WO2021149876A1 - 친수성 스테인리스강 및 이의 제조방법 - Google Patents

친수성 스테인리스강 및 이의 제조방법 Download PDF

Info

Publication number
WO2021149876A1
WO2021149876A1 PCT/KR2020/006522 KR2020006522W WO2021149876A1 WO 2021149876 A1 WO2021149876 A1 WO 2021149876A1 KR 2020006522 W KR2020006522 W KR 2020006522W WO 2021149876 A1 WO2021149876 A1 WO 2021149876A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
hydrophilic
present
heat treatment
oxide film
Prior art date
Application number
PCT/KR2020/006522
Other languages
English (en)
French (fr)
Inventor
김동립
전재현
양정빈
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2021149876A1 publication Critical patent/WO2021149876A1/ko
Priority to US17/868,622 priority Critical patent/US20220349062A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/30Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/72Temporary coatings or embedding materials applied before or during heat treatment during chemical change of surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the present invention relates to a hydrophilic stainless steel and a method for manufacturing the same.
  • stainless steel Because of its abundant resource and corrosion-resistant characteristics, stainless steel is used in various living and industrial fields such as tableware, medical care, power generation, aviation, construction materials, and storage tanks.
  • stainless steel is widely used as a material for heat exchangers in fields where polluted water, chemicals, groundwater, etc. are used because it is inexpensive among metal materials and has high corrosion resistance.
  • Corrosion resistance can be secured by using stainless steel for this heat exchanger, but scale is deposited on the surface of the heat exchanger when used for a long time.
  • the deposited scale has low thermal conductivity, which causes thermal insulation problems in the heat exchanger, which can reduce the heat transfer efficiency of the heat exchanger.
  • the heat exchanger is cleaned periodically as a solution to remove scale on the surface of the heat exchanger, but this method also has the disadvantage that the mechanical system must be stopped periodically, and the consumption of manpower, time and money for cleaning occurs. there is.
  • the hydrophilic surface refers to a surface where the contact angle is significantly lower than that of the existing surface when the droplet contacts the surface, and the water spreads.
  • hydrophilic coating using organic/inorganic materials has been suggested as a method for producing a hydrophilic surface of stainless steel, but without coating, water repellency is not exhibited, and the property of the coating material is easily changed depending on external conditions, so there is a problem of durability. There is a risk of aging easily when used for a long time.
  • Another method is to form a microstructure on a stainless steel surface using a laser device.
  • An embodiment of the present invention is to provide a hydrophilic stainless steel capable of imparting hydrophilicity to the stainless steel surface by physically polishing the stainless steel surface in one direction to form a micro-sized surface structure having one direction, and a method for manufacturing the same.
  • An embodiment of the present invention provides a hydrophilic stainless steel capable of imparting hydrophilicity to a stainless steel surface by physically polishing the stainless steel surface and then performing a high-temperature heat treatment to form a micro-sized surface structure and a nano-sized surface structure, and a method for manufacturing the same want to
  • An embodiment of the present invention is to provide a hydrophilic stainless steel, which is inexpensive to manufacture, and a method for manufacturing the same, compared to a method for manufacturing a hydrophilic surface of stainless steel through a conventional coating method, by using a method of high-temperature heat treatment after physical polishing of stainless steel.
  • An embodiment of the present invention is to provide a hydrophilic stainless steel that improves durability of stainless steel by high-temperature heat treatment after physical polishing of the stainless steel surface, and a method for manufacturing the same.
  • An embodiment of the present invention is to provide a hydrophilic stainless steel capable of providing a large area of the process by giving a hydrophilic property to the stainless steel surface only by physical polishing and high-temperature heat treatment, and a method for manufacturing the same.
  • a method for manufacturing a hydrophilic stainless steel according to the present invention comprises: polishing a surface of the stainless steel in one direction; and immersing the polished stainless steel in an acidic solution to form an oxide film.
  • the polished stainless steel may have a micro-sized surface structure.
  • the step of forming an oxide film by immersing the polished stainless steel in an acidic solution heating the stainless steel on which the oxide film is formed, followed by heat treatment; and cooling the heat-treated stainless steel.
  • the heat-treated stainless steel may have a nano-sized surface structure.
  • the heat treatment may be performed at 850 °C to 1150 °C.
  • the heat treatment may be performed for 10 to 60 minutes.
  • the temperature of the stainless steel having the oxide film formed thereon may be increased from 550° C. to 850° C. at a temperature increase rate of 200° C./sec to 300° C./sec.
  • the heat-treated stainless steel may be cooled at a cooling rate of 200°C/sec to 300°C/sec at 850°C to 550°C.
  • the hydrophilic stainless steel according to the present invention is characterized in that it is manufactured according to the manufacturing method of the hydrophilic stainless steel of the present invention.
  • the contact angle of the hydrophilic stainless steel may be 0° to 30°.
  • hydrophilicity can be imparted to the stainless steel surface by physically polishing the stainless steel surface in one direction to form a micro-sized surface structure having one direction.
  • hydrophilicity can be imparted to the stainless steel surface by physically polishing the stainless steel surface and then performing a high-temperature heat treatment to form a micro-sized surface structure and a nano-sized surface structure.
  • the manufacturing cost may be lower than that of a method for manufacturing a hydrophilic surface of stainless steel through a conventional coating method.
  • the durability of the stainless steel can be improved by heat-treating the stainless steel surface at a high temperature after physical polishing.
  • hydrophilic properties can be imparted to the surface of stainless steel only by physical polishing and high-temperature heat treatment, so that a large area of the process is possible.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a hydrophilic stainless steel according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron microscopy (SEM) image showing the surface of the stainless steel of Example 1.
  • SEM scanning electron microscopy
  • FIG. 3 is an SEM image showing the stainless steel surface of Example 2.
