WO2019203026A1 - 太陽電池モジュールのリサイクル方法及びリサイクル装置 - Google Patents

太陽電池モジュールのリサイクル方法及びリサイクル装置 Download PDF

Info

Publication number
WO2019203026A1
WO2019203026A1 PCT/JP2019/015123 JP2019015123W WO2019203026A1 WO 2019203026 A1 WO2019203026 A1 WO 2019203026A1 JP 2019015123 W JP2019015123 W JP 2019015123W WO 2019203026 A1 WO2019203026 A1 WO 2019203026A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
solar cell
cell module
cover glass
recycling
Prior art date
Application number
PCT/JP2019/015123
Other languages
English (en)
French (fr)
Inventor
酒井 紀行
原田 秀樹
Original Assignee
ソーラーフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソーラーフロンティア株式会社 filed Critical ソーラーフロンティア株式会社
Priority to JP2020514080A priority Critical patent/JP7296947B2/ja
Priority to US17/048,087 priority patent/US20210162729A1/en
Priority to CN202310737062.XA priority patent/CN116748280A/zh
Priority to CN201980026466.XA priority patent/CN112703066B/zh
Priority to EP19788956.1A priority patent/EP3782744A4/en
Publication of WO2019203026A1 publication Critical patent/WO2019203026A1/ja
Priority to JP2023097077A priority patent/JP2023123572A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Definitions

