WO2020153531A1 - 유선형 유체 이송공을 가지는 밸브 - Google Patents

유선형 유체 이송공을 가지는 밸브 Download PDF

Info

Publication number
WO2020153531A1
WO2020153531A1 PCT/KR2019/005453 KR2019005453W WO2020153531A1 WO 2020153531 A1 WO2020153531 A1 WO 2020153531A1 KR 2019005453 W KR2019005453 W KR 2019005453W WO 2020153531 A1 WO2020153531 A1 WO 2020153531A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
valve
sub
curve
opening
Prior art date
Application number
PCT/KR2019/005453
Other languages
English (en)
French (fr)
Inventor
이상선
Original Assignee
이상선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190053042A external-priority patent/KR102173902B1/ko
Application filed by 이상선 filed Critical 이상선
Priority to EP19835221.3A priority Critical patent/EP3705762A4/en
Priority to CN201980003609.5A priority patent/CN111727333B/zh
Priority to JP2020502189A priority patent/JP7089577B2/ja
Priority to US16/745,121 priority patent/US11204101B2/en
Publication of WO2020153531A1 publication Critical patent/WO2020153531A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/126Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm the seat being formed on a rib perpendicular to the fluid line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0236Diaphragm cut-off apparatus

Definitions

  • the present invention relates to a valve having a streamlined fluid transfer hole.
  • the valve is a means to open and close the flow of the fluid, and uses a diaphragm to control the flow of the fluid.
  • FIG. 1 is a view showing the structure of a typical valve.
  • the valve includes a body 100, a diaphragm 102 and an operation unit 104 that controls the diaphragm 102.
  • a fluid transfer hole 106 is formed inside the main body 100, and the fluid input to the input terminal 110 of the fluid transfer hole 106 is discharged through the output terminal 112.
  • the parts adjacent to the diaphragm 102 among the upper inner surface 100a of the main body each have a rectangular cross-section, and the part in contact with the diaphragm 102 of the inner lower surface 100b of the main body ( 100c) has an angular shape.
  • Vortex may be generated in the A portion of the fluid transfer hole 106 due to the body portion of the rectangular cross section and the body portion 100c having an angled shape. This obstructs the flow of the fluid due to the body portion 100c of the square section and the body portion of the angular shape, and hydrodynamically causes a change in fluid energy or fluid velocity, which causes eddy currents.
  • This vortex can damage the main body 100 and the diaphragm 102, and as a result, there is a problem that the life of the valve is shortened.
  • the vertical portion acts as an obstacle that hinders the flow of the unit. The amount of fluid transported per hour must be reduced.
  • the present invention provides a valve having a streamlined fluid transfer hole.
  • the valve according to an embodiment of the present invention is a main body; And an opening/closing portion, a fluid transfer hole in which a fluid flows is formed inside the main body, and the opening/closing portion opens and closes the flow of the fluid.
  • the fluid transfer hole has a streamlined shape from the inlet toward the open/close portion or a streamlined shape from the outlet toward the open/close portion.
  • a valve according to another embodiment of the present invention includes a body; And an opening/closing portion, a fluid transfer hole, which is a space in which a fluid flows, is formed inside the liner, and the opening/closing portion opens and closes the flow of the fluid.
  • the inner upper surface of the valve corresponding to the fluid transfer hole has a streamlined shape from the inlet to the opening and closing portion, and the ratio (R1/) of the radius (R1) of the curve of the inner upper surface and the distance (L) between the inlets L) has a range of (95/230) to (110/165).
  • the fluid transfer hole has a streamlined shape, and in particular, since it has a streamlined shape from the inlet or the outlet toward the opening/closing direction from the inlet or outlet, the fluid flow is smooth and the amount of fluid transfer per unit time can be significantly improved. .
  • valve of the present invention includes a metal member inside the body made of plastic, and as a result, when the pipe is coupled with the valve, the valve may not be distorted.
  • FIG. 1 is a view showing the structure of a typical valve.
  • FIG. 2 is a perspective view showing a valve according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the valve of FIG. 2.
  • FIG. 4 is a view showing the structure of a fluid transfer hole according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a table showing the ratio of the curves of FIG. 4.
  • FIG. 6 is a view showing a valve according to another embodiment of the present invention.
  • FIG. 7 is a view schematically showing a cross-section of a valve according to another embodiment of the present invention.
  • a singular expression includes a plural expression unless the context clearly indicates otherwise.
  • the terms “consisting of” or “comprising” should not be construed as including all the various components, or various steps described in the specification, among which some components or some steps It may not be included, or it should be construed to further include additional components or steps.
  • terms such as “... unit” and “module” described in the specification mean a unit that processes at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software. .
  • the valve of the present invention includes a fluid transfer hole having a streamlined shape from the inlet or outlet to the opening and closing portion.
  • the fluid transfer hole of the valve of the present invention has a streamlined shape from the inlet or outlet to the central portion corresponding to the opening and closing portion, there is no obstacle to the flow of the fluid in the fluid transfer hole, so the fluid flow is smooth. As a result, the amount of fluid transported per unit time can be significantly increased.
  • the valve of the present invention can improve the CV value by 70% or more compared to a conventional valve.
  • FIG. 2 is a perspective view showing a valve according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view schematically showing the valve of FIG. 2.
  • 4 is a view showing the structure of a fluid transfer hole according to an embodiment of the present invention
  • FIG. 5 is a view showing a table showing the ratio of the curves of FIG. 4. Although the unit is not indicated in the table of FIG. 5, the unit is mm.
  • the valve of this embodiment is, for example, a diaphragm valve, and includes a main body 200, a liner 202, an operation portion 204, and an opening/closing portion 300.
  • the body 200 may be made of metal or plastic.
  • the main body 200 may be made of engineering plastic, for example, a polyphenylene ether-based resin and a polyphenylene ether-based resin composition comprising a polystyrene-based resin as a component.
  • the main body 200 is an engineering plastic, and may consist of POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE, and combinations thereof.
  • Holes 220 may be formed at a side end (flange) of the main body 200, and although not illustrated, a fastening means may connect the valve and the pipe through the holes 220.
  • the liner 202 is arranged inside the body 200, and a hole (fluid transfer hole 210) for fluid movement is formed on the inner surface of the liner 202.
  • the liner 202 may be made of fluorine resin.
  • Fluorine resin is a generic term for a resin containing fluorine in a molecule, and includes polytetrafluoroethylene (PTFE), polyclotripolyethylene (PCTFE), for example, tetrafluoroethylene perfluor alkylvinyl ether copolymer (Tetra It may be fluoro ethylene perfluoro alkylvinyl ether coppolymer (PFA).
  • PTFE polytetrafluoroethylene
  • PCTFE polyclotripolyethylene
  • Tetra tetrafluoroethylene perfluor alkylvinyl ether copolymer
  • PFA fluoro ethylene perfluoro alkylvinyl ether coppolymer
  • the liner 202 when the liner 202 is formed of a fluorine resin, since the friction coefficient of the liner 202 is small, it is possible to minimize a change in flow rate due to laminar flow in the fluid transfer hole 210. That is, the difference between the flow velocity at the upper or lower side of the fluid transfer hole and the flow velocity at the center may be minimized based on a specific point.
  • the opening and closing portion 300 is a means for opening and closing the fluid movement in the fluid transfer hole 210, it may be located on the body 200 or the liner 202.
  • the opening/closing part 300 may be a diaphragm.
  • a diaphragm is used as the opening/closing part 300, but is not limited to the diaphragm.
  • the operation unit 204 is a means for controlling the opening/closing operation of the opening/closing unit 300.
  • the operating unit 204 may be controlled so that the opening/closing unit 300 does not or does not contact the lower inner surface 312c of the liner 202.
  • connection portion 302 connected to the upper portion of the opening and closing portion 300 may be combined with the operation portion 204, the opening and closing portion 300 according to the movement of the connection portion 302 under the control of the operation portion 204 Can rise or fall.
  • the implementation of the operation unit 204 may be variously modified, or may employ an existing structure as it is.
  • the fluid transfer hole 210 of the present embodiment may be formed in a streamlined direction from the inlet 210a or the outlet 210b toward the central portion corresponding to the opening/closing portion 300.
  • the fluid transfer hole 210 may be formed in a streamline shape from the inlet 210a to the central portion and from the central portion to the outlet 210b to maximize the fluid transfer amount.
  • the ends 320 and 322 of the liner 202 corresponding to the center are vertical. Must be formed.
  • the vertically formed end portions 320 and 322 are manufactured with a minimum length H, and may be, for example, 12 mm or less.
  • the fluid transfer hole 210 may have a streamlined shape from the inlet 210a or the outlet 210b toward the central portion from the inlet 210a or the outlet 210b. That is, the curve starts from the inlet 210a or the outlet 210b.
  • the fluid transfer hole is formed in a straight line from the inlet or outlet to a specific point, and vertically formed to the center, the vertical portion acts as an obstacle to the fluid flow, so the amount of fluid transfer per unit time is inevitably small.
  • the fluid transfer hole 210 has a streamlined shape from the inlet 210a or the outlet 210b toward the center. Therefore, there is no obstacle to the fluid flow in the fluid transfer hole 210, so the amount of fluid transfer per unit time is quite high.
  • the amount of fluid transfer is greater than a valve including the vertical portion, but from the inlet 210a or the outlet 210b toward the center from the inlet 210a or the outlet 210b Compared to the valve of the present invention having a streamlined shape, the fluid transport amount per unit time is considerably small.
  • the fluid transfer hole 210 since the fluid transfer hole 210 starts to curve from the inlet 210a or the outlet 210b, the fluid transfer amount per unit time is considerably higher than that of the conventional valve. That is, the CV value can be significantly improved.
  • the fluid transfer hole 210 may have a smaller width from the inlet 210a or the outlet 210b toward the center. Even if the fluid transfer hole 210 has the same width even though it proceeds from the inlet 210a or the outlet 210b toward the center, the range of raising or lowering the open/close portion 300 is large, and thus, for example, the open/close portion 300
  • the opening and closing operation can be normally performed only by turning the adjusting means up to 7 turns.
  • the fluid transfer hole 210 becomes smaller in width toward the central portion from the inlet 210a or the outlet 210b, the range in which the opening/closing part 300 rises or falls becomes relatively small, for example, the opening/closing part ( 300)
  • the opening/closing operation can be performed smoothly by turning the means for adjusting only 4 turns.
  • the first inner top line 310a, the first inner bottom line 312a, the second inner top line of the liner 202 ( 310b) and the second inner lower surface line 312b may have a streamlined shape.
  • both side surfaces of the lower center portion 312c of the liner 202 contacting the opening portion 300 may have a curved shape to facilitate fluid flow.
  • the fluid transfer hole 210 may determine the curvature of the fluid transfer hole 210 in consideration of not only the fluid flow but also the manufacturing process.
  • the fluid transport hole since the fluid transport hole includes a vertical portion of a long length, it should be manufactured with multiple liners, but in the valve of the present invention, it can be manufactured with a single liner, and for this, it can have an appropriate curvature ratio. As a result, productivity decreases in a conventional valve, but the valve of the present invention can significantly improve productivity.
