WO2019205830A1 - 一种利用金属吸氢膨胀促进金属坯体致密化的方法 - Google Patents

一种利用金属吸氢膨胀促进金属坯体致密化的方法 Download PDF

Info

Publication number
WO2019205830A1
WO2019205830A1 PCT/CN2019/078357 CN2019078357W WO2019205830A1 WO 2019205830 A1 WO2019205830 A1 WO 2019205830A1 CN 2019078357 W CN2019078357 W CN 2019078357W WO 2019205830 A1 WO2019205830 A1 WO 2019205830A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hydrogen
hydrogen absorbing
mold
expansion
Prior art date
Application number
PCT/CN2019/078357
Other languages
English (en)
French (fr)
Inventor
周承商
刘咏
孙沛
刘彬
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to US16/979,871 priority Critical patent/US11219949B2/en
Publication of WO2019205830A1 publication Critical patent/WO2019205830A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F3/156Hot isostatic pressing by a pressure medium in liquid or powder form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F2003/153Hot isostatic pressing apparatus specific to HIP
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for densifying a metal, an alloy and a metal matrix composite material; in particular, a method for improving the density of a metal body by utilizing a metal hydrogenation expansion effect.
  • Pore defects in conventional metal materials can be removed by plastic processing.
  • plastic processing For powder metallurgy materials with near net shape requirements, metal materials for additive manufacturing, etc., it is necessary to remove pore defects in the product by high-cost techniques such as hot isostatic pressing, hot pressing sintering, and plasma sintering.
  • Hot isostatic pressing is a sintering method in which high-temperature and high-pressure gases work together.
  • the high-pressure gas is used to balance the stress in all directions of the material, and a uniform dense material can be prepared.
  • the disadvantage is that the packaging is difficult, the cost is high, and the efficiency is low.
  • Hot press sintering is a sintering method in which a powder is filled into a mold and simultaneously pressurized and heated from the axial direction. Hot press sintering tends to result in anisotropy of the article, production efficiency and limited product size.
  • the discharge plasma sintering increases the pulse current on the basis of hot press sintering, promotes the densification of the sintering, and can complete the sintering of the fully dense material in a short time.
  • the disadvantage is that the size of the product is limited and the scale is difficult. Therefore, the above technologies all have disadvantages such as high cost, low efficiency, and product size limitation.
  • the present invention provides a method for promoting densification of a metal blank by utilizing metal hydrogen absorbing expansion.
  • the invention discloses a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; introducing hydrogen into a rigid closed mold filled with hydrogen absorbing expansion material or filling hydrogen absorbing expansion material and the material to be densified, and utilizing hydrogen absorbing expansion material
  • the volume expansion effect densifies itself and/or the material to be densified.
  • the invention provides a method for promoting densification of a metal body by utilizing metal hydrogen absorbing expansion; the hydrogen absorbing expansion material comprises a metal having hydrogen absorbing ability.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorption expansion; comprising the following steps;
  • the pre-densified metal blank A into the mold; encapsulating, fastening and preserving the vent; obtaining a pre-treatment assembly, the pre-densified metal blank A containing metal having hydrogen absorbing ability;
  • the outer wall of the dense metal blank A is in contact with the inner wall of the mold or a gap is left between the outer wall of the dense metal blank A and the inner wall of the mold; the gap is smaller than the linear expansion of the pre-densified metal blank A after hydrogen absorption;
  • the pre-densified metal blank B and the hydrogen absorbing metal powder are loaded into the mold together; the vent is packaged, fastened and reserved; and the pretreatment assembly is obtained;
  • the mold is a rigid mold
  • the pretreatment component obtained in the first step is placed in a sintering furnace, hydrogen gas is introduced, the temperature is raised to the hydrogen absorption temperature, and the temperature is maintained; the sample after hydrogen absorption is obtained; then the atmosphere is adjusted to an inert atmosphere or a vacuum atmosphere and/or at a dehydrogenation temperature. Under heat preservation, the sample after hydrogen absorption is discharged; and the sample after hydrogen release is obtained;
  • the mold is removed to obtain a densified metal blank.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorption expansion; in the mold after heating, the components of the mold are kept tight and not loosened during heating and hydrogen absorption.
  • the invention discloses a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; after the hydrogen absorption metal material or the hydrogen absorbing metal powder completely absorbs hydrogen, the volume before hydrogen absorption is at least >5 Vol% expansion.
  • the invention relates to a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; after the hydrogen absorption process of the metal or the hydrogen absorbing metal powder is completely hydrogen-absorbing; the volume expansion ratio is greater than the expansion of the rigid mold cavity proportion.
  • the invention discloses a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; the material of the mold does not react with hydrogen.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorption expansion
  • the invention discloses a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; a metal material having hydrogen absorption capability or a hydrogen absorbing metal powder at a hydrogen absorption temperature, wherein the hydrogen partial pressure is greater than or equal to a hydrogen absorbing metal or smokable Hydrogen absorption of hydrogen metal powder under hydrogen equilibrium partial pressure; the hydrogen absorption temperature is determined by the physicochemical properties of the selected metal material having hydrogen absorbing ability and/or hydrogen absorbing metal powder.