  • Example 4 is an image illustrating a result of measuring a contact angle with respect to the stainless steel of Example 1 using a contact angle measuring device.
  • Example 5 is an image showing a result of measuring a contact angle with respect to the stainless steel of Example 2 using a contact angle measuring device.
  • FIG. 6 is a scanning electron microscopy (SEM) image showing the stainless steel surface of Comparative Example 1.
  • FIG. 7 is an image illustrating a result of measuring a contact angle with respect to the stainless steel of Comparative Example 1 using a contact angle measuring device.
  • the term 'or' means 'inclusive or' rather than 'exclusive or'. That is, unless stated otherwise or clear from context, the expression 'x employs a or b' means any one of natural inclusive permutations.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a hydrophilic stainless steel according to an embodiment of the present invention.
  • a method of manufacturing a hydrophilic stainless steel according to an embodiment of the present invention includes polishing the surface of the stainless steel in one direction (S110) and immersing the polished stainless steel in an acidic solution to form an oxide film Step S120 is included.
  • step S110 the surface of the stainless steel may be physically polished in one direction using a grinding stone.
  • the grinding stone may be a grinding stone of 40 to 200 grit, and in order to increase the surface roughness of the stainless steel, the surface of the stainless steel may be physically polished by preferably using a grinding stone of 40 to 100 grit.
  • the physical polishing is a basic operation for making the surface of the stainless steel hydrophilic.
  • step S110 it is preferable that the surface of the stainless steel is physically polished in one direction so that the water on the surface of the stainless steel is drained and the water rapidly spreads on the surface of the stainless steel.
  • the physically polished stainless steel may have a micro-sized surface structure, and specifically may have a micro-sized unidirectional concave-convex structure.
  • the surface of the stainless steel may be washed with water before or after step S110 to remove residues present on the surface of the stainless steel.
  • an oxide film may be formed on the surface of the physically polished stainless steel by immersing the physically polished stainless steel in an acidic solution.
  • step S110 an oxide film is formed on the surface of the stainless steel because the surface is exposed to air, but the oxide film may be removed by physical polishing.
  • an oxide film may be formed again on the surface of the stainless steel from which the oxide film has been removed by physical polishing.
  • the acidic solution may excessively supply oxygen to the physically polished stainless steel, thereby forming an oxide film including chromium (Cr) on the physically polished stainless steel surface.
  • the acidic solution may be, for example, a nitric acid (HNO 3 ) solution, but is not limited thereto.
  • an oxide film may be formed on the surface of the polished stainless steel by immersing the polished stainless steel in a 30% nitric acid solution at 50° C. for 100 minutes.
  • the method of the present invention may include heating the stainless steel on which the oxide film is formed after the step S120 and then heat-treating (S130) and cooling the heat-treated stainless steel (S140).
  • Step S130 may further improve the hydrophilicity of the surface of the stainless steel by rapidly heating the stainless steel on which the oxide film is formed by step S120 to a heat treatment process temperature in a general atmosphere or oxygen atmosphere, and then heat-treating it during the heat treatment process time.
  • the heat treatment process temperature means a target temperature to be reached by raising the temperature of the stainless steel having the oxide film formed therein
  • time for performing the heat treatment process (hereinafter, heat treatment process time) is that the stainless steel on which the oxide film is formed is subjected to the heat treatment process. It means the time for which the heat treatment process temperature is maintained after reaching the temperature.
  • chromium (Cr) included in the stainless steel on which the oxide film is formed may be formed into nano-sized crystals through the heat treatment.
  • the stainless steel heat-treated through step S130 may have a nano-sized surface structure, and specifically, the heat-treated stainless steel surface may have nano-sized chromium oxide crystals.
  • the surface of the heat-treated stainless steel may have a nano-sized surface structure formed through the heat treatment together with a micro-sized surface structure formed through the physical polishing.
  • the nano-sized surface structure formed on the heat-treated surface of the stainless steel may improve the hydrophilic property of the surface of the stainless steel.
  • Cr 2 O 3 it is a ceramic material having a high surface energy and has a low contact angle (CA) with only a simple Cr 2 O 3 layer without a structure.
  • CA contact angle
  • the nanostructure is formed on the surface of the stainless steel, the hydrophilicity is improved as the hydrophilic area is widened. Therefore, when a nano-sized Cr 2 O 3 structure is formed on the surface, superhydrophilic properties can be expressed and improved.
  • the present invention can rather improve the hydrophilic properties of the stainless steel surface by utilizing the defects formed on the surface of the stainless steel, that is, the micro-sized surface structure and the nano-sized surface structure.
  • the present invention can improve the hydrophilic property of the stainless steel surface by heat-treating it at a lower temperature than the prior art to form a nano-sized surface structure on the stainless steel surface.
  • the heat treatment process temperature may be 850 °C to 1150 °C.
  • a nano-sized surface structure may not be formed on the surface of the stainless steel on which the oxide film is formed.
  • the heat treatment process time may be 10 minutes to 60 minutes.
  • the heat treatment process time is less than 10 minutes, a nano-sized surface structure may not be formed on the surface of the stainless steel through the heat treatment.
  • step S130 since different phases may be formed on the surface of the stainless steel at 700° C. and corroded, it is preferable to rapidly increase the temperature so that the oxide film is formed on the stainless steel to reach the heat treatment process temperature.
  • the temperature raising process of step S130 may include a first temperature raising process and a second temperature raising process faster than the first temperature raising process.
  • step S130 the temperature of the stainless steel having the oxide film formed thereon is increased at a temperature increase rate of 100° C./min through a first temperature increase process, and then, from 550° C. to 850° C., through a second temperature increase process, 200° C./sec or more.
