내부에 있는 하전된 콜로이드를 중성화시켜 그것들이 응집 및 침전되게 함으로써 필터를 이용하여 이물질을 보다 쉽게 여과할 수 있도록 하는 이점을 제공한다.
상기와 같은 이온 수처리기는 하나의 독립된 구성으로, 이웃하는 두 배관의 사이에 설치되며, 배관과의 결합을 위하여 이온 수처리기의 양쪽 끝단에는 플랜지(41)가 형성되어 있다.
그러나 상기 플랜지(41)는 이온 수처리기의 몸체(10)에 고정된 구조이므로, 기존 배관에 이온 수처리기를 추가적으로 장착하고자 할 경우, 배관에 구비된 플랜지(41)의 구멍과 이온 수처리기에 구비된 플랜지(41)의 구멍이 일치하지 않을 경우, 이온 수처리기의 설치에 많은 어려움이 따르는 문제점을 가지고 있다.
한편, 일반적으로 스케일 버스터용 아연판은 액체아연을 공기 중에서 자연 냉각하여 제조하는데, 산소는 액체 아연 내에서 쉽게 용해되어 아연과 결합하므로 산화아연(ZnO)이 쉽게 생성될 수 있다. 이러한 산화아연은 액체 내에서도 물에 녹지 않는 성질을 가지고 있으므로 동일한 부피의 아연금속에서 발생할 수 있는 아연이온과 전자 발생량을 감소시키는 문제점을 가지고 있다.
또한, 이온 수처리기의 몸체는 황동 재질로 구성되는데 반하여, 이에 연결되는 배관은 다른 재질로 구성되므로, 연결부위에 전위 부식이 발생되는 문제점을 가지고 있으며, 연결부위의 절연이 충분히 이루어지지 못하여 불소 수지 블록으로부터 발생되는 전위 정전하의 손실이 발생되고, 이로 인하여 이온 수처리기의 성능이 저하되는 문제점을 가지고 있다.
본 발명의 일 측면은, 아연 이온 수처리기의 몸체와 유체의 접촉 면적을 증가시키고 몸체와 인접하는 아연 블록의 면적을 증가시켜, 아연 블록으로부터 방출되는 아연 이온의 농도를 더욱 높일 수 있는 아연 이온 수처리기를 제공하고자 하는 것이다.
본 발명의 다른 측면은, 고체 아연을 진공 챔버 내에서 소성시켜 액체 아연으로 제조 후, 상기 진공 챔버 내에서 상온 냉각시켜 아연 블록을 형성함으로써, 아연 블록에 산화아연(ZnO)이 생성되는 것을 억제하고, 동일한 부피의 아연 블록에서 발생되는 아연이온 및 전자의 발생량을 증가시킬 수 있는 아연 이온 수처리기 및 이의 제조 방법을 제공하고자 하는 것이다.
본 발명의 다른 측면은, 아연 이온 수처리기의 양측 끝단에 구비된 플랜지가 회전이 가능하도록 구성하여 플랜지 간의 체결공을 보다 쉽게 정렬할 수 있도록 함으로써, 아연 이온 수처리기의 장착이 용이한 회전식 플랜지를 갖는 아연 이온 수처리기를 제공하고자 하는 것이다.
본 발명의 다른 측면은, 아연 이온 수처리기의 몸체와 플랜지 사이에 절연층을 형성하여, 아연 이온 수처리기와 배관의 재질 차이에 의해 전위 부식이 일어나지 않도록 한 회전식 플랜지를 갖는 아연 이온 수처리기를 제공하고자 하는 것이다.
본 발명의 일 구현예는, 몸체의 내부에 다수 개의 관통공을 갖는 아연 블록 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록을 구비하는 아연 이온 수처리기에 있어서, 상기 불소 수지 블록의 측면은 유체가 상기 몸체 및 불소 수지 블록을 접하여 흐르도록 요철 형상으로 구비된, 아연 이온 수처리기를 제공한다.
상기 아연 이온 수처리기의 몸체 양측 끝단에 회전이 가능하도록 결합되며, 이웃하는 배관의 플랜지와 결합을 위한 다수 개의 체결공을 갖는 회전식 플랜지; 상기 아연 이온 수처리기의 몸체 양측 끝단에 설치되어 회전식 플랜지를 몸체에 고정시키는 고정부재; 상기 회전식 플랜지의 내면에 형성되어 회전식 플랜지가 몸체 및 고정부재와 직접적으로 접촉하는 것을 방지하여 서로 다른 금속의 접촉에 의한 전위 부식을 방지하는 절연층을 포함하고, 상기 몸체의 양측 끝단부 외면에는 회전식 플랜지의 위치 고정을 위한 걸림턱이 형성되어 회전식 플랜지가 걸림턱과 고정부재의 사이에 위치한 상태로 회전하도록 구성되는 것이 바람직하다.