  • the present invention relates to a solar cell module recycling method and a recycling apparatus.
  • solar cell module includes various materials including rare metals and harmful substances. Therefore, if these materials can be recovered at a high yield, it can contribute to effective utilization of earth resources, reduction of product costs, and non-diffusion of harmful substances.
  • JP 2016-203061 A Japanese Patent No. 5547750
  • Patent document 1 discloses the technique which isolate
  • separation between the glass substrate and the other material is performed by cutting a sealing material that adheres the two with a blade.
  • the technique of Patent Document 1 requires a step of removing the sealing material remaining on the glass substrate. This process is, for example, a process in which the sealing material is baked at a high temperature for about 13 hours and thermally decomposed. As a result, the recycling cost becomes enormous, and the environmental load increases due to the generation of CO 2 .
  • Patent Document 2 discloses a technique for separating a back surface protective material from a glass substrate by pressing a blade against a sealing material softened by heating.
  • this technique also uses a blade to cut the sealing material that adheres the glass substrate and the back surface protective material.
  • a large amount of the sealing material remains in close contact with the glass substrate after the separation. Therefore, even in the technique of Patent Document 2, in order to remove the sealing material remaining on the glass substrate, for example, a process of baking the sealing material at a high temperature for a long time and thermally decomposing it is necessary.
  • the embodiment of the present invention proposes a recycling technique for solar cell modules capable of recovering materials at low cost and high yield.
  • the recycling method according to the embodiment of the present invention is applied to a solar cell module including a cover glass, a battery layer, and a sealing material that adheres them.
  • the interface between the cover glass and the sealing material is heated to a predetermined temperature range, and the interface is maintained from the side surface of the solar cell module to the sealing material while maintaining the predetermined temperature range. Applying force, the sealing material and the battery layer are peeled off from the interface.
  • the figure which shows the 1st example of a recycling apparatus The figure which shows the 2nd example of a recycling apparatus.
  • separation of the method of FIG. The figure which shows the relationship between module temperature and the adhesive force of a sealing material.
  • FIG. 1 shows a first example of a recycling apparatus.
  • the solar cell module recycling apparatus 10 includes a heating device 11, a separation device 12, and a control unit 13 for controlling them.
  • the heating device (heater) 11 heats the solar cell module to be recycled to a predetermined temperature range.
  • the heating device 11 sets the interface between the cover glass and the sealing material at a predetermined temperature, as will be described later. It is provided for the purpose of heating to a range. This is because the sealing material is peeled off from the cover glass together with the battery layer, as will be described later.
  • the heating device 11 has a function of locally heating the interface between the cover glass and the sealing material.
  • the heating device 11 may heat the solar cell module as a whole. Even in this case, the solar cell module can be peeled off from the cover glass together with the battery layer by heating the solar cell module to a predetermined temperature range and applying a force to the encapsulant from its side surface.
  • the type of the heating device 11 is not particularly limited.
  • a lamp heating type, a resistance heating type, a high frequency heating type, an induction heating type, or the like can be used.
  • the separation device 12 has a function of peeling the sealing material and the battery layer from the cover glass without cutting the sealing material with respect to the solar cell module heated to a predetermined temperature range by the heating device 11.
  • the separation device 12 includes a stage 121, a drive unit 122, and a separator 123.
  • the stage 121 is for installing or transporting the solar cell module.
  • the drive unit 122 sets the relative speed between the solar cell module and the separator 123 in a predetermined speed range in a direction parallel to the surface of the cover glass or the stage 121, and presses the side surface of the solar cell module against the separator. For example, the drive unit 122 sends out the solar cell module on the stage 121 in a direction toward the separator 123 within a predetermined speed range.
  • the separator 123 applies a force to the sealing material from the side surface of the solar cell module.
  • the separator 123 is not limited to a shape, fixed / movable, and the like as long as a force can be applied to the sealing material.
  • the separator 123 has a curved surface portion. This curved surface portion is effective for effectively converting the force applied to the side surface of the solar cell module into a force for peeling off the sealing material and the battery layer from the cover glass, that is, a force perpendicular to the surface of the cover glass. is there.
  • the separator 123 may be fixed, or may be movable in a direction parallel to the surface of the cover glass, specifically, a direction toward the solar cell module.
  • the control unit 13 includes a controller and a memory.
  • the controller is, for example, a CPU or MPU.
  • the memory is, for example, a RAM or a ROM.
  • the control unit 13 may be a unit incorporated in the recycling apparatus 10 or may use a general-purpose apparatus such as a personal computer.
  • the control unit 13 for example, a predetermined temperature range for heating the solar cell module in the heating device 11 and a predetermined temperature for transporting the solar cell module in the separation device 12 Control the speed range.
  • the control unit 13 sets the predetermined temperature range to 40 ° C. or higher and 140 ° C. or lower.
  • the control unit 13 sets the predetermined speed range to 24 mm / second or less (however, excluding 0 mm / second). The basis for setting these temperature ranges and speed ranges will be described later.
  • the control unit 13 determines the angle of the separator 123 and At least one of the temperatures may be controlled.
  • the control unit 13 can control the force for peeling off the sealing material and the battery layer from the cover glass by controlling the angle of the separator 123.
  • FIG. 2 shows a second example of the recycling apparatus.
  • the recycling apparatus 10 of this example is characterized in that a heating device is omitted and a heater 124 is provided in the separation device 12. Since the other points are the same as those in the first example, the same reference numerals as those used in FIG. 1 are used in FIG.
  • the heater 124 is disposed immediately below the stage 121.
  • the heater 124 may be incorporated in the stage 121.
  • the type of the heater 124 is not particularly limited, but it is desirable to use a resistance heating type that can be reduced in size, such as a hot plate.
  • the heater 124 can heat the solar cell module from the cover glass side. That is, the control unit 13 can easily set the interface between the cover glass and the sealing material of the solar cell module within a predetermined temperature range.
  • the recycling apparatus of this example it is possible to easily weaken the adhesion at the interface between the cover glass and the sealing material. As a result, it is possible to peel off the sealing material and the battery layer from the interface between the cover glass and the sealing material by executing a recycling method described later.
  • FIG. 3 shows a modification of the separation device. This modification is applicable to both the first example (FIG. 1) and the second example (FIG. 2).
  • the feature of this modification is that a roller 125 is provided in place of the stage 121 of FIGS.
  • the roller 125 has an effect of facilitating the transportation of the solar cell module by the driving unit 122.
  • the heater 124 of FIG. 2 can be provided between the rollers 125 of FIG. 3 to increase the heating efficiency of the solar cell module.
  • the kind of solar cell module that can be the target of this embodiment is not particularly limited.
  • the solar cell module to be recycled only needs to include at least a cover glass, a battery layer, and a sealing material that adheres them.
  • FIG. 4 shows a first example of a solar cell module.
  • the first example is an example of a compound solar cell module.
  • the compound solar cell module has a feature that it can be made thinner and less expensive than the silicon solar cell module.
  • the solar cell module 20 includes a battery cell portion 21, a back sheet 22, a cover glass 23, and a sealing material 24.
  • the battery cell unit 21 includes a substrate glass 21A and a battery layer 21B on the substrate glass 21A. That is, the solar cell module 20 has a structure in which the battery layer 21B is sandwiched between two glass plates (the cover glass 23 and the substrate glass 21A).
  • the substrate glass 21A can be changed to a resin substrate, a metal substrate, a flexible flexible substrate, for example, a flexible substrate having a laminated structure of stainless steel (SUS), aluminum, and aluminum oxide.
  • the substrate glass 21A may contain an alkali metal such as sodium or potassium.
  • the battery layer 21B has a function of converting light into electricity. Light enters the battery layer 21B from the cover glass 23 side.
  • the battery layer 21B has, for example, the structure shown in FIG.
  • the battery layer 21B includes a first electrode layer 211 on the substrate glass 21A, a photoelectric conversion layer 212 on the first electrode layer 211, a buffer layer 213 on the photoelectric conversion layer 212, and a buffer layer 213.
  • the first electrode layer 211 is, for example, a metal electrode layer.
  • the first electrode layer 211 is preferably provided with a material that hardly reacts with the photoelectric conversion layer 212.
  • the first electrode layer 211 can be selected from molybdenum (Mo), titanium (Ti), chromium (Cr), and the like.
  • the first electrode layer 211 may include the same material as that contained in the second electrode layer 214.
  • the thickness of the first electrode layer 211 is set to 200 nm or more and 500 nm or less.
  • the photoelectric conversion layer 212 is a polycrystalline or microcrystalline p-type compound semiconductor layer.
  • the photoelectric conversion layer 212 includes a chalcopyrite mixed crystal compound (I-III) including a group I element, a group III element, and selenium (Se) and sulfur (S) as a group VI element (chalcogen element). -(Se, S) 2 ).
  • the group I element can be selected from copper (Cu), silver (Ag), gold (Au), and the like.
  • the group III element can be selected from indium (In), gallium (Ga), aluminum (Al), and the like.
  • the photoelectric conversion layer 212 may include tellurium (Te) in addition to selenium and sulfur as a group VI element.
  • the photoelectric conversion layer 212 is thinned, and the thickness is set to 1 ⁇ m or more and 1.5 ⁇ m or less.
  • the buffer layer 213 is, for example, an n-type or i (intrinsic) type high-resistance conductive layer.
  • “high resistance” means having a resistance value higher than that of the second electrode layer 214.
  • the buffer layer 213 can be selected from compounds containing zinc (Zn), cadmium (Cd), and indium (In).
  • ZnO, ZnS, Zn (OH) 2 or a mixed crystal thereof such as Zn (O, S), Zn (O, S, OH), ZnMgO, ZnSnO, etc. There is.
  • the compound containing cadmium examples include CdS, CdO, or mixed crystals thereof such as Cd (O, S) and Cd (O, S, OH).
  • Examples of the compound containing indium include InS, InO, or In (O, S) and In (O, S, OH) which are mixed crystals thereof.
  • the buffer layer 213 may have a stacked structure of these compounds. The thickness of the buffer layer 213 is set to 10 nm or more and 100 nm or less.
  • the buffer layer 213 has the effect of improving the characteristics such as the photoelectric conversion rate, but this can be omitted.
  • the second electrode layer 214 is disposed on the photoelectric conversion layer 212.
  • the second electrode layer 214 is, for example, an n-type conductive layer.
  • the second electrode layer 214 preferably includes a material having a wide forbidden band and a sufficiently low resistance value.
  • the second electrode layer 214 is a path for light such as sunlight, it is preferable that the second electrode layer 214 has a property of transmitting light having a wavelength that can be absorbed by the photoelectric conversion layer 212. In this sense, the second electrode layer 214 is called a transparent electrode layer or a window layer.
  • the second electrode layer 214 includes a metal oxide to which a group III element (B, Al, Ga, or In) is added as a dopant.
  • the metal oxide include ZnO or SnO 2 .
  • the second electrode layer 214 is made of, for example, ITO (indium tin oxide), ITiO (indium titanium oxide), IZO (indium zinc oxide), ZTO (zinc oxide tin), FTO (fluorine-doped tin oxide), GZO (gallium doped). Zinc oxide) and the like.
  • the thickness of the second electrode layer 214 is set to 0.5 ⁇ m or more and 2.5 ⁇ m or less.
  • the back sheet 22 covers the back surface of the substrate glass 21A.
  • the back surface of the substrate glass 21A refers to a surface on the opposite side to the surface on which the battery layer 21B is provided, of the two surfaces of the substrate glass 21A.
  • the back sheet 22 includes, for example, PET (Poly Ethylene Terephthalate), metal foil (for example, aluminum foil), and the like.
  • Sealing material 24 is disposed between battery layer 21 ⁇ / b> B and cover glass 23.
  • the cover glass 23 is, for example, white plate tempered glass or a transparent resin plate.
  • the sealing material 24 includes materials such as EVA (Ethylene Vinyl Acetate), PVB (Poly Vinyl Butyral), and silicon resin.
  • EVA Ethylene Vinyl Acetate
  • PVB Poly Vinyl Butyral
  • the sealing material 24 seals the battery layer 21 ⁇ / b> B by pressurization and heating, and closely contacts the battery layer 21 ⁇ / b> B and the cover glass 23.
  • FIG. 6 shows a second example of the solar cell module.
  • the second example is an example of a silicon-based solar cell module.
  • the solar cell module 20 includes a battery cell unit 21, a back sheet 22, a cover glass 23, and a sealing material 24 that seals the battery cell unit 21.
  • the sealing material 24 adheres the back sheet 22 and the cover glass 23 to each other. That is, the battery cell unit 21 is sandwiched between the back sheet 22 and the cover glass 23.
  • the silicon-based solar battery module includes a battery cell portion 21 made of a silicon substrate as a battery layer.
  • the battery cell part 21 is sealed with the sealing material 24 similarly to the battery layer in the compound solar cell module shown in the first example.
  • the 1st example is related with the method of peeling off substrate glass from a solar cell module, leaving almost no sealing material.
  • a sealing material such as EVA has a role of preventing moisture and dust from entering the battery cell portion by embedding the cover glass and the battery cell portion while being in close contact with each other. That is, the more reliable the sealing, the more difficult it is to peel off the sealing material from the cover glass.
  • the present inventors have examined how the sealing material can be peeled off from the cover glass with almost no sealing material left on the cover glass. It has been found that the temperature, specifically the temperature at the interface between the cover glass and the sealing material, and the force applied to the solar cell module when the sealing material is peeled off are important. Based on this relationship between temperature and force, the idea of peeling off the sealing material from the cover glass has not existed conventionally.
  • FIG. 7 shows a first example of a solar cell module recycling method.
  • the solar cell module 20 as a target of recycling includes a battery cell portion 21, a cover glass 23, and a sealing material 24 that closely contacts these.
  • a cover glass separation step by peeling is executed, and the solar cell module 20 is separated into a cover glass 23 and other battery cell portions 21 and a sealing material 24.
  • the cover glass separation step by peeling is the solar cell module 20 in a state where the interface between the cover glass 23 and the sealing material 24 is set to a predetermined temperature range and the interface maintains the predetermined temperature range.
  • This is a step of applying a force to the battery cell portion 21 from the side surface (step ST01).
  • the reason why the interface between the cover glass 23 and the sealing material 24 is set to a predetermined temperature range is to weaken the adhesion between the cover glass 23 and the sealing material 24.
  • the sealing material 24 is not heated to the extent that it melts.
  • the sealing material 24 is set to the softening temperature or higher and the melting temperature or lower.
  • the reason why the force is applied to the battery cell portion 21 is to peel off the battery cell portion 21 and the sealing material 24 from the cover glass 23, starting from the portion where the force is applied.
  • the cover glass 23 can be easily and smoothly separated from the other battery cell portions 21 and the sealing material 24. Further, after this separation, the cover glass 23 is not crushed and the sealing material 24 hardly remains on the cover glass 23. That is, the sealing material 24 is not present at all on the cover glass 23 or is slightly left at the edge thereof.
  • the ratio of the weight of the sealing material 24 remaining in the glass body to the weight of the glass body as the cover glass 23 for recycling decomposed from the solar cell module 20 is 9% or less.
  • the cover glass 23 can be provided.
  • the glass body is a cover glass 23 to which no sealing material 24 is attached. Therefore, according to the method of this example, the glass material can be effectively recycled from the cover glass 23 and the cover glass 23 can be reused as it is.
  • FIG. 8 shows a comparative example of a solar cell module recycling method. Since the comparative example is difficult to peel off the sealing material 24 from the cover glass 23, the comparative example relates to a technique of cutting the sealing material 24 with a blade. In FIG. 8, the same elements as those in FIG.
  • the sealing material 24 is not peeled off from the cover glass 23, and the battery cell portion 21 and the cover glass 23 are generally separated by a cover glass separation process by cutting.
  • the cover glass separation step by cutting is a step of separating the battery cell portion 21 and the cover glass 23 by cutting the sealing material 24 with a blade (step ST11).