  • the radius of the virtual central curve 400 in the fluid transfer hole 210 the radius of the curve formed by the inner upper surface 310, the radius of the curve formed by the inner lower surface 312, of the fluid transfer hole 210
  • the diameter of the inlet 210a or outlet 210b, the height of the vertical portion adjacent to the center, and the inter-planar distance will be defined as R, R1, R2 or R3, DN, H and L, respectively.
  • R1, R2 or R3, DN, H and L the inter-planar distance
  • the inner upper surface 310 may generally have one curve having a curvature different from the radius R of the central curve 400 of the fluid transfer hole 210. That is, the curve of the inner upper surface 310 may have a different curvature from the central curve 400 of the fluid transfer hole 210.
  • the curve of the inner upper surface 310 may be composed of two curves having different curvatures for smooth valve production.
  • the curvature of the curve close to the opening/closing part 300 among the two curves may be relatively larger, and the curvature of the two curves may have a curvature different from the central curve 400. This is to enable smooth removal of a single core inserted into the fluid transfer hole 210 when manufacturing the liner 202.
  • the curve of the inner upper surface 310 is formed as one curve when the inter-planar distance L is 230 mm or less, but may be made of two curves when the inter-planar distance L exceeds 230 mm.
  • the ratio between R1 and the distance L between the surfaces may range from 0.354 (170/480) to 0.67 (110/165).
  • DN25 means a case where the inter-planar distance (L) of the inlet 210a or outlet 210b is 25 mm ( ⁇ )
  • DN40 has an inter-planar distance (L) of the inlet 210a or the outlet 210b of 40
  • DN50 means a case where the inter-planar distance (L) of the inlet 210a or the outlet 210b is 50 mm ( ⁇ ).
  • the inner lower surface 312 has a first curve (radius R2) corresponding to the inlet 210a or outlet 210b and a second curve (radius R3) near the opening/closing part 300, i.e. 2 It can consist of two curves.
  • the curvatures of the first curve and the second curve are different, and the first curve and the second curve may have different curvatures from the central curves 400 and R of the fluid transfer hole 210.
  • R3 may not exist when the inter-plane distance L is significantly increased.
  • the ratio between R2 and the distance (L) the range of 0.59 (95/160) to 0.83 (110/132) for DN25 valves and 0.65 (130/200) to 0.91 (150/165) for DN40 valves
  • it may have a range of 0.63 (145/230) to 0.84 (165/197). That is, the ratio of the distance between the R2 and the plane (L) may range from 0.59 (95/160) to 0.91 (150/165).
  • the ratio between R3 and the distance (L) the range of 0.31 (50/160) to 0.49 (65/132) for DN25 valves and 0.33 (65/200) to 0.52 (85/165) for DN40 valves
  • DN50 valve it may have a range of 0.37 (85/230) to 0.53 (105/197). That is, the ratio between R3 and the distance L between the surfaces may range from 0.31 (50/160) to 0.53 (105/197).
  • DN25 valves range from 1.46 (95/65) to 2.2 (110/50), and DN40 valves range from 1.53 (130/85) to 2.31 (150/65).
  • DN50 valves range from 1.38 (145/105) to 1.94 (165/85). That is, the ratio of R2 and R3 may range from 1.38 (145/105) to 2.2 (110/50).
  • DN25 valves range from 0.64 (70/110) to 0.889 (85/95), and DN40 valves range from 0.6 (90/150) to 0.85 (110/130).
  • DN50 valves range from 0.58 (95/165) to 0.97 (115/145). That is, the ratio of R1 and R2 may range from 0.58 (95/165) to 0.98 (85/95).
  • DN25 valves range from 1.08 (70/65) to 1.7 (85/50), and DN40 valves range from 1.06 (90/85) to 1.69 (110/65).
  • DN50 valves range from 0.91 (95/105) to 1.35 (115/85). That is, the ratio of R1 and R3 may range from 0.91 (95/105) to 1.7 (85/50).
  • the height H of the vertical portion near the opening/closing part 300 varies depending on the aperture, but may exist within a range of 7 mm to 12 mm.
  • the fluid transfer hole 210 may have a streamlined shape from the inlet 210a or the outlet 210b toward the center portion corresponding to the opening/closing portion 300.
  • the curve starts from the inlet 210a or the outlet 210b. Therefore, the fluid transport amount per unit time can be improved.
  • the left space and the right space of the fluid transfer hole 210 are symmetrically formed with the same structure, but may have different structures. However, both the left space and the right space will have a streamlined shape.
  • the body 200 may be made of super engineering plastic or engineering plastic.
  • the main body 200 may be made of a polyphenylene ether-based resin composition containing polyphenylene ether-based resin and polystyrene-based resin as components.
  • the main body 200 may be made of POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE, and combinations thereof.
  • the main body 200 is polyvinyl chloride (Polyvinyl Chloride, PVC), polypropylene (polypropylene, PP), polyphenylene sulfide (Poly Phenylene sulfide, PPS), polyphthalamide (Polyphtalamide, PPA), polyamide (Polyamide) , PA6), polyamide (PA66), polyketone (POK) or polyethylene (Polyethylene, PE) by mixing glass fibers.
  • PVC polyvinyl chloride
  • PVC polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the body 200 is, for example, polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide (PA66), polyketone (POK) or polyethylene (PE) can be formed by mixing glass fibers and carbon fibers.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the main body 200 is polyvinyl chloride (PVC), polypropylene (PP), polyphenylene sulfide (PPS), polyphthalamide (PPA), polyamide (PA6), polyamide (PA66) ), polyketone (POK) or polyethylene (PE) may be formed by mixing glass fibers, carbon fibers, and graphite.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PPA polyphthalamide
  • PA6 polyamide
  • PA66 polyamide
  • POK polyketone
  • PE polyethylene
  • the main body 200 may be formed by mixing PP and glass fiber.
  • the glass fiber may contain more than 0% and 40% or less of the total, PP has a content ratio greater than 60% of the total.
  • Table 1 The experimental results are shown in Table 1 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 25 One 10 54 2 15 59 3 20 78 4 30 83 5 40 94
  • the main body 200 when the main body 200 is formed by mixing PP and glass fiber, it can be confirmed that the tensile strength of the main body 200 is significantly higher than that of the main body made of PP without glass fiber. That is, mechanical and chemical properties can be improved. However, when the content ratio of glass fiber exceeds 40%, characteristics of an injection process for manufacturing the main body 200 are deteriorated, making it difficult to manufacture the main body 200 in a desired shape.
  • the main body 200 may be formed by mixing PPS and glass fiber.
  • the glass fiber may contain more than 0% and 40% or less of the total, PPS has a content ratio greater than 60% of the total.
  • Table 2 The experimental results are shown in Table 2 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 70 One 30 140 2 40 200
  • the main body 200 when the main body 200 is formed by mixing PPS and glass fiber, it can be confirmed that the tensile strength of the main body 200 is significantly higher than that of the main body made of PPS without glass fiber. That is, the mechanical and chemical properties can be improved, so that the body can be formed lightly and rigidly while improving the mechanical properties.
  • the content ratio of glass fiber exceeds 40%, characteristics of an injection process for manufacturing the main body 200 are deteriorated, making it difficult to manufacture the main body 200 in a desired shape.
  • the main body 200 may be formed by mixing PPA and glass fiber.
  • the glass fiber may contain more than 0% and 55% or less of the total, PPA has a content ratio greater than 45% of the total.
  • Table 3 The experimental results are shown in Table 3 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 105 One 25 170 2 35 210 3 45 250 4 55 270
  • the main body 200 may be formed by mixing PA (Polyamide, PA6) and glass fiber.
  • PA Polyamide, PA6
  • the glass fiber may contain more than 0% and 50% or less of the total, PA has a content ratio greater than 50% of the total.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 70 One 15 125 2 20 145 3 30 170 4 33 180 5 35 185 6 40 192 7 45 200 8 50 220
  • the main body 200 when the main body 200 is formed by mixing PA and glass fiber, it can be confirmed that the tensile strength of the main body 200 is significantly higher than that of the main body made of PA without glass fiber. That is, the mechanical and chemical properties can be improved, so that the body 200 can be formed lightly and rigidly while improving the mechanical properties.
  • the content ratio of glass fiber exceeds 50%, characteristics of an injection process for manufacturing the main body 200 are deteriorated, making it difficult to manufacture the main body 200 in a desired shape.
  • the main body 200 may be formed by mixing PA (Polyamide, PA66) and glass fiber.
  • the glass fiber may contain more than 0% and 50% or less of the total, PA has a content ratio greater than 50% of the total.
  • Table 5 The experimental results are shown in Table 5 below.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 80 One 25 165 2 30 186 3 33 196 4 35 200 5 50 245
  • the main body 200 when the main body 200 is formed by mixing PA and glass fiber, it can be confirmed that the tensile strength of the main body 200 is significantly higher than that of the main body made of PA without glass fiber. That is, the mechanical and chemical properties can be improved, so that the body 200 can be formed lightly and rigidly while improving the mechanical properties.
  • the content ratio of glass fiber exceeds 50%, characteristics of an injection process for manufacturing the main body 200 are deteriorated, making it difficult to manufacture the main body 200 in a desired shape.
  • the main body 200 may be formed by mixing polyketone (POK) and glass fiber.
  • the glass fiber may contain more than 0% and 40% or less of the total, PA has a content ratio greater than 60% of the total.
  • Example glass fiber mixing ratio Tensile strength (Mpa@23°C) [ASTM D638] For comparison 0 60 One 15 100 2 20 125 3 30 140 4 40 165
  • the main body 200 when the main body 200 is formed by mixing POK and glass fiber, it can be confirmed that the tensile strength of the main body 200 is significantly higher than that of the POK-only body without glass fiber. That is, the mechanical and chemical properties can be improved, so that the body 200 can be formed lightly and rigidly while improving the mechanical properties.
  • the content ratio of glass fiber exceeds 40%, characteristics of an injection process for manufacturing the main body 200 are deteriorated, making it difficult to manufacture the main body 200 in a desired shape.
  • FIG. 6 is a view showing a valve according to another embodiment of the present invention.
  • the valve of the present embodiment includes a main body 600, a liner 602, a metal member having a first sub-metal member 610 and a second sub-metal member 612 and an opening/closing portion 604. Can.
  • a fluid transfer hole 620 is formed inside the liner 602, and the fluid transfer hole 620 has a streamlined shape from the inlet to the center portion corresponding to the opening/closing portion 604, and a streamlined shape from the center portion to the outlet direction.
  • Can have The structure of the fluid transfer hole 620 is the same as in the embodiments of FIGS. 1 to 5.
  • the structures of the main body 600, the liner 602, and the opening portion 604 are also the same or similar to those in the embodiments of FIGS. 1 to 5.
  • the body 600 may include a body body portion and body flange portions formed at both ends of the body body portion.
  • At least one hole is formed on the first body flange portion, a hole is formed on the flange of the pipe, and a fastening member such as a bolt penetrates the hole of the first body flange portion and the hole of the flange of the pipe.
  • the first body flange portion and the flange of the pipe may be combined. As a result, the valve and the pipe can be combined.
  • a hole for coupling with the pipe may also be formed on the second body flange portion.
  • the liner 602 may include a liner body portion 602a, a first liner flange portion 602b, a second liner flange portion 602c, and a liner coupling portion 602d.
  • a space 630 that is opened and closed by the opening and closing portion 604 is formed in the center of the liner coupling portion 602d, and the liner coupling portion 602d may be coupled to the opening and closing coupling portion 604a.
  • the liner body portion 602a may be arranged inside the body portion.
