CN113059156A - 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用 - Google Patents

一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用 Download PDF

Info

Publication number
CN113059156A
CN113059156A CN201911282262.0A CN201911282262A CN113059156A CN 113059156 A CN113059156 A CN 113059156A CN 201911282262 A CN201911282262 A CN 201911282262A CN 113059156 A CN113059156 A CN 113059156A
Authority
CN
China
Prior art keywords
hydrogen
metal
deformation
composite structure
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911282262.0A
Other languages
English (en)
Inventor
周承商
刘咏
段中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201911282262.0A priority Critical patent/CN113059156A/zh
Priority to US17/622,820 priority patent/US11965493B2/en
Priority to PCT/CN2020/134640 priority patent/WO2021115281A1/zh
Publication of CN113059156A publication Critical patent/CN113059156A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0613Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using layers of different materials joined together, e.g. bimetals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0616Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element characterised by the material or the manufacturing process, e.g. the assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/062Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the activation arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明涉及一种利用金属的氢致膨胀作用,形成一种可调节变形的复合材料结构及制备方法。所述氢致膨胀作用是指某些金属在氢气气氛和一定温度条件下,吸收氢气产生体积膨胀效应。金属与氢的反应是可逆反应,在降低氢气分压或升高温度情况下,金属中的氢气可以脱除,使得金属恢复原状。在外界氢+热的刺激下,吸氢金属与其他非吸氢材料的复合体可按设计发生可调控的变形,从而使得材料发生可逆的形状改变。本发明提供了一种在中高温度、含氢气氛下发生可逆的、可调节形变的复合材料结构以及制备方法。本方法可作为一种新型4D打印复合材料,可应用于在中高温下工作的智能形状调节。