  • the hydrogen absorption temperature is less than or equal to 0.7 times the melting point of the predensified metal blank. The best choice is to achieve the maximum amount of hydrogen absorption possible.
  • the present invention provides a method for promoting densification of a metal body by utilizing metal hydrogen absorbing expansion; the dehydrogenation temperature is determined by the physical properties of the selected metal material having hydrogen absorbing ability and/or hydrogen absorbing metal powder.
  • the dehydrogenation temperature is less than the melting point of the predensified metal blank. It is preferably 0.7 times or less the melting point of the pre-densified metal blank.
  • the invention discloses a method for promoting densification of a metal body by utilizing metal hydrogen absorption expansion; after hydrogen absorption metal material absorbs hydrogen, the hydrogen absorbed can be completely removed by heating or heating down the partial pressure of hydrogen.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorbing expansion; steps one, two and three are sequentially repeated until a product of a set density is obtained.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorbing expansion; replacing the hydrogen absorbing metal powder having a larger volume expansion after hydrogen absorption, and the product obtained in the fourth step is a processing object, and repeating steps one, two and three in sequence Until the product of the set density is obtained.
  • the densified product comprises a finished product having a density of 99.5% or greater.
  • the invention discloses a method for promoting densification of a metal blank by utilizing metal hydrogen absorption expansion; in industrial application, the product can be, but not limited to, a non-fully dense sintered billet produced by powder metallurgy; and a residual pore is produced by the method of production.
  • the present invention is the first to propose that a hydrogen-absorbing metal block or powder is confined in a closed space by a rigid mold, and an expansion stress is applied to the metal article having pores during hydrogen absorption, or hydrogen absorption and/or Hydrogen storage metal itself.
  • the volume of the closed space is constant or the volume change is smaller than the hydrogen absorbing expansion volume, the stress causes deformation and creep of the material, and the internal pores are reduced and closed.
  • this patent Compared with traditional powder metallurgy densification technology or metal plastic processing technology, this patent has the following advantages:
  • the processing temperature is much lower than the temperature of traditional powder densification treatment, which can effectively inhibit the grain growth during the densification process, obtain fine crystal, uniform microstructure and improve product performance.
  • Figure 1 is a schematic view of the working principle of the present invention.
  • the packaged mold In the present invention, the packaged mold; during the heating process, no loose or falling parts are produced.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a 98% titanium product (industrial pure titanium, titanium content >98%) is placed in a stainless steel mold, and the titanium powder with an average particle diameter of 45 ⁇ m is filled between the product and the mold (the filling volume of the titanium powder accounts for the mold) 40% of the inner cavity volume, the mold is packaged and fastened. (Because there is a gap between the mold modules; these gaps are good vents)
  • the assembled mold is placed in a hydrogen furnace, heated to 600 ° C in a vacuum, and hydrogen gas (hydrogen pressure 1 bar) is passed through, and hydrogen gas is kept for 10 hours.
  • hydrogen gas hydrogen pressure 1 bar
  • the other conditions are the same in the first embodiment except that the hydrogen gas is not introduced into the step (2), and argon gas is introduced; the density of the obtained product is not significantly changed.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the assembled mold is placed in a hydrogen furnace, heated to 600 ° C in a vacuum, and hydrogen gas (hydrogen pressure 10 bar) is passed through, and hydrogen gas is kept and kept for 10 hours.
  • hydrogen gas hydrogen pressure 10 bar
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a 95% copper alloy (copper content >60%) product is placed in a stainless steel mold, and a titanium powder with an average particle size of 45 ⁇ m is filled between the product and the mold (the filling volume of the titanium powder accounts for 30% of the volume of the mold cavity) %), the mold is packaged and fastened (due to the gap between the mold modules; these gaps are good vents).
  • the assembled mold is placed in a hydrogen furnace, heated to 600 ° C in a vacuum, and hydrogen gas (hydrogen pressure 1 bar) is passed through, and hydrogen gas is kept and kept for 10 hours.
  • hydrogen gas hydrogen pressure 1 bar
  • the other conditions are the same in the third embodiment except that hydrogen is not introduced in the step (2), and argon gas is introduced; the density of the obtained product is not changed.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the stainless steel mold is filled with titanium alloy powder (component: Ti-6Al-4V) having an average particle diameter of less than 45 ⁇ m, and the mold is packaged and fastened. (Because there is a gap between the mold modules; these gaps are good vents)
  • the assembled mold is placed in a hydrogen furnace, heated to 600 ° C in a vacuum, and hydrogen gas is introduced (hydrogen pressure is 1 bar), and hydrogen gas is kept for 10 hours.
  • the other conditions are the same in the fourth embodiment except that hydrogen is not introduced in the step (2), and argon gas is introduced; the density of the obtained product does not change significantly.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the assembled mold is placed in a hydrogen furnace, heated to 200 ° C in hydrogen, maintained with hydrogen (hydrogen pressure at 1 bar) and held for 5 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种利用金属吸氢膨胀促进金属坯体致密化的方法,所述吸氢膨胀是指某些金属块体或金属粉末在氢气气氛和一定温度条件下,吸收氢气产生体积膨胀效应。在填充吸氢膨胀物质或填充吸氢膨胀物质与待致密化材料的刚性密闭模具内通入氢气,利用吸氢膨胀物质的体积膨胀效应对自身和/或待致密化材料进行致密化,本方法可用于消除金属材料内的残余孔隙以提高材料的各项性能。