  • the first liner flange portion 602b has a wider width than the liner body portion 602a, and is arranged inside the first body flange portion, and one side may be exposed to the outside.
  • the second liner flange portion 602c has a wider width than the liner body portion 602a, and is arranged inside the second body flange portion, and one side may be exposed to the outside.
  • the metal member surrounds the liner 602 and may be included inside the body 600.
  • the entire metal member is surrounded by the main body 600, and a part of the metal member may not be exposed to the outside. That is, a liner 602 is arranged inside the metal member, and the metal member may be entirely contained inside the body 600.
  • the metal member may include a first sub-metal member 610 and a second sub-metal member 612.
  • the metal member may be made of two sub-metal members 610 and 612 of the same structure. However, the sub-metal members 610 and 612 are not separated from each other as separate members.
  • the first sub-metal member 610 may be integrally formed, surround half of the liner 602, and have a first sub-body portion 610a, a first-one sub-flange portion 610b, and a first or second sub It may include a flange portion (610c).
  • the first sub-body portion 610a surrounds half of the liner body portion 602a and may have a curved shape.
  • the 1-1 sub-flange portion 610b is connected to the end of the first sub-body portion 610a, and may be arranged directly under the first liner flange portion 602b. Specifically, the main curve line formed in the center of the 1-1 sub-flange portion 610b surrounds half of the liner body portion 602a directly under the first liner flange portion 602b, and The curvature may be the same or similar to the curvature of the liner body portion 602a.
  • the width of the 1-1 sub-flange portion 610b is wider than the width of the first liner flange portion 602b, and as a result, the 1-1 sub-flange portion 610b has a liner body portion ( Surrounding 602a, the first liner flange portion 610b is supported in the width direction while at least a portion of the first-1 sub flange portion 610b is supported while the first-1 sub flange portion 610b supports the first liner flange portion 602b. 602b).
  • the first liner flange portion 602b may protrude from the 1-1 sub-flange portion 610b in the longitudinal direction.
  • the 1-1 sub-flange portion 610b may directly surround the first liner flange portion 602b, in this case, a space exists between the liner 602 and the metal member, so that the valve The structure may be unstable. Therefore, it is efficient that the 1-1 sub-flange portion 610b surrounds the liner body portion 602a directly under the first liner flange portion 602b.
  • At least one hole may be formed on the 1-1 sub-flange portion 610b, and this hole is a hole through which the fastening means passes. That is, the fastening means penetrates the hole of the first body flange portion and the hole of the 1-1 sub flange portion 610b when the valve and the pipe are engaged.
  • the 1-2 sub-flange portion 610c is connected to the other end of the first sub-body portion 610a, and may be arranged directly under the second liner flange portion 602c. Specifically, the main curve line formed in the center of the 1-2 sub-flange portion 610c surrounds half of the liner body portion 602a directly under the second liner flange portion 602c. The curvature may be the same or similar to the curvature of the liner body portion 602a.
  • the width of the second sub-flange portion 610c is wider than the width of the second liner flange portion 602c, and as a result, the first 1-2 sub-flange portion 610c has a liner body portion ( Surrounding 602a, at least a portion of the second or second sub flange portion 610c in the width direction while the second or second sub flange portion 610c supports the second liner flange portion 602c is the second liner flange portion ( 602c).
  • the second liner flange portion 602c may protrude from the first or second sub-flange portion 610c in the longitudinal direction.
  • the 1-2 sub-flange portion 610c may directly surround the second liner flange portion 602c, in this case, a space exists between the liner 602 and the metal member, so that the valve The structure may be unstable. Therefore, it is efficient that the 1-2 sub-flange portion 610c surrounds the liner body portion 602a directly under the second liner flange portion 602c.
  • At least one hole may be formed on the 1-2th sub-flange portion 610c, and this hole is a hole through which the fastening means passes. That is, the fastening means penetrates the hole of the second body flange portion and the hole of the 1-2 sub-flange portion 610c when the valve and the pipe are engaged.
  • the second sub-metal member 612 may be integrally formed, surround the other half of the liner 602, and include a second sub-body portion, a 2-1 sub-flange portion, and a 2-2 sub-flange portion. Can.
  • the second sub-body portion surrounds the other half of the liner body portion 602a, and may have a curved shape.
  • the 2-1 sub-flange portion is connected to the end of the second sub-body portion, and may be arranged directly under the first liner flange portion 602b.
  • the concave curve line formed in the center of the 2-1 sub-flange portion surrounds the other half of the liner body portion 602a directly under the first liner flange portion 602b, and
  • the curvature may be the same or similar to the curvature of the liner body portion 602a.
  • the width of the 2-1 sub-flange portion is wider than the width of the first liner flange portion 602b.
  • the 2-1 sub-flange portion surrounds the liner body portion 602a. While the 2-1 sub-flange portion supports the first liner flange portion 602b, at least a portion of the 2-1 sub-flange portion in the width direction may protrude outside the first liner flange portion 602b.
  • the first liner flange portion 602b may protrude from the 2-1 sub flange portion in the longitudinal direction.
  • the 2-1 sub-flange portion may directly surround the first liner flange portion 602b, in this case, a space exists between the liner 602 and the metal member, and thus the structure of the valve is unstable. can do. Therefore, it is efficient that the 2-1 sub-flange portion surrounds the liner body portion 602a directly under the first liner flange portion 602b.
  • At least one hole may be formed on the 2-1 sub-flange portion, and this hole is a hole through which the fastening means passes. That is, the fastening means penetrates the hole of the first body flange portion and the hole of the 2-1 sub flange portion when the valve and the pipe are engaged.
  • the 2-1 sub-flange portion has a donut shape cut in half, and the longitudinal cross-sections except for the concave curve line may abut the end surfaces of the 1-1 sub-flange portion 610b. That is, the metal member may surround the liner 602 in a state where the end faces of the 1-1 sub flange part 610b and the end faces of the 2-1 sub flange part contact each other.
  • the 1-1 sub-flange portion 610b also has a donut shape cut in half.
  • the 2-2 sub-flange portion is connected to the other end of the second sub-body portion, and may be arranged directly under the second liner flange portion 602c.
  • the recessed curve line formed in the center of the 2-2 sub-flange portion surrounds the other half of the liner body portion 602a directly under the second liner flange portion 602c, and the curvature of the recessed curve line May be the same or similar to the curvature of the liner body portion 602a.
  • the width of the 2-2 sub-flange portion is wider than the width of the second liner flange portion 602c.
  • the second-second sub-flange portion supports the second liner flange portion 602c
  • at least a portion of the second-second sub-flange portion may protrude outside the second liner flange portion 602c in the width direction.
  • the second liner flange portion 602c may protrude from the 2-2 sub-flange portion in the longitudinal direction.
  • the 2-2 sub-flange portion may directly surround the second liner flange portion 602c, in this case, a space exists between the liner 602 and the metal member, and thus the structure of the valve is unstable. can do. Therefore, it is efficient that the 2-2 sub-flange portion surrounds the liner body portion 602a directly under the second liner flange portion 602c.
  • At least one hole may be formed on the 2-2 sub-flange portion, and this hole is a hole through which the fastening means passes. That is, the fastening means penetrates the hole of the second body flange portion and the hole of the second-2 sub flange portion when the valve and the pipe are engaged.
  • the 2-2 sub-flange portion has a donut shape cut in half, and the longitudinal cross-sections except for the concave curve line may abut the end surfaces of the 1-2 sub-flange portion 610c. That is, the metal member may surround the liner 602 in the state where the longitudinal cross-sections of the 1-2 sub-flange portion 610c and the longitudinal cross-sections of the 2-2 sub-flange portion abut.
  • the 1-2 sub-flange portion 610c also has a donut shape cut in half.
  • the metal member may be formed inside the body 600 through insert injection. Specifically, when the sub-metal members 610 and 612 inject the structure surrounding the liner 602 into plastic, which is a material of the body 600, the metal member is included in the body 600 and the metal member A liner 602 may be formed on the inner side.
  • the molten plastic fills the hole, and as a result, the metal member can be firmly coupled inside the body 600.
  • At least one protrusion may be formed on the metal member in order to bond more firmly.
  • the reason for configuring the metal member as two separate sub-metal members 610 and 612 is to arrange the liner 602 inside the metal member.
  • the metal member of the present invention is divided into two sub-metal members 610 and a liner 602 having a flange portion 602b or 602c larger than the inner space of the metal member to be arranged inside the metal member. 612).
  • the two sub-metal members 610 and 612 may be embodied so that the sub-metal members 610 and 612 are contained inside the plastic body 600 through insert injection while surrounding the liner 602. Can. At this time, the liner 602 may be arranged inside the metal member.
  • the flange of the valve and the flange of the pipe may be coupled through the fastening means. Strength is strengthened so that the valve is not warped or minimized.
  • the body 600 is formed of metal and the liner 602 is arranged inside the body 600, distortion may be prevented even when the valve and the pipe are coupled, but it is difficult to process the body 600 and the manufacturing cost It can be significantly higher.
  • the valve of the present invention the body 600 is formed of plastic, the metal member is formed inside the body 600 for strength reinforcement.
  • the metal member does not need to be precisely machined and it is easy to precisely machine the plastic, it is easy to machine the valve in a desired shape, and the manufacturing cost of the valve is lowered, while the valve and the pipe are distorted. Can be minimized.
  • the flange portion of the liner 602, the flange portion of the metal member, and the flange portion of the main body 600 form one flange.
  • a metal member is included inside the plastic.
  • the metal member has two sub-metal members 610 and 612 arranged symmetrically to each other while having the same shape, but the metal member is made of three or more sub-metal members separated from each other.
  • a liner 602 is arranged inside the sub-metal members and the sub-metal members can be included in the body 600. At this time, all of the sub-metal members may have the same shape, or at least one may have a different shape.
  • three sub-metal members of the same shape separated at 120 degree intervals may be formed to surround the liner 602.
  • the metal member is composed of two sub-metal members 610 and 612.
  • FIG. 7 is a view schematically showing a cross-section of a valve according to another embodiment of the present invention.
  • a liner 700, a resin layer 702, a metal member 704 having at least two sub-metal members, and a body 706 may be sequentially formed.
  • the resin layer 702 may be arranged between the liner 700 and the metal member 704.
  • the resin layer 702 may be made of the same material as the body 706. As the material of the present 706, the material of the body in the above embodiment may be used.
  • the molten plastic is in line with the liner 700. It is impregnated between the metal members 704. As a result, a resin layer 702 may be formed between the liner 700 and the metal member 704.
  • a hole may be formed in a portion of the metal member 704 so that the molten plastic permeates well between the liner 700 and the metal member 704.
  • the structure in which the resin layer is additionally formed between the liner and the metal member may be applied to other embodiments above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)