Description

一种利用氢致膨胀效应的可调变形复合结构及其制备方法和 应用
技术领域
本发明涉及一种利用氢致膨胀效应的可调变形复合结构以及制备方法和应用;属于4D打印技术开发技术领域。
背景技术
4D打印是由3D技术打印的结构能够在外界刺激下发生形状或者结构改变的一种技术。在3D打印过程中,直接将复合材料与变形结构内置到物料当中,使得复合材料在使用中能自动组装构型,实现研发、设计、制造和装配的一体化融合。4D打印技术中涉及的变形结构一般由具有形状记忆功能的高分子聚合物或形状记忆合金材料构成。
引发4D打印结构自组装或变形动作的刺激(stimulus)一般为:热刺激、水刺激、光热刺激等。然而,目前报道的4D打印的结构多以:高分子聚合物变形体系,以及形状记忆合金的变形驱动。但是形状记忆合金的应用存在使用温度偏低、变形精度较差、循环后记忆效应衰退、变形速率偏低的问题。
氢在一些合金中有较高的固溶度。例如,氢在β-Ti相的固溶度按Ti/H比例可达1:1以上,由于氢原子占据大量β-Ti晶格间隙位置,吸氢后金属体膨胀可达15%以上。该膨胀效应可产生非常可观的应变和应力,引导材料伸长或弯曲。
发明内容
研究发现:许多金属和合金能在一定条件下与氢气反应,具有存储和释放氢气的功能,被作为储氢功能材料使用。然而,在金属吸氢反应过程中,由于晶格参数变化,会产生明显的体积膨胀。例如:金属钛吸氢完全转化为氢化钛后,体积膨胀可达15%以上。金属吸氢导致的膨胀现象,该膨胀效应可产生非常可观的应变和应力。利用氢致形变效应,在外加的氢+热刺激下,使合金发生形状改变,从而使机构完成某些预定动作和功能。该类可变形材料还有望满足空天飞行器、卫星、空间站等多种航空航天应用场景下的自组装、自变形结构需求。
本发明一种利用氢致膨胀效应的可调变形复合结构;复合体由金属A和材料B复合组成;所述金属A具有吸氢膨胀能力;所述材料B不具备吸氢膨胀能力或在同等条件下吸氢膨胀能力小于金属A的吸氢膨胀能力。作为优选,金属A、材料B的赋存状态为块体或薄膜。
作为优选方案,本发明一种利用氢致膨胀效应的可调变形复合结构;所述金属A包括但不限于,钛、钒、锆、铪、钯、稀土及其合金。
作为优选方案,本发明一种利用氢致膨胀效应的可调变形复合结构;材料B选自碳钢、不锈钢、铜合金、高温合金、难熔合金中的至少一种。
作为优选方案,本发明一种利用氢致膨胀效应的可调变形复合结构;由金属A和材料B复合组成的复合体,连接处为紧密的冶金连接,且金属A和材料B在变形激活条件下具有一定的塑性,材料延伸率应>2%,在金属A膨胀导致整个材料变形时,复合结构不会出现任何宏观或微观裂纹。作为进一步的优选方案所述金属A、材料B成复合。
本发明中可调变形复合结构的变形激活过程;包括下述步骤:
步骤一
将由金属A和材料B组成的复合体,置于氢气、或含氢气体环境下,施加可使吸氢金属A发生吸氢的温度,吸氢金属A发生膨胀,导致整个复合体变形,复合体变形可以但不限于:伸长、弯曲、扭转;得到变形件;
对于需要回复原状的物件,完成步骤一的变形后,还需步骤二;
步骤二
将步骤一所得的变形复合体,置于不含氢、或低氢含量气体环境下,施加可使吸氢金属A释放氢气的温度;吸氢金属A发生收缩,导致整个复合体回复原状。
本发明中可调变形复合结构的变形过程中,通过调节环境氢气含量、或氢气浓度、或氢气分压、或温度,以控制吸氢金属A的吸氢量,从而控制复合体的变形量;所述氢气含量、或氢气浓度、或氢气分压、或温度由所选用的吸氢金属A的物理化学属性决定。
在本发明中,变形件可以直接使用在一些特定的环境下。
本发明一种利用氢致膨胀效应的可调变形复合结构的制备方法,通过传统金属制备加工方法制得所述复合结构;所述传统金属制备加工方法包括但不限于:轧制、锻压、挤压,扩散焊、摩擦焊、爆炸复合中的至少一种;或
通过金属薄膜制备方法制得所述复合结构;所述金属薄膜制备方法包括但不限于:化学气相沉积、物理气相沉积、电镀中的至少一种;或
通过3D打印技术包括但不限于:铺粉式激光打印、电子束打印,送粉式激光或电子束打印,熔丝电子束打印,粘结剂喷射3D打印,粉末光固化3D打印中的至少一种。
作为优选方案,本发明一种利用氢致膨胀效应的可调变形复合结构的制备方法,以所述材料B作为基底,在含氢环境中进行3D打印,得到含氢的复合结构;