Description

一种利用金属吸氢膨胀促进金属坯体致密化的方法 技术领域
本发明涉及一种金属、合金、金属基复合材料的致密化方法;特别涉及一种利用金属氢化膨胀效应提高金属坯体致密度的方法。
背景技术
在金属材料加工过程中,材料内部常常会产生一定的孔隙。铸造合金中往往存在缩孔、气孔等。对于粉末冶金材料而言,许多材料体系的烧结坯体存在残余孔隙。据报道,增材制造的金属材料,由于原料和工艺的影响会有微小孔隙存在。金属焊接的过程中,焊缝处产生的微孔或气泡是严重的缺陷。此外,在金属复合材料的制备过程中,界面反应可能会导致孔隙产生。金属材料中的孔隙是影响制品性能的主要缺陷之一,直接影响其力学性能,导致材料失效。
传统金属材料(如钢铁、钛合金、铝合金等)中的孔隙缺陷可利用塑性加工方法加以去除。对于有近净成形要求的粉末冶金材料、增材制造金属材料等而言,需要采用高成本的热等静压、热压烧结、放电等离子烧结等技术除去制品中的孔隙缺陷。
热等静压是通过高温和高压气体共同作用的烧结方法,利用高压气体使材料各方向的均衡受力,能够制备组织均匀的全致密材料,但缺点是封装难度大、成本高、效率低。热压烧结是粉料充填入模具内,再从轴向同时加压和加热的一种烧结方法。热压烧结易导致制品的各向异性,生产效率和制品尺寸受限。放电等离子体烧结在热压烧结的基础上增加了脉冲电流,促进烧结致密化,能在很短的时间内完成全致密材料的烧结,缺点是制品尺寸受限,规模化难度大。因此以上技术均存在成本高、效率低、制品尺寸限制等缺点。
技术问题
研究发现:许多金属和合金能在一定条件下与氢气反应,具有存储和释放氢气的功能,被作为储氢功能材料使用。然而,在金属吸氢反应过程中,由于晶格参数变化,会产生明显的体积膨胀。例如:金属钛吸氢完全转化为氢化钛后,体积膨胀可达15%以上。金属吸氢导致的膨胀现象,可产生巨大的应力,在不受外界约束的情况下,严重时会导致块体材料的变形、开裂和粉化。
技术解决方案
基于上述发现以及现有技术的不足,本发明提供一种利用金属吸氢膨胀促进金属坯体致密化的方法。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;在装填吸氢膨胀物质或装填吸氢膨胀物质与待致密化材料的刚性密闭模具内通入氢气,利用吸氢膨胀物质的体积膨胀效应对自身和/或待致密化材料进行致密化。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;所述吸氢膨胀物质包括具有吸氢能力的金属。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;包括下述步骤;
步骤一
将预致密金属坯件A放入模具内;封装、紧固并预留通气口;得到预处理组件,所述预致密金属坯件A中含有具有吸氢能力的金属;预处理组件中,预致密金属坯件A的外壁与模具内壁接触或致密金属坯件A的外壁与模具内壁间留有缝隙;所述缝隙小于预致密金属坯件A吸氢后的线膨胀;
将预致密金属坯件B以及可吸氢金属粉末一起装入模具内;封装、紧固并预留通气口;得到预处理组件;
用可吸氢金属粉末装入模具内腔,封装、紧固并预留通气口;得到预处理组件;
在模具内腔的设定位置上为放置待致密的金属粉体;在模具内腔的其他位置上放置可吸氢金属粉末;封装、紧固并预留通气口;得到预处理组件;
所述模具为刚性模具;
步骤二
将步骤一所得预处理组件置于烧结炉内,通入氢气,升温至吸氢温度,保温;得到吸氢后的试样;然后将气氛调整为惰性气氛或真空气氛和/或在脱氢温度下保温,使得吸氢后的试样放氢;得到放氢后的试样;
步骤三