  • the surface of the cover glass 23 is provided with a number of fine irregularities (embosses) in order to efficiently guide sunlight to the battery cell portion 21. That is, it is extremely difficult to physically remove the sealing material 24 remaining in the recess of the cover glass 23. Therefore, in the comparative example, it is necessary to further execute a sealing material removing process on the cover glass 23 obtained by the cover glass separating process by cutting (step ST12).
  • Sealant removal step for example, a sealing material 24 was fired hot in about 13 hours, and a thermal decomposition process, as a result, the recycling cost is enormous, greater environmental impact due to the generation of CO 2 become.
  • the cover is based on the temperature of the solar cell module and the force applied to the solar cell module. It becomes possible to peel off a sealing material and a battery cell part from glass. Therefore, according to this example, it is possible to realize a solar cell module recycling technology that can recover materials at low cost and high yield.
  • the back sheet 22 is removed from the solar cell module 20 shown in FIG. 4 or FIG. Thereafter, using the heating device 11 of FIG. 1 or the heater 124 of FIG. 2, the solar cell module 20 is set to a predetermined temperature range, for example, a temperature of 40 ° C. or more and 140 ° C. or less. Thereby, the bonding force between the cover glass 23 and the sealing material 24 is weakened in advance.
  • a predetermined temperature range for example, a temperature of 40 ° C. or more and 140 ° C. or less.
  • the separator 123 is pressed against the side surface of the solar cell module 20.
  • the separator 123 is pressed against the side surface of the solar cell module 20 as a result.
  • This time is a first time when the separator 123 first contacts the side surface of the solar cell module 20.
  • the battery cell unit 21, that is, the substrate glass 21 ⁇ / b> A and the battery layer 21 ⁇ / b> B receives force from the separator 123.
  • the separator 123 when the separator 123 includes a curved surface portion, when the curved surface portion contacts the battery cell portion 21, the battery cell portion 21 receives a force F from the separator 123. A part of the force F becomes a force Fup that peels the battery cell portion 21 together with the sealing material 24 from the cover glass 23. Accordingly, as shown in FIG. 11, the battery cell portion 21 and the sealing material 24 are peeled off from the cover glass 23 starting from the contact portion between the separator 123 and the battery cell portion 21.
  • the battery cell portion 21 is peeled off from the cover glass 23 while being crushed. Therefore, the battery cell part 21 and the sealing material 24 separated from the cover glass 23 become a glass cullet as shown in FIG. A method for recovering the material in the battery cell portion 21 and the sealing material 24 from the glass cullet will be described later.
  • the contact portion between the separator 123 and the battery cell portion 21 also changes.
  • This time point is a second time point other than the first time point described above.
  • the angle (contact angle) ⁇ between the tangent L at the contact portion P and the surface of the cover glass 23 is preferably, for example, 36 ° or more and 51 ° or less. The reason will be described later.
  • the separator 123 does not contact the boundary portion X where the cover glass 23 and the sealing material 24 are separated.
  • the state of separation in the comparative example of FIG. 8 will be briefly described.
  • the battery cell unit 21 and the cover glass 23 are separated using a blade (for example, a hot knife) 126.
  • This separation is performed by cutting the sealing material 24 with the blade 126.
  • the blade 126 always contacts the boundary X where the cover glass 23 and the sealing material 24 are separated.
  • the cover glass 23 is placed on the stage 121 by feeding the solar cell panel 20 toward the separator 123 with the cover glass 23 facing downward, and pressing the side surface of the solar cell panel 20 against the separator 123.
  • the remaining battery cell portion 21 and the sealing material 24 are separated from the cover glass 23 as glass cullet.
  • the cover glass 23 can be collected in a short time and at a low cost. Further, the cover glass 23 can be reused as it is.
  • the effect that the quantity of the sealing material 24 which remains on the cover glass 23 can be reduced rather than before can be acquired.
  • the amount of the sealing material 24 remaining on the cover glass 23, that is, the degree of the effect of the method of this example can be determined by various parameters (module temperature, separator contact angle, solar cell module conveyance speed, separator temperature, etc. ) This will be described later.
  • the solar cell module to be recycled is a CIS solar cell module, which is a typical example of a compound solar cell module, and has the structure shown in FIG. 4 (with the backsheet 22 removed).
  • FIG. 14 shows the relationship between the module temperature and the adhesion of the sealing material.
  • the sealing material has a role of firmly adhering the cover glass and the battery cell part at room temperature (RT) in order to prevent moisture and dust from entering the battery cell part. Therefore, here, the adhesion of the sealing material at room temperature, for example, about 20 ° C. is assumed to be 100%, and it will be verified how this adhesion changes depending on the module temperature.
  • the adhesion of the sealing material decreases as the module temperature, that is, the temperature at the interface between the cover glass and the sealing material increases.
  • the sealing material is EVA.
  • the adhesion of the sealing material decreases to about half (about 50%) of the adhesion at room temperature.
  • the adhesion of the sealing material is reduced to about 25% of the adhesion at room temperature, and when the module temperature is 120 ° C., the adhesion of the sealing material is It decreases to about 10% of the adhesion force.
  • cover glass separation step by peeling as described above, the lower the adhesive strength of the sealing material, the better. However, if the adhesive strength is generally 50% or less of the adhesive strength at room temperature, the glass material will be described later.
  • Cover glass that does not interfere with recycling can be collected.
  • the cover glass that does not hinder the recycling of the glass material means a cover glass in which the weight ratio of the remaining sealing material is 9% or less.
  • the weight ratio of the remaining sealing material is defined as (B / A) ⁇ 100 “%”, where A is the weight of the cover glass and B is the weight of the sealing material remaining on the cover glass. Shall be.
  • the module temperature is desirably 40 ° C. or higher in order to recover the cover glass without any hindrance.
  • the sealing material needs to be not lower than the softening temperature and not higher than the melting temperature.
  • the module temperature is desirably 140 ° C. or lower.
  • the module temperature is preferably within the range of T2, that is, 60 ° C. or higher and 140 ° C. or lower in order to further recover the cover glass without any trouble.
  • the module temperature is T3. It is desirable to be within the range, that is, 120 ° C. or more and 140 ° C. or less.
  • FIG. 15 shows the relationship between the contact angle of the separator and the remaining sealing material.
  • the contact angle of the separator is an angle formed by a tangent line at the contact portion between the separator and the battery cell portion and the surface of the cover glass (or the surface of the stage).
  • the angle ⁇ formed between the tangent L at the contact portion P and the surface of the cover glass 23 is defined as the contact angle of the separator.
  • the contact angle of the separator can be changed by changing the shape of the separator, in particular, the shape of the curved surface portion, or changing the angle of the separator when the side surface of the solar cell module is pressed against the separator. .
  • the angle of the separator when the side surface of the solar cell module is pressed against the separator can be easily changed when the separator 123 can rotate around the rotation axis O as shown in FIG. Become.
  • the horizontal axis indicates the module temperature [° C.]
  • the vertical axis indicates the weight ratio (B / A) ⁇ 100 [%] of the remaining sealing material. Then, the contact of the separator necessary for making the weight ratio of the remaining sealing material 9% or less within the module temperature range T1 (40 ° C. ⁇ T1 ⁇ 140 ° C.) in which the effect of the first example can be obtained. The figure shows the angle verified.
  • the contact angle of the separator was prepared in four types (36 °, 41 °, 46 °, 51 °). According to the figure, it is understood that the weight ratio of the remaining sealing material is 9% or less when the contact angle of the separator is in the range of 36 ° to 51 °. Further, according to the figure, it can be seen that the weight ratio of the remaining sealing material becomes the largest at the point where the module temperature is the lowest (40 ° C.). Moreover, at the module temperature of 40 ° C., the contact angle of the separator with the largest weight ratio of the remaining sealing material is 36 ° (minimum value) and 51 ° (maximum value).
  • the contact angle of the separator is preferably 36 ° or more and 51 ° or less.
  • the module temperature has the effect that the adhesion of the sealing material (EVA) is minimized within a range T3 of 120 ° C. or higher and 140 ° C. or lower. Accordingly, in FIG. 15, when the weight ratio of the remaining sealing material is changed depending on the contact angle of the separator within this temperature range T3, the contact angle of the separator is 36 ° or more and 51 ° or less. It can be seen that the weight ratio of the sealing material can be 3% or less. Therefore, in order to obtain an effect that the weight ratio of the remaining sealing material is 3% or less within the module temperature T3, the contact angle of the separator is preferably 36 ° or more and 51 ° or less.
  • the parameters that determine the degree of the effect according to the first example described above include the transport speed of the solar cell module, the separator temperature, and the like, in addition to the module temperature and the contact angle of the separator.
  • the relative speed between the solar cell module and the separator is set to a predetermined speed range, and the side surface of the solar cell module is Pressed against the separator. Therefore, the relationship between the predetermined speed range, for example, the conveyance speed of the solar cell module (when the separator is stopped) and the weight ratio of the remaining sealing material was verified.
  • the transport speed of the solar cell module is, for example, 24 mm / s or less (however, 0 mm / s).
  • the conveyance speed of the solar cell module can be set to 3 mm / s or more and 24 mm / s or less, for example.
  • the separator temperature also affects the weight ratio of the remaining sealing material. However, as verified by experiment, the separator temperature does not affect the weight ratio of the remaining sealing material unless it becomes extremely large. For example, when the separator temperature exceeds about 140 ° C., the separator acts in a direction that deteriorates the peeling of the sealing material. When the separator temperature exceeds about 200 ° C., the weight ratio of the remaining sealing material is extremely increased. This is considered to be due to the occurrence of acetic acid detachment in the sealing material (EVA) when the separator temperature exceeds about 140 ° C.
  • EVA acetic acid detachment in the sealing material
  • the separator temperature is 140 ° C. or lower, like the module temperature. As described above, this is consistent with the weight ratio of the remaining sealing material being 9% or less when the module temperature is 140 ° C. or less.
  • the role of the separator is to peel the battery cell part together with the sealing material from the cover glass, and the adjustment of the adhesion of the sealing material is performed by the module temperature. That is, it is sufficient that the separator temperature is maintained at room temperature, and this is desirable from the viewpoint of the controllability of the recycling method and the effect of this embodiment.
  • the cover glass that does not hinder the recycling of the glass material can be easily collected. That is, according to the first example, it is possible to realize a solar cell module recycling technique that can recover materials at low cost and high yield.
  • a 2nd example is related with the whole flow of the recycling method of a solar cell module containing the method which concerns on the above-mentioned 1st example.
  • the second example is a technique for recovering all materials constituting the solar cell module as a recycling target with high yield, low cost, and low environmental load.
  • the recycling method according to the second example has the following three steps. 1) Cover glass separation step (step ST01) 2) Lift-off process (step ST02) 3) Extraction process (step ST03)
  • the cover glass separation step (step ST01) is a cover glass separation step by peeling which has already been described with reference to FIG. 7 and FIGS.
  • the solar cell module is separated into a cover glass and other glass cullet (battery cell part and sealing material).
  • the lift-off process (step ST02) is a process of recovering the substrate glass and the sealing material from the glass cullet by dissolving the battery layer in the battery cell portion using the solution.
  • the extraction step (step ST03) is a step of recovering various materials contained in the solution by extracting various materials contained in the solution from the solution containing the dissolved battery layer.
  • step ST02 Since the lift-off process (step ST02) and the extraction process (step ST03) are processes using a solution, they are referred to as a liquid phase recycling process.
  • the solar cell module to be recycled is a CIS solar cell module and has the structure shown in FIG. 4 (however, including a frame not shown).
  • the frame is removed from the solar cell module 20 to be recycled through the frame removal process.
  • the frame includes a material such as aluminum or an aluminum alloy, for example.
  • the back sheet is peeled off from the solar cell module 20 by the back sheet removing step.
  • the frame removal step and the backsheet removal step are performed by a well-known method.
  • the cover glass 23 is peeled off from the solar cell module 20 by the cover glass separation step (step ST01).
  • the ratio of the weight of the sealing material 24 remaining in the glass body to the weight of the glass body is 9% or less. Therefore, the amount of the sealing material remaining on the cover glass 23 is very small. As a result, the glass material can be effectively recycled from the cover glass 23 and the cover glass 23 can be reused as it is.
  • the glass cullet other than the cover glass 23 obtained by the cover glass separation step includes the battery cell portion 21 and the sealing material 24.
  • the battery cell unit 21 includes, for example, a substrate glass 21A and a battery layer 21B.
  • the battery layer 21 ⁇ / b> B includes a first electrode layer 211, a photoelectric conversion layer 212, a buffer layer 213, and a second electrode layer 214.
  • the photoelectric conversion layer 212 includes, for example, Cu (In x , Ga 1-x ) (Se y , S 1-y ) 2 , where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1.
  • the battery layer 21B is generally referred to as a CIS type.
  • the glass cullet includes the broken substrate glass 21A, the sealing material 24, and the dissolved battery layer 21B by dissolving the battery layer 21B using the dissolving liquid 31 in the lift-off process (step ST02).
  • the solution is separated into the solution 31.
  • the solution 31 is a nitric acid solution
  • the CIS type battery layer 21B is dissolved in the nitric acid solution.
  • the substrate glass 21A and the sealing material 24 sandwiching the battery layer 21B are not dissolved in the nitric acid solution, they are separated from each other while being solid (lift-off process). Further, since the substrate glass 21A is heavy, the substrate glass 21A sinks to the bottom of the nitric acid solution tank 32, and the sealing material 24 floats on the nitric acid solution tank 32 because of its light weight.
  • the substrate glass 21A and the sealing material 24 are separated from each other and collected separately by a lift-off process in which the glass cullet is immersed in the solution 31. Further, by this lift-off process, the CIS type battery layer 21B is recovered in a state of being dissolved in the solution 31 (liquid phase recycling process).
  • an extraction step (step ST03) is performed in order to recover various materials from the solution 31 after removing the substrate glass 21A and the sealing material 24.
  • copper (Cu), indium (In), selenium (Se), gallium (Ga), sulfur (S), zinc (Zn), etc. contained in the CIS type battery layer 21B are sequentially recovered.
  • the recovery rate can be 90% or more.
  • the CIS type battery layer has been collected by, for example, polishing the battery layer and making it into powder (powder collection step).
  • the recovery rate of various materials by this powder recovery process was limited to 1% or less because of the limitation of purity due to the nature of powder.
  • the liquid phase recycling process is a very excellent technique because the recovery rate of various materials contained in the battery layer is improved in each stage.
  • the liquid phase recycling step a chemical solution that dissolves the CIS type battery layer 21 ⁇ / b> B, for example, a nitric acid solution is used as the solution 31. This means that it is not necessary to use an organic solvent for dissolving the sealing material 24 such as EVA.
  • the recycling cost required for collecting various materials is 40 yen / kg or less, specifically about 34 yen / kg can be realized.
  • the recycling cost required to recover various materials is approximately 57 yen / kg. It is very effective from the aspect.
  • this numerical value of about 34 yen / kg corresponds to 4.1 yen / W when converted to the cost per 1 W of rated output of the solar cell module.
  • the recycling cost can be less than 10% of the manufacturing cost.
  • ⁇ Musubi> As described above, according to the embodiment of the present invention, it is possible to realize a solar cell module recycling technology capable of recovering materials at low cost and high yield.
  • the cover glass can be recovered at a low cost and with a high yield, and the firing / decomposition step of the sealing material is unnecessary, so that CO 2 is not discharged and the environmental load can be reduced.
  • the substrate glass can be recovered at a low cost and with a high yield, and safety is also improved because no organic solvent is used.
  • the sealing material since the sealing material is not decomposed, the sealing material can also be collected.
  • various materials contained in the battery layer can be recovered at a low cost and in a high yield by chemically removing various materials from the solution, and there is also an effect of non-diffusion of harmful substances. realizable.