Abstract

유선형 유체 이송공을 가지는 밸브가 개시된다. 상기 밸브는 본체 및 개폐부를 포함하고, 상기 본체 내측에는 유체가 흐르는 공간인 유체 이송공이 형성되고 상기 개폐부는 상기 유체의 흐름을 개폐시킨다. 여기서, 상기 유체 이송공은 입구로부터 상기 개폐부를 향하여 유선형 형상을 가지거나 출구로부터 상기 개폐부를 향하여 유선형 형상을 가진다.

Description

유선형 유체 이송공을 가지는 밸브
본 발명은 유선형 유체 이송공을 가지는 밸브에 관한 것이다.
밸브는 유체의 흐름을 개폐할 수 있는 수단으로서, 다이아프램을 이용하여 유체의 흐름을 제어한다.
도 1은 일반적인 밸브의 구조를 도시한 도면이다.
도 1을 참조하면, 밸브는 본체(100), 다이아프램(102) 및 다이아프램(102)을 제어하는 조작부(104)를 포함한다.
본체(100) 내부에는 유체 이송공(106)이 형성되며, 유체 이송공(106)의 입력단(110)으로 입력된 유체는 출력단(112)을 통하여 배출된다.
유체 이송공(106)을 살펴보면, 본체 상측 내측면(100a) 중 다이아프램(102)에 인접한 부분들이 각기 사각 단면을 가지며, 본체 하측 내측면(100b) 중 다이아프램(102)과 접촉되는 부분(100c)이 각진 형태를 가진다.
이러한 사각 단면의 본체 부분 및 각진 형태의 본체 부분(100c)으로 인하여 유체 이송공(106) 중 A 부분에서 와류가 발생될 수 있다. 이는 사각 단면의 본체 부분 및 각진 형태의 본체 부분(100c)으로 인하여 유체 흐름이 방해가 되며, 유체 역학적으로는 유체 에너지 또는 유체 속도의 변화를 일으키며, 이는 와류를 발생시키는 원인이 된다.
이러한 와류는 본체(100) 및 다이아프램(102)을 손상시킬 수 있으며, 그 결과 밸브의 수명이 단축되는 문제점이 있다.
또한, 유체 이송공(106)의 입구(110) 또는 출구(112)로부터 중앙부 근처까지 직선으로 형성되다가 상기 중앙부를 향하여 수직하게 형성되며, 그 결과 수직 부분이 유체 흐름을 방해하는 장애물로 작용하여 단위 시간당 유체 이송량이 작아질 수밖에 없다.
본 발명은 유선형 유체 이송공을 가지는 밸브를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 본 발명의 일 실시예에 따른 밸브는 본체; 및 개폐부를 포함하고, 상기 본체 내측에는 유체가 흐르는 공간인 유체 이송공이 형성되고 상기 개폐부는 상기 유체의 흐름을 개폐시킨다. 여기서, 상기 유체 이송공은 입구로부터 상기 개폐부를 향하여 유선형 형상을 가지거나 출구로부터 상기 개폐부를 향하여 유선형 형상을 가진다.
본 발명의 다른 실시예에 따른 밸브는 본체; 및 개폐부를 포함하고, 상기 라이너 내측에는 유체가 흐르는 공간인 유체 이송공이 형성되고, 상기 개폐부는 상기 유체의 흐름을 개폐시킨다. 여기서, 상기 유체 이송공에 해당하는 상기 밸브의 내측 상면은 입구로부터 상기 개폐부 방향으로 유선형 형상을 가지고, 상기 내측 상면의 곡선의 반지름(R1)과 상기 입구의 면간 거리(L)의 비율(R1/L)은 (95/230)~(110/165)의 범위를 가진다.
본 발명에 따른 밸브에서 유체 이송공이 유선형 형상을 가지며, 특히 입구 또는 출구로부터 개폐부 방향을 향하여 상기 입구 또는 상기 출구로부터 유선형 형상을 가지므로, 유체 흐름이 원활하여 단위 시간당 유체 이송량이 상당히 향상될 수 있다.
또한, 본 발명의 밸브는 플라스틱으로 이루어진 본체 내부에 금속 부재를 포함하며, 그 결과 상기 밸브와 파이프 결합시 상기 밸브에 뒤틀림이 발생되지 않을 수 있다.
도 1은 일반적인 밸브의 구조를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 밸브를 도시한 사시도이다.
도 3은 도 2의 밸브를 개략적으로 도시한 단면도이다.
도 4는 본 발명의 일 실시예에 따른 유체 이송공의 구조를 도시한 도면이다.
도 5는 도 4의 곡선들의 비율을 나타낸 표를 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 밸브를 도시한 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 밸브의 단면을 개략적으로 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 발명의 밸브는 입구 또는 출구에서 개폐부 방향으로 유선형 형상을 가지는 유체 이송공을 포함한다.
종래의 밸브는 입구 및 출구부터 중앙부 방향으로 직선으로 이루어지고 중앙부의 양측이 수직으로 형성되었기 때문에, 유체 이송공을 통하여 유체가 자연스럽게 흐르지 않고 수직 부분 등의 장애물에 의해 유체 흐름이 방해받는다. 결과적으로, 단위 시간당 유체 이송량이 적을 수밖에 없다.
반면에, 본 발명의 밸브의 유체 이송공은 입구 또는 출구로부터 개폐부에 해당하는 중앙부 방향으로 유선형 형상을 가지므로, 상기 유체 이송공 내에 유체의 흐름을 방해하는 장애물이 존재하지 않아서 유체 흐름이 원활하며, 그 결과 단위 시간당 유체 이송량이 상당히 증가할 수 있다. 실제 CV값을 비교하면, 본 발명의 밸브가 종래의 밸브에 비하여 CV값이 70% 이상 향상될 수 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술하겠다.
도 2는 본 발명의 일 실시예에 따른 밸브를 도시한 사시도이고, 도 3은 도 2의 밸브를 개략적으로 도시한 단면도이다. 도 4는 본 발명의 일 실시예에 따른 유체 이송공의 구조를 도시한 도면이며, 도 5는 도 4의 곡선들의 비율을 나타낸 표를 도시한 도면이다. 도 5의 표에 단위를 표시하지는 않았지만, 단위는 mm이다.
도 2 및 도 3을 참조하면, 본 실시예의 밸브는 예를 들어 다이아프램 밸브로서, 본체(200), 라이너(202), 조작부(204) 및 개폐부(300)를 포함한다.
본체(200)는 금속으로 이루어질 수도 있고, 플라스틱으로 이루어질 수도 있다.
일 실시예에 따르면, 본체(200)는 엔지니어링 플라스틱으로 이루어질 수 있으며, 예를 들어 폴리페닐렌에테르계 수지와 폴리스티렌계 수지를 성분으로 한 폴리페닐렌에테르계 수지 조성물로 이루어질 수 있다. 물론, 본체(200)는 엔지니어링 플라스틱으로서 POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE 등 및 이들의 조합물로 이루어질 수도 있다.
본체(200)의 측면 종단부(플랜지)에는 홀들(220)이 형성될 수 있으며, 도시되지는 않았지만 체결 수단이 홀들(220)을 통하여 상기 밸브와 파이프를 연결시킬 수 있다.
라이너(202)는 본체(200)의 내측에 배열되며, 라이너(202)의 내측면에는 유체 이동을 위한 홀(유체 이송공, 210)이 형성된다.
일 실시예에 따르면, 라이너(202)는 불소 수지로 이루어질 수 있다. 불소 수지는 분자 안에 불소를 함유한 수지를 총칭하는 것으로서, 폴리테트라플루오르에틸렌(PTFE), 폴리클로트리폴리오르에틸렌(PCTFE) 등이 있으며, 예를 들어 테트라 플루오르 에틸렌 페르플루오르 알킬비닐 에테르 공중합체(Tetra fluoro ethylene perfluoro alkylvinyl ether coppolymer, PFA)일 수 있다. 이러한 불소 수지는 내열성, 내약품성, 전기 절연성이 뛰어나고 마찰계수가 작으며 접착 및 점착성이 없다. 즉, 불소 수지로 라이너(202)를 형성하면, 라이너(202)의 마찰 계수가 작기 때문에 유체 이송공(210) 내에서의 층류에 따른 유속 변경을 최소화할 수 있다. 즉, 특정 지점을 기준으로 하여 유체 이송공의 상측 또는 하측의 유속과 중심부에서 유속의 차이가 최소화될 수 있다.
개폐부(300)는 유체 이송공(210) 내에서의 유체 이동을 개폐하는 수단으로서, 본체(200) 또는 라이너(202) 위에 위치할 수 있다.
예를 들어, 개폐부(300)는 다이아프램일 수 있다. 다만, 도면들에서는 개폐부(300)로서 다이아프램을 사용하였으나, 다이아프램으로 한정되는 것은 아니다.
조작부(204)는 개폐부(300)의 개폐 동작을 제어하는 수단으로서, 예를 들어 개폐부(300)가 라이너(202)의 하측 내측면(312c)과 접촉하거나 접촉하지 않도록 제어할 수 있다.
일 실시예에 따르면, 개폐부(300)의 상부에 연결된 연결부(302)가 조작부(204)와 결합될 수 있으며, 조작부(204)의 제어에 따른 연결부(302)의 이동에 따라 개폐부(300)가 상승 또는 하강할 수 있다. 이러한 조작부(204)의 구현은 다양하게 변형될 수 있고, 기존의 구조를 그대로 채용할 수도 있다.
이하, 본 발명의 주요 특징은 유체 이송공(210)의 구조를 도 3 내지 도 5를 참조하여 살펴보겠다.
도 3 및 도 4를 참조하면, 본 실시예의 유체 이송공(210)은 입구(210a) 또는 출구(210b)로부터 개폐부(300)에 대응하는 중앙부 방향으로 하여 유선형으로 이루어질 수 있다.
이상적으로는, 유체 이송공(210)은 입구(210a)로부터 상기 중앙부, 상기 중앙부로부터 출구(210b)까지 전체가 유선형으로 이루어지는 것이 유체 이송량을 최대로 할 수 있다. 그러나, 이 경우 상기 중앙부에 해당하는 라이너(202)의 종단이 너무 날카롭거나 상기 밸브를 제조하는데 공정상 어려움이 있기 때문에 상기 중앙부에 해당하는 라이너(202)의 종단부들(320 및 322)을 수직하게 형성하여야 한다. 다만, 수직하게 형성된 종단부들(320 및 322)은 최소한의 길이(H)로 제작되며, 예를 들어 12mm 이하일 수 있다.
특히, 유체 이송공(210)은 입구(210a) 또는 출구(210b)로부터 상기 중앙부 방향을 향하여 입구(210a) 또는 출구(210b)부터 유선형 형상을 가질 수 있다. 즉, 입구(210a) 또는 출구(210b)로부터 곡선이 시작된다.
종래 밸브는 유체 이송공이 입구 또는 출구에서 특정 지점까지 직선 라인으로 형성되다가 중앙부까지 수직하게 형성되므로, 상기 수직 부분이 유체 흐름을 방해하는 장애물로 작용하여 단위 시간당 유체 이송량이 적을 수밖에 없다.
반면에, 본 발명의 밸브에서는 유체 이송공(210)이 입구(210a) 또는 출구(210b)로부터 상기 중앙부를 향하여 유선형 형상을 가진다. 따라서, 유체 이송공(210) 내에 유체 흐름을 방해하는 장애물이 존재하지 않아서 단위 시간당 유체 이송량이 상당히 높다.
도 1의 종래 밸브에서 수직 부분을 유선형으로 변형하면 수직 부분을 포함하는 밸브보다는 유체 이송량이 많아지지만, 입구(210a) 또는 출구(210b)로부터 상기 중앙부를 향하여 입구(210a) 또는 출구(210b)로부터 유선형 형상을 가지는 본 발명의 밸브에 비하여 단위 시간당 유체 이송량이 상당히 작다.
즉, 본 발명의 밸브에서는 유체 이송공(210)이 입구(210a) 또는 출구(210b)로부터 곡선이 시작되므로, 종래 밸브에 비하여 단위 시간당 유체 이송량이 상당히 높다. 즉, CV값이 상당히 향상될 수 있다.
일 실시에에 따르면, 입구(210a) 또는 출구(210b)로부터 상기 중앙부 방향으로 갈수록 유체 이송공(210)이 폭이 작아질 수 있다. 입구(210a) 또는 출구(210b)로부터 상기 중앙부 방향으로 진행하더라도 유체 이송공(210)이 폭이 동일한 경우에는 개폐부(300)를 상승 또는 하강시키는 범위가 크며, 따라서 예를 들어 개폐부(300)을 조절하는 수단을 최대 7바퀴 반을 돌려야 개폐 동작을 정상적으로 수행할 수 있다. 반면에, 입구(210a) 또는 출구(210b)로부터 상기 중앙부 방향으로 갈수록 유체 이송공(210)이 폭이 작아지면 개폐부(300)를 상승 또는 하강시키는 범위가 상대적으로 작아지므로, 예를 들어 개폐부(300)를 조절하는 수단을 4바퀴만 돌려도 개폐 동작을 원활이 수행시킬 수 있다.
위에서는 유체 이송공(210) 관점에서 살펴보았지만, 라이너(202) 관점에서 살펴보면, 라이너(202)의 제 1 내측 상면 라인(310a), 제 1 내측 하면 라인(312a), 제 2 내측 상면 라인(310b) 및 제 2 내측 하면 라인(312b)이 유선형 형상을 가질 수 있다.
또한, 개페부(300)와 맞닿는 라이너(202)의 하측 중앙부(312c)의 양측면은 유체 흐름을 원활하게 하기 위하여 곡선 형상을 가질 수 있다.
한편, 본 발명의 밸브에서 유체 이송공(210)은 유체 흐름뿐만 아니라 제조 공정을 고려하여 유체 이송공(210)의 곡률을 결정할 수 있다. 종래 밸브에서는 유체 이송공이 긴 길이의 수직 부분을 포함하므로 다중 라이너로 제작되어야 하지만, 본 발명의 밸브에서는 단일 라이너로 제작이 가능하고, 이를 위해 적절한 곡률 비율을 가질 수 있다. 결과적으로, 종래 밸브에서는 생산성이 떨어지나, 본 발명의 밸브는 생산성이 상당히 향상될 수 있다.
우선, 유체 이송공(210) 내의 가상의 중앙 곡선(400)의 반지름, 내측 상면(310)이 형성하는 곡선의 반지름, 내측 하면(312)이 형성하는 곡선의 반지름, 유체 이송공(210)의 입구(210a) 또는 출구(210b)의 직경, 상기 중앙부에 인접한 수직 부분의 높이 및 면간 거리를 각기 R, R1, R2 또는 R3, DN, H 및 L로 정의하겠다. 또한, 유체 이송공(210)의 좌측 공간 및 우측공간이 동일한 구조를 가지는 것으로 가정하겠다.