待放氢后的试样冷却后,脱除模具,得到致密化的金属坯件。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;封装后的模具在加热、吸氢过程中模具的各部件保持紧固不会松动。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;具有吸氢能力的金属材料或可吸氢金属粉末完全吸氢后,较吸氢前的体积至少有>5 vol%的膨胀。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;加热吸氢过程中具有吸氢能力的金属或可吸氢金属粉末完全吸氢后;体积膨胀比例大于刚性模具内腔的膨胀比例。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;所述模具的材质不与氢气发生反应。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;所述模具的材质优选
为:耐热钢,耐高温不锈钢,高温合金,高温高强陶瓷中的至少一种。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;具有吸氢能力的金属材料或可吸氢金属粉末在吸氢温度下,在氢气分压大于等于可吸氢金属或可吸氢金属粉末的氢平衡分压条件下吸氢;所述吸氢温度由所选用的具有吸氢能力的金属材料和/或可吸氢金属粉末的物理化学属性决定。在工业上应用时,吸氢温度小于等于预致密金属坯件熔点的0.7倍。其最佳选择为:尽可能的实现最大量吸氢。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;所述脱氢温度由所选用的具有吸氢能力的金属材料和/或可吸氢金属粉末的物理属性决定。所述脱氢温度小于预致密金属坯件的熔点。优选为小于等于0.7倍预致密金属坯件的熔点。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;吸氢金属材料吸氢后,能够通过加热升温,或降低氢分压的工艺下将吸收的氢气完全脱除。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;依次重复步骤一、二、三直至得到设定致密度的产品。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;更换吸氢后体积膨胀更大的可吸氢金属粉末,以步骤四所得产品为加工对象,依次重复步骤一、二、三直至得到设定致密度的产品。所述设定致密度的产品包括致密度大于等于99.5%的成品。
本发明一种利用金属吸氢膨胀促进金属坯体致密化的方法;在工业应用时,所述制品可以但不限于:粉末冶金法生产的非全致密烧结坯;鋳造法生产的存在有残余孔隙的金属或合金坯体;增材制造工艺生产的存在内部残余孔隙缺陷的金属或合金产品;需要进行表面致密化处理的多孔金属材料;需要提高致密度或提高结合强度的金属基复合材料。
有益效果
原理和优势
本发明首次提出了:利用刚性模具将可吸氢的金属块体或粉末约束在封闭的空间内,在吸氢的过程中使膨胀应力施加在具有孔隙的金属制品上,或者吸氢和/或贮氢金属自身。在封闭空间(模具腔体)体积不变或体积变化小于吸氢膨胀体积的情况下,应力导致材料形变和蠕变,内部孔隙减少并闭合。
本专利相比传统粉末冶金致密化技术,或金属塑性加工技术,具有如下优势:
(1) 近净成形,可较好保持制品的原有的复杂形状,可用于已加工的复杂金属制品、增材制造制品、粉末冶金烧结制品、粉末注射成型制品的致密化处理。当产品的结构越复杂,精度要求越高时,本发明的优势尤为明显。
(2) 生产设备及模具简单,生产成本低、效率高。
(3) 工艺处理温度远低于传统粉末致密化处理的温度,可有效抑制致密化过程的晶粒长大,获得细晶、均匀的组织结构,改善制品性能
附图说明
附图1为本发明工作原理示意图。
本发明的最佳实施方式
下面结合实施例对本发明作进一步的详细说明。
在本发明中,封装后的模具;在加热过程中,不会产生部件松动和脱落的情况。
实施例一:
1.将致密度为98%的钛制品(工业纯钛,钛含量>98%)放入不锈钢模具,制品和模具间填充满平均粒径为45微米的钛粉(钛粉的填充体积占模具内腔体积的40 %),将模具封装、紧固。(由于模具模块之间留有间隙;这些间隙就是很好的通气孔)
2.装配好的模具放入氢气炉内,在真空中加热至600摄氏度,通入氢气(氢气的压力1 bar),保持通入氢气并保温10小时。
3.将氢气炉停止通氢气,抽真空(真空度小于10 -3Pa),升高温度至750摄氏度,保持10小时后停炉冷却。
4.打开氢气炉,取出并打开模具,取出致密度大于99.5%的钛合金制品。
对比例一
其他条件均于实施例一一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;其所得产品的致密度没有明显变化。
实施例二:
1.将致密度为95%的钛合金(钛含量>20%)制品放入不锈钢模具,制品和模具间配合小于0.1毫米,将模具封装、紧固。(由于模具模块之间留有间隙;这些间隙就是很好的通气孔)。
2.装配好的模具放入氢气炉内,在真空中加热至600摄氏度,通入氢气(氢气的压力10bar),保持通入氢气并保温10小时。
3.将氢气炉停止通氢气,抽真空(真空度小于10 -3Pa),升高温度至750摄氏度,保持10小时后停炉冷却。
4.打开氢气炉,取出并打开模具,取出致密度大于99.5%的钛合金制品。
对比例二
其他条件均于实施例二一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;其所得产品的致密度没有变化。
实施例三:
1.将致密度为95%的铜合金(铜含量>60%)制品放入不锈钢模具,制品和模具间填充平均粒径45微米的钛粉(钛粉的填充体积占模具内腔体积的30 %),将模具封装、紧固(由于模具模块之间留有间隙;这些间隙就是很好的通气孔)。
2.装配好的模具放入氢气炉内,在真空中加热至600摄氏度,通入氢气(氢气的压力1bar),保持通入氢气并保温10小时。
3.将氢气炉停止通氢气,抽真空(真空度为小于10-3Pa),升高温度至750摄氏度,保持10小时后停炉冷却。
4.打开氢气炉,取出并打开模具,取出致密度大于99%的铜合金制品。
对比例三
其他条件均于实施例三一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;其所得产品的致密度没有变化。
实施例四:
1.将不锈钢模具内填充满平均粒径小于45微米的钛合金粉(成分:Ti-6Al-4V),将模具封装、紧固。(由于模具模块之间留有间隙;这些间隙就是很好的通气孔)
2.装配好的模具放入氢气炉内,在真空中加热至600摄氏度,通入氢气(氢气的压力为1 bar),保持通入氢气并保温10小时。
3.将氢气炉停止通氢气,抽真空(真空度为小于10 -3Pa),升高温度至750摄氏度,保持10小时后停炉冷却。
4.打开氢气炉,取出并打开模具,取出致密度大于80%的钛合金制品。
对比例四
其他条件均于实施例四一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;其所得产品的致密度没有明显变化。
实施例五:
1.将致密度为95%的铝合金(铝含量>90%)制品放入不锈钢模具放,制品和模具间填充平均粒径60微米的锆镍ZrNi合金粉(锆镍ZrNi合金粉的填充体积占模具内腔体积的40 %),将模具密封。
2.装配好的模具放入氢气炉内,在氢气中加热至200摄氏度,保持通入氢气(氢气的压力为1 bar)并保温5小时。
3.将氢气炉停止通氢气,抽真空(真空度为小于10 -3Pa),升高温度至300摄氏度,保持1小时后停炉冷却。
4.打开氢气炉,取出并打开模具,取出致密度大于99%的铝合金制品。
对比例五
其他条件均于实施例五一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;其所得产品的致密度没有变化。