Abstract

リサイクル方法は、カバーガラス23と、電池層21Bと、これらを密着する封止材24と、を備える太陽電池モジュール20に適用される。リサイクル方法は、カバーガラス23と封止材24との界面を所定の温度範囲に加熱し、その界面が所定の温度範囲を維持した状態で太陽電池モジュール20の側面から封止材24に力を加えて、その界面から封止材24及び電池層21Bを引き剥がす。

Description

太陽電池モジュールのリサイクル方法及びリサイクル装置
 本発明は、太陽電池モジュールのリサイクル方法及びリサイクル装置に関する。
 太陽光発電は、再生可能エネルギーによる発電として注目される。これに伴い、今後、大量の太陽電池モジュールが各地に設置されることが予想される。そこで関心を集めているのが、使用済みの太陽電池モジュールをリサイクルするための仕組みや技術である。
 太陽電池モジュールのリサイクルにおいて重要な点は、如何に低コストでリサイクルを実現するか、及び如何に高収率で材料を回収できるか、にある。リサイクルの低コスト化は、コストペイバックタイムの短縮化を実現し、さらにはリサイクルコストを製品の販売価格に含めることを可能とする。また、太陽電池モジュールは、希少金属や有害物質を含む様々な材料を備える。従って、これらの材料を高収率で回収できれば、地球資源の有効活用、製品コストの低下、及び有害物質の非拡散に貢献できる。
特開2016-203061号公報 特許第5574750号公報
 特許文献1は、太陽電池モジュールのリサイクルにおいて、ブレード(刃)を用いてガラス基板と他の材料とを分離する技術を開示する。しかし、ガラス基板と他の材料との分離は、両者を密着する封止材をブレードにより切断することにより行われる。この場合、その分離後において、大量の封止材は、ガラス基板上に密着したまま残存する。従って、特許文献1の技術では、ガラス基板上に残存した封止材を除去する工程が必要となる。この工程は、例えば、封止材を高温で約13時間焼成し、かつ熱分解する工程であり、結果として、リサイクルコストが膨大となると共に、COの発生により環境負荷も大きくなる。
 また、特許文献2は、加熱により軟化した封止材にブレードを押し当て、ガラス基板から裏面保護材を分離する技術を開示する。しかし、この技術も、ブレードを用いて、ガラス基板と裏面保護材とを密着する封止材を切断する。この場合、特許文献1に開示される技術と同様に、その分離後において、大量の封止材は、ガラス基板上に密着したまま残存する。従って、特許文献2の技術でも、ガラス基板上に残存した封止材を除去するために、例えば、封止材を高温で長時間焼成し、かつ熱分解する工程が必要となる。
 本発明の実施形態は、低コスト及び高収率で材料を回収可能な太陽電池モジュールのリサイクル技術を提案する。
 本発明の実施形態に係わるリサイクル方法は、カバーガラスと、電池層と、これらを密着する封止材と、を備える太陽電池モジュールに適用される。前記リサイクル方法は、前記カバーガラスと前記封止材との界面を所定の温度範囲に加熱し、前記界面が前記所定の温度範囲を維持した状態で前記太陽電池モジュールの側面から前記封止材に力を加えて、前記界面から前記封止材及び前記電池層を引き剥がす。
 本発明の実施形態によれば、低コスト及び高収率で材料を回収可能な太陽電池モジュールのリサイクル技術を実現できる。
リサイクル装置の第1の例を示す図。 リサイクル装置の第2の例を示す図。 分離装置の変形例を示す図。 太陽電池モジュールの第1の例を示す図。 電池層の例を示す図。 太陽電池モジュールの第2の例を示す図。 リサイクル方法の第1の例を示す図。 リサイクル方法の比較例を示す図。 図7の方法の第1の時点での分離の様子を示す図。 第1の時点での分離の様子を詳細に示す図。 図7の方法の第2の時点での分離の様子を示す図。 第2の時点での分離の様子を詳細に示す図。 図8の方法の分離の様子を示す図。 モジュール温度と封止材の密着力との関係を示す図。 セパレータの接触角度と残存封止材との関係を示す図。 リサイクル方法の第2の例を示す図。
 以下、図面を参照しながら実施形態を説明する。
 実施形態では、その説明を分かり易くするため、本発明の主要部以外の構造又は要素については、簡略化又は省略して説明する。また、図面において、同じ要素には、同じ符号を付すことにする。尚、図面において、各要素の厚さ、形状などは、模式的に示したもので、実際の厚さや形状などを示すものではない。
 <太陽電池モジュールのリサイクル装置>
 まず、太陽電池モジュールのリサイクル装置の例を説明する。
 図1は、リサイクル装置の第1の例を示す。
 太陽電池モジュールのリサイクル装置10は、加熱装置11と、分離装置12と、これらを制御する制御部13と、を備える。
 加熱装置(ヒータ)11は、リサイクルの対象としての太陽電池モジュールを所定の温度範囲に加熱する。例えば、太陽電池モジュールがカバーガラスと、電池層と、これらを密着する封止材と、を備える場合、加熱装置11は、後述するように、カバーガラスと封止材との界面を所定の温度範囲に加熱することを目的に設けられる。これは、後述するように、封止材を電池層と共にカバーガラスから引き剥がすためである。
 従って、加熱装置11は、カバーガラスと封止材との界面を局所的に加熱できる機能を有するのが望ましい。しかし、加熱装置11は、太陽電池モジュールを全体的に加熱するものであってもよい。この場合でも、太陽電池モジュールを所定の温度範囲に加熱し、かつ封止材にその側面から力を加えることで、封止材を電池層と共にカバーガラスから引き剥がすことができるからである。
 このようなことから、加熱装置11の種類は、特に限定されない。加熱装置11は、ランプ加熱タイプ、抵抗加熱タイプ、高周波加熱タイプ、誘導加熱タイプなどを利用可能である。
 分離装置12は、加熱装置11により所定の温度範囲に加熱された太陽電池モジュールに対して、封止材を切断することなく、封止材及び電池層をカバーガラスから引き剥がす機能を有する。分離装置12は、ステージ121と、駆動部122と、セパレータ123と、を備える。ステージ121は、太陽電池モジュールを設置又は搬送するためのものである。駆動部122は、カバーガラス又はステージ121の表面に平行な方向において、太陽電池モジュールとセパレータ123との相対速度を所定の速度範囲とし、かつ前記太陽電池モジュールの側面を前記セパレータに押し当てる。例えば、駆動部122は、ステージ121上の太陽電池モジュールを、セパレータ123に向かう方向に所定の速度範囲で送り出す。
 セパレータ123は、太陽電池モジュールの側面から封止材に力を加える。セパレータ123は、封止材に力を加えることが可能であれば、形状、固定/可動などに制限されることはない。例えば、同図では、セパレータ123は、曲面部を有する。この曲面部は、太陽電池モジュールの側面に印加される力を、封止材及び電池層をカバーガラスから引き剥がす力、即ち、カバーガラスの表面に垂直な力に有効に変換するために有効である。また、セパレータ123は、固定されていてもよいし、又はカバーガラスの表面に平行な方向、具体的には、太陽電池モジュールに向かう方向に可動であってもよい。
 制御部13は、コントローラ及びメモリを含む。コントローラは、例えば、CPU、MPUなどである。メモリは、例えば、RAM、ROMなどである。制御部13は、リサイクル装置10内に組み込まれたユニットでもよいし、又はパソコンなどの汎用装置を利用してもよい。
 制御部13は、封止材を電池層と共にカバーガラスから引き剥がすために、例えば、加熱装置11において太陽電池モジュールを加熱する所定の温度範囲、及び分離装置12において太陽電池モジュールを搬送する所定の速度範囲を制御する。例えば、制御部13は、所定の温度範囲を、40℃以上、140℃以下に設定する。また、制御部13は、所定の速度範囲を、24mm/秒以下(但し、0mm/秒を除く)に設定する。これらの温度範囲及び速度範囲に設定する根拠については、後述する。
 尚、セパレータ123の角度(後述するセパレータの接触角度に対応)が回転軸Oを中心に変更可能であり、かつセパレータ123の温度が変更可能である場合、制御部13は、セパレータ123の角度及び温度のうちの少なくとも1つを制御してもよい。例えば、制御部13は、セパレータ123の角度を制御することで、上述の封止材及び電池層をカバーガラスから引き剥がす力を制御可能となる。
 このようなリサイクル装置によれば、後述するリサイクル方法を実行することで、カバーガラスと封止材との界面から、封止材及び電池層を引き剥がすことが可能となる。即ち、太陽電池モジュールのリサイクルにおいて、カバーガラスは、粉砕されず、かつ封止材は、カバーガラス上にほとんど残らない。従って、ガラス材料が有効にリサイクル可能となると共に、カバーガラスをそのまま再利用することも可能となる。
 図2は、リサイクル装置の第2の例を示す。
 本例のリサイクル装置10は、第1の例と比べると、加熱装置を省略し、かつ分離装置12内にヒータ124を設けた点に特徴を有する。それ以外の点については、第1の例と同じであるため、図1で使用した符号と同じ符号を図2でも使用することにより、その詳細な説明を省略する。
 ヒータ124は、ステージ121の直下に配置される。ヒータ124は、ステージ121の内部に組み込まれていてもよい。ヒータ124の種類は、特に限定されないが、小型化が可能な抵抗加熱タイプ、例えば、ホットプレートなどを利用するのが望ましい。
 リサイクルの対象としての太陽電池モジュールがカバーガラス側を下にしてステージ121上に配置される場合、ヒータ124は、カバーガラス側から太陽電池モジュールを加熱することができる。即ち、制御部13は、太陽電池モジュールのカバーガラスと封止材との界面を所定の温度範囲に設定することが容易となる。
 従って、本例のリサイクル装置を用いれば、カバーガラスと封止材との界面における密着力を弱めることが容易に可能となる。その結果、後述するリサイクル方法を実行することで、カバーガラスと封止材との界面から、封止材及び電池層を引き剥がすことが可能となる。
 図3は、分離装置の変形例を示す。
 この変形例は、第1の例(図1)及び第2の例(図2)の双方に適用可能である。
 この変形例の特徴は、図1及び図2のステージ121に代えて、ローラー125を設けた点にある。ローラー125は、駆動部122による太陽電池モジュールの搬送を容易化する効果を有する。また、この変形例を第2の例に適用した場合、図2のヒータ124を図3のローラー125の間にそれぞれ設け、太陽電池モジュールの加熱効率を高めることも可能である。
 <太陽電池モジュール>
 次に、太陽電池モジュールの例を説明する。
 本実施形態の対象となり得る太陽電池モジュールの種類は、特に制限されない。リサイクルの対象としての太陽電池モジュールは、少なくともカバーガラスと、電池層と、これらを密着する封止材と、を備えていればよい。
 以下では、本実施形態の対象となり得る太陽電池モジュールの例として、化合物系太陽電池モジュールと、シリコン系太陽電池モジュールと、の2つを説明する。
 図4は、太陽電池モジュールの第1の例を示す。
 第1の例は、化合物系太陽電池モジュールの例である。化合物系太陽電池モジュールは、シリコン系太陽電池モジュールに比べて、薄膜化及び低コスト化が可能であるという特徴を有する。
 太陽電池モジュール20は、電池セル部21と、バックシート22と、カバーガラス23と、封止材24と、を備える。電池セル部21は、基板ガラス21Aと、基板ガラス21A上の電池層21Bと、を備える。即ち、太陽電池モジュール20は、電池層21Bが2枚のガラス板(カバーガラス23と基板ガラス21A)に挟まれる構造を有する。
 但し、基板ガラス21Aは、樹脂基板、金属基板、柔軟性のあるフレキシブル基板、例えば、ステンレス鋼(SUS)、アルミニウム、及び、酸化アルミニウムの積層構造を有するフレキシブル基板など、に変更可能である。また、基板ガラス21Aは、ナトリウム、カリウムなどのアルカリ金属を含んでもよい。
 電池層21Bは、光を電気に変換する機能を有する。光は、カバーガラス23側から電池層21Bに入射される。電池層21Bは、例えば、図5に示す構造を有する。
 図5において、電池層21Bは、基板ガラス21A上の第1の電極層211と、第1の電極層211上の光電変換層212と、光電変換層212上のバッファ層213と、バッファ層213上の第2の電極層214と、を備える。
 第1の電極層211は、例えば、金属電極層である。第1の電極層211は、光電変換層212との反応が発生し難い材料を備えるのが望ましい。第1の電極層211は、モリブデン(Mo)、チタン(Ti)、クロム(Cr)などから選択可能である。第1の電極層211は、第2の電極層214内に含まれる材料と同じ材料を含んでもよい。第1の電極層211の厚さは、200nm以上、500nm以下に設定される。
 光電変換層212は、多結晶又は微結晶のp型化合物半導体層である。例えば、光電変換層212は、I族元素と、III族元素と、VI族元素(カルコゲン元素)としてセレン(Se)及び硫黄(S)と、を含むカルコパイライト構造の混晶化合物(I-III-(Se, S)2)を備える。I族元素は、銅(Cu)、銀(Ag)、金(Au)などから選択可能である。III族元素は、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)などから選択可能である。また、光電変換層212は、VI族元素として、セレン及び硫黄の他に、テルル(Te)などを含んでもよい。光電変換層212は、薄膜化され、その厚さは、1μm以上、1.5μm以下に設定される。
 バッファ層213は、例えば、n型又はi(intrinsic)型高抵抗導電層である。ここで言う「高抵抗」とは、第2の電極層214の抵抗値よりも高い抵抗値を有するという意味である。バッファ層213は、亜鉛(Zn)、カドミウム(Cd)、インジウム(In)を含む化合物から選択可能である。亜鉛を含む化合物としては、例えば、ZnO、ZnS、Zn(OH)2、又は、これらの混晶であるZn(O, S)、Zn(O, S, OH)、さらには、ZnMgO、ZnSnOなど、がある。カドミウムを含む化合物としては、例えば、CdS、CdO、又は、これらの混晶であるCd(O, S)、Cd(O, S, OH)がある。インジウムを含む化合物としては、例えば、InS、InO、又は、これらの混晶であるIn(O, S)、In(O, S, OH)がある。また、バッファ層213は、これらの化合物の積層構造を有してもよい。バッファ層213の厚さは、10nm以上、100nm以下に設定される。