상기 몸체에 인접하는 불소 수지 블록의 측면 면적은, 상기 몸체의 총 측면 면적에 대하여 30 내지 90%인 것이 바람직하다.
유체가 흐르는 길이 방향에 있어서, 상기 불소 수지 블록의 길이 및 상기 아연 블록의 길이의 비율은, 1:2 내지 1:5인 것이 바람직하다.
상기 절연층은, 상기 걸림턱에 대응하는 회전식 플랜지의 일측면으로부터 회전식 플랜지의 내면을 통하여 고정부재에 대응하는 타측면으로 연장되게 형성되는 것이 바람직하다.
상기 고정부재는 몸체에 나사 결합되는 것이 바람직하다.
상기 몸체와 고정부재의 사이에는 기밀 유지를 위한 오링이 더 설치되는 것이 바람직하다.
상기 아연 블록은, 고체 아연을 진공 챔버 내에서 400 내지 800℃로 소성시키고, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것이 바람직하다.
본 발명의 다른 구현예는, 몸체의 내부에 다수 개의 관통공을 갖는 아연 블록 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록을 구비하는 아연 이온 수처리기의 제조 방법에 있어서, 아연 블록 및 불소 수지 블록을 순차적으로 몸체의 내부에 구비하는 단계를 포함하며, 상기 불소 수지 블록의 측면은 유체가 상기 몸체 및 불소 수지 블록을 접하여 흐르도록 요철 형상으로 구비되고, 상기 아연 블록은 고체 아연을 진공 챔버 내에서 소성시켜 액체 아연으로 제조 후, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것인, 아연 이온 수처리기의 제조 방법을 제공한다.
상기 고체 아연은, 진공 챔버 내에서 400 내지 800℃의 온도에서 소성되어 액체 아연으로 제조되는 것이 바람직하다.
본 발명의 아연 이온 수처리기는, 불소 수지 블록이 몸체와 인접하는 부분의 넓이를 감소시키고, 몸체가 유체와 인접하는 부분의 넓이를 증가시키며, 아연 블록이 몸체와 인접하는 면적을 증가시킴으로써, 아연 블록으로부터 방출되는 아연 이온의 함량을 크게 증가시킬 수 있어, 노후 배관의 수명 연장 및 수질 개선 효과를 개선시킬 수 있다.
또한, 아연 이온 수처리기를 기존 배관에 결합하기 위한 플랜지가 회전이 가능한 구조를 가짐으로써, 배관의 플랜지와 아연 이온 수처리기의 플랜지에 형성된 체결공이 일치하지 않은 경우에도 회전식 플랜지를 회전시켜 체결공을 쉽게 일치시킬 수 있어 작업성을 향상시킬 수 있다.
또한, 황동으로 이루어진 아연 이온 수처리기의 몸체와 회전식 플랜지 사이에 절연층이 형성되어 이종 금속의 접촉에 의한 전위 부식을 방지할 수 있게 되었으며, 아연 이온 수처리기와 배관 사이에 전기의 유동이 완전하게 차단되어 불소 수지 블록과 유체의 사이에 발생되는 정전기의 손실을 방지할 수 있다.
또한, 고체 아연을 진공 챔버 내에서 소성시켜 액체 아연을 형성시키고, 이를 상기 진공 챔버 내에서 상온 냉각시켜 아연 블록을 형성함으로써, 아연 블록에 산화아연(ZnO)이 생성되는 것을 억제하고, 동일한 부피의 아연 블록에서 발생되는 아연이온 및 전자의 발생량을 증가시킬 수 있는 아연 이온 수처리기 및 이의 제조 방법을 제공할 수 있다.
도 1은 종래의 이온 수처리기의 단면도이다.
도 2는 종래의 이온 수처리기의 단면도이다.
도 3은 본 발명의 실시예에 따른 아연 이온 수처리기의 단면도이다.
도 4는 본 발명의 실시예에 따른 아연 이온 수처리기의 단면도이다.