일 실시예에 따르면, 내측 상면(310)은 일반적으로 유체 이송공(210)의 중앙곡선(400)의 반지름(R)과 다른 곡률을 가지는 하나의 곡선을 가질 수 있다. 즉, 내측 상면(310)의 곡선은 유체 이송공(210)의 중앙 곡선(400)과 다른 곡률을 가질 수 있다.
다만, 면간 거리(L)가 기설정값 이상이면, 내측 상면(310)의 곡선은 원활한 밸브의 제작을 위하여 서로 다른 곡률을 가지는 2개의 곡선들로 이루어질 수 있다. 여기서, 2개의 곡선들 중 개폐부(300)에 가까운 곡선의 곡률이 상대적으로 더 클 수 있고, 상기 2개의 곡선들의 곡률은 중앙 곡선(400)과 다른 곡률을 가질 수 있다. 이는 라이너(202) 제조시 유체 이송공(210)에 삽입된 단일 코어를 원활히 제거할 수 있게 하기 위해서이다.
예를 들어, 내측 상면(310)의 곡선은 면간 거리(L)가 230㎜ 이하일 때는 하나의 곡선으로 형성되지만 면간 거리(L)가 230㎜를 초과할 때는 2개의 곡선들로 이루어질 수 있다.
내측 상면(310)이 하나의 곡선으로 이루어질 때, 도 5의 표를 참조하여 내측 상면(310)이 형성하는 곡선의 반지름(R1)과 면간 거리(L) 비율을 살펴보면, DN25 밸브의 경우 0.44(70/160)~0.64(85/132)의 범위를 가지고, DN40 밸브의 경우 0.45(90/200)~0.67(110/165)의 범위를 가지며, DN50 밸브의 경우 0.41(95/230)~0.58(115/197)의 범위를 가질 수 있다. 상기 표에 표시되지는 않았지만, DN150의 경우 L은 406~480의 범위를 가지며 R1은 170을 가질 수 있으므로, R1/L은 0.354(170/480) 이상일 수 있다.
즉, R1과 면간 거리(L) 비율은 0.354(170/480)~0.67(110/165)의 범위를 가질 수 있다. 여기서, DN25는 입구(210a) 또는 출구(210b)의 면간 거리(L)가 25㎜(φ)인 경우를 의미하고, DN40은 입구(210a) 또는 출구(210b)의 면간 거리(L)가 40㎜(φ)인 경우를 나타내며, DN50은 입구(210a) 또는 출구(210b)의 면간 거리(L)가 50㎜(φ)인 경우를 의미한다.
내측 하면(312)을 살펴보면, 내측 하면(312)은 입구(210a) 또는 출구(210b)에 대응하는 제 1 곡선(반지름 R2)와 개폐부(300) 인근의 제 2 곡선(반지름 R3), 즉 2개의 곡선들로 이루어질 수 있다. 여기서, 상기 제 1 곡선과 상기 제 2 곡선의 곡률이 다르고, 상기 제 1 곡선 및 상기 제 2 곡선은 유체 이송공(210)의 중앙 곡선(400, R)과 다른 곡률을 가질 수 있다. 다만, R3는 면간 거리(L)가 상당히 커지면 존재하지 않을 수도 있다.
R2와 면간 거리(L) 비율을 살펴보면, DN25 밸브의 경우 0.59(95/160)~0.83(110/132)의 범위를 가지고, DN40 밸브의 경우 0.65(130/200)~0.91(150/165)의 범위를 가지며, DN50 밸브의 경우 0.63(145/230)~0.84(165/197)의 범위를 가질 수 있다. 즉, R2와 면간 거리(L) 비율은 0.59(95/160)~0.91(150/165)의 범위를 가질 수 있다.
R3와 면간 거리(L) 비율을 살펴보면, DN25 밸브의 경우 0.31(50/160)~0.49(65/132)의 범위를 가지고, DN40 밸브의 경우 0.33(65/200)~0.52(85/165)의 범위를 가지며, DN50 밸브의 경우 0.37(85/230)~0.53(105/197)의 범위를 가질 수 있다. 즉, R3와 면간 거리(L) 비율은 0.31(50/160)~0.53(105/197)의 범위를 가질 수 있다.
R2와 R3 비율을 살펴보면, DN25 밸브의 경우 1.46(95/65)~2.2(110/50)의 범위를 가지고, DN40 밸브의 경우 1.53(130/85)~2.31(150/65)의 범위를 가지며, DN50 밸브의 경우 1.38(145/105)~1.94(165/85)의 범위를 가진다. 즉, R2와 R3 비율은 1.38(145/105)~2.2(110/50)의 범위를 가질 수 있다.
R1와 R2 비율을 살펴보면, DN25 밸브의 경우 0.64(70/110)~0.89(85/95)의 범위를 가지고, DN40 밸브의 경우 0.6(90/150)~0.85(110/130)의 범위를 가지며, DN50 밸브의 경우 0.58(95/165)~0.79(115/145)의 범위를 가진다. 즉, R1와 R2 비율은 0.58(95/165)~0.89(85/95)의 범위를 가질 수 있다.
R1와 R3 비율을 살펴보면, DN25 밸브의 경우 1.08(70/65)~1.7(85/50)의 범위를 가지고, DN40 밸브의 경우 1.06(90/85)~1.69(110/65)의 범위를 가지며, DN50 밸브의 경우 0.91(95/105)~1.35(115/85)의 범위를 가진다. 즉, R1와 R3 비율은 0.91(95/105)~1.7(85/50)의 범위를 가질 수 있다.
개폐부(300) 인근의 수직 부분의 높이(H)는 구경에 따라 달라지지만 7mm 내지 12mm의 범위 내에서 존재할 수 있다.
한편, 위에서는 DN25 밸브, DN40 밸브 및 DN50 밸브만 언급하였지만, 이외의 다른 사이즈의 밸브들에도 위의 비율들이 동일하게 적용될 수 있다.
정리하면, 본 실시예의 밸브에서는 유체 이송공(210)이 입구(210a) 또는 출구(210b)로부터 개폐부(300)에 대응하는 중앙부 방향으로 하여 유선형 형상을 가질 수 있다. 특히, 입구(210a) 또는 출구(210b)로부터 곡선이 시작된다. 따라서, 단위 시간당 유체 이송량이 향상될 수 있다.
위에서는, 유체 이송공(210)의 좌측 공간과 우측 공간이 동일한 구조를 가지고 대칭적으로 형성되었지만, 다른 구조를 가질 수도 있다. 다만, 상기 좌측 공간 및 상기 우측 공간 모두 유선형 형상을 가질 것이다.
이하, 본체(200)가 플라스틱으로 이루어질 경우의 재질을 살펴보겠다.
일 실시예에 따르면, 본체(200)는 수퍼 엔지니어링 플라스틱 또는 엔지니어링 플라스틱으로 이루어질 수 있다. 예를 들어, 본체(200)는 폴리페닐렌에테르계 수지와 폴리스티렌계 수지를 성분으로 한 폴리페닐렌에테르계 수지 조성물로 이루어질 수 있다. 물론, 본체(200)는 POLYIMDE, POLYSULFONE, POLY PHENYLENE SULFIDE, POLYAMIDE IMIDE, POLYACRYLATE, POLYETHER SULFONE, POLYETHER ETHER KETONE, POLYETHER IMIDE, LIQUID CRYSTAL POLYESTER, POLYETHER KETONE 등 및 이들의 조합물로 이루어질 수도 있다.
또는, 본체(200)는 폴리염화비닐(Polyvinyl Chloride, PVC), 폴리프로필렌(polypropylene, PP), 폴리페닐렌설파이드(Poly Phenylene sulfide, PPS), 폴리프탈아미드(Polyphtalamide, PPA), 폴리아미드(Polyamide, PA6), 폴리아미드(Polyamide, PA66), 폴리케톤(Polyketone, POK) 또는 폴리에틸렌(Polyethylene, PE)에 유리섬유(Glass fiber)를 혼합함에 의해 형성될 수 있다. 이렇게 본체를 제조하면, 본체의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다. 이로 인한 효과에 대한 자세한 설명은 후술하겠다.
다른 실시예에 따르면, 본체(200)는 예를 들어 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유 및 탄소섬유를 혼합함에 의해 형성될 수 있다. 이렇게 본체를 제조하면, 본체의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다.
또 다른 실시예에 따르면, 본체(200)는 폴리염화비닐(PVC), 폴리프로필렌(PP), 폴리페닐렌설파이드(PPS), 폴리프탈아미드(PPA), 폴리아미드(PA6), 폴리아미드(PA66), 폴리케톤(POK) 또는 폴리에틸렌(PE)에 유리섬유, 탄소섬유 및 그라파이트를 혼합함에 의해 형성될 수 있다. 이렇게 본체를 제조하면, 본체의 강도, 내충격성, 기계적 특성 등이 향상될 수 있다.
이하, 실험 결과를 살펴보겠다.
일 실시예에 따르면, 본체(200)는 PP와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PP는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 1과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 25
1 10 54
2 15 59
3 20 78
4 30 83
5 40 94
위 표 1에서 확인할 수 있는 바와 같이, PP와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 PP만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다. 다른 실시예에 따르면, 본체(200)는 PPS와 glass fiber의 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PPS는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 2와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 70
1 30 140
2 40 200
위 표 2에서 확인할 수 있는 바와 같이, PPS와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 PPS만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 본체를 형성할 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다. 또 다른 실시예에 따르면, 본체(200)는 PPA와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 55% 이하로 함유될 수 있으며, PPA는 전체 대비 45%보다 큰 함량비를 가진다. 실험 결과는 하기 표 3과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 105
1 25 170
2 35 210
3 45 250
4 55 270
위 표 3에서 확인할 수 있는 바와 같이, PPA와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 PPA만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 본체(200)를 형성할 수 있다. 다만, glass fiber의 함량비가 55%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다. 또 다른 실시예에 따르면, 본체(200)는 PA(Polyamide, PA6)와 glass fiber를 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 50% 이하로 함유될 수 있으며, PA는 전체 대비 50%보다 큰 함량비를 가진다. 실험 결과는 하기 표 4와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 70
1 15 125
2 20 145
3 30 170
4 33 180
5 35 185
6 40 192
7 45 200
8 50 220
위 표 4에서 확인할 수 있는 바와 같이, PA와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 PA만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 본체(200)를 형성할 수 있다. 다만, glass fiber의 함량비가 50%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다. 또 다른 실시예에 따르면, 본체(200)는 PA(Polyamide, PA66)와 glass fiber을 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 50% 이하로 함유될 수 있으며, PA는 전체 대비 50%보다 큰 함량비를 가진다. 실험 결과는 하기 표 5와 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 80
1 25 165
2 30 186
3 33 196
4 35 200
5 50 245