  • a temperature increase rate 100° C./min through a first temperature increase process, and then, from 550° C. to 850° C., through a second temperature increase process, 200° C./sec or more.
  • 850° C. which is the heat treatment process temperature. That is, in the second temperature increase process, the temperature should be rapidly increased at a rate of 200° C. or more per second.
  • the stainless steel on which the oxide film is formed is rapidly heated at a temperature increase rate of 200° C./sec to 300° C./sec, thereby preventing corrosion of the stainless steel during the temperature increase process.
  • step S140 the stainless steel having a hydrophilic surface may be manufactured by cooling the heat-treated stainless steel.
  • the heat-treated stainless steel may be cooled from 850°C to 550°C at a cooling rate of 200°C/sec to 300°C/sec.
  • the reason for rapidly cooling from 850° C. to 550° C. is that another phase may be formed on the surface of the stainless steel at 700° C. as in the second temperature increase step and corrode.
  • the hydrophilic stainless steel manufactured by the method of the present invention may have a surface contact angle of 0° to 30°.
  • the contact angle of the physically polished stainless steel may be 10° to 30°
  • the contact angle of the heat-treated stainless steel after the physical polishing may be 0° to 10°.
  • the cooled stainless steel may be washed to remove residues remaining on the surface of the cooled stainless steel.
  • a stainless steel surface having super-hydrophilic surface properties can be manufactured by subjecting the surface of the stainless steel to a high-temperature heat treatment after physical polishing.
  • the present invention uses a method of high-temperature heat treatment after physical polishing, so that the manufacturing cost may be lower than that of a method for manufacturing a hydrophilic surface of stainless steel through a conventional coating method.
  • the stainless steel surface is subjected to high temperature heat treatment after physical polishing, so that durability can be high and a large area of the process is possible.
  • the surface of the stainless steel was polished in one direction using a 60# abrasive stone to form a micro-sized surface structure.
  • an oxide film was formed by immersing the washed stainless steel in 30% nitric acid solution at 70° C. for 60 minutes to re-form the removed oxide film on the surface of the stainless steel.
  • the surface of the stainless steel was polished in one direction using a 60# abrasive stone to form a micro-sized surface structure.
  • an oxide film was formed by immersing the washed stainless steel in 30% nitric acid solution at 70° C. for 60 minutes to re-form the removed oxide film on the surface of the stainless steel.
  • the temperature of the stainless steel was raised to 850° C. under a general atmosphere and then heat-treated for 30 minutes.
  • the stainless steel surface was not polished in one direction, the stainless steel was heated to 850 °C at 100 °C/min, and heat treatment was not performed.
  • FIG. 2 is a scanning electron microscopy (SEM) image showing the surface of the stainless steel of Example 1.
  • SEM scanning electron microscopy
  • a micro-sized concave-convex structure formed in one direction is formed on the surface of the stainless steel of Example 1 .
  • water on the surface of the stainless steel can be drained and spread along the direction in which the micro-surface structure is formed, so that it can have hydrophilicity.
  • FIG. 3 is an SEM image showing the stainless steel surface of Example 2.
  • nano-sized chromium crystals are formed on the surface of the stainless steel of Example 2 along with a micro-sized uneven structure having directionality.
  • nano-sized chromium crystals are formed through high-temperature heat treatment, and hydrophilic properties can be improved.
  • Example 4 is an image illustrating a result of measuring a contact angle with respect to the stainless steel of Example 1 using a contact angle measuring device.
  • Example 1 the contact angle of Example 1 is 16°.
  • the present invention has hydrophilicity by forming a micro-sized surface structure having unidirectional orientation on the surface of stainless steel through physical polishing.
  • Example 5 is an image showing a result of measuring a contact angle with respect to the stainless steel of Example 2 using a contact angle measuring device.
  • the present invention forms a nano-sized surface structure formed through high-temperature heat treatment together with a micro-sized surface structure formed by physical polishing on the surface of stainless steel, thereby further improving hydrophilic properties.
  • FIG. 6 is a scanning electron microscopy (SEM) image showing the stainless steel surface of Comparative Example 1.
  • nano-sized chromium crystals are not formed on the surface of the stainless steel together with the micro-sized concavo-convex structure having directionality.
  • FIG. 7 is an image illustrating a result of measuring a contact angle with respect to the stainless steel of Comparative Example 1 using a contact angle measuring device.
  • Comparative Example 1 is very large as 34°.
  • the present invention forms a nano-sized surface structure formed through high-temperature heat treatment together with a micro-sized surface structure formed by physical polishing on the stainless steel surface, It can be seen that the hydrophilic property is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

본 발명은 친수성 스테인리스강 및 이의 제조방법을 개시한다. 본 발명의 실시예에 따른 친수성 스테인리스강의 제조방법은 스테인리스강의 표면을 일 방향으로 연마하는 단계; 및 상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.

Description

친수성 스테인리스강 및 이의 제조방법
본 발명은 친수성 스테인리스강 및 이의 제조방법에 관한 것이다.
스테인리스강은 자원이 풍부하고 부식에 강한 특징으로 인해 식기, 의료, 발전, 항공, 건설자재, 저장 탱크 등 다양한 생활 및 산업 분야에 쓰인다.
특히 스테인리스강은 금속 재질 중 가격이 저렴하고 내식성이 높다는 점에서 오염수, 화학약품, 지하수 등이 사용되는 분야에서 열 교환기의 소재로 많이 쓰인다.
이러한 열 교환기는 스테인리스강을 사용함으로써 내식성 확보가 가능하지만, 오랜 시간 사용하게 될 경우 열 교환기 표면에 스케일이 퇴적된다.
퇴적된 스케일은 열전도성이 낮아 열 교환기 내에서의 단열 문제를 야기하게 되고, 이로 인해 열 교환기의 열 전달 효율을 감소시킬 수 있다.