도 5는 실시예 및 비교예의 아연 이온 수처리기로부터 방출된 아연 이온의 농도를 측정한 그래프이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
도 1 및 2는 종래의 이온 수처리기의 단면도이고, 도 3 및 4는 본 발명의 실시예에 따른 아연 이온 수처리기의 단면도이다.
본 발명의 일 구현예는, 몸체(10)의 내부에 다수 개의 관통공(21)을 갖는 아연 블록(20) 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록(30)을 구비하는 아연 이온 수처리기에 있어서, 상기 불소 수지 블록(30)의 측면은 유체가 상기 몸체(10) 및 불소 수지 블록(30)을 접하여 흐르도록 요철 형상으로 구비된, 아연 이온 수처리기를 제공한다.
본 발명의 아연 이온 수처리기는 유체가 유동하는 배관 상에 설치되어 배관 내의 스케일 및 녹을 제거함과 더불어 스케일이나 녹의 발생을 예방하는 것으로, 원통형의 몸체(10)와 상기 몸체(10)의 내부에 배치된 아연 블록(20)과, 상기 몸체(10)의 내부에 배치된 불소 수지 블록(30)을 포함하는 것이 바람직하다.
상기 몸체(10)는 황동 재질로 이루어진 원통형의 배관으로써, 양측 끝단부에 회전식 플랜지(140)가 결합될 수 있도록 몸체(10)의 양측 끝단부는 플랜지의 내경에 대응하는 외경을 갖도록 구성될 수 있으며, 회전식 플랜지(140)가 몸체(10)의 길이 방향으로 유동하는 것을 방지할 수 있도록 회전식 플랜지(140)의 일 측면을 구속하는 걸림턱이 양측 단부에 형성되는 것이 바람직하다.
상기 아연 블록(20)은 몸체(10)의 내부에 설치되며, 유체의 유동을 위한 다수 개의 관통홀이 형성되는 것이 바람직하다. 상기 아연 블록(20)은 황동 재질의 몸체(10) 내부에서 희생 양극을 형성하여 관의 부식을 예방하고, 또 아연 이온 수처리기를 통해 유동하는 유체에 녹아들어 배관 내의 녹과 각종 세균의 발생을 억제할 수 있다.
상기 불소 수지 블록(30)은 상기 아연 블록(20)과 또 다른 위치에서 몸체(10)의 내부에 설치되며, 유체의 유동을 위한 다수 개의 관통홀이 형성되는 것이 바람직하다. 이러한 불소 수지 블록(30)은 표면으로 유체가 흘러감에 따라 전위 정전하를 발생시키고, 이러한 전위 정전하는 유체 내부에 있는 하전된 콜로이드를 중성화시켜 그것들이 응집되게 함으로써, 유체 속에 포함된 이물질의 여과 효율을 높여주게 된다.
이때, 상기 불소 수지 블록(30)의 형태는, 도 3 및 4에 나타낸 바와 같이, 유체가 상기 몸체(10) 및 불소 수지 블록(30)을 접하여 흐르도록, 상기 불소 수지 블록(30)의 측면이 요철 형상을 나타내는 것이 바람직하다.
상기 불소 수지 블록(30)의 측면 중 일부만이 몸체(10)와 인접함으로써, 흐르는 유체가 몸체(10), 즉 황동과 접할 수 있는 면적을 증가시킬 수 있으며, 동시에 황동과 인접한 아연 블록(20)의 면적을 증가시킬 수 있어, 상기 아연 블록(20)으로부터 방출되는 아연 이온의 양을 크게 증가시킬 수 있다.
구체적으로, 상기 몸체(10)에 인접하는 불소 수지 블록(30)의 측면 면적은, 상기 몸체(10)의 총 측면 면적에 대하여 30% 내지 90% 인 것이 바람직하다. 이때, 상기 몸체(10)의 총 면적에 대하여, 상기 몸체(10)에 인접하는 불소 수지 블록(30)의 측면 면적이 30% 미만인 경우, 상기 불소 수지 블록(30)의 제작이 어려우며, 제조 비용이 증가하는 문제점이 있으며, 상기 면적이 90%를 초과하는 경우, 불소 수지 소재의 가공 면적 증가에 따라 크랙이 발생되기 쉬우며, 제조 원가가 상승되는 문제점이 있다.