 バッファ層213は、光電変換率などの特性を向上させる効果を有するが、これを省略することも可能である。バッファ層213が省略される場合、第2の電極層214は、光電変換層212上に配置される。
 第2の電極層214は、例えば、n型導電層である。第2の電極層214は、例えば、禁制帯幅が広く、抵抗値が十分に低い材料を備えるのが望ましい。また、第2の電極層214は、太陽光などの光の通り道となるため、光電変換層212が吸収可能な波長の光を透過する性質を持つのが望ましい。この意味から、第2の電極層214は、透明電極層又は窓層と呼ばれる。
 第2の電極層214は、例えば、III族元素(B、Al、Ga、又は、In)がドーパントとして添加された酸化金属を備える。酸化金属の例としては、ZnO、又は、SnO2がある。第2の電極層214は、例えば、ITO(酸化インジウムスズ)、ITiO(酸化インジウムチタン)、IZO(酸化インジウム亜鉛)、ZTO(酸化亜鉛スズ)、FTO(フッ素ドープト酸化スズ)、GZO(ガリウムドープト酸化亜鉛)など、から選択可能である。第2の電極層214の厚さは、0.5μm以上、2.5μm以下に設定される。
 図4の説明に戻る。
 バックシート22は、基板ガラス21Aの裏面を覆う。ここで、基板ガラス21Aの裏面とは、基板ガラス21Aの2つの表面のうち、電池層21Bが設けられる表面とは反対側の表面のことを言うものとする。バックシート22は、例えば、PET(Poly Ethylene Terephthalate)、金属箔(例えば、アルミニウム箔)などを備える。
 封止材24は、電池層21Bとカバーガラス23との間に配置される。カバーガラス23は、例えば、白板強化ガラス、透明な樹脂板などである。封止材24は、例えば、EVA(Ethylene Vinyl Acetate)、PVB(Poly Vinyl Butyral)、シリコン樹脂など、の材料を備える。封止材24は、加圧及び加熱により、電池層21Bを封止すると共に、電池層21Bとカバーガラス23とを互いに密着する。
 図6は、太陽電池モジュールの第2の例を示す。
 第2の例は、シリコン系太陽電池モジュールの例である。
 太陽電池モジュール20は、電池セル部21と、バックシート22と、カバーガラス23と、電池セル部21を封止する封止材24と、を備える。封止材24は、バックシート22及びカバーガラス23を互いに密着する。即ち、電池セル部21は、バックシート22とカバーガラス23との間に挟み込まれる。
 シリコン系太陽電池モジュールは、電池層として、シリコン基板からなる電池セル部21を備えている。電池セル部21は、第1の例に示した化合物系太陽電池モジュールにおける電池層と同様に、封止材24により封止される。
 尚、バックシート22、カバーガラス23、及び封止材24については、第1の例と同じであるため、ここでの説明を省略する。
 <太陽電池モジュールのリサイクル方法>
 次に、太陽電池モジュールのリサイクル方法の例を説明する。
 ・第1の例
 第1の例は、太陽電池モジュールから基板ガラスを、封止材をほとんど残さず引き剥がす方法に関する。
 太陽電池モジュールのリサイクルにおける技術的な課題の一つは、カバーガラスから封止材を如何に効率的に引き剥がすかにある。例えば、EVAなどの封止材は、上述したように、カバーガラスと電池セル部との間を密着しながら埋め込むことで、電池セル部への水分や塵などの侵入を防ぐ役割を有する。即ち、より確実な封止を実現するほど、カバーガラスから封止材を引き剥がすことが難しくなる。
 そこで、本発明者らは、如何にしたらカバーガラス上に封止材をほとんど残すことなく、カバーガラスから封止材を引き剥がすことができるかを検討したところ、そのためには、太陽電池モジュールの温度、具体的には、カバーガラスと封止材との界面の温度と、封止材を引き剥がすときに太陽電池モジュールに加える力と、が重要であることを見出した。この温度と力との関係に基づき、封止材をカバーガラスから引き剥がすという思想は、従来、存在しなかったものである。
 図7は、太陽電池モジュールのリサイクル方法の第1の例を示す。
 リサイクルの対象としての太陽電池モジュール20は、前提として、電池セル部21と、カバーガラス23と、これらを密着する封止材24と、を備えるものとする。
 同図に示すように、本例では、引き剥がしによるカバーガラス分離工程を実行し、太陽電池モジュール20を、カバーガラス23と、それ以外の電池セル部21及び封止材24と、に分離する。ここで、引き剥がしによるカバーガラス分離工程とは、カバーガラス23と封止材24との界面を所定の温度範囲に設定し、かつその界面が所定の温度範囲を維持した状態で太陽電池モジュール20の側面から電池セル部21に力を印加する工程のことである(ステップST01)。
 カバーガラス23と封止材24との界面を所定の温度範囲に設定するのは、カバーガラス23と封止材24との密着力を弱めるためである。但し、封止材24は、溶けるほどまでには加熱しない。本例では、封止材24は、軟化温度以上、溶解温度以下に設定される。また、電池セル部21に力を印加するのは、その力が印加された部分を起点にして、電池セル部21及び封止材24をカバーガラス23から引き剥がすためである。
 このように、第1の例の方法によれば、カバーガラス23と、それ以外の電池セル部21及び封止材24と、の分離を、簡易かつスムーズに行うことができる。また、この分離後において、カバーガラス23は、粉砕されず、かつ封止材24は、カバーガラス23上にほとんど残らない。即ち、封止材24は、カバーガラス23上に全く存在しないか、又はその縁部に少し残存する程度である。
 結果として、本例の方法によれば、太陽電池モジュール20から分解されたリサイクル用のカバーガラス23として、ガラス本体の重量に対する、ガラス本体に残存した封止材24の重量の比が9%以下のカバーガラス23を提供可能となる。但し、ガラス本体とは、封止材24が全く付着していないカバーガラス23のことである。従って、本例の方法によれば、カバーガラス23からガラス材料を有効にリサイクル可能となると共に、カバーガラス23をそのまま再利用することも可能となる。
 図8は、太陽電池モジュールのリサイクル方法の比較例を示す。
 比較例は、カバーガラス23から封止材24を引き剥がすことが難しいことから、封止材24をブレードにより切断する技術に関する。尚、図8において、図7と同じ要素には同じ符号を付すことにより、両者の比較を容易化する。
 従来は、カバーガラス23から封止材24を引き剥がすということはせず、切断によるカバーガラス分離工程により、電池セル部21とカバーガラス23とを分離するのが一般的である。ここで、切断によるカバーガラス分離工程とは、ブレードにより封止材24を切断することで、電池セル部21とカバーガラス23とを分離する工程のことである(ステップST11)。
 しかし、この場合、封止材24は、カバーガラス23上に大量に残存する。しかも、カバーガラス23の表面は、太陽光を効率的に電池セル部21に導くために、微細な凹凸(エンボス)が多数設けられている。即ち、カバーガラス23の凹部内に残存した封止材24を物理的に取り除くことは、極めて困難である。従って、比較例では、切断によるカバーガラス分離工程により得られるカバーガラス23に対して、さらに、封止材除去工程を実行する必要がある(ステップST12)。
 封止材除去工程は、例えば、封止材24を高温で約13時間焼成し、かつ熱分解する工程であり、結果として、リサイクルコストが膨大となると共に、COの発生により環境負荷も大きくなる。
 以上、図7及び図8の比較から明らかなように、太陽電池モジュールのリサイクル方法の第1の例によれば、太陽電池モジュールの温度と、太陽電池モジュールに印加する力と、に基づき、カバーガラスから封止材及び電池セル部を引き剥がすことが可能となる。従って、本例によれば、低コスト及び高収率で材料を回収可能な太陽電池モジュールのリサイクル技術を実現できる。
 次に、図9乃至図13を参照しつつ、太陽電池モジュールのリサイクル方法の第1の例の詳細を説明する。尚、図9乃至図13において、既に説明した図1乃至図8に示す要素と同じ要素には同じ符号を付すことにより、その詳細な説明を省略する。
 まず、例えば、図4又は図6に示す太陽電池モジュール20からバックシート22を除去する。この後、図1の加熱装置11又は図2のヒータ124を用いて、太陽電池モジュール20を所定の温度範囲、例えば、40℃以上、140℃以下の温度に設定する。これにより、予め、カバーガラス23と封止材24との間の結合力を弱めておく。
 この後、図9に示すように、セパレータ123を太陽電池モジュール20の側面に押し当てる。例えば、セパレータ123を静止させた状態で、太陽電池モジュール20をステージ121の上面に平行な方向に移動させることで、結果として、セパレータ123を太陽電池モジュール20の側面に押し当てる。この時点は、セパレータ123が太陽電池モジュール20の側面に最初に接触する第1の時点である。この時、電池セル部21、即ち、基板ガラス21A及び電池層21Bは、セパレータ123から力を受ける。
 例えば、図10に示すように、セパレータ123が曲面部を備える場合、その曲面部が電池セル部21に接触すると、電池セル部21は、セパレータ123から力Fを受ける。この力Fの一部は、電池セル部21を封止材24と共にカバーガラス23から引き剥がす力Fupとなる。従って、図11に示すように、電池セル部21及び封止材24は、セパレータ123と電池セル部21との接触部を起点に、カバーガラス23から引き剥がされていく。
 ここで、図11に示すように、電池セル部21は、粉砕されながら、カバーガラス23から引き剥がされる。従って、カバーガラス23から分離された電池セル部21及び封止材24は、図7に示すように、ガラスカレットとなる。このガラスカレットから電池セル部21内の材料、及び封止材24を回収する方法については、後述する。
 また、図11に示すように、セパレータ123が電池セル部21とカバーガラス23との間に入り込むと、セパレータ123と電池セル部21との接触部も変わる。この時点は、上述の第1の時点以外の第2の時点である。この時、図12に示すように、接触部Pにおいて、電池セル部21は、セパレータ123から力Fを受ける。また、接触部Pにおける接線Lとカバーガラス23の表面とのなす角度(接触角度)θは、例えば、36°以上、51°以下であるのが望ましい。その根拠については、後述する。
 また、第2の時点では、セパレータ123は、カバーガラス23と封止材24とが分離される境界部Xに接触しない。
 ここで、簡単に、図8の比較例での分離の様子を説明する。
 図13に示すように、比較例では、ブレード(例えば、ホットナイフ)126を用いて、電池セル部21とカバーガラス23とを分離する。この分離は、ブレード126により封止材24を切断することにより行う。この時、ブレード126は、常に、カバーガラス23と封止材24とが分離される境界部Xに接触する。
 このように、カバーガラス23が下に向いた状態で太陽電池パネル20をセパレータ123に向かって送り出し、かつ太陽電池パネル20の側面をセパレータ123に押し当てることで、カバーガラス23のみがステージ121上に残ってそのまま流れ、それ以外の電池セル部21及び封止材24は、ガラスカレットとして、カバーガラス23から分離される。
 また、封止材24は、カバーガラス23上にほとんど残らないため、カバーガラス23の回収を短時間かつ低コストで行うことができる。また、カバーガラス23をそのまま再利用することも可能となる。
 尚、本例の方法を用いれば、従来よりもカバーガラス23上に残存する封止材24の量を減らすことができるという効果を得ることができる。但し、カバーガラス23上に残存する封止材24の量、即ち、本例の方法による効果の程度は、種々のパラメータ(モジュール温度、セパレータの接触角度、太陽電池モジュールの搬送速度、セパレータ温度など)により変わる。これについては、後述する。
 ・実験例
 次に、上述の第1の例に係る効果の程度を決めるパラメータの例を説明する。以下に説明するパラメータにおける数値限定は、実験結果に基づくものである。リサイクルの対象としての太陽電池モジュールは、化合物系太陽電池モジュールの代表例であるCIS系太陽電池モジュールとし、かつ図4に示す構造(但し、バックシート22が除去された状態のもの)を有するものとする。
  [モジュール温度]
 図14は、モジュール温度と封止材の密着力との関係を示す。
 封止材は、電池セル部への水分や塵などの侵入を防止するため、室温(RT)においてカバーガラスと電池セル部とを強固に密着させる役割を有する。従って、ここでは、室温、例えば、約20℃における封止材の密着力を100%とし、モジュール温度によってこの密着力がどのように変化するかを検証する。
 同図によれば、封止材の密着力、即ち、カバーガラスに対する密着力は、モジュール温度、即ち、カバーガラスと封止材との界面の温度が上昇するにつれて低下することが分かる。但し、封止材は、EVAとする。例えば、モジュール温度が40℃になると、封止材の密着力は、室温のときの密着力の約半分(約50%)に低下する。また、モジュール温度が60℃になると、封止材の密着力は、室温のときの密着力の約25%に低下し、モジュール温度が120℃になると、封止材の密着力は、室温のときの密着力の約10%に低下する。
 上述の引き剥がしによるカバーガラス分離工程において、封止材の密着力は、低ければ低いほど望ましいが、概ね、室温のときの密着力の50%以下にしておけば、後述するように、ガラス材料のリサイクルに支障のないカバーガラスを回収できる。ここで、ガラス材料のリサイクルに支障のないカバーガラスとは、残存封止材の重量比が9%以下のカバーガラスを意味する。また、残存封止材の重量比とは、カバーガラスの重量をAとし、カバーガラス上に残存する封止材の重量をBとした場合に、(B/A)×100「%」で定義されるものとする。
 従って、封止材がEVAの場合、カバーガラスの回収を概ね支障なく行うために、モジュール温度は、40℃以上であるのが望ましい。また、既に述べたように、封止材は、軟化温度以上、溶解温度以下であることが必要である。この点を考慮すると、EVAの場合、モジュール温度は、140℃以下であるのが望ましい。結果として、モジュール温度がT1の範囲内、即ち、40℃以上、140℃以下において、カバーガラスの回収を簡易に行うことができるという効果が得られる。