열 교환기 표면에 생긴 스케일을 제거하기 위한 해결책으로 열 교환기를 주기적으로 세척을 해주고 있으나, 이 방법 또한 주기적으로 기계 시스템을 중단시켜야 하고, 세척을 위한 인력, 시간 및 비용의 소비가 발생하게 되는 단점이 있다.
이러한 단점을 보완하기 위해 스테인리스강의 표면을 친수화하는 방법이 제시되고 있다.
친수성 표면이란 액적이 표면에 접촉하였을 때 접촉각이 기존 표면에 비해 현저히 낮고, 물 퍼짐이 발생하는 표면을 말한다.
현재까지 스테인리스강의 친수성 표면을 제작하는 방법으로 유/무기 재료를 이용한 친수성 코팅을 하는 방법이 제시되어 있지만, 코팅 없이는 발수성을 나타내지 못하며, 외부조건에 따라 코팅 물질의 성질이 쉽게 바뀌게 되어 내구성의 문제가 있고, 장기간 사용 시 쉽게 노후될 위험성이 있다.
또 다른 방법으로 레이저 장비를 이용하여 스테인리스강 표면에 미세 구조를 형성하는 방법이 있다.
이는 코팅 공정 없이 열처리 공정만으로 친수성 스테인리스강 표면을 형성할 수 있으나, 고가의 장비를 이용하기 때문에 제조단가가 높아 실제 적용은 어려우며, 대량 생산을 위한 대면적화가 힘들다는 단점이 있다.
본 발명의 실시예는 스테인리스강 표면을 일 방향으로 물리적 연마하여 일 방향성을 가지는 마이크로 크기의 표면 구조를 형성함으로써 스테인리스강 표면에 친수성을 부여할 수 있는 친수성 스테인리스강 및 이의 제조방법을 제공하고자 한다.
본 발명의 실시예는 스테인리스강 표면을 물리적 연마한 후 고온 열처리하여 마이크로 크기의 표면 구조 및 나노 크기의 표면 구조를 형성함으로써 스테인리스강 표면에 친수성을 부여할 수 있는 친수성 스테인리스강 및 이의 제조방법을 제공하고자 한다.
본 발명의 실시예는 스테인리스강의 물리적 연마 이후 고온 열처리하는 방식을 이용하여, 종래의 코팅 방식을 통한 스테인리스강의 친수성 표면 제조 방법에 비해 제조 비용이 저렴한 친수성 스테인리스강 및 이의 제조방법을 제공하고자 한다.
본 발명의 실시예는 스테인리스강 표면을 물리적 연마 이후 고온 열처리하여, 스테인리스강의 내구성을 향상시키는 친수성 스테인리스강 및 이의 제조방법을 제공하고자 한다.
본 발명의 실시예는 물리적 연마 및 고온 열처리만으로도 스테인리스강 표면에 친수 특성을 부여할 수 있어 공정의 대면적화가 가능한 친수성 스테인리스강 및 이의 제조방법을 제공하고자 한다.
본 발명에 따른 친수성 스테인리스강의 제조방법은, 스테인리스강의 표면을 일 방향으로 연마하는 단계; 및 상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 연마된 스테인리스강은 마이크로 크기의 표면 구조를 가질 수 있다.
본 발명의 일 실시예에 따르면, 상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계 이후에는, 상기 산화막이 형성된 스테인리스강을 승온시킨 후 열처리하는 단계; 및 상기 열처리된 스테인리스강을 냉각시키는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 열처리된 스테인리스강은 나노 크기의 표면 구조를 가질 수 있다.
본 발명의 일 실시예에 따르면, 상기 열처리는 850℃ 내지 1150℃에서 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 열처리는 10분 내지 60분 동안 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 산화막이 형성된 스테인리스강을 550℃부터 850℃까지는 200℃/sec 내지 300℃/sec의 승온 속도로 승온시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 열처리된 스테인리스강을 850℃부터 550℃는 200℃/sec 내지 300℃/sec의 냉각 속도로 냉각시킬 수 있다.
본 발명에 따른 친수성 스테인리스강은, 본 발명의 친수성 스테인리스강의 제조방법에 따라 제조된 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 상기 친수성 스테인리스강의 접촉각은 0° 내지 30°일 수 있다.
본 발명의 실시예에 따르면, 스테인리스강 표면을 일 방향으로 물리적 연마하여 일 방향성을 가지는 마이크로 크기의 표면 구조를 형성함으로써 스테인리스강 표면에 친수성을 부여할 수 있다.
본 발명의 실시예에 따르면, 스테인리스강 표면을 물리적 연마한 후 고온 열처리하여 마이크로 크기의 표면 구조 및 나노 크기의 표면 구조를 형성함으로써 스테인리스강 표면에 친수성을 부여할 수 있다.
본 발명의 실시예에 따르면, 스테인리스강의 물리적 연마 이후 고온 열처리하는 방식을 이용하여, 종래의 코팅 방식을 통한 스테인리스강의 친수성 표면 제조 방법에 비해 제조 비용이 저렴할 수 있다.
본 발명의 실시예에 따르면, 스테인리스강 표면을 물리적 연마 이후 고온 열처리하여, 스테인리스강의 내구성을 향상시킬 수 있다.
본 발명의 실시예에 따르면, 물리적 연마 및 고온 열처리만으로도 스테인리스강 표면에 친수 특성을 부여할 수 있어 공정의 대면적화가 가능하다.
도 1은 본 발명의 실시예에 따른 친수성 스테인리스강의 제조방법을 도시한 순서도이다.
도 2는 실시예 1의 스테인리스강 표면을 도시한 SEM(scanning electron microscopy) 이미지이다.