나아가, 상기 유체가 흐르는 길이 방향에 있어서, 상기 불소 수지 블록(30)의 길이 및 상기 아연 블록(20)의 길이의 비율은, 1:2 내지 1:5인 것이 바람직하다. 이때, 상기 아연 블록(20)의 길이가 1:2의 비율 이상의 길이를 나타내는 경우 아연 이온 수처리기에서 충분한 양의 아연이 용출될 수 있고, 상기 아연 블록(20)의 길이가 1:5의 비율을 초과하는 길이를 나타내는 경우, 불소 수지와 황동의 접촉면적이 감소되어 아연 용출량이 감소될 수 있다.
한편, 본원발명의 아연 이온 수처리기는, 회전식 플랜지(140)를 갖는 아연 이온 수처리기인 것이 바람직하며, 구체적으로 상기 아연 이온 수처리기의 몸체(10) 양측 끝단에 회전이 가능하도록 결합되며, 이웃하는 배관의 플랜지(101, 102)와 결합을 위한 다수 개의 체결공(141)을 갖는 회전식 플랜지(140); 상기 아연 이온 수처리기의 몸체(10) 양측 끝단에 설치되어 회전식 플랜지(140)를 몸체(10)에 고정시키는 고정부재(150); 상기 회전식 플랜지(140)의 내면에 형성되어 회전식 플랜지(140)가 몸체(10) 및 고정부재(150)와 직접적으로 접촉하는 것을 방지하여 서로 다른 금속의 접촉에 의한 전위 부식을 방지하는 절연층(160)을 포함하고, 상기 몸체(10)의 양측 끝단부 외면에는 회전식 플랜지(140)의 위치 고정을 위한 걸림턱이 형성되어 회전식 플랜지(140)가 걸림턱과 고정부재(150)의 사이에 위치한 상태로 회전하도록 구성된, 아연 이온 수처리기인 것이 바람직하다.
상기 회전식 플랜지(140)는 링 형상을 갖는 원형의 판재로써, 배관의 플랜지(101, 102)와 결합을 위한 볼트가 삽입되는 다수개의 체결공(141)이 형성된 것으로 구성되며, 상기 몸체(10)에 결합되어 몸체(10)를 축으로 하여 회전하게 되는 것이 바람직하다. 이러한 회전식 플랜지(140)는 몸체(10)의 양측 끝단부에 각각 결합될 수 있도록 2개가 제공되는 것이 바람직하다.
상기 고정부재(150)는 몸체(10)의 끝단부에 나사 결합되어 몸체(10)에 결합된 회전식 플랜지(140)가 이탈하지 못하도록 회전식 플랜지(140)를 구속하는 것이다. 한편 고정부재(150)와 몸체(10)의 결합을 위하여 몸체(10)의 끝단부 외면과 고정부재(150)의 내면에는 상호 체결되는 나사가 구비되는 것이 바람직하다.
또한 상기 고정부재(150)와 몸체(10) 사이의 기밀성을 향상시키기 위하여 오링(170)이 고정부재(150)와 몸체(10)의 사이에 설치되는 것이 바람직하다.
상기 절연층(160)은 회전식 플랜지(140)가 결합된 부분에 전위 부식이 발생하는 것을 방지하도록 회전식 플랜지(140)의 내면에 형성되는 것이 바람직하다. 보다 구체적으로, 상기 절연층(160)은 몸체(10)의 걸림턱에 대응하는 회전식 플랜지(140)의 일 측면으로부터 회전식 플랜지(140)의 내면을 통하여 고정부재(150)에 대응하는 타 측면으로 연장되는 구조로 형성되어 회전식 플랜지(140)가 몸체(10) 및 고정부재(150)와 완전하게 비접촉 상태를 유지하도록 형성되는 것이 바람직하다. 이러한 절연층(160)은 우레탄수지로 구성될 수 있다.
상기와 같은 절연층(160)이 회전식 플랜지(140)에 더 형성됨으로 인하여 연결하고자 하는 배관과 동일한 재질로 회전식 플랜지(140)를 형성한 경우에도 몸체(10)와 회전식 플랜지(140)의 결합부에 전위 부식이 발생하는 것을 방지할 수 있게 되며, 이는 결국 회전식 플랜지(140)의 재질에 대한 선택의 폭을 넓혀 설계의 자유로움을 증가시키는 이점을 제공할 수 있게 된다.