以所述金属A作为基底,先对基底金属A进行吸氢处理;然后再含氢环境下在基底材料A上进行3D打印,得到含氢的复合结构;
以所述材料B作为基底,在含氢环境中镀上金属A的薄膜,得到含氢的复合结构;
以所述金属A作为基底,先对基底金属A进行吸氢处理;在含氢环境中镀上材料B的薄膜,得到含氢的复合结构。
作为优选方案,本发明一种利用氢致膨胀效应的可调变形复合结构的制备方法,其变形可通过:将含氢的复合结构置于不含氢、或低氢含量气体环境下,施加可使吸氢金属A释放氢气的温度;吸氢金属A发生收缩,导致整个复合体变形,复合体变形可以但不限于:伸长、弯曲、扭转;得到变形件;
如需使变形件重复回复-变形的过程,通过吸氢和放氢来控制。
本发明一种利用氢致膨胀效应的可调变形复合结构的应用,所述复合结构的应用的应用包括用于密封、紧固、压紧释放、机器人、智能变形结构领域中的至少一种。
本发明一种利用氢致膨胀效应的可调变形复合结构的应用;
所述一种利用氢致膨胀效应的可调变形复合结构用于制备多孔和/或致密薄膜材料;
以所述复合结构作为基底,在氢气环境中进行3D打印;即可实现4D打印;
以所述复合结构作为基底,先对基底进行吸氢处理;然后再脱氢环境下进行3D打印;即可实现4D打印。
在工业也上使用时,以所述复合结构作为基底,在氢气环境中进行3D打印;完成打印后,在脱氢环境中脱氢;即可得到4D打印产品。
在工业也上使用时,以所述复合结构作为基底,先对基底进行吸氢处理;然后再脱氢环境下进行3D打印;完成打印后,在吸氢环境中吸氢;即可得到4D打印产品。
在本发明中,通过设计金属A和材料B;可以使得在氢气环境中复合体发生弯曲变形;在发生弯曲变形的过程中可以同时制备相同材质或者不同材质的多孔和致密薄膜材料。
比如:在复合结构弯曲过程中出现延展的一面上涂覆制备多孔薄膜材料的浆料;在复合结构弯曲过程中出现延展的一面上涂覆制备致密薄膜材料的浆料;然后将浆料涂覆于复合结构上,然后再将涂覆有浆料的复合结构件置于氢气环境中,干燥;即可同时得到致密和多孔的薄膜。
原理和优势
根据氢致形变原理,其作为可调节变形材料的优势有:
(1)变形精度高且可调控。材料膨胀应变与吸氢量线性相关。吸氢量则可通过对外加的氢(氢分压)和热(温度)刺激的协同调控实现。有别于形状记忆合金的相变变形机制,氢致形变的优势在于可在较宽的温度区间对氢分压调控使材料达到预定的形变量。
(2)可逆性好。金属-氢反应可逆性好,温度滞后小,理论上材料的反复形变-回复循环可达到数百至数千次以上。
(3)耐高温且高温强度好。金属-氢反应在400-800℃进行。钛合金作为高温高强结构件在航空航天应用非常成熟,氢致形变原理上可应用于所有合金材料,复合结构材料可以是高强钢、高温合金等。
附图说明
附图1为本发明工作原理示意图。
附图2为本发明所设计的二维变形可调的复合结构变形/回复示意图;
附图3为本发明所设计的三维变形可调的复合结构变形/回复示意图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
在本发明中,金属A和材料B的复合体;在加热过程中,不会产生开裂和脱落的情况。
实施例一:
1,选取厚度为10mm的316L不锈钢板作为3D激光打印基板。
2,将平均粒径小于75μm的钛合金粉(成分:Ti-6Al-4V)装入3D激光打印机送粉桶中,调整激光发射器与基板之间距离,载入程序,按图2所示的形状进行打印后,冷却。
3,取出钛合金和不锈钢板复合体,退火。
4,将机加工好的复合体放入氢气炉内,在真空中加热至650摄氏度,通入常压氢气,保持通入氢气并保温2小时后停炉冷却。
5,打开氢气炉,取出钛合金和不锈钢均已发生明显弯曲变形的复合体。
6,将发生弯曲变形的钛合金和不锈钢复合体放入真空炉内,抽真空(真空度小于10-3Pa)升高温度至750摄氏度,保持5小时后停炉冷却。
7,打开真空炉,取出钛合金和不锈钢均已恢复至原状的复合体。
对比例一:
其他条件均于实施例一一致,不同之处在于,步骤(4)中不通入氢气,而通入氩气;所得钛合金和不锈钢复合体没有发生弯曲变形。
实施例二:
1,选取厚度为10mm的Inconel718高温合金作为3D电子束打印基板。