 また、封止材がEVAの場合、カバーガラスの回収をさらに支障なく行うために、モジュール温度は、T2の範囲内、即ち、60℃以上、140℃以下であるのが望ましい。さらに、後述するように、残存封止材の重量比が3%以下のカバーガラスを実現し、上述の引き剥がしによるカバーガラス分離工程による最大の効果を得るためには、モジュール温度は、T3の範囲内、即ち、120℃以上、140℃以下であるのが望ましい。
 次に、上述の第1の例に係る効果を表す指標としての残存封止材の重量比がモジュール温度以外の他のパラメータによってどのように変化するかを検証する。
  [セパレータの接触角度]
 図15は、セパレータの接触角度と残存封止材との関係を示す。
 セパレータの接触角度とは、セパレータと電池セル部との接触部における接線とカバーガラスの表面(又はステージの表面)とのなす角度のことである。例えば、図12に示すように、接触部Pにおける接線Lとカバーガラス23の表面とのなす角度θのことを、セパレータの接触角度と定義する。
 セパレータの接触角度は、セパレータの形状、特に、曲面部の形状を変えたり、又は太陽電池モジュールの側面をセパレータに押し当てるときのセパレータの角度を変えたりすることで、変化させることが可能である。また、太陽電池モジュールの側面をセパレータに押し当てるときのセパレータの角度は、例えば、図1に示すように、セパレータ123が回転軸Oを中心に回転可能である場合には、容易に変更可能となる。
 同図において、横軸は、モジュール温度[℃]を示し、縦軸は、残存封止材の重量比(B/A)×100[%]を示す。そして、上述の第1の例による効果が得られるモジュール温度の範囲T1(40℃≦T1≦140℃)内において、残存封止材の重量比を9%以下にするために必要なセパレータの接触角度を検証したのが同図である。
 セパレータの接触角度は、4種類(36°、41°、46°、51°)を用意した。同図によれば、セパレータの接触角度が36°以上、51°以下の範囲内において、残存封止材の重量比は、9%以下になることが分かる。また、同図によれば、モジュール温度が最も低い点(40℃)において、残存封止材の重量比が最も大きくなることが分かる。しかも、モジュール温度40℃において、残存封止材の重量比が最も大きくなるセパレータの接触角度は、36°(最小値)と51°(最大値)である。
 即ち、セパレータの接触角度が36°を下回るか、又は51°を超えると、モジュール温度がT1の範囲内において、残存封止材の重量比が9%を超える可能性があることが容易に予測される。従って、モジュール温度がT1の範囲内で残存封止材の重量比が9%以下になるという効果を得るためには、セパレータの接触角度は、36°以上、51°以下であるのが望ましい。
 また、モジュール温度は、図14で説明したように、120℃以上、140℃以下の範囲T3内において、封止材(EVA)の密着力を最も低くするという効果を奏する。そこで、図15において、この温度範囲T3内で、セパレータの接触角度により残存封止材の重量比がどのようになるかを見ると、セパレータの接触角度が36°以上、51°以下で、残存封止材の重量比を3%以下にできることが分かる。従って、モジュール温度がT3の範囲内で残存封止材の重量比が3%以下になるという効果を得るためには、セパレータの接触角度は、36°以上、51°以下であるのが望ましい。
  [その他のパラメータ]
 上述の第1の例に係る効果の程度を決めるパラメータは、モジュール温度及びセパレータの接触角度以外に、太陽電池モジュールの搬送速度、セパレータ温度などがある。
 太陽電池モジュールのリサイクルにおいては、上述したように、カバーガラスの表面に平行な方向において、太陽電池モジュールとセパレータとの相対速度は、所定の速度範囲に設定され、かつ太陽電池モジュールの側面は、セパレータに押し当てられる。そこで、この所定の速度範囲、例えば、太陽電池モジュールの搬送速度(セパレータが停止している場合)と残存封止材の重量比との関係を検証した。その結果、モジュール温度がT1の範囲内で残存封止材の重量比が9%以下になるという効果を得るためには、太陽電池モジュールの搬送速度は、例えば24mm/s以下(但し、0mm/sを除く)とすることができる。
 即ち、太陽電池モジュールの搬送速度は、遅ければ遅いほど、言い換えれば、封止材をカバーガラスから剥がす速度は、ゆっくりであればあるほど、カバーガラス上に残存する封止材の量が減ることが判明した。しかし、太陽電池モジュールの搬送速度が遅いと、リサイクルにおけるスループットが悪くなる恐れが生じる。そこで、このスループットを考慮すると、太陽電池モジュールの搬送速度は、例えば3mm/s以上、24mm/s以下とすることができる。
 セパレータ温度も、残存封止材の重量比に影響を及ぼす。しかし、実験により検証したところ、セパレータ温度は、極端に大きくならない限り、残存封止材の重量比に影響を与えない。例えば、セパレータ温度は、約140℃を超えた時点から、封止材の剥離を悪化させる方向に作用し、約200℃を超えると、残存封止材の重量比を極端に増大させる。これは、セパレータ温度が約140℃を超えると、封止材(EVA)中の酢酸の離脱が発生することに一因があると考えられる。
 従って、セパレータ温度は、モジュール温度と同様に、140℃以下であるのが望ましい。これは、上述したように、モジュール温度が140℃以下のときに残存封止材の重量比を9%以下にできることに整合する。但し、セパレータの役割は、電池セル部を封止材と共にカバーガラスから引き剥がすことにあり、封止材の密着力の調整は、モジュール温度により行う。即ち、セパレータ温度は、室温に維持されていれば十分であり、かつそのほうがリサイクル方法の制御性及び本実施の形態による効果の面から望ましい。
 以上、説明したように、第1の例によれば、ガラス材料のリサイクルに支障のないカバーガラスを簡易に回収できる。即ち、第1の例によれば、低コスト及び高収率で材料を回収可能な太陽電池モジュールのリサイクル技術を実現できる。
 ・第2の例
 第2の例は、上述の第1の例に係る方法を含む太陽電池モジュールのリサイクル方法の全体フローに関する。第2の例は、リサイクルの対象としての太陽電池モジュールからそれらを構成する全ての材料を高収率、低コスト、かつ低環境負荷で回収する技術である。
 第2の例に係るリサイクル方法は、以下の3つの工程を有することを特徴とする。
 1) カバーガラス分離工程(ステップST01)
 2) リフトオフ工程(ステップST02)
 3) 抽出工程(ステップST03)
 カバーガラス分離工程(ステップST01)は、図7及び図9~図12で既に説明した引き剥がしによるカバーガラス分離工程である。この工程において、太陽電池モジュールは、カバーガラスと、それ以外のガラスカレット(電池セル部及び封止材)と、に分離される。また、リフトオフ工程(ステップST02)は、溶解液を用いて電池セル部のうち電池層を溶解することで、このガラスカレットから基板ガラスと封止材とを回収する工程である。さらに、抽出工程(ステップST03)は、溶解された電池層を含む溶解液から溶解液中に含まれる各種材料を抽出することで、溶解液中に含まれる各種材料を回収する工程である。
 リフトオフ工程(ステップST02)及び抽出工程(ステップST03)は、溶解液を用いる工程であることから、液相リサイクル工程と称される。
 以下、図16を参照しながら、第2の例に係る太陽電池モジュールのリサイクル方法を説明する。尚、リサイクルの対象としての太陽電池モジュールは、CIS系太陽電池モジュールとし、かつ図4に示す構造(但し、図示しないフレームを含む状態のもの)を有するものとする。
 まず、フレーム除去工程により、リサイクルの対象としての太陽電池モジュール20からフレームを取り外す。ここで、フレームは、例えば、アルミニウム、アルミニウム合金などの材料を備える。続けて、バックシート除去工程により、太陽電池モジュール20からバックシートを引き剥がす。フレーム除去工程及びバックシート除去工程は、周知の方法により実行される。
 次に、カバーガラス分離工程(ステップST01)により、太陽電池モジュール20からカバーガラス23を引き剥がす。この工程により得られるカバーガラス23は、既に説明したように、例えば、ガラス本体の重量に対する、ガラス本体に残存した封止材24の重量の比が9%以下である。従って、カバーガラス23に残存する封止材は、微量であり、結果として、カバーガラス23からガラス材料を有効にリサイクル可能となると共に、カバーガラス23をそのまま再利用することも可能となる。
 一方、カバーガラス分離工程により得られるカバーガラス23以外のガラスカレットは、電池セル部21及び封止材24を含む。また、電池セル部21は、例えば、基板ガラス21Aと、電池層21Bと、を含む。電池層21Bは、例えば、図5に示すように、第1の電極層211と、光電変換層212と、バッファ層213と、第2の電極層214と、を含む。光電変換層212は、例えば、Cu(Inx, Ga1-x)(Sey, S1-y)2、但し、0≦x≦1、0<y<1を備える。電池層21Bの主要部である光電変換層212がCu、In、及びSeを含む場合、電池層21Bは、一般的に、CIS型と称される。
 このように、ガラスカレットは、割れた基板ガラス21Aと、電池層21Bと、封止材24と、が互いに密着した状態を有する。そこで、ガラスカレットは、リフトオフ工程(ステップST02)により、溶解液31を用いて電池層21Bを溶解することで、割れた基板ガラス21Aと、封止材24と、溶解された電池層21Bを含む溶解液31と、に分離される。
 例えば、溶解液31が硝酸溶液である場合、例えば、CIS型の電池層21Bは、硝酸溶液中に溶解される。一方、電池層21Bを挟み込んでいた基板ガラス21A及び封止材24は、硝酸溶液中に溶解されないため、互いに固体のまま分離される(リフトオフ工程)。また、基板ガラス21Aは、重量が重いので硝酸溶液の槽32の底部に沈んだ状態となり、かつ封止材24は、重量が軽いので硝酸溶液の槽32の上部に浮いた状態となる。
 従って、基板ガラス21A及び封止材24は、ガラスカレットを溶解液31中に浸すリフトオフ工程により、互いに分離され、かつ別々に回収される。また、このリフトオフ工程により、CIS型の電池層21Bは、溶解液31中に溶解された状態で回収される(液相リサイクル工程)。
 最後に、基板ガラス21A及び封止材24を取り除いた後の溶解液31から各種材料を回収するために、抽出工程(ステップST03)が実行される。この抽出工程により、CIS型の電池層21B内に含まれる銅(Cu)、インジウム(In)、セレン(Se)、ガリウム(Ga)、硫黄(S)、亜鉛(Zn)など、を順次回収する場合、それらの回収率は、90%以上を実現できる。
 従来、CIS型の電池層の回収は、例えば、電池層を研磨し、かつ粉体にすることにより行っていた(粉体回収工程)。この粉体回収工程による各種材料の回収率は、粉体という性質から純度の向上に限界があり、1%以下であった。このような実情を鑑みると、液相リサイクル工程は、電池層内に含まれる各種材料の回収率が各段に向上することから、非常に優れた技術と言うことができる。
 また、セレンは、有害物質であることから、液相リサイクル工程によりセレンを高い回収率で回収することは、有害物質の非拡散という観点からも望ましい。さらに、液相リサイクル工程は、溶解液31として、CIS型の電池層21Bを溶解する薬液、例えば、硝酸溶液を使用する。これは、例えば、EVAなどの封止材24を溶解するための有機溶剤を使用しなくてよいことを意味する。
 上述のカバーガラス分離工程、リフトオフ工程、及び抽出工程を用いた太陽電池モジュールのリサイクル方法によれば、各種材料を回収するまでに要するリサイクルコストは、40円/kg以下、具体的には、約34円/kgを実現できる。従来の手法(図8+粉体回収工程)の場合、各種材料を回収するまでに要するリサイクルコストは、約57円/kgであることからすれば、第2の例に係る方法は、リサイクルコストの面からも非常に有効である。
 尚、この約34円/kgという数値は、太陽電池モジュールの定格出力1W当たりのコストに換算すると、4.1円/Wに相当する。即ち、太陽電池パネルの定格出力1W当たりの製造コストが60~70円/Wであると仮定すると、リサイクルコストは、その製造コストの1割以下を実現できる。
 <むすび>
 以上、説明したように、本発明の実施形態によれば、低コスト及び高収率で材料を回収可能な太陽電池モジュールのリサイクル技術を実現できる。
 即ち、カバーガラス分離工程によれば、低コスト及び高収率でカバーガラスを回収でき、かつ封止材の焼成/分解工程が不要なため、COの排出がなく、環境負荷も小さくできる。また、リフトオフ工程によれば、低コスト及び高収率で基板ガラスを回収でき、かつ有機溶剤を使用しないため、安全性も向上できる。また、リフトオフ工程によれば、封止材が分解されないため、封止材も回収可能となる。さらに、抽出工程によれば、溶解液中から各種材料を化学的に取り出すことで、電池層内に含まれる各種材料を低コスト及び高収率で回収でき、かつ有害物質の非拡散という効果も実現できる。
 本発明のいくつかの実施形態を説明したが、これら実施形態は、一例として提示したものであり、本発明の範囲を限定することを意図しない。これら実施形態は、上述以外の様々な形態で実施することが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換、変更など、を行える。これら実施形態及びその変形は、本発明の範囲及び要旨に含まれると共に、特許請求の範囲に記載された発明及びその均等物についても、本発明の範囲及び要旨に含まれる。
 本出願は2018年4月19日に出願した日本国特許出願2018-080716号に基づく優先権を主張するものであり、日本国特許出願2018-080716号の全内容を本出願に援用する。
10:太陽電池モジュールのリサイクル装置、11:加熱装置、12:分離装置、121:ステージ、122:駆動部、123:セパレータ、124:ヒータ、125:ローラー、126:ブレード、13:制御部、20:太陽電離モジュール、21:電池セル部、21A:基板ガラス、21B:電池層、211:第1の電極層、212:光電変換層、213:バッファ層、214:第2の電極層、22:バックシート、23:カバーガラス、24:封止材、31:溶解液、32:槽