도 3은 실시예 2의 스테인리스강 표면을 도시한 SEM 이미지이다.
도 4는 접촉각 측정기를 이용하여 실시예 1의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
도 5는 접촉각 측정기를 이용하여 실시예 2의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
도 6은 비교예 1의 스테인리스강 표면을 도시한 SEM(scanning electron microscopy) 이미지이다.
도 7은 접촉각 측정기를 이용하여 비교예 1의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계는 하나 이상의 다른 구성요소, 단계의 존재 또는 추가를 배제하지 않는다.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.
또한, '또는'이라는 용어는 배타적 논리합 'exclusive or'이기보다는 포함적인 논리합 'inclusive or'를 의미한다. 즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다'라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.
또한, 본 명세서 및 청구항들에서 사용되는 단수 표현("a" 또는 "an")은, 달리 언급하지 않는 한 또는 단수 형태에 관한 것이라고 문맥으로부터 명확하지 않는 한, 일반적으로 "하나 이상"을 의미하는 것으로 해석되어야 한다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
한편, 본 발명의 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 친수성 스테인리스강의 제조방법을 도시한 순서도이다.
본 발명의 실시예에 따른 친수성 스테인리스강의 제조방법(이하, 본 발명의 방법)은 스테인리스강의 표면을 일 방향으로 연마하는 단계(S110) 및 상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계(S120)를 포함한다.
단계 S110은 연마석을 이용하여 상기 스테인리스강의 표면을 일 방향으로 물리적 연마할 수 있다.
상기 연마석은 40방 내지 200방의 연마석일 수 있으며, 상기 스테인리스강의 표면 거칠기를 증가시키기 위해 바람직하게는 40방 내지 100방의 연마석을 이용하여 상기 스테인리스강의 표면을 물리적 연마할 수 있다.
상기 물리적 연마는 상기 스테인리스강의 표면을 친수성으로 만들기 위한 기초 작업이다.
상기 단계 S110은 스테인리스강 표면의 물이 배수되어 상기 스테인리스강 표면에 물이 빠르게 퍼지도록 상기 스테인리스강의 표면을 일 방향으로 물리적 연마하는 것이 바람직하다.
상기 물리적 연마된 스테인리스강은 마이크로 크기의 표면 구조를 가질 수 있으며, 구체적으로 마이크로 크기의 일방향성을 가지는 요철 구조를 가질 수 있다.
실시예에 따라서, 상기 단계 S110 이전 또는 이후에 상기 스테인리스강의 표면을 물로 세척하여 스테인리스강 표면에 존재하는 잔여물을 제거할 수 있다.
단계 S120은 물리적 연마된 스테인리스강을 산성 용액에 침지시켜, 상기 물리적 연마된 스테인리스강의 표면에 산화막을 형성할 수 있다.
상기 단계 S110에서 스테인리스강은 표면이 공기에 노출되어 있어 표면에 산화막이 형성되어 있으나, 물리적 연마에 의해 산화막이 제거될 수 있다.
상기 단계 S120은 물리적 연마에 의해 산화막이 제거된 상기 스테인리스강 표면에 다시 산화막을 형성할 수 있다.
상기 산성 용액은 상기 물리적 연마된 스테인리스강에 산소를 과잉으로 공급할 수 있으며, 이로 인해 상기 물리적 연마된 스테인리스강 표면에 크롬(Cr)을 포함하는 산화막이 형성될 수 있다.
상기 산성 용액은 예를 들어 질산(HNO3) 용액일 수 있으며, 상기 종류에 제한되는 것은 아니다.
예를 들어, 상기 단계 S120은 상기 연마된 스테인리스강을 50℃에서 30%의 질산 용액에 100분 동안 침지시켜 상기 연마된 스테인리스강 표면에 산화막을 형성할 수 있다.
본 발명의 방법은 상기 단계 S120 이후에 상기 산화막이 형성된 스테인리스강을 승온시킨 후 열처리하는 단계(S130) 및 상기 열처리된 스테인리스강을 냉각시키는 단계(S140)를 포함할 수 있다.
단계 S130은 상기 단계 S120에 의해 산화막이 형성된 스테인리스강을 일반 대기 또는 산소 분위기 하에서 열처리 공정 온도까지 빠르게 승온시킨 후 열처리 공정 시간 동안 열처리하여 스테인리스강 표면의 친수성을 더 향상시킬 수 있다.
이때, 상기 열처리 공정 온도는 상기 산화막이 형성된 스테인리스강을 승온시켜 도달하고자 하는 목표 온도를 의미하며, 상기 열처리 공정을 수행하는 시간(이하, 열처리 공정 시간)은 상기 산화막이 형성된 스테인리스강이 상기 열처리 공정 온도에 도달한 후 상기 열처리 공정 온도가 유지되는 시간을 의미한다.
상기 단계 S130은 상기 열처리를 통해 상기 산화막이 형성된 스테인리스강에 포함된 크롬(Cr)을 나노 크기의 결정으로 형성할 수 있다.
즉, 상기 단계 S130을 통해 열처리된 스테인리스강은 나노 크기의 표면 구조를 가질 수 있으며, 구체적으로 열처리된 스테인리스강 표면은 나노 크기의 크롬 산화물 결정을 가질 수 있다.
이에 따라, 상기 열처리된 스테인리스강의 표면은 상기 물리적 연마를 통해 형성된 마이크로 크기의 표면 구조와 함께 상기 열처리를 통해 형성된 나노 크기의 표면 구조를 가질 수 있다.