상기와 같이 구성된 본 발명의 아연 이온 수처리기는 설치를 위하여 배관의 플랜지(101, 102)와 아연 이온 수처리기에 장착된 회전식 플랜지(140)를 맞대었을 때, 두 플랜지의 체결공이 일치하지 않은 경우, 회전식 플랜지(140)가 몸체(10)를 축으로 하여 회전되도록 함으로써 두 플랜지의 체결공을 손쉽게 일치시킬 수 있게 되므로, 아연 이온 수처리기를 보다 손쉽게 설치할 수 있게 된다.
또한 회전식 플랜지(140)와 몸체(10)의 사이에 형성된 절연층(160)은 회전식 플랜지(140)와 몸체(10)의 사이에서 전위 부식을 발생하는 것은 물론이고, 회전식 플랜지(140)와 몸체(10)의 사이에서 발생되는 마찰로부터 두 부품을 보호해주는 기능도 제공하게 되며, 특히 불소 수지 블록(30)과 물의 사이에서 발생되는 전위 정전하의 손실을 방지함으로써 아연 이온 수처리기의 성능 감소를 방지하게 된다.
한편, 본 발명의 상기 아연 블록(20)은, 고체 아연을 진공 챔버 내에서 소성시키고, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것이 바람직하다. 구체적으로, 고체 아연은 400 내지 800℃ 온도 조건에서 소성되어 액체 아연이 되며, 상기 액체 아연을 동일한 진공 챔버 내에서 상온 냉각시켜 아연 블록을 제조 함으로써, 공기 중에 존재하는 산소가 결합되어 산화 아연이 생성되는 것을 억제하며, 동일한 부피의 아연 블록에서 발생될 수 있는 아연 이온과 전자의 발생량을 증가시킬 수 있다.
본 발명의 다른 구현예는, 몸체의 내부에 다수 개의 관통공(21)을 갖는 아연 블록(20) 및 또 다른 다수 개의 관통공(31)을 갖는 불소 수지 블록(30)을 구비하는 아연 이온 수처리기의 제조 방법에 있어서, 아연 블록(20) 및 불소 수지 블록(30)을 순차적으로 몸체의 내부에 구비하는 단계를 포함하며, 상기 불소 수지 블록(30)의 측면은 유체가 상기 몸체 및 불소 수지 블록(30)을 접하여 흐르도록 요철 형상으로 구비되고, 상기 아연 블록(20)은, 고체 아연을 진공 챔버 내에서 소성시키고, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것인, 아연 이온 수처리기의 제조 방법을 제공한다.
이때, 상기 소성은, 400 내지 800℃의 온도로 소성되는 것이 바람직하다. 이때, 상기 소성 온도가 400℃ 미만인 경우, 아연의 녹는점이 약 420℃이므로 충분한 소성이 일어나지 못하여 충분한 액체 아연의 형성이 어려운 문제가 있고, 800℃를 초과하는 경우, 소성된 아연을 틀(mold)에 넣어 냉각시킬 때 기포가 많이 발생하여 제품의 품질이 저하되는 문제가 있다.
실시예
이하, 본 발명을 실시예에 의거하여 구체적으로 설명하는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.
<실험예 1>
도 2에 나타낸 바와 같이, 고정형 플랜지(41)를 포함하며, 몸체(10)에 불소 수지 블록(30) 및 아연 블록(20)이 순차적으로 배치되며, 이때 상기 불소 수지 블록(30)은 3개, 아연 블록(20)은 2개를 구비하는 아연 이온 수처리기를 준비하였다(비교예 1). 이때, 상기 불소 수지 블록(30) 및 아연 블록(20)에 포함되는 관통공(21, 31)의 개수는 동일하였다.
한편, 도 4에 나타낸 바와 같이, 회전형 플랜지(140)를 포함하며, 몸체(10)에 불소 수지 블록(30) 및 아연 블록(20)이 순차적으로 배치되며, 이때 상기 불소 수지 블록(30)은 4개, 아연 블록(20)은 3개가 구비되는 실시예 1의 아연 이온 수처리기를 준비하였다(실시예 1). 이때, 유체가 흐르는 방향에 있어서, 상기 아연 블록(20)의 길이는 상기 불소 수지 블록(30)의 길이 대비 2 배의 길이로 형성되었다.
또한, 상기 불소 수지 블록(30)의 측면은, 유체가 상기 몸체(10) 및 불소 수지 블록(30)을 접하여 흐르도록 요철 형상으로 형성시켰으며, 이때 상기 불수 수지 블록(30)이 상기 몸체(10)에 인접하는 부분의 넓이는, 상기 불소 수지 블록(30)이 구비된 몸체(10)의 면적 대비 30%에 해당하도록 요철을 형성하였다.