 

Claims (18)

  1.  カバーガラスと、電池層と、これらを密着する封止材と、を備える太陽電池モジュールのリサイクル方法において、
     前記カバーガラスと前記封止材との界面を所定の温度範囲に加熱し、
     前記界面が前記所定の温度範囲を維持した状態で前記太陽電池モジュールの側面から前記封止材に力を加えて、前記界面から前記封止材及び前記電池層を引き剥がす、
     太陽電池モジュールのリサイクル方法。
  2.  前記所定の温度範囲は、前記封止材の軟化温度以上、溶解温度以下である、
     請求項1に記載の太陽電池モジュールのリサイクル方法。
  3.  前記封止材は、EVAであり、
     前記所定の温度範囲は、40℃以上、140℃以下である、
     請求項2に記載の太陽電池モジュールのリサイクル方法。
  4.  前記力は、セパレータにより加えられ、
     前記セパレータは、前記太陽電池モジュールの側面に最初に接触する第1の時点以外の第2の時点において、前記カバーガラスと前記封止材とが分離される境界部に接触しない、
     請求項3に記載の太陽電池モジュールのリサイクル方法。
  5.  前記セパレータは、前記第2の時点において、前記封止材に接触する接触部を有し、
     前記接触部の接線と前記カバーガラスの表面とのなす角度は、36°以上、51°以下である、
     請求項4に記載の太陽電池モジュールのリサイクル方法。
  6.  前記カバーガラスの表面に平行な方向において、前記太陽電池モジュールと前記セパレータとの相対速度を所定の速度範囲とし、かつ前記太陽電池モジュールの側面を前記セパレータに押し当てることで、前記力を発生させる、
     請求項4又は5に記載の太陽電池モジュールのリサイクル方法。
  7.  前記セパレータの温度は、室温に維持される、
     請求項4乃至6のいずれか1項に記載の太陽電池モジュールのリサイクル方法。
  8.  前記電池層は、CIS型の電池層である、
     請求項1乃至7のいずれか1項に記載の太陽電池モジュールのリサイクル方法。
  9.  前記封止材及び前記電池層を前記カバーガラスから引き剥がした後において、前記カバーガラスに残存する前記封止材の重量は、前記カバーガラスの重量の9%以下である、
     請求項1乃至8のいずれか1項に記載の太陽電池モジュールのリサイクル方法。
  10.  前記電池層が基板ガラス上に配置され、かつ前記カバーガラスと前記基板ガラスとの間に挟まれる構造の太陽電池モジュールである場合に、前記基板ガラスに前記力を加えて、前記基板ガラスを粉砕しながら、前記封止材、前記電池層、及び前記基板ガラスを前記カバーガラスから引き剥がす、
     請求項1乃至9のいずれか1項に記載の太陽電池モジュールのリサイクル方法。
  11.  前記カバーガラスから引き剥がされた前記封止材、前記電池層、及び前記基板ガラスを溶解液に浸すことにより、前記電池層を溶解し、かつ前記基板ガラスと前記封止材とを分離し、
     前記基板ガラスと前記封止材とを別々に回収する、
     請求項10に記載の太陽電池モジュールのリサイクル方法。
  12.  前記基板ガラス及び前記封止材は、前記溶解液中において両者の重量差を利用することにより別々に回収される、
     請求項11に記載の太陽電池モジュールのリサイクル方法。
  13.  前記溶解液は、硝酸溶液である、
     請求項12に記載の太陽電池モジュールのリサイクル方法。
  14.  前記電池層内に含まれる各材料は、前記溶解液から前記基板ガラスと前記封止材とを回収した後、前記溶解液から抽出することにより回収される、
     請求項11乃至13のいずれか1項に記載の太陽電池モジュールのリサイクル方法。
  15.  カバーガラスと、電池層と、これらを密着する封止材と、を備える太陽電池モジュールのリサイクル装置において、
     前記カバーガラスと前記封止材との界面を所定の温度範囲に加熱するヒータと、
     前記太陽電池モジュールの側面から前記封止材に力を加えるセパレータと、
     前記カバーガラスの表面に平行な方向において、前記太陽電池モジュールと前記セパレータとの間に相対速度を発生させる駆動部と、
     前記ヒータ及び前記駆動部を制御する制御部と、を備え、
     前記制御部は、
     前記ヒータにより前記界面を前記所定の温度範囲に設定し、
     前記界面が前記所定の温度範囲を維持した状態で、前記駆動部により前記太陽電池モジュールの側面から前記封止材に前記力を加えて、前記界面から前記封止材及び前記電池層を引き剥がす、
     太陽電池モジュールのリサイクル装置。
  16.  前記ヒータは、前記カバーガラス側から前記界面を前記所定の温度範囲に加熱する、
     請求項15に記載の太陽電池モジュールのリサイクル装置。
  17.  太陽電池モジュールから取り外されたリサイクル用のカバーガラスであって、
     ガラス本体と、
     前記ガラス本体に付着した封止材と、を備え、
     前記封止材は、前記太陽電池モジュール内の電池層を封止する材料であり、
     前記封止材の重量は、前記ガラス本体の重量の9%以下である、
     カバーガラス。
  18.  前記封止材は、前記ガラス本体の縁部のみに付着する、
     請求項17に記載のカバーガラス。