상기 열처리된 스테인리스강 표면에 형성된 나노 크기의 표면 구조는 스테인리스강 표면의 친수성 특성을 향상시킬 수 있다. Cr2O3의 경우 높은 표면에너지를 갖는 세라믹 재료이며 구조가 없는 단순한 Cr2O3 층만으로도 접촉각(CA)이 낮다. 이에 더하여 스테인리스강 표면에 나노 구조를 형성하게 될 경우, 친수성 면적이 넓어지면서 친수성이 향상된다. 따라서 표면에 나노크기의 Cr2O3 구조를 형성하는 경우 초친수 특성을 발현 및 향상시킬 수 있다.
종래 기술은 스테인리스강 표면의 결함(defect)을 없애고 친수 특성을 향상시키기 위해 거칠기가 낮은 연마석을 이용하여 물리적 연마하거나, 고온에서 장시간 동안 열처리를 수행하였다.
그러나, 본 발명은 오히려 스테인리스강 표면에 형성된 결함, 즉 마이크로 크기의 표면 구조 및 나노 크기의 표면 구조를 활용하여 스테인리스강 표면의 친수 특성을 향상시킬 수 있다.
따라서, 본 발명은 종래보다 낮은 온도에서 열처리하여 스테인리스강 표면에 나노 크기의 표면 구조를 형성함으로써 스테인리스강 표면의 친수 특성을 향상시킬 수 있다.
구체적으로, 상기 열처리 공정 온도는 850℃ 내지 1150℃일 수 있다.
상기 열처리 공정 온도가 850℃ 미만이면 상기 산화막이 형성된 스테인리스강 표면에 나노 크기의 표면 구조가 형성되지 않을 수 있다.
상기 열처리 공정 온도가 1150℃를 초과하면, 본 발명에서 사용한 오스테나이트상(austenite)의 변형이 일어나게 되어 재료의 물리적 및 화학적 성질이 변하는 문제점이 발생할 수 있다.
상기 열처리 공정 시간은 10분 내지 60분일 수 있다.
상기 열처리 공정 시간이 10분 미만이면, 상기 열처리를 통해 스테인리스강 표면에 나노 크기의 표면 구조가 형성되지 않을 수 있다.
상기 단계 S130은 700℃에서 스테인리스강의 표면에 다른 상(phase)이 형성되어 부식될 수 있으므로, 상기 산화막이 형성된 스테인리스강이 상기 열처리 공정 온도까지 도달하도록 빠르게 승온시키는 것이 바람직하다.
실시예에 따라서, 상기 단계 S130의 승온 과정은 제1 승온 과정과, 상기 1 승온 과정보다 승온 속도가 빠른 제2 승온 과정을 포함할 수 있다.
예를 들어, 상기 단계 S130은 제1 승온 과정을 통해 상기 산화막이 형성된 스테인리스강을 100℃/min의 승온 속도로 승온시킨 후, 550℃에서 850℃까지는 제2 승온 과정을 통해 200℃/sec 이상의 승온 속도로 승온시켜 상기 열처리 공정 온도인 850℃에 도달할 수 있다. 즉, 제2 승온 과정은 초당 200℃ 이상의 속도로 빠르게 승온 시켜야 한다.
구체적으로, 상기 산화막이 형성된 스테인리스강은 200℃/sec 내지 300℃/sec의 승온 속도로 빠르게 승온되어 승온 과정에서의 스테인리스강 부식을 방지할 수 있다.
즉, 상기 승온 속도 및 열처리 온도 범위를 벗어날 경우 금속 결정입계에 탄화물 석출이 발생하고, 탄화물의 경우 스테인리스강에 비해 부식성이 높은 물질이므로 결정입계에 석출된 탄화물에 따라 부식이 쉽게 일어나게 되고 금속 입계 자체가 분리되어 떨어져 나가게 된다.
단계 S140은 상기 열처리된 스테인리스강을 냉각시켜 친수성 표면을 가지는 스테인리스강을 제조할 수 있다.
상기 열처리된 스테인리스강은 850℃에서 550℃까지는 200℃/sec 내지 300℃/sec의 냉각 속도로 냉각될 수 있다. 850℃에서 550℃까지 빨리 냉각시키는 이유도 상기 제2 승온 단계에서와 마찬가지로 700℃에서 스테인리스강의 표면에 다른 상(phase)이 형성되어 부식될 수 있기 때문이다.
본 발명의 방법으로 제조된 친수성 스테인리스강은 표면의 접촉각이 0° 내지 30°일 수 있다.
구체적으로, 상기 물리적 연마된 스테인리스강의 접촉각은 10° 내지 30°일 수 있으며, 상기 물리적 연마 이후 열처리된 스테인리스강의 접촉각은 0° 내지 10°일 수 있다.
실시예에 따라서, 상기 단계 S140 이후에는 상기 냉각된 스테인리스강의 표면에 남아있는 잔여물을 제거하기 위해 상기 냉각된 스테인리스강을 세척할 수 있다.
본 발명은 스테인리스강 표면을 물리적 연마 이후 고온 열처리하여, 초친수 표면 특성을 가지는 스테인리스강을 제조할 수 있다.
또한, 본 발명은 물리적 연마 이후 고온 열처리하는 방식을 이용하여, 종래의 코팅 방식을 통한 스테인리스강의 친수성 표면 제조 방법에 비해 제조 비용이 저렴할 수 있다.
더하여, 본 발명은 스테인리스강 표면을 물리적 연마 이후 고온 열처리하여, 내구성이 높을 수 있으며 공정의 대면적화가 가능하다.
이하, 실시예를 통해 스테인리스강 표면을 처리한 후 스테인리스강의 표면을 관찰하고 접촉각(CA)을 측정하였다.
[실시예 1]
스테인리스강 표면을 세척한 후, 마이크로 크기의 표면 구조를 형성하기 위해 60# 연마석을 이용하여 스테인리스강 표면을 일 방향으로 연마하였다.
이후 연마된 스테인리스강 표면에 남아있는 잔여물들을 제거하기 위해 물로 세척하였다.