상기 실시예 1 및 비교예 1의 아연 이온 수처리기에 원수를 공급하여, 이때 처리되는 시간에 따른 아연 이온의 함량을 측정하여, 도 5에 그 결과를 나타내었다.
도 5에 나타낸 바와 같이, 비교예 1은 60분 동안의 반응으로부터 아연 이온의 농도가 0.002mg/L 에서 0.144mg/L로 증가된 반면, 실시예 1은 60분 동안의 반응으로부터 아연 이온의 농도가 0.002mg/L 에서 0.23mg/L로 크게 증가되었으며, 이는 상기 비교예 1 대비 40% 이상의 아연 이온 증가율을 나타내는 것으로 확인할 수 있다.
즉, 실시예 1에서와 같이 불소 수지 블록(30)이 몸체(10)에 인접하는 측면을 요철로 가공함으로써, 유체가 몸체(10), 즉 황동과 접하는 면적이 증가하게 되고, 그에 따라 아연 블록(20)으로부터 방출되는 아연 이온의 양을 증가시킬 수 있어, 아연 이온 수처리기에 의한 노후 배관의 수명 연장 효과 및 수질 개선 효과가 증가될 수 있음을 확인할 수 있다.
<실험예 2>
공기 중에서 냉각하는 자연 냉각 방식에 의해 제조된 아연 블록 6개를 준비하였다. 상기 제조된 아연 블록을 포함하는 것을 제외하고 상기 실시예 1과 동일한 형태의 아연 이온 수처리기를 제조하였다. 즉, 자연 냉각 방식에 의해 제조된 아연블록을 포함하는 아연 이온 수처리기인 비교예 2 내지 7을 제조하였다.
한편, 고체 아연을 진공 챔버에서 600℃ 온도 조건에서 소성시켜 액체 아연을 형성시키고, 이를 동일한 진공 챔버에서 냉각시켜 제조된 아연 블록 2개를 준비하였다. 상기 제조된 아연 블록을 포함하는 것을 제외하고, 상기 실시예 1과 동일한 형태의 이온 수처리를 제조하였다. 즉, 진공 챔버에서 소성 및 냉각시켜 제조된 아연 블록을 포함하는 아연 이온 수처리기인 실시예 2 내지 3을 제조하였다.
이후, 순환 조건에서 10분 간격으로 아연 용출량을 측정하여, 하기 표 1에 나타내었다.
표 1
비교예(자연 냉각 방식) 실시예(진공 챔버 냉각 방식)
2 3 4 5 6 7 2 3
경과 시간에 따른 아연 용출량(mg/L) 원수 0.2
10분 0.22 0.28 0.25 0.27 0.28 0.30 0.30 0.29
20분 0.24 0.30 0.28 0.27 0.28 0.30 0.33 0.40
30분 0.25 0.30 0.29 0.29 0.34 0.31 0.45 0.50
40분 0.25 0.32 0.30 0.32 0.36 0.33 0.57 0.51
50분 0.27 0.35 0.38 0.32 0.38 0.37 0.60 0.67
60분 0.27 0.36 0.35 0.32 0.36 0.34 0.76 0.69
아연이온 증가량(mg/L) 0.07 0.16 0.15 0.12 0.16 0.14 0.56 0.49
상기 표 1로부터 알 수 있는 바와 같이, 아연 용출량은 0.2mg/L인 원수로부터, 종래의 자연 냉각 방식에 의해 제조된 아연 블록을 구비한 아연 이온 수처리기(비교예 2 내지 7)를 사용한 경우의 아연 용출량은 1시간 경과 후, 0.27~0.38mg/L까지 증가하였으나, 진공 챔버 냉각 방식에 의해 제조된 아연 블록을 구비한 아연 이온 수처리기(실시예 2 내지 3)의 아연 용출 용출량은 0.69~0.76mg/L까지 증가하였다.
따라서, 상기 실시예 2 내지 3의 아연 이온 수처리기는, 종래의 자연 냉각 방식에 의해 제조된 아연 블록을 구비한 아연 이온 수처리기에 비하여, 아연 용출량을 약 3배 이상 높일 수 있음을 알 수 있다.