위 표 5에서 확인할 수 있는 바와 같이, PA와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 PA만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 본체(200)를 형성할 수 있다. 다만, glass fiber의 함량비가 50%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다. 또 다른 실시예에 따르면, 본체(200)는 POK(Polyketone)와 glass fiber을 혼합하여 이루어질 수 있다. 바람직하게는, glass fiber는 전체 대비 0% 초과 40% 이하로 함유될 수 있으며, PA는 전체 대비 60%보다 큰 함량비를 가진다. 실험 결과는 하기 표 6과 같다.
실시예 glass fiber 혼합비 Tensile strength(Mpa@23°C) [ASTM D638]
비교용 0 60
1 15 100
2 20 125
3 30 140
4 40 165
위 표 6에서 확인할 수 있는 바와 같이, POK와 glass fiber를 혼합하여 본체(200)를 형성하는 경우, 본체(200)의 인장 강도가 glass fiber 없이 POK만으로 이루어진 본체에 비하여 상당히 높음을 확인할 수 있다. 즉, 기계적, 화학적 물성이 향상될 수 있어서 기계적 물성을 향상시키면서 가볍고 단단하게 본체(200)를 형성할 수 있다. 다만, glass fiber의 함량비가 40%를 초과하는 경우에는, 본체(200)를 제조하기 위한 사출 공정의 특성이 저하되어 본체(200)를 원하는 형상으로 제조하기 어려웠다.
도 6은 본 발명의 다른 실시예에 따른 밸브를 도시한 도면이다.
도 6을 참조하면, 본 실시예의 밸브는 본체(600), 라이너(602), 제 1 서브 금속 부재(610) 및 제 2 서브 금속 부재(612)를 가지는 금속 부재 및 개폐부(604)를 포함할 수 있다.
라이너(602)의 내측에는 유체 이송공(620)이 형성되고, 유체 이송공(620)은 입구부터 개폐부(604)에 대응하는 중앙부 방향으로 유선형 형상을 가지며, 상기 중앙부로부터 출구 방향으로 유선형 형상을 가질 수 있다. 유체 이송공(620)의 구조는 도 1 내지 도 5의 실시예에서와 동일하다.
또한, 본체(600), 라이너(602) 및 개페부(604)의 구조 또한 도 1 내지 도 5의 실시예에서와 동일하거나 유사하다.
본체(600)는 본체 몸체부, 상기 본체 몸체부의 양 종단에 형성된 본체 플랜지부들을 포함할 수 있다.
제 1 본체 플랜지부 상에 적어도 하나의 홀이 형성되고, 파이프의 플랜지 상에도 홀이 형성되며, 볼트 등 체결 부재가 상기 제 1 본체 플랜지부의 홀 및 상기 파이프의 플랜지의 홀을 관통함에 의해 상기 제 1 본체 플랜지부와 상기 파이프의 플랜지가 결합될 수 있다. 결과적으로, 상기 밸브와 상기 파이프가 결합될 수 있다.
제 2 본체 플랜지부 상에도 파이프와의 결합을 위한 홀이 형성될 수 있다.
라이너(602)는 라이너 몸체부(602a), 제 1 라이너 플랜지부(602b), 제 2 라이너 플랜지부(602c) 및 라이너 결합부(602d)를 포함할 수 있다. 여기서, 라이너 결합부(602d)의 중앙에는 개폐부(604)에 의해 개폐되는 공간(630)이 형성되며, 라이너 결합부(602d)는 개폐 결합부(604a)와 결합될 수 있다.
라이너 몸체부(602a)는 본체 몸체부의 내측에 배열될 수 있다.
제 1 라이너 플랜지부(602b)는 라이너 몸체부(602a)보다 넓은 폭을 가지고, 상기 제 1 본체 플랜지부의 내측에 배열되며, 일 측면이 외부로 노출될 수 있다.
제 2 라이너 플랜지부(602c)는 라이너 몸체부(602a)보다 넓은 폭을 가지고, 상기 제 2 본체 플랜지부의 내측에 배열되며, 일 측면이 외부로 노출될 수 있다.
상기 금속 부재는 라이너(602)를 둘러싸며, 본체(600)의 내부에 포함될 수 있다. 여기서, 상기 금속 부재의 전체가 본체(600)에 둘러쌓이며, 일부도 외부로 노출되지 않을 수 있다. 즉, 상기 금속 부재의 내측에 라이너(602)가 배열되되, 상기 금속 부재는 본체(600) 내부에 전체가 포함될 수 있다.
일 실시예에 따르면, 상기 금속 부재는 제 1 서브 금속 부재(610) 및 제 2 서브 금속 부재(612)를 포함할 수 있다. 예를 들어, 상기 금속 부재는 동일한 구조의 2개의 서브 금속 부재들(610 및 612)로 이루어질 수 있다. 다만, 서브 금속 부재들(610 및 612)은 분리된 부재로서 상호 결합되지는 않는다.
제 1 서브 금속 부재(610)는 일체형으로 이루어질 수 있고, 라이너(602)의 절반을 둘러싸며, 제 1 서브 몸체부(610a), 제 1-1 서브 플랜지부(610b) 및 제 1-2 서브 플랜지부(610c)를 포함할 수 있다.
제 1 서브 몸체부(610a)는 라이너 몸체부(602a)의 절반을 둘러싸며, 곡선 형상을 가질 수 있다.
제 1-1 서브 플랜지부(610b)는 제 1 서브 몸체부(610a)의 종단에 연결되며, 제 1 라이너 플랜지부(602b)의 직하부에 배열될 수 있다. 구체적으로는, 제 1-1 서브 플랜지부(610b)의 중앙에 형성된 요부 곡선 라인이 제 1 라이너 플랜지부(602b)의 직하부에서 라이너 몸체부(602a)의 절반을 둘러싸되, 요부 곡선 라인의 곡률은 라이너 몸체부(602a)의 곡률과 동일하거나 유사할 수 있다.
일 실시예에 따르면, 제 1-1 서브 플랜지부(610b)의 폭은 제 1 라이너 플랜지부(602b)의 폭보다 넓으며, 그 결과 제 1-1 서브 플랜지부(610b)가 라이너 몸체부(602a)를 둘러싸면 제 1-1 서브 플랜지부(610b)가 제 1 라이너 플랜지부(602b)를 지지하면서 제 1-1 서브 플랜지부(610b)의 적어도 일부가 폭 방향에서 제 1 라이너 플랜지부(602b)의 외측으로 돌출될 수 있다. 여기서, 제 1 라이너 플랜지부(602b)는 길이 방향에서는 제 1-1 서브 플랜지부(610b)보다 돌출될 수 있다.
다만, 제 1-1 서브 플랜지부(610b)가 제 1 라이너 플랜지부(602b)를 직접적으로 둘러쌀 수도 있으나, 이 경우에는 라이너(602)와 상기 금속 부재 사이에 공간이 존재하게 되어 상기 밸브의 구조가 불안정할 수 있다. 따라서, 제 1-1 서브 플랜지부(610b)가 제 1 라이너 플랜지부(602b)의 직하부에서 라이너 몸체부(602a)를 둘러싸는 것이 효율적이다.
또한, 제 1-1 서브 플랜지부(610b) 상에 적어도 하나의 홀이 형성될 수 있고, 이러한 홀은 체결 수단이 통과하기 위한 홀이다. 즉, 체결 수단은 상기 밸브와 상기 파이프가 결합될 때 제 1 본체 플랜지부의 홀 및 제 1-1 서브 플랜지부(610b)의 홀을 관통한다.
제 1-2 서브 플랜지부(610c)는 제 1 서브 몸체부(610a)의 타종단에 연결되며, 제 2 라이너 플랜지부(602c)의 직하부에 배열될 수 있다. 구체적으로는, 제 1-2 서브 플랜지부(610c)의 중앙에 형성된 요부 곡선 라인이 제 2 라이너 플랜지부(602c)의 직하부에서 라이너 몸체부(602a)의 절반을 둘러싸되, 요부 곡선 라인의 곡률은 라이너 몸체부(602a)의 곡률과 동일하거나 유사할 수 있다.
일 실시예에 따르면, 제 1-2 서브 플랜지부(610c)의 폭은 제 2 라이너 플랜지부(602c)의 폭보다 넓으며, 그 결과 제 1-2 서브 플랜지부(610c)가 라이너 몸체부(602a)를 둘러싸면 제 1-2 서브 플랜지부(610c)가 제 2 라이너 플랜지부(602c)를 지지하면서 폭 방향에서 제 1-2 서브 플랜지부(610c)의 적어도 일부가 제 2 라이너 플랜지부(602c)의 외측으로 돌출될 수 있다. 여기서, 제 2 라이너 플랜지부(602c)는 길이 방향에서 제 1-2 서브 플랜지부(610c)보다 돌출될 수 있다.
다만, 제 1-2 서브 플랜지부(610c)가 제 2 라이너 플랜지부(602c)를 직접적으로 둘러쌀 수도 있으나, 이 경우에는 라이너(602)와 상기 금속 부재 사이에 공간이 존재하게 되어 상기 밸브의 구조가 불안정할 수 있다. 따라서, 제 1-2 서브 플랜지부(610c)가 제 2 라이너 플랜지부(602c)의 직하부에서 라이너 몸체부(602a)를 둘러싸는 것이 효율적이다.
또한, 제 1-2 서브 플랜지부(610c) 상에 적어도 하나의 홀이 형성될 수 있고, 이러한 홀은 체결 수단이 통과하기 위한 홀이다. 즉, 체결 수단은 상기 밸브와 상기 파이프가 결합될 때 상기 제 2 본체 플랜지부의 홀 및 제 1-2 서브 플랜지부(610c)의 홀을 관통한다.
제 2 서브 금속 부재(612)는 일체형으로 이루어질 수 있고, 라이너(602)의 다른 절반을 둘러싸며, 제 2 서브 몸체부, 제 2-1 서브 플랜지부 및 제 2-2 서브 플랜지부를 포함할 수 있다.
상기 제 2 서브 몸체부는 라이너 몸체부(602a)의 다른 절반을 둘러싸며, 곡선 형상을 가질 수 있다.
상기 제 2-1 서브 플랜지부는 상기 제 2 서브 몸체부의 종단에 연결되며, 제 1 라이너 플랜지부(602b)의 직하부에 배열될 수 있다. 구체적으로는, 상기 제 2-1 서브 플랜지부의 중앙에 형성된 요부 곡선 라인이 제 1 라이너 플랜지부(602b)의 직하부에서 라이너 몸체부(602a)의 다른 절반을 둘러싸되, 상기 요부 곡선 라인의 곡률은 라이너 몸체부(602a)의 곡률과 동일하거나 유사할 수 있다.
일 실시예에 따르면, 상기 제 2-1 서브 플랜지부의 폭은 제 1 라이너 플랜지부(602b)의 폭보다 넓으며, 그 결과 상기 제 2-1 서브 플랜지부가 라이너 몸체부(602a)를 둘러싸면 상기 제 2-1 서브 플랜지부가 제 1 라이너 플랜지부(602b)를 지지하면서 폭 방향에서 상기 제 2-1 서브 플랜지부의 적어도 일부가 제 1 라이너 플랜지부(602b)의 외부로 돌출될 수 있다. 여기서, 제 1 라이너 플랜지부(602b)는 길이 방향에서 상기 제 2-1 서브 플랜지부보다 돌출될 수 있다.
다만, 상기 제 2-1 서브 플랜지부가 제 1 라이너 플랜지부(602b)를 직접적으로 둘러쌀 수도 있으나, 이 경우에는 라이너(602)와 상기 금속 부재 사이에 공간이 존재하게 되어 상기 밸브의 구조가 불안정할 수 있다. 따라서, 상기 제 2-1 서브 플랜지부가 제 1 라이너 플랜지부(602b)의 직하부에서 라이너 몸체부(602a)를 둘러싸는 것이 효율적이다.
또한, 상기 제 2-1 서브 플랜지부 상에 적어도 하나의 홀이 형성될 수 있고, 이러한 홀은 체결 수단이 통과하기 위한 홀이다. 즉, 체결 수단은 상기 밸브와 상기 파이프가 결합될 때 상기 제 1 본체 플랜지부의 홀 및 상기 제 2-1 서브 플랜지부의 홀을 관통한다.
한편, 상기 제 2-1 서브 플랜지부는 절반이 잘린 도너츠 형상을 가지며, 상기 요부 곡선 라인을 제외한 종단면들은 제 1-1 서브 플랜지부(610b)의 종단면들과 맞닿을 수 있다. 즉, 제 1-1 서브 플랜지부(610b)의 종단면들과 상기 제 2-1 서브 플랜지부의 종단면들이 맞닿은 상태로 상기 금속 부재가 라이너(602)를 둘러쌀 수 있다. 여기서, 제 1-1 서브 플랜지부(610b) 또한 절반이 잘린 도너츠 형상을 가진다.
상기 제 2-2 서브 플랜지부는 상기 제 2 서브 몸체부의 타종단에 연결되며, 제 2 라이너 플랜지부(602c)의 직하부에 배열될 수 있다. 구체적으로는, 상기 제 2-2 서브 플랜지부의 중앙에 형성된 요부 곡선 라인이 제 2 라이너 플랜지부(602c)의 직하부에서 라이너 몸체부(602a)의 다른 절반을 둘러싸되, 요부 곡선 라인의 곡률은 라이너 몸체부(602a)의 곡률과 동일하거나 유사할 수 있다.
일 실시예에 따르면, 상기 제 2-2 서브 플랜지부의 폭은 제 2 라이너 플랜지부(602c)의 폭보다 넓으며, 그 결과 상기 제 2-2 서브 플랜지부가 라이너 몸체부(602a)를 둘러싸면 상기 제 2-2 서브 플랜지부가 제 2 라이너 플랜지부(602c)를 지지하면서 폭 방향에서 상기 제 2-2 서브 플랜지부의 적어도 일부가 제 2 라이너 플랜지부(602c)의 외부로 돌출될 수 있다. 여기서, 제 2 라이너 플랜지부(602c)는 길이 방향에서 상기 제 2-2 서브 플랜지부보다 돌출될 수 있다.
다만, 상기 제 2-2 서브 플랜지부가 제 2 라이너 플랜지부(602c)를 직접적으로 둘러쌀 수도 있으나, 이 경우에는 라이너(602)와 상기 금속 부재 사이에 공간이 존재하게 되어 상기 밸브의 구조가 불안정할 수 있다. 따라서, 상기 제 2-2 서브 플랜지부가 제 2 라이너 플랜지부(602c)의 직하부에서 라이너 몸체부(602a)를 둘러싸는 것이 효율적이다.
또한, 상기 제 2-2 서브 플랜지부 상에 적어도 하나의 홀이 형성될 수 있고, 이러한 홀은 체결 수단이 통과하기 위한 홀이다. 즉, 체결 수단은 상기 밸브와 상기 파이프가 결합될 때 상기 제 2 본체 플랜지부의 홀 및 상기 제 2-2 서브 플랜지부의 홀을 관통한다.
한편, 상기 제 2-2 서브 플랜지부는 절반이 잘린 도너츠 형상을 가지며, 상기 요부 곡선 라인을 제외한 종단면들은 제 1-2 서브 플랜지부(610c)의 종단면들과 맞닿을 수 있다. 즉, 제 1-2 서브 플랜지부(610c)의 종단면들과 상기 제 2-2 서브 플랜지부의 종단면들이 맞닿은 상태로 상기 금속 부재가 라이너(602)를 둘러쌀 수 있다. 여기서, 제 1-2 서브 플랜지부(610c) 또한 절반이 잘린 도너츠 형상을 가진다.