세척이 끝난 후, 스테인리스강 표면에 제거된 산화막을 다시 형성하기 위해 70℃에서 30% 질산 용액에 60분 동안 세척된 스테인리스강을 침지시켜 산화막을 형성하였다.
[실시예 2]
스테인리스강 표면을 세척한 후, 마이크로 크기의 표면 구조를 형성하기 위해 60# 연마석을 이용하여 스테인리스강 표면을 일 방향으로 연마하였다.
이후 연마된 스테인리스강 표면에 남아있는 잔여물들을 제거하기 위해 물로 세척하였다.
세척이 끝난 후, 스테인리스강 표면에 제거된 산화막을 다시 형성하기 위해 70℃에서 30% 질산 용액에 60분 동안 세척된 스테인리스강을 침지시켜 산화막을 형성하였다.
이후 스테인리스강 표면에 나노 크기의 표면 구조를 형성하기 위해 일반 대기 하에서 스테인리스강을 850℃까지 승온시킨 후 30분 동안 열처리하였다.
열처리된 스테인리스강을 냉각시킨 후, 표면에 남아있는 잔여물들을 제거하기 위해 세척하였다.
[비교예 1]
스테인리스강 표면을 세척한 후 스테인리스강 표면을 일 방향으로 연마하지 않았으며, 스테인리스강을 850℃까지 100℃/min으로 승온시켰으며, 열처리하지 않았다.
특성 평가
도 2는 실시예 1의 스테인리스강 표면을 도시한 SEM(scanning electron microscopy) 이미지이다.
도 2를 참조하면, 상기 실시예 1의 스테인리스강 표면에 한 방향으로 형성된 마이크로 크기의 요철 구조가 형성된 것을 확인할 수 있다.
즉, 한 방향으로 형성된 마이크로 표면 구조로 인해 스테인리스강 표면의 물이 마이크로 표면 구조가 형성된 방향을 따라 배수되어 퍼질 수 있어 친수성을 가질 수 있다.
도 3은 실시예 2의 스테인리스강 표면을 도시한 SEM 이미지이다.
도 3을 참조하면, 상기 실시예 2의 스테인리스강 표면에 방향성을 가지는 마이크로 크기의 요철 구조와 함께 나노 크기의 크롬 결정이 형성된 것을 확인할 수 있다.
따라서, 본 발명은 마이크로 표면 구조에 더하여 고온 열처리를 통해 나노 크기의 크롬 결정이 형성되면서 친수 특성이 향상될 수 있다.
도 4는 접촉각 측정기를 이용하여 실시예 1의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
도 4를 참조하면, 상기 실시예 1의 접촉각은 16°인 것을 확인할 수 있다.
즉, 본 발명은 물리적 연마를 통해 스테인리스강 표면에 일 방향성을 가지는 마이크로 크기의 표면 구조를 형성하여 친수성을 가지는 것을 확인할 수 있다.
도 5는 접촉각 측정기를 이용하여 실시예 2의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
도 5를 참조하면, 상기 실시예 2의 접촉각은 거의 0°에 가까운 것을 확인할 수 있다.
이를 통해 본 발명은 스테인리스강 표면에 물리적 연마에 의해 형성된 마이크로 크기의 표면 구조와 함께 고온 열처리를 통해 형성된 나노 크기의 표면 구조를 형성하여, 친수 특성이 더욱 향상되는 것을 알 수 있다.
도 6은 비교예 1의 스테인리스강 표면을 도시한 SEM(scanning electron microscopy) 이미지이다.
도 6을 참조하면, 스테인리스강 표면에 방향성을 가지는 마이크로 크기의 요철 구조와 함께 나노 크기의 크롬 결정이 형성되지 않은 것을 확인할 수 있다.
도 7은 접촉각 측정기를 이용하여 비교예 1의 스테인리스강에 대한 접촉각을 측정한 결과를 도시한 이미지이다.
도 7을 참조하면, 상기 비교예 1의 접촉각은 34°로 매우 크다는 것을 확인할 수 있다.
따라서, 일 방향으로 연마 및 열처리를 하지 않은 비교예 1과 달리, 본 발명은 스테인리스강 표면에 물리적 연마에 의해 형성된 마이크로 크기의 표면 구조와 함께 고온 열처리를 통해 형성된 나노 크기의 표면 구조를 형성하여, 친수 특성이 더욱 향상되는 것을 알 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (10)

  1. 스테인리스강의 표면을 일 방향으로 연마하는 단계; 및
    상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계
    를 포함하는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  2. 제1항에 있어서,
    상기 연마된 스테인리스강은 마이크로 크기의 표면 구조를 가지는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  3. 제1항에 있어서,
    상기 연마된 스테인리스강을 산성 용액에 침지시켜 산화막을 형성하는 단계 이후에는,
    상기 산화막이 형성된 스테인리스강을 승온시킨 후 열처리하는 단계; 및
    상기 열처리된 스테인리스강을 냉각시키는 단계
    를 포함하는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  4. 제3항에 있어서,
    상기 열처리된 스테인리스강은 나노 크기의 표면 구조를 가지는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  5. 제3항에 있어서,
    상기 열처리는 850℃ 내지 1150℃에서 수행되는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  6. 제3항에 있어서,
    상기 열처리는 10분 내지 60분 동안 수행되는 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  7. 제3항에 있어서,
    상기 산화막이 형성된 스테인리스강을 승온시키는 단계에서, 550℃부터 850℃까지의 승온 속도는 200℃/sec 내지 300℃/sec인 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  8. 제3항에 있어서,
    상기 열처리된 스테인리스강을 냉각시키는 단계에서, 850℃부터 550℃까지의 냉각 속도는 200℃/sec 내지 300℃/sec인 것을 특징으로 하는 친수성 스테인리스강의 제조방법.