2,将平均粒径小于100μm的钛合金粉(成分:Ti-6Al-4V)装入3D电子束打印机送粉器中,对粉料进行预热,再利用粉末在高温合金上按图3所示形状进行电子束打印后,进行冷却。
3,取出钛合金和高温合金复合结构。
4,将机加工好的复合体放入氢气炉内,在真空中加热至650摄氏度,通入氢气(氢气的的压力1bar),保持通入氢气并保温2小时后停炉冷却。
5,打开氢气炉,取出钛合金和高温合金的复合体,均已发生明显弯曲变形。
6,将发生弯曲变形的钛合金和高温合金的复合体放入真空炉内,抽真空(真空度小于10-3Pa)升高温度至750摄氏度,保持4小时后停炉冷却。
7,打开真空炉,取出钛合金和高温合金的复合体均已恢复至原状的复合体。
对比例二:
其他条件均于实施例二一致,不同之处在于,步骤(4)中不通入氢气,而通入氩气;所得钛合金和高温合金的复合体没有发生弯曲变形。
实施例三:
1,将纯钛和低碳钢的双层复合板材,机加工出形状如图2所示的复合体。
2,将机加工好的复合体放入氢气炉内,在真空中加热至650摄氏度,通入常压的纯氢气,保持通入氢气并保温1小时后停炉冷却。
3,打开氢气炉,取出的复合体,钛和低碳钢层均已发生明显弯曲变形。
4,将发生弯曲变形的钛和低碳钢复合体放入真空炉内,抽真空(真空度小于10- 3Pa)升高温度至750摄氏度,保持2小时后停炉冷却。
5,打开真空炉,取出钛和低碳钢均已恢复至原状的复合体。
对比例三
其他条件均于实施例三一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;所得钛和低碳钢复合体没有发生弯曲变形。
实施例四:
1,将TC4钛合金和316L不锈钢的双层复合板材,机加工出形状如图3所示复合体。
2,将机加工好的复合体放入氢气炉内,在真空中加热至700摄氏度,通入氢气(氢气的的压力1bar),保持通入氢气并保温1小时后停炉冷却。
3,打开氢气炉,取出的复合体,TC4钛合金和316L不锈钢均已发生明显弯曲变形。
4,将发生弯曲变形的TC4钛合金和316L不锈钢复合体放入真空炉内,抽真空(真空度小于10-3Pa)升高温度至800摄氏度,保持3小时后停炉冷却。
5,打开真空炉,取出TC4钛合金和316L不锈钢均已恢复至原状的复合体。
对比例四
其他条件均于实施例四一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;所得TC4钛合金和316L不锈钢复合体没有发生弯曲变形。
实施例五:
1,将锆和铜金属的双层复合板材,机加工出形状如图3所示复合体。
2,将机加工好的复合体放入氢气炉内,在真空中加热至800摄氏度,通入氢气(氢气的的压力1bar),保持通入氢气并保温4小时后停炉冷却。
3,打开氢气炉,取出锆和铜均已发生明显弯曲变形的复合体。
4,将发生弯曲变形的锆和铜复合体放入真空炉内,抽真空(真空度小于10-3Pa)升高温度至750摄氏度,保持10小时后停炉冷却。
5,打开真空炉,取出锆和铜均已恢复至原状的复合体。
对比例五
其他条件均于实施例五一致,不同之处在于,步骤(2)中不通入氢气,采用真空;所得锆和铜复合体没有发生弯曲变形。
实施例六:
1,选取厚度为10mm的316L不锈钢板作为3D激光打印基板。
2,将平均粒径小于75μm的钛合金粉(成分:Ti-6Al-4V)装入3D激光打印机送粉桶中,通入含5%氢气的氢-氩混合气体,调整激光发射器与基板之间距离,载入程序,按图2所示的形状进行打印后,冷却。
3,取出钛合金和不锈钢板复合体,在750摄氏度真空退火。
4,打开真空炉,取出钛合金和不锈钢均已发生明显弯曲变形的复合体。
对比例六:
其他条件均于实施例六一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;所得钛合金和不锈钢复合体没有发生弯曲变形。
实施例七:
1,选取厚度为0.1mm的316L不锈钢板作为基板。
2,以99.99%的钛材作为靶材,利用磁控溅射技术,将不锈钢基板上沉积0.2mm的钛薄膜,在氢气气氛中冷却。
3,取出钛合金和不锈钢板复合体,在750摄氏度真空退火。
4,打开真空炉,取出钛合金和不锈钢均已发生明显弯曲变形的复合体。
对比例七:
其他条件均于实施例七一致,不同之处在于,步骤(2)中不通入氢气,而通入氩气;所得钛合金和不锈钢复合体没有发生弯曲变形。