제조 공정 측면에서 살펴보면, 상기 금속 부재는 인서트 사출을 통하여 본체(600)의 내부에 형성될 수 있다. 구체적으로는, 서브 금속 부재들(610 및 612)이 라이너(602)를 둘러싼 구조물을 본체(600)의 재료인 플라스틱에 넣어서 사출하면 상기 금속 부재가 본체(600)의 내부에 포함되고 상기 금속 부재의 내측에 라이너(602)가 형성될 수 있다.
이 때, 상기 금속 부재가 본체(600)에 견고하게 고정되도록, 상기 금속 부재의 플랜지부들(400b, 400c 등)에 체결 수단이 체결하기 위한 홀과 별도로 적어도 하나의 홀이 형성될 수 있다. 이 경우, 인서트 사출 과정에서, 용융된 플라스틱이 상기 홀을 채우게 되며, 그 결과 상기 금속 부재가 본체(600) 내부에 견고하게 결합될 수 있다.
또한, 더 견고하게 결합시키고자 할 경우에는 상기 금속 부재에 적어도 하나의 돌출부를 형성할 수도 있다.
한편, 상기 금속 부재를 분리된 2개의 서브 금속 부재들(610 및 612)로 구성하는 이유는 라이너(602)를 상기 금속 부재 내측에 배열하기 위해서이다. 상기 금속 부재가 일체형 구조로 이루어지면, 라이너(602)의 플랜지부(602b 또는 602c)의 폭이 상기 금속 부재의 내측 공간보다 커서 라이너(602)를 상기 금속 부재 내측에 삽입시키는 것이 불가능하다. 따라서, 본 발명의 금속 부재는 상기 금속 부재의 내측 공간보다 큰 플랜지부(602b 또는 602c)를 가지는 라이너(602)를 상기 금속 부재의 내측에 배열하기 위하여 분리된 2개의 서브 금속 부재들(610 및 612)을 사용한다.
정리하면, 2개의 서브 금속 부재들(610 및 612)이 라이너(602)를 둘러싼 상태에서 인서트 사출을 통하여 서브 금속 부재들(610 및 612)이 플라스틱인 본체(600)의 내부에 포함되도록 구현될 수 있다. 이 때, 라이너(602)는 상기 금속 부재의 내측에 배열될 수 있다.
금속 부재가 라이너를 둘러싸지 않고 플라스틱인 본체(600)가 직접 라이너를 둘러싸면, 체결 수단을 통하여 밸브의 플랜지와 파이프의 플랜지가 결합될 때 상기 체결 수단의 체결힘에 의해 결합 방향과 반대되는 방향으로 하여 상기 밸브에 뒤틀림이 발생할 수 있다.
반면에, 라이너(602)가 상기 금속 부재의 내측에 배열된 상태로 플라스틱인 본체(600) 내부에 상기 금속 부재가 포함되면, 체결 수단을 통하여 밸브의 플랜지와 파이프의 플랜지가 결합되더라도 상기 플랜지의 강도가 강화되어 상기 밸브에 뒤틀림이 발생하지 않거나 최소화될 수 있다.
물론, 본체(600)를 금속으로 형성하고 본체(600)의 내측에 라이너(602)를 배열하면, 밸브와 파이프 결합시에도 뒤틀림이 방지될 수 있지만 본체(600)를 가공하기가 어렵고 제조 단가가 크게 높아질 수 있다.
따라서, 본 발명의 밸브는 본체(600)를 플라스틱으로 형성하되, 강도 보강을 위하여 상기 금속 부재를 본체(600) 내부에 형성한다. 이 경우, 상기 금속 부재를 정밀하게 가공하지 않아도 되고 상기 플라스틱을 정밀하게 가공하는 것이 용이하므로, 원하는 형상으로 상기 밸브을 가공하기 용이하고 상기 밸브의 제조 단가가 낮아지면서도 상기 밸브와 상기 파이프 결합시 뒤틀림을 최소화시킬 수 있다.
한편, 라이너(602)의 플랜지부, 상기 금속 부재의 플랜지부 및 본체(600)의 플랜지부가 하나의 플랜지를 형성하게 된다. 플랜지 측면에서 살펴보면, 플라스틱의 내부에 금속 부재가 포함된다. 결과적으로, 상기 밸브의 플랜지와 파이프의 플랜지가 결합되더라도 뒤틀림이 최소화될 수 있다.
위에서는, 상기 금속 부재가 동일한 형상을 가지면서 상호 대칭적으로 배열되는 2개의 서브 금속 부재들(610 및 612)로 이루어지는 것으로 설명하였으나, 상기 금속 부재가 분리된 3개 이상의 서브 금속 부재들로 이루어질 수 있다. 여기서, 상기 서브 금속 부재들의 내부에 라이너(602)가 배열되고 상기 서브 금속 부재들이 본체(600)의 내부에 포함될 수 있다. 이 때, 상기 서브 금속 부재들은 모두 동일한 형상을 가질 수도 있고 적어도 하나가 다른 형상을 가질 수도 있다.
예를 들어, 120도 간격으로 분리된 동일한 형상의 3개의 서브 금속 부재들이 라이너(602)를 둘러싸도록 형성될 수 있다.
다만, 공정의 용이성을 고려하면, 상기 금속 부재는 2개의 서브 금속 부재들(610 및 612)로 이루어지는 것이 효율적이다.
도 7은 본 발명의 또 다른 실시예에 따른 밸브의 단면을 개략적으로 도시한 도면이다.
도 7을 참조하면, 라이너(700), 수지층(702), 적어도 2개의 서브 금속 부재들을 가지는 금속 부재(704) 및 본체(706)가 순차적으로 형성될 수 있다.
즉, 다른 실시예들과 달리, 본 실시예에서는 라이너(700)와 금속 부재(704) 사이에 수지층(702)이 배열될 수 있다.
일 실시예에 따르면, 수지층(702)은 본체(706)와 동일한 물질로 이루어질 수 있다. 본(706)의 물질로는 위의 실시예에서의 본체의 물질이 사용될 수 있다.
공정 상으로는, 상기 서브 금속 부재들이 라이너(700)를 둘러싼 구조물을 본체(706)의 재료인 플라스틱에 넣어서 사출하면, 상기 서브 금속 부재들 사이에 공간이 존재하므로 용융 상태의 플라스틱이 라이너(700)와 금속 부재(704) 사이로 스며들게 된다. 결과적으로, 라이너(700)와 금속 부재(704) 사이에 수지층(702)이 형성될 수 있다.
또한, 상기 용융된 플라스틱이 라이너(700)와 금속 부재(704) 사이로 잘 스며들도록 금속 부재(704)의 일부분에 홀이 형성될 수도 있다.
라이너와 금속 부재 사이에 수지층이 추가적으로 형성되는 구조는 위의 다른 실시예에도 적용될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 본체; 및
    개폐부를 포함하고,
    상기 본체 내측에는 유체가 흐르는 공간인 유체 이송공이 형성되고 상기 개폐부는 상기 유체의 흐름을 개폐시키되,
    상기 유체 이송공은 입구로부터 상기 개폐부를 향하여 유선형 형상을 가지거나 출구로부터 상기 개폐부를 향하여 유선형 형상을 가지는 것을 특징으로 하는 밸브.
  2. 제1항에 있어서,
    상기 본체 내측에 형성된 라이너를 더 포함하되,
    상기 유체 이송공은 상기 라이너 내측에 배열되며, 상기 개폐부는 상기 유체 이송공의 중간 부분에 배열되는 것을 특징으로 하는 밸브.
  3. 제2항에 있어서, 상기 유체 이송공에 대응하는 상기 라이너의 내측 상면 및 내측 하면은 각기 유선형 형상을 가지되,
    상기 내측 상면의 곡선의 곡률은 상기 유체 이송공의 중앙에 형성된 가상 곡선의 곡률과 다르며, 상기 내측 하면의 곡선의 곡률은 상기 가상 곡선의 곡률과 다른 것을 특징으로 하는 밸브.
  4. 제3항에 있어서, 상기 내측 하면의 곡선은 상기 입구로부터 형성되는 제 1 곡선과 상기 개폐부 인근의 제 2 곡선으로 이루어지되,
    상기 제 1 곡선은 제 1 반지름(R2)을 가지고 상기 제 2 곡선은 제 2 반지름(R3)을 가지며,
    상기 제 1 반지름과 상기 제 2 반지름의 비율(R2/R3)은 (145/105)~(110/50)의 범위를 가지는 것을 특징으로 하는 밸브.
  5. 제3항에 있어서, 상기 내측 하면의 곡선은 상기 입구로부터 형성되는 제 1 곡선과 상기 개폐부 인근의 제 2 곡선으로 이루어지되,
    상기 제 1 곡선은 제 1 반지름(R2)을 가지고 상기 제 2 곡선은 제 2 반지름(R3)을 가지며,
    상기 제 1 반지름(R2)과 상기 입구의 면간 거리(L)의 비율(R2/L)은 (95/160)~(150/165)의 범위를 가지고, 상기 제 2 반지름(R3)과 상기 입구의 면간 거리(L)의 비율(R3/L)은 (50/160)~(105/197)의 범위를 가지는 것을 특징으로 하는 밸브.
  6. 제3항에 있어서, 상기 내측 상면의 곡선의 반지름(R1)과 상기 입구의 면간 거리(L)의 비율(R1/L)은 (170/480) 이상인 것을 특징으로 하는 밸브.
  7. 제3항에 있어서, 상기 내측 하면의 곡선은 상기 입구로부터 형성되는 제 1 곡선과 상기 개폐부 인근의 제 2 곡선으로 이루어지되,
    상기 제 1 곡선은 제 1 반지름(R2)을 가지고 상기 제 2 곡선은 제 2 반지름(R3)을 가지며,
    상기 내측 상면의 곡선의 반지름(R1)과 상기 제 1 반지름(R2)의 비율(R1/R2)은 (95/165)~(85/95)의 범위를 가지고, 상기 내측 상면의 곡선의 반지름(R1)과 상기 제 2 반지름(R3)의 비율(R1/R3)은 (95/105)~(85/50)의 범위를 가지는 것을 특징으로 하는 밸브.
  8. 제2항에 있어서, 상기 유체 이송공은 상기 입구로부터 상기 개폐부 방향으로 갈수록 좁아지며 상기 출구로부터 상기 개폐부 방향으로 갈수록 좁아지는 것을 특징으로 하는 밸브.
  9. 제1항에 있어서, 상기 본체는 폴리염화비닐(Polyvinyl Chloride, PVC), 폴리프로필렌(polypropylene, PP), 폴리페닐렌설파이드(Poly Phenylene sulfide, PPS), 폴리프탈아미드(Polyphtalamide, PPA), 폴리아미드(Polyamide, PA6), 폴리아미드(Polyamide, PA66), 폴리케톤(Polyketone, POK) 또는 폴리에틸렌(Polyethylene, PE)에 유리섬유(Glass fiber)를 혼합함에 의해 형성되고, 상기 라이너는 불소 수지로 이루어지는 것을 특징으로 하는 밸브.
  10. 제9항에 있어서, 상기 본체는 상기 폴리프로필렌(PP)과 상기 유리섬유(glass fiber)를 혼합시킴에 의해 형성되되,
    상기 폴리프로필렌이 60 초과 중량 퍼센트를 가질 때 상기 유리섬유는 0 초과 40 이하 중량 퍼센트를 가지는 것을 특징으로 하는 밸브.
  11. 제2항에 있어서,
    적어도 2개의 서브 금속 부재들을 가지는 금속 부재를 더 포함하되,
    상기 서브 금속 부재들이 상기 라이너를 둘러싸고, 상기 서브 금속 부재들은 상기 본체 내에 포함되며, 상기 본체는 플라스틱으로 이루어지는 것을 특징으로 하는 밸브.
  12. 제11항에 있어서, 상기 라이너는 라이너 몸체부 및 상기 라이너 몸체부의 종단에 형성된 라이너 플랜지부를 포함하고, 상기 서브 금속 부재 중 적어도 하나는 서브 몸체부 및 상기 서브 몸체부의 종단에 형성된 서브 플랜지부를 포함하며, 상기 본체는 본체 몸체부 및 상기 본체 몸체부의 종단에 형성된 본체 플랜지부를 포함하되,
    상기 서브 플랜지부의 폭은 상기 라이너 플랜지부의 폭보다 크며, 상기 서브 플랜지부는 상기 라이너 플랜지부의 직하부에서 상기 라이너 몸체부를 둘러싸는 것을 특징으로 하는 밸브.
  13. 제12항에 있어서, 상기 라이너, 상기 서브 금속 부재들 및 상기 본체는 각기 일체형으로 이루어지며, 상기 서브 금속 부재들은 상기 라이너 몸체부 전체를 둘러싸며, 상기 서브 플랜지부는 절반이 잘린 도너츠 형상을 가지고, 상기 서브 플랜지부의 요부 곡선 라인은 상기 라이너 몸체의 절반을 둘러싸고 종단면은 다른 서브 플랜지부의 종단면과 맞닿는 것을 특징으로 하는 밸브.
  14. 밸브에 있어서,
    본체; 및
    개폐부를 포함하고,
    상기 본체 내측에는 유체가 흐르는 공간인 유체 이송공이 형성되고, 상기 개폐부는 상기 유체의 흐름을 개폐시키되,
    상기 유체 이송공에 해당하는 상기 밸브의 내측 상면은 입구로부터 상기 개폐부 방향으로 유선형 형상을 가지고,
    상기 내측 상면의 곡선의 반지름(R1)과 상기 입구의 면간 거리(L)의 비율(R1/L)은 (170/480) 이상인 것을 특징으로 하는 밸브.
  15. 제14항에 있어서,
    상기 본체 내측에 형성된 라이너를 더 포함하되,
    상기 유체 이송공은 상기 라이너 내측에 형성되고, 상기 내측 상면은 상기 라이너의 내측 상면이며, 상기 유체 이송공에 해당하는 상기 라이너의 내측 상면은 입구로부터 상기 개폐부 방향으로 유선형 형상을 가지고,
    상기 내측 상면의 곡선의 반지름(R1)과 상기 입구의 면간 거리(L)의 비율(R1/L)은 (170/480)~(110/165)의 범위를 가지며, 상기 유체 이송공은 상기 입구로부터 상기 개폐부 방향으로 갈수록 좁아지며 상기 출구로부터 상기 개폐부 방향으로 갈수록 좁아지는 것을 특징으로 하는 밸브.
PCT/KR2019/005453 2019-01-25 2019-05-08 유선형 유체 이송공을 가지는 밸브 WO2020153531A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19835221.3A EP3705762A4 (en) 2019-01-25 2019-05-08 VALVE WITH STREAM-SHAPED FLUID FLOW
CN201980003609.5A CN111727333B (zh) 2019-01-25 2019-05-08 具有流线型流体移送孔的阀门
JP2020502189A JP7089577B2 (ja) 2019-01-25 2019-05-08 流線型の流体移送孔を有するバルブ
US16/745,121 US11204101B2 (en) 2019-01-25 2020-01-16 Valve having streamlined fluid flow space