  9. 제1항에 따라 제조된 것을 특징으로 하는 친수성 스테인리스강.
  10. 제9항에 있어서,
    상기 친수성 스테인리스강의 접촉각은 0° 내지 30°인 것을 특징으로 하는 친수성 스테인리스강.
PCT/KR2020/006522 2020-01-20 2020-05-19 친수성 스테인리스강 및 이의 제조방법 WO2021149876A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/868,622 US20220349062A1 (en) 2020-01-20 2022-07-19 Hydrophilic stainless steel and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0007363 2020-01-20
KR1020200007363A KR102419291B1 (ko) 2020-01-20 2020-01-20 친수성 스테인리스강 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,622 Continuation US20220349062A1 (en) 2020-01-20 2022-07-19 Hydrophilic stainless steel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2021149876A1 true WO2021149876A1 (ko) 2021-07-29

Family

ID=76993048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006522 WO2021149876A1 (ko) 2020-01-20 2020-05-19 친수성 스테인리스강 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20220349062A1 (ko)
KR (1) KR102419291B1 (ko)
WO (1) WO2021149876A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971812A (ja) * 1995-09-05 1997-03-18 Nippon Sanso Kk ステンレス鋼材の乾式耐食熱処理方法およびステンレス鋼材
JP2001279390A (ja) * 2000-03-29 2001-10-10 Nisshin Steel Co Ltd 親水性オーステナイト系ステンレス鋼材
JP2005240062A (ja) * 2004-02-24 2005-09-08 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
KR101085176B1 (ko) * 2009-02-27 2011-11-18 포항공과대학교 산학협력단 극친수성 표면 가공 방법
JP2017082253A (ja) * 2015-10-22 2017-05-18 株式会社Ihi ステンレス鋼部品の脱スケール処理方法及び不動態化処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454776B2 (ja) 2000-03-29 2010-04-21 日新製鋼株式会社 親水性フェライト系ステンレス鋼材
US20180127850A1 (en) 2016-10-19 2018-05-10 Ak Steel Properties, Inc. Surface modification of stainless steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971812A (ja) * 1995-09-05 1997-03-18 Nippon Sanso Kk ステンレス鋼材の乾式耐食熱処理方法およびステンレス鋼材
JP2001279390A (ja) * 2000-03-29 2001-10-10 Nisshin Steel Co Ltd 親水性オーステナイト系ステンレス鋼材
JP2005240062A (ja) * 2004-02-24 2005-09-08 Nisshin Steel Co Ltd 親水性ステンレス鋼板及びその製造方法
KR101085176B1 (ko) * 2009-02-27 2011-11-18 포항공과대학교 산학협력단 극친수성 표면 가공 방법
JP2017082253A (ja) * 2015-10-22 2017-05-18 株式会社Ihi ステンレス鋼部品の脱スケール処理方法及び不動態化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEON, JAE HYEON ET AL.: "Fabrication of Hierarchical Structure on Stainless Steel Surface", 2019 KOREAN SOCIETY OF MECHANICAL ENGINEERS CONFERENCE, 13 November 2019 (2019-11-13), pages 1 - 3 *

Also Published As

Publication number Publication date
KR102419291B1 (ko) 2022-07-12
US20220349062A1 (en) 2022-11-03
KR20210093592A (ko) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2016072724A1 (ko) 플라즈마 내식각성이 향상된 공정부품 및 공정부품의 플라즈마 내식각성 강화 처리 방법
WO2021149876A1 (ko) 친수성 스테인리스강 및 이의 제조방법
US7485239B2 (en) Component of glass-like carbon for CVD apparatus and process for production thereof
WO2021177502A1 (ko) 챔버 코팅재 및 그 제조 방법
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
CN111763923A (zh) 一种二维材料层制备后转移方法
TWI470702B (zh) 基板處理裝置及用於基板處理裝置中之反應管的表面之塗佈膜之形成方法
JP3285723B2 (ja) 半導体熱処理用治具及びその表面処理方法
WO2016003196A1 (ko) 다양한 기판 상에 직접 성장된 산화세륨 초발수 나노/마이크로 구조체 및 이의 제조방법
CN116081927A (zh) 一种能够延长石英管使用寿命的石英管制造方法
WO2022158723A1 (ko) 방오 표면처리 방법 및 이의 방오 표면처리 구조체
WO2020138717A1 (ko) 다결정 실리콘 연마용 cmp 슬러리 조성물 및 그를 이용한 연마 방법
WO2021060583A1 (ko) 플라즈마 내식성을 갖는 결정화 유리 및 이를 포함하는 건식식각 공정 부품
CN114496710A (zh) 一种半导体设备陶瓷窗氧化钇涂层清洗方法
CN109608053A (zh) 一种太阳能电池玻璃面板用超疏水自清洁涂层的制备方法
JPH10144580A (ja) 半導体熱処理用ダミーウエハ及びその再生方法
EP0663687B1 (en) Instrument for production of semiconductor and process for production thereof
WO2023080411A1 (ko) 고압 분사 방식의 표면연마를 이용하여 표면 불량을 최소화시킨 연료전지 분리판 제조 방법
WO2023277559A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
TW438731B (en) Quartz glass jig for semiconductor heat treatment apparatus and a method of producing thereof
WO2014007577A1 (ko) 불규칙한 형상의 확산 시트의 제조 방법 및 이에 따라 제조한 확산 시트
JP2003257960A (ja) 半導体熱処理用治具
GB2117374A (en) Process for annealing steel strip
TW459278B (en) Process of cleaning furnace capable of decreasing particle contamination
CN115846252B (zh) 一种半导体行业用氧化铝陶瓷的清洗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916004

Country of ref document: EP

Kind code of ref document: A1