[부호의 설명]
10: 몸체
20: 아연 블록 21: 관통공
30: 불소 수지 블록 31: 관통공
41: 플랜지
101, 102: 배관의 플랜지
140: 회전식 플랜지 141: 체결공
150: 고정부재 160: 절연층
170: 오링

Claims (10)

  1. 몸체의 내부에 다수 개의 관통공을 갖는 아연 블록 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록을 구비하는 아연 이온 수처리기에 있어서,
    상기 불소 수지 블록의 측면은 유체가 상기 몸체 및 불소 수지 블록을 접하여 흐르도록 요철 형상으로 구비된, 아연 이온 수처리기.
  2. 제 1항에 있어서, 상기 아연 이온 수처리기의 몸체 양측 끝단에 회전이 가능하도록 결합되며, 이웃하는 배관의 플랜지와 결합을 위한 다수 개의 체결공을 갖는 회전식 플랜지;
    상기 아연 이온 수처리기의 몸체 양측 끝단에 설치되어 회전식 플랜지를 몸체에 고정시키는 고정부재;
    상기 회전식 플랜지의 내면에 형성되어 회전식 플랜지가 몸체 및 고정부재와 직접적으로 접촉하는 것을 방지하여 서로 다른 금속의 접촉에 의한 전위 부식을 방지하는 절연층을 포함하고,
    상기 몸체의 양측 끝단부 외면에는 회전식 플랜지의 위치 고정을 위한 걸림턱이 형성되어 회전식 플랜지가 걸림턱과 고정부재의 사이에 위치한 상태로 회전하도록 구성된, 아연 이온 수처리기.
  3. 제 1항에 있어서, 상기 몸체에 인접하는 불소 수지 블록의 측면 면적은, 상기 몸체의 총 측면 면적에 대하여 30 내지 90%인, 아연 이온 수처리기.
  4. 제 1항에 있어서, 유체가 흐르는 길이 방향에 있어서, 상기 불소 수지 블록의 길이 및 상기 아연 블록의 길이의 비율은, 1:2 내지 1:5인, 아연 이온 수처리기.
  5. 제 1항에 있어서, 상기 절연층은, 상기 걸림턱에 대응하는 회전식 플랜지의 일측면으로부터 회전식 플랜지의 내면을 통하여 고정부재에 대응하는 타측면으로 연장되게 형성되는, 아연 이온 수처리기.
  6. 제 1항에 있어서, 상기 고정부재는 몸체에 나사 결합되는, 아연 이온 수처리기.
  7. 제 1항에 있어서, 상기 몸체와 고정부재의 사이에는 기밀 유지를 위한 오링이 더 설치되는, 아연 이온 수처리기.
  8. 제 1항에 있어서, 상기 아연 블록은, 고체 아연을 진공 챔버 내에서 400 내지 800℃로 소성시키고, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것인, 아연 이온 수처리기.
  9. 몸체의 내부에 다수 개의 관통공을 갖는 아연 블록 및 또 다른 다수 개의 관통공을 갖는 불소 수지 블록을 구비하는 아연 이온 수처리기의 제조 방법에 있어서,
    아연 블록 및 불소 수지 블록을 순차적으로 몸체의 내부에 구비하는 단계를 포함하며,
    상기 불소 수지 블록의 측면은 유체가 상기 몸체 및 불소 수지 블록을 접하여 흐르도록 요철 형상으로 구비되고,
    상기 아연 블록은, 고체 아연을 진공 챔버 내에서 소성시키고, 상기 진공 챔버 내에서 상온 냉각시켜 제조되는 것인, 아연 이온 수처리기의 제조 방법.
  10. 제 9항에 있어서, 상기 소성은, 400 내지 800℃의 온도로 소성되는, 아연 이온 수처리기의 제조 방법.