Claims (10)

  1. 一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:在填充吸氢膨胀物质或填充吸氢膨胀物质与待致密化材料的刚性密闭模具内通入氢气,利用吸氢膨胀物质的体积膨胀效应对自身和/或待致密化材料进行致密化。
  2. 根据权利要求1所述的一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:所述吸氢膨胀物质包括具有吸氢能力的金属。
  3. 根据权利要求1所述的一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于;包括下述步骤:
    步骤一
    将预致密金属坯件A放入模具内;封装、紧固并预留通气口;得到预处理组件,所述预致密金属坯件A中含有具有吸氢能力的金属;预处理组件中,预致密金属坯件A的外壁与模具内壁接触或致密金属坯件A的外壁与模具内壁间留有缝隙;所述缝隙小于预致密金属坯件A吸氢后的线膨胀;
    将预致密金属坯件B以及可吸氢金属粉末一起装入模具内;封装、紧固并预留通气口;得到预处理组件;
    用可吸氢金属粉末装入模具内腔,封装、紧固并预留通气口;得到预处理组件;
    在模具内腔的设定位置上为放置待致密的金属粉体;在模具内腔的其他位置上放置可吸氢金属粉末;封装、紧固并预留通气口;得到预处理组件;
    所述模具为刚性模具;
    步骤二
    将步骤一所得预处理组件置于烧结炉内,通入氢气,升温至吸氢温度,保温;得到吸氢后的试样;然后将气氛调整为惰性气氛或真空气氛和/或在脱氢温度下保温,使得吸氢后的试样放氢;得到放氢后的试样;
    步骤三
    待放氢后的试样冷却后,脱除模具,得到致密化的金属坯件。
  4. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:封装后的模具在加热、吸氢过程中模具的各部件保持紧固不会松动。
  5. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:具有吸氢能力的金属或可吸氢金属粉末完全吸氢后,较吸氢前的体积至少有>5 vol%的膨胀。
  6. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:所述模具的材质不与氢气发生反应。
  7. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:具有吸氢能力的金属材料或可吸氢金属粉末在吸氢温度下,在氢气分压大于等于可吸氢金属或可吸氢金属粉末的氢平衡分压条件下吸氢;所述吸氢温度由所选用的具有吸氢能力的金属材料和/或可吸氢金属粉末的物理化学属性决定。
  8. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:
    所述具有吸氢能力的金属和/或可吸氢金属粉末中含有Ti、Mg、Zr、V、Nb、Ta、Pd、稀土元素中的至少一种元素。
  9. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:重复步骤二直至得到设定致密度的产品。
  10. 根据权利要求3一种利用金属吸氢膨胀促进金属坯体致密化的方法;其特征在于:依次重复步骤一、二、三直至得到设定致密度的产品。
PCT/CN2019/078357 2018-04-25 2019-03-15 一种利用金属吸氢膨胀促进金属坯体致密化的方法 WO2019205830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/979,871 US11219949B2 (en) 2018-04-25 2019-03-15 Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810378341 2018-04-25
CN201810378341.0 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019205830A1 true WO2019205830A1 (zh) 2019-10-31