     
PCT/JP2019/015123 2018-04-19 2019-04-05 太陽電池モジュールのリサイクル方法及びリサイクル装置 WO2019203026A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020514080A JP7296947B2 (ja) 2018-04-19 2019-04-05 太陽電池モジュールのリサイクル方法及びリサイクル装置
US17/048,087 US20210162729A1 (en) 2018-04-19 2019-04-05 Solar cell module recycling method and recycling device
CN202310737062.XA CN116748280A (zh) 2018-04-19 2019-04-05 太阳能电池模块的再利用方法以及再利用装置
CN201980026466.XA CN112703066B (zh) 2018-04-19 2019-04-05 太阳能电池模块的再利用方法以及再利用装置
EP19788956.1A EP3782744A4 (en) 2019-04-05 Solar cell module recycling method and recycling device
JP2023097077A JP2023123572A (ja) 2018-04-19 2023-06-13 太陽電池モジュールのリサイクル方法及びリサイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080716 2018-04-19
JP2018-080716 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019203026A1 true WO2019203026A1 (ja) 2019-10-24

Family

ID=68239604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015123 WO2019203026A1 (ja) 2018-04-19 2019-04-05 太陽電池モジュールのリサイクル方法及びリサイクル装置

Country Status (4)

Country Link
US (1) US20210162729A1 (ja)
JP (2) JP7296947B2 (ja)
CN (2) CN112703066B (ja)
WO (1) WO2019203026A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374144B2 (en) 2020-08-14 2022-06-28 National Tsing Hua University Method for recovering resource from CIGS thin-film solar cell
JP7214326B1 (ja) * 2021-05-10 2023-01-30 東芝三菱電機産業システム株式会社 太陽光パネル用分離装置及び貴金属の分離方法
WO2023095627A1 (ja) * 2021-11-24 2023-06-01 ソーラーフロンティア株式会社 解体方法及び解体装置
WO2023145343A1 (ja) * 2022-01-28 2023-08-03 ソーラーフロンティア株式会社 光電変換パネルの素材回収方法及び光電変換パネル用の素材回収システム
EP4056290A4 (en) * 2019-11-06 2023-11-15 Solar Frontier K.K. SEPARATION PROCESS FOR LAYER STRUCTURE
WO2024048618A1 (ja) * 2022-08-30 2024-03-07 株式会社新見ソーラーカンパニー 熱分解装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931783B2 (en) * 2019-11-08 2024-03-19 Industrial Technology Research Institute Recycle apparatus for photovoltaic module
CN114075624B (zh) * 2020-08-14 2023-07-04 赖志煌 薄膜太阳能电池的回收方法
US11407215B2 (en) * 2020-12-13 2022-08-09 Taesung Kim Methods and systems for recycling end-of-life photovoltaic modules
CN113964236B (zh) * 2021-09-26 2023-06-27 湖北三江航天红林探控有限公司 太阳能光伏板热刀剥离装置及方法
EP4324614A1 (en) * 2022-08-19 2024-02-21 Tialpi S.r.l. Method for processing end-of-life photovoltaic panels, and related equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186547A (ja) * 2002-12-05 2004-07-02 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュールの構成部材回収方法
JP2011173099A (ja) * 2010-02-25 2011-09-08 Showa Shell Sekiyu Kk 太陽電池モジュールのリサイクル方法
JP2014079667A (ja) * 2012-10-13 2014-05-08 Miyazaki Prefecture Cis系薄膜太陽電池からの有価物回収方法
JP2015110201A (ja) * 2013-12-06 2015-06-18 三菱電機株式会社 太陽電池モジュールのリサイクル方法
JP2016203061A (ja) 2015-04-17 2016-12-08 株式会社エヌ・ピー・シー 太陽電池モジュールのリサイクル装置
JP2018080716A (ja) 2016-11-14 2018-05-24 トヨタ自動車株式会社 有段変速機を備えた車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351300B2 (en) * 2001-08-22 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
TWI356658B (en) * 2003-01-23 2012-01-11 Toray Industries Members for circuit board, method and device for m
JP2006179626A (ja) * 2004-12-22 2006-07-06 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュール、該太陽電池モジュールの製造方法及び分離方法
JP4602872B2 (ja) * 2005-08-26 2010-12-22 昭和シェル石油株式会社 Cis系薄膜太陽電池モジュールの構成部材回収方法
US8950459B2 (en) * 2009-04-16 2015-02-10 Suss Microtec Lithography Gmbh Debonding temporarily bonded semiconductor wafers
JP2012019134A (ja) * 2010-07-09 2012-01-26 Takio Ishiguro 太陽電池モジュール材料の再利用のための回収方法
WO2013187236A1 (ja) * 2012-06-12 2013-12-19 富士電機株式会社 太陽電池モジュールおよび接着層
JP6068948B2 (ja) * 2012-11-27 2017-01-25 横浜油脂工業株式会社 太陽電池モジュールのリサイクル方法
CN105312303A (zh) * 2015-04-21 2016-02-10 常州天合光能有限公司 一种光伏组件的无损伤回收方法
US10388812B2 (en) * 2015-09-18 2019-08-20 Toho Kasei Co., Ltd. Method of recycling solar cell module
TW201737766A (zh) * 2016-01-21 2017-10-16 康寧公司 處理基板的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186547A (ja) * 2002-12-05 2004-07-02 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュールの構成部材回収方法
JP2011173099A (ja) * 2010-02-25 2011-09-08 Showa Shell Sekiyu Kk 太陽電池モジュールのリサイクル方法
JP5574750B2 (ja) 2010-02-25 2014-08-20 昭和シェル石油株式会社 太陽電池モジュールのリサイクル方法
JP2014079667A (ja) * 2012-10-13 2014-05-08 Miyazaki Prefecture Cis系薄膜太陽電池からの有価物回収方法
JP2015110201A (ja) * 2013-12-06 2015-06-18 三菱電機株式会社 太陽電池モジュールのリサイクル方法
JP2016203061A (ja) 2015-04-17 2016-12-08 株式会社エヌ・ピー・シー 太陽電池モジュールのリサイクル装置
JP2018080716A (ja) 2016-11-14 2018-05-24 トヨタ自動車株式会社 有段変速機を備えた車両の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056290A4 (en) * 2019-11-06 2023-11-15 Solar Frontier K.K. SEPARATION PROCESS FOR LAYER STRUCTURE
US11374144B2 (en) 2020-08-14 2022-06-28 National Tsing Hua University Method for recovering resource from CIGS thin-film solar cell
TWI792037B (zh) * 2020-08-14 2023-02-11 國立清華大學 薄膜太陽能電池的回收方法
JP7214326B1 (ja) * 2021-05-10 2023-01-30 東芝三菱電機産業システム株式会社 太陽光パネル用分離装置及び貴金属の分離方法
WO2023095627A1 (ja) * 2021-11-24 2023-06-01 ソーラーフロンティア株式会社 解体方法及び解体装置
WO2023145343A1 (ja) * 2022-01-28 2023-08-03 ソーラーフロンティア株式会社 光電変換パネルの素材回収方法及び光電変換パネル用の素材回収システム
WO2024048618A1 (ja) * 2022-08-30 2024-03-07 株式会社新見ソーラーカンパニー 熱分解装置

Also Published As

Publication number Publication date
JP7296947B2 (ja) 2023-06-23
US20210162729A1 (en) 2021-06-03
JP2023123572A (ja) 2023-09-05
CN112703066A (zh) 2021-04-23
CN112703066B (zh) 2023-06-30
JPWO2019203026A1 (ja) 2021-06-17
CN116748280A (zh) 2023-09-15
EP3782744A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2019203026A1 (ja) 太陽電池モジュールのリサイクル方法及びリサイクル装置
JP4602872B2 (ja) Cis系薄膜太陽電池モジュールの構成部材回収方法
US8680393B2 (en) Thin film solar cells
EP2410575B1 (en) Solar battery and a production method for same
JP2009141365A (ja) 活性光吸収体中に形成された導電経路を備える太陽電池装置
US20140352751A1 (en) Solar cell or tandem solar cell and method of forming same
US8993370B2 (en) Reverse stack structures for thin-film photovoltaic cells
US8581092B2 (en) Tandem solar cell and method of manufacturing same
US20120279556A1 (en) Photovoltaic Power-Generating Apparatus and Method For Manufacturing Same
EP2695200B1 (en) Solar cell
EP2680320B1 (en) Thin film solar cell module and method of manufacturing the same
EP2450964A2 (en) Photovoltaic power-generating apparatus and method for manufacturing same
WO2010117697A2 (en) Monolithic integration of photovoltaic cells
EP2437311A2 (en) Solar cell module and manufacturing method thereof
KR101283183B1 (ko) 태양전지 및 이의 제조방법
CN103339741B (zh) 太阳能电池设备及其制造方法
WO2008102457A1 (en) Method of recovering constituent member of cis type thin-film solar cell module
JP6411259B2 (ja) 太陽電池の製造方法
JP5274432B2 (ja) 光電変換装置
JP6147926B2 (ja) ナトリウムインジウム硫化物緩衝層を有する薄膜太陽電池のための層システム
JP2012256881A (ja) 太陽電池モジュールの製造方法
KR20140091468A (ko) 태양 전지의 제조 방법
KR101556465B1 (ko) 그래핀을 후면전극으로 적용한 cigs계 태양전지의 연결전극 형성방법
JP2008218937A (ja) 小型(小面積)のcis系薄膜太陽電池モジュール
Kushiya CuInSe2-based thin-film photovoltaic technology in the Gigawatt production era

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019788956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019788956

Country of ref document: EP

Effective date: 20201119