PCT/KR2015/013089 2015-09-04 2015-12-02 아연 이온 수처리기 및 이의 제조 방법 WO2017039070A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/756,087 US20180244546A1 (en) 2015-09-04 2015-12-02 Zinc ion water treatment device and manufacturing method therefor
CN201580084193.6A CN108349765A (zh) 2015-09-04 2015-12-02 锌离子水处理器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150125770A KR101802338B1 (ko) 2015-09-04 2015-09-04 아연 이온 수처리기 및 이의 제조 방법
KR10-2015-0125770 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017039070A1 true WO2017039070A1 (ko) 2017-03-09

Family

ID=58188907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013089 WO2017039070A1 (ko) 2015-09-04 2015-12-02 아연 이온 수처리기 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US20180244546A1 (ko)
KR (1) KR101802338B1 (ko)
CN (1) CN108349765A (ko)
WO (1) WO2017039070A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855869B1 (ko) * 2017-11-30 2018-05-10 한일종합기계 주식회사 부식억제 및 살균기능을 갖는 이온 수처리 장치
KR102493732B1 (ko) * 2021-01-18 2023-01-31 (주)진행워터웨이 녹조 및 악취 제거 정화장치
KR102312231B1 (ko) * 2021-03-12 2021-10-13 (주)진행워터웨이 자가 발전 이온 수처리 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949698B1 (ko) * 2009-11-26 2010-03-29 (주)진행워터웨이 회전식 플랜지를 갖는 이온 수처리기
KR101208634B1 (ko) * 2012-07-13 2012-12-06 (주)진행워터웨이 부식억제 이온 수처리장치 및 이의 제조 방법
KR101232646B1 (ko) * 2012-02-17 2013-02-13 (주)워터크린시스템 이온 스케일 부스터
KR101243174B1 (ko) * 2012-09-18 2013-03-15 주식회사 알카리온 관내 이물질의 생성억제 및 제거를 위한 이온수 처리기
KR101399450B1 (ko) * 2013-06-07 2014-06-27 김현용 스케일 생성 방지 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG41932A1 (en) * 1993-01-25 1997-08-15 Ion Enterprises Ltd Fluid treatment device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949698B1 (ko) * 2009-11-26 2010-03-29 (주)진행워터웨이 회전식 플랜지를 갖는 이온 수처리기
KR101232646B1 (ko) * 2012-02-17 2013-02-13 (주)워터크린시스템 이온 스케일 부스터
KR101208634B1 (ko) * 2012-07-13 2012-12-06 (주)진행워터웨이 부식억제 이온 수처리장치 및 이의 제조 방법
KR101243174B1 (ko) * 2012-09-18 2013-03-15 주식회사 알카리온 관내 이물질의 생성억제 및 제거를 위한 이온수 처리기
KR101399450B1 (ko) * 2013-06-07 2014-06-27 김현용 스케일 생성 방지 장치

Also Published As

Publication number Publication date
KR101802338B1 (ko) 2017-11-29
KR20170029082A (ko) 2017-03-15
US20180244546A1 (en) 2018-08-30
CN108349765A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017039070A1 (ko) 아연 이온 수처리기 및 이의 제조 방법
WO2011096678A2 (en) Flexible pipe connected with flexible pipe connecting structure and method of connecting flexible pipe connecting structure with flexible pipe
WO2011083926A2 (ko) 유리 패널의 배기구 형성 방법 및 이를 이용하여 제조한 유리 패널 제품
KR101006751B1 (ko) 유도로
WO2013187648A1 (ko) 배관 연결 장치
WO2020222501A1 (ko) 세라믹 기판 및 그의 제조방법
WO2021085913A1 (ko) 결합형 포커스 링
WO2015068920A1 (ko) 압착결합구조의 마감커버를 구비하는 배관용 단열장치
WO2021040164A1 (ko) 파이프 연결용 피팅장치
WO2017171402A1 (ko) 확장형 케이블 분배장치 및 확장형 케이블 분배장치 제조방법
WO2020130255A1 (ko) 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치
WO2011019136A4 (ko) 베어링전기절연장치
CN206022311U (zh) 用于等离子体处理腔室的处理配件
KR20150057768A (ko) 폴리실리콘 제조 장치
WO2015156536A1 (ko) 진공펌프
WO2024029677A1 (ko) 배관용 디파우더 장치 제조 방법, 및 설치 방법
WO2014115920A1 (ko) 배향된 석출물을 가지는 금속복합재료 및 이의 제조방법
WO2017003058A1 (ko) 마찰저항 저감 장치 및 이를 포함하는 선박
WO2015037783A1 (en) Steel for resistance to complex corrosion from hydrochloric acid and sulfuric acid, having excellent wear resistance and surface qualities, and method of manufacturing the same
WO2014010953A1 (ko) 부식억제 이온 수처리장치용 아연판 및 이의 제조 방법
WO2022255686A1 (ko) 내플라즈마 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2021095917A1 (ko) 통신용 복합 유리 및 이의 제조 방법
WO2023048391A1 (ko) 고 내식성 열교환기
WO2022145529A1 (ko) 단면적이 변하는 중공관 및 이를 제작하는 방법
WO2021149876A1 (ko) 친수성 스테인리스강 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903131

Country of ref document: EP

Kind code of ref document: A1