Family

ID=68294380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078357 WO2019205830A1 (zh) 2018-04-25 2019-03-15 一种利用金属吸氢膨胀促进金属坯体致密化的方法

Country Status (3)

Country Link
US (1) US11219949B2 (zh)
CN (1) CN110394450B (zh)
WO (1) WO2019205830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824303A (zh) * 2022-12-02 2023-03-21 苏州搏技光电技术有限公司 一种高精度温度和压力腔结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059156A (zh) * 2019-12-13 2021-07-02 中南大学 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用
CN111215623B (zh) * 2020-03-02 2021-06-25 北京理工大学 一种Ti-Al系合金的粉末冶金致密化无压烧结方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404948A (zh) * 2002-10-25 2003-03-26 中国科学院上海微系统与信息技术研究所 一种纳米材料中间体的制备方法
CN102044680A (zh) * 2010-11-23 2011-05-04 北京科技大学 一种Sr2MgMoO6型电池阳极材料致密化方法
CN103624995A (zh) * 2013-12-18 2014-03-12 哈尔滨玻璃钢研究院 一种对模成型复合材料的方法
CN104511595A (zh) * 2014-12-30 2015-04-15 中南大学 一种高纯钛粉的制备方法
DE102015212192A1 (de) * 2014-07-08 2016-01-14 Showa Denko K.K. Verfahren zum Herstellen einer Legierung für einen gesinterten Magneten auf R-T-B-Seltenerdbasis und Verfahren zum Herstellen eines gesinterten Magneten auf R-T-B-Seltenerdbasis