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0010047 2019-01-25
KR20190010047 2019-01-25
KR10-2019-0053042 2019-05-07
KR1020190053042A KR102173902B1 (ko) 2019-01-25 2019-05-07 유선형 유체 이송공을 가지는 밸브

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/745,121 Continuation US11204101B2 (en) 2019-01-25 2020-01-16 Valve having streamlined fluid flow space

Publications (1)

Publication Number Publication Date
WO2020153531A1 true WO2020153531A1 (ko) 2020-07-30

Family

ID=71735775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005453 WO2020153531A1 (ko) 2019-01-25 2019-05-08 유선형 유체 이송공을 가지는 밸브

Country Status (2)

Country Link
EP (1) EP3705762A4 (ko)
WO (1) WO2020153531A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762222B2 (ja) * 2007-11-13 2011-08-31 旭有機材工業株式会社 ダイヤフラムバルブ
CN105587915A (zh) * 2015-09-06 2016-05-18 丽水市国大阀门有限公司 带骨架的阀门及制作工艺
KR20170035819A (ko) * 2015-09-23 2017-03-31 (주)플로닉스 플라스틱 밸브
KR20170035589A (ko) * 2015-09-23 2017-03-31 (주)플로닉스 와류 방지가 가능한 밸브에 사용되는 코어
KR20180010068A (ko) * 2016-07-20 2018-01-30 (주)플로닉스 와류 방지가 가능한 파이프 결합 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026887A1 (de) * 2007-06-11 2008-12-18 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Verfahren zum Herstellen eines Ventilkörpers aus Kunststoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762222B2 (ja) * 2007-11-13 2011-08-31 旭有機材工業株式会社 ダイヤフラムバルブ
CN105587915A (zh) * 2015-09-06 2016-05-18 丽水市国大阀门有限公司 带骨架的阀门及制作工艺
KR20170035819A (ko) * 2015-09-23 2017-03-31 (주)플로닉스 플라스틱 밸브
KR20170035589A (ko) * 2015-09-23 2017-03-31 (주)플로닉스 와류 방지가 가능한 밸브에 사용되는 코어
KR20180010068A (ko) * 2016-07-20 2018-01-30 (주)플로닉스 와류 방지가 가능한 파이프 결합 장치

Also Published As

Publication number Publication date
EP3705762A1 (en) 2020-09-09
EP3705762A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP5129830B2 (ja) ガラスリボンを延伸する装置および方法
KR101818347B1 (ko) 용융 유리 이송용 베셀들 간 연결부를 밀봉하는 장치
EP0590677B1 (en) Sealed edge gate
US5269677A (en) Hot passage manifold system
WO2020153531A1 (ko) 유선형 유체 이송공을 가지는 밸브
WO2018016825A1 (ko) 뒤틀림을 방지할 수 있는 플라스틱 밸브
US20180327299A1 (en) Apparatus and method for forming glass ribbon
US20240190748A1 (en) Support structures for accommodating thermal expansion and glass manufacturing apparatuses comprising the same
KR100545814B1 (ko) 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법
WO2014003461A1 (ko) 다단 밀봉구조를 갖는 밸브장치
WO2019050122A1 (ko) 냉매파이프가 매립되는 방열장치의 케이싱, 이의 제조장치 및 제조방법
US5843361A (en) Injection molding manifolds with melt connector bushing
US5804231A (en) Expandable hot runner manifold
WO2017039113A1 (ko) 와류 방지가 가능한 밸브 및 이에 사용되는 코어
KR102173902B1 (ko) 유선형 유체 이송공을 가지는 밸브
CA2461461C (en) Injection molding valve pin bushing
WO2020153545A1 (ko) 뒤틀림을 방지할 수 있는 피팅
WO2019208910A1 (ko) 버터플라이 밸브 및 이를 제조하는 방법
WO2020153627A1 (ko) 뒤틀림을 방지할 수 있는 케이싱 및 이를 포함하는 펌프
WO2020153546A1 (ko) 뒤틀림을 방지할 수 있는 밸브
EP1475210A1 (en) Hot runner nozzle with removeable tip and tip retainer
WO2020153530A1 (ko) 플라스틱 밸브
KR102218444B1 (ko) 뒤틀림을 방지할 수 있는 밸브
WO2021149959A1 (ko) 마그네틱 드라이브 및 이를 포함하는 하이브리드 펌프
WO2024215174A1 (ko) 잉곳 성장 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502189

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019835221

Country of ref document: EP

Effective date: 20200120

NENP Non-entry into the national phase

Ref country code: DE