Claims (10)

1.一种利用氢致膨胀效应的可调变形复合结构;其特征在于:复合体由金属A和材料B复合组成;所述金属A具有吸氢膨胀能力;所述材料B不具备吸氢膨胀能力或在同等条件下吸氢膨胀能力小于金属A的吸氢膨胀能力。
2.根据权利要求1所述的一种利用氢致膨胀效应的可调变形复合结构;其特征在于:所述金属A包括但不限于,钛、钒、锆、铪、钯、稀土及其合金。
3.根据权利要求1所述的一种利用氢致膨胀效应的可调变形复合结构;其特征在于:材料B包括但不限于,碳钢、合金钢、不锈钢、铜合金、钛铝合金、高温合金、难熔合金中的至少一种。
4.根据权利要求1所述的一种利用氢致膨胀效应的可调变形复合结构;其特征在于:由金属A和材料B组成的复合体,连接处为紧密的冶金连接,且金属A和材料B在变形激活条件下具有一定的塑性,材料延伸率应>2%。在金属A膨胀导致整个材料变形时,复合结构不会出现任何宏观或微观裂纹。
5.根据权利要求1-4任意一项所述的可调变形复合结构的变形激活过程;其特征在于:其变形包括下述步骤:
步骤一
将由金属A和材料B组成的复合体,置于氢气、或含氢气体环境下,施加可使吸氢金属A发生吸氢的温度,吸氢金属A发生膨胀,导致整个复合体变形,复合体变形可以但不限于:伸长、弯曲、扭转;得到变形件;
对于需要回复原状的物件,完成步骤一的变形后,还需步骤二;
步骤二
将步骤一所得的变形复合体,置于不含氢、或低氢含量气体环境下,施加可使吸氢金属A释放氢气的温度;吸氢金属A发生收缩,导致整个复合体回复原状。
6.根据权利要求5所述的一种利用氢致膨胀效应的变形激活过程;其特征在于:变形过程中,通过调节环境氢气含量、或氢气浓度、或氢气分压、或温度,以控制吸氢金属A的吸氢量,从而控制复合体的变形量;所述氢气含量、或氢气浓度、或氢气分压、或温度由所选用的吸氢金属A的物理化学属性决定。
7.一种如权利要求1-4任意一项所述复合结构的制备方法,其特征在于包括:通过传统金属制备加工方法制得所述复合结构;所述传统金属制备加工方法包括但不限于:轧制、锻压、挤压,扩散焊、摩擦焊、爆炸复合中的至少一种;或
通过金属薄膜制备方法制得所述复合结构;所述金属薄膜制备方法包括但不限于:化学气相沉积、物理气相沉积、电镀中的至少一种;或
通过3D打印技术包括但不限于:铺粉式激光打印、电子束打印,送粉式激光或电子束打印,熔丝电子束打印,粘结剂喷射3D打印,粉末光固化3D打印中的至少一种。
8.根据权利要求7中所述的复合材料制备方法;其特征在于还可以采用:以所述材料B作为基底,在含氢环境中进行3D打印,得到含氢的复合结构;
以所述金属A作为基底,先对基底金属A进行吸氢处理;然后再含氢环境下在基底材料A上进行3D打印,得到含氢的复合结构;
以所述材料B作为基底,在含氢环境中镀上金属A的薄膜,得到含氢的复合结构;
以所述金属A作为基底,先对基底金属A进行吸氢处理;在含氢环境中镀上材料B的薄膜,得到含氢的复合结构。
9.根据权利要求8中所述的含氢的复合结构的制备方法,其特征在于:其变形可通过:将含氢的复合结构置于不含氢、或低氢含量气体环境下,施加可使吸氢金属A释放氢气的温度;吸氢金属A发生收缩,导致整个复合体变形,复合体变形可以但不限于:伸长、弯曲、扭转;然后得到变形件;
如需使变形件重复回复-变形的过程,通过吸氢和放氢来控制。
10.一种如权利要求1-4任意一项所述复合结构的应用,其特征在于:所述复合结构
的应用包括用于密封、紧固、压紧释放、机器人、智能变形结构领域中的至少一种。
CN201911282262.0A 2019-12-13 2019-12-13 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用 Pending CN113059156A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911282262.0A CN113059156A (zh) 2019-12-13 2019-12-13 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用
US17/622,820 US11965493B2 (en) 2019-12-13 2020-12-08 Adjustable deforming composite structure based on hydrogen-induced expansion effect and preparation method therefor
PCT/CN2020/134640 WO2021115281A1 (zh) 2019-12-13 2020-12-08 利用氢致膨胀效应的可调变形复合结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911282262.0A CN113059156A (zh) 2019-12-13 2019-12-13 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113059156A true CN113059156A (zh) 2021-07-02

Family

ID=76329536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911282262.0A Pending CN113059156A (zh) 2019-12-13 2019-12-13 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用

Country Status (3)