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2855476A1 (de) * 1978-12-22 1980-07-03 Daimler Benz Ag Metallhydridspeicher und verfahren zu seiner herstellung
JPH0711016B2 (ja) * 1989-05-10 1995-02-08 工業技術院長 水素吸蔵合金を使用した伝熱モジュールの製造方法
US5137665A (en) * 1990-10-18 1992-08-11 Gte Products Corporation Process for densification of titanium diboride
US5447582A (en) * 1993-12-23 1995-09-05 The United States Of America As Represented By The Secretary Of The Air Force Method to refine the microstructure of α-2 titanium aluminide-based cast and ingot metallurgy articles
JP2000016871A (ja) * 1998-07-01 2000-01-18 Ngk Insulators Ltd 焼結体の製造方法、焼結体、サセプターおよびその製造方法
US8920712B2 (en) * 2007-06-11 2014-12-30 Advanced Materials Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
US9777347B2 (en) * 2007-06-11 2017-10-03 Advance Material Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
CN101530916B (zh) * 2009-04-15 2011-06-01 中南大学 控制粉末冶金材料及制品烧结膨胀缺陷的烧结方法的模具
US9196403B2 (en) * 2010-05-19 2015-11-24 Sumitomo Electric Industries, Ltd. Powder for magnetic member, powder compact, and magnetic member
US9816157B2 (en) * 2011-04-26 2017-11-14 University Of Utah Research Foundation Powder metallurgy methods for the production of fine and ultrafine grain Ti and Ti alloys
CN103962561B (zh) * 2013-02-04 2016-05-04 东莞富强电子有限公司 储氢装置的制造方法
JP6848736B2 (ja) * 2016-07-15 2021-03-24 Tdk株式会社 R−t−b系希土類永久磁石
JP6402163B2 (ja) * 2016-12-07 2018-10-10 三菱重工航空エンジン株式会社 TiAl合金体の水素化脱水素化方法及びTiAl合金粉末の製造方法
CN107640744B (zh) * 2017-09-15 2020-02-18 四川大学 一种高成型性的不饱和氢化钛粉及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404948A (zh) * 2002-10-25 2003-03-26 中国科学院上海微系统与信息技术研究所 一种纳米材料中间体的制备方法
CN102044680A (zh) * 2010-11-23 2011-05-04 北京科技大学 一种Sr2MgMoO6型电池阳极材料致密化方法
CN103624995A (zh) * 2013-12-18 2014-03-12 哈尔滨玻璃钢研究院 一种对模成型复合材料的方法
DE102015212192A1 (de) * 2014-07-08 2016-01-14 Showa Denko K.K. Verfahren zum Herstellen einer Legierung für einen gesinterten Magneten auf R-T-B-Seltenerdbasis und Verfahren zum Herstellen eines gesinterten Magneten auf R-T-B-Seltenerdbasis
CN104511595A (zh) * 2014-12-30 2015-04-15 中南大学 一种高纯钛粉的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824303A (zh) * 2022-12-02 2023-03-21 苏州搏技光电技术有限公司 一种高精度温度和压力腔结构
CN115824303B (zh) * 2022-12-02 2024-01-16 苏州搏技光电技术有限公司 一种高精度温度和压力腔结构

Also Published As

Publication number Publication date
US20210023625A1 (en) 2021-01-28
US11219949B2 (en) 2022-01-11
CN110394450B (zh) 2021-09-07
CN110394450A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP3103359B2 (ja) タングステン―チタンのスパッタリングターゲットの製造方法
AU766574B2 (en) Low oxygen refractory metal powder for powder metallurgy
US8920712B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
WO2019205830A1 (zh) 一种利用金属吸氢膨胀促进金属坯体致密化的方法
EP2374568A1 (en) Billet or bar for a sputtering target with Molybdenum; Corresponding sputtering target
JP2017519101A (ja) サーメット又は超硬合金粉末の作製方法
US4659546A (en) Formation of porous bodies
CN103205721A (zh) 一种钛铝合金靶材的生产方法
US20160243617A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
US5816090A (en) Method for pneumatic isostatic processing of a workpiece
KR100638479B1 (ko) 방전 플라즈마 소결법을 이용한 벌크 비정질 합금 및 벌크비정질 복합재료의 제조 방법
CN111962032A (zh) 一种Ti-Al合金靶材的制备方法
CN111203531B (zh) 一种高致密Ti-Nb-Mo系合金的粉末冶金常压多步烧结方法
CN111690925B (zh) 一种钛及钛合金表面硬化以及表面功能化处理工艺
CN111283203B (zh) 一种利用含钛物质吸氢膨胀促进坯体致密化的方法
US9199308B2 (en) Method of producing composite articles and articles made thereby
KR20090132799A (ko) 복합 분말야금 공정을 이용한 마그네슘 합금의 제조방법
CN111215623B (zh) 一种Ti-Al系合金的粉末冶金致密化无压烧结方法
CN111687409B (zh) 一种钛及钛合金近净成形方法及后续烧结工艺
CN113649571A (zh) 一种高硬度粉末高熵合金的制备方法
CN113634748A (zh) 一种微变形薄壁多孔材料的制备方法
CN112609106A (zh) 一种Zr-Ti-Nb合金及其制备方法
JP3771127B2 (ja) 高密度TiAl金属間化合物の常圧燃焼合成方法
JP2009013471A (ja) Ruターゲット材およびその製造方法
JPS6152201B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19792094

Country of ref document: EP

Kind code of ref document: A1