Country Link
US (1) US11965493B2 (zh)
CN (1) CN113059156A (zh)
WO (1) WO2021115281A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192906A (ja) * 1985-02-21 1986-08-27 Nippon Denso Co Ltd 水素吸蔵合金を利用したアクチユエ−タ
US4637962A (en) * 1983-03-14 1987-01-20 Bbc Brown Boveri & Company Limited Composite material in rod, tube, strip, sheet or plate shape with reversible thermomechanical properties and process for its production
JP2003102828A (ja) * 2001-09-28 2003-04-08 Tokai Univ 強力水素吸蔵合金形状記憶薄膜、強力水素吸蔵合金形状記憶複合材料及び医療用ソフトカテーテル
CN1424245A (zh) * 2002-12-26 2003-06-18 上海交通大学 基于吸氢合金薄膜的电化学微驱动器及其制备方法
CN110394450A (zh) * 2018-04-25 2019-11-01 中南大学 一种利用金属吸氢膨胀促进金属坯体致密化的方法
CN110465662A (zh) * 2019-08-09 2019-11-19 华南理工大学 一种原位调控镍钛合金功能特性的4d打印方法及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530792B2 (ja) * 1999-12-24 2004-05-24 トーカロ株式会社 金属基複合材料およびその製造方法
CN102530860B (zh) * 2010-12-28 2014-03-05 北京有色金属研究总院 一种自带热源的金属氢化物氢压缩装置及其制作方法
CN102218592B (zh) 2011-05-12 2013-04-24 西北工业大学 一种钛或钛合金与不锈钢的扩散焊方法
DE102014006369A1 (de) * 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher rnit einem Verbundmaterial und ein Verfahren zur Herstellung
DE102014006370A1 (de) * 2014-05-05 2015-11-05 Gkn Sinter Metals Engineering Gmbh Wasserstoffspeicher mit einem hydrierbaren Material und ein Verfahren
CN105385869B (zh) * 2015-10-30 2017-07-07 航天材料及工艺研究所 高铌TiAl系金属间化合物与TC4钛合金复合构件的制备方法
CN107695509A (zh) * 2017-10-21 2018-02-16 天津大学 基于搅拌摩擦焊/熔焊复合焊的钛钢复合管焊接方法
CN111687530B (zh) * 2019-03-12 2022-02-01 中南大学 一种吸氢膨胀物质与其他材料的复合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637962A (en) * 1983-03-14 1987-01-20 Bbc Brown Boveri & Company Limited Composite material in rod, tube, strip, sheet or plate shape with reversible thermomechanical properties and process for its production
JPS61192906A (ja) * 1985-02-21 1986-08-27 Nippon Denso Co Ltd 水素吸蔵合金を利用したアクチユエ−タ
JP2003102828A (ja) * 2001-09-28 2003-04-08 Tokai Univ 強力水素吸蔵合金形状記憶薄膜、強力水素吸蔵合金形状記憶複合材料及び医療用ソフトカテーテル
CN1424245A (zh) * 2002-12-26 2003-06-18 上海交通大学 基于吸氢合金薄膜的电化学微驱动器及其制备方法
CN110394450A (zh) * 2018-04-25 2019-11-01 中南大学 一种利用金属吸氢膨胀促进金属坯体致密化的方法
CN110465662A (zh) * 2019-08-09 2019-11-19 华南理工大学 一种原位调控镍钛合金功能特性的4d打印方法及应用

Also Published As

Publication number Publication date
WO2021115281A1 (zh) 2021-06-17
US20220325703A1 (en) 2022-10-13
US11965493B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
US5024369A (en) Method to produce superplastically formed titanium alloy components
US20020041819A1 (en) Low oxygen refractory metal powder for powder metallurgy
JP2015513002A (ja) 金属粉末及び粉末成形体を製造する方法、並びに前記方法によって製造された粉末及び粉末成形体
CN101250635A (zh) 一种高性能粉末冶金Mo-Ti-Zr钼合金的制备方法
US11421303B2 (en) Titanium alloy products and methods of making the same
US5816090A (en) Method for pneumatic isostatic processing of a workpiece
JP2019527345A (ja) 原子燃料棒向けのコールドスプレークロム被覆法
Hodge Elevated-temperature compaction of metals and ceramics by gas pressures
CN103938005A (zh) 气流磨氢化钛粉制备超细晶粒钛及钛合金的方法
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
CN113059156A (zh) 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用
El-Eskandarany et al. Cold-rolled magnesium hydride strips decorated with cold-sprayed Ni powders for solid-state-hydrogen storage
Thadhani et al. Shock-induced reaction synthesis (SRS) of nickel aluminides
CN111690925A (zh) 一种钛及钛合金表面硬化以及表面功能化处理工艺
US5564620A (en) Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions
CN107824995A (zh) 一种应用于含铝的氧化物弥散强化铁素体/马氏体钢的焊接方法
Lutfullin Superplasticity and solid-state bonding of materials
CN111499481A (zh) 一种铝热剂及其制备方法
CN107953619B (zh) 钛基非晶/钛合金层状复合材料及其制备方法
CN114453586B (zh) 一种高含钨量钨硼铝复合屏蔽板材的制备方法
CN115305388B (zh) 一种非等原子比镍基高熵合金材料及其制备方法
RU2776244C1 (ru) Способ получения композиционного материала и изделия из него
JP2001279303A (ja) Ti−Al金属間化合物部材の製造方法
Shen et al. Calculation of the temperature for formation of competing intermetallic compounds in NiTi multilayers
Rubio-Padrón et al. EffEct of AnnEAling And SilvEr contEnt on thE MEchAnicAl ProPErtiES of Zn-Al-Ag AlloyS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination