WO2019200852A1 - 基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法 - Google Patents
基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法 Download PDFInfo
- Publication number
- WO2019200852A1 WO2019200852A1 PCT/CN2018/109846 CN2018109846W WO2019200852A1 WO 2019200852 A1 WO2019200852 A1 WO 2019200852A1 CN 2018109846 W CN2018109846 W CN 2018109846W WO 2019200852 A1 WO2019200852 A1 WO 2019200852A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- solution
- flue gas
- ruthenium
- oxalic acid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8668—Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
Definitions
- the invention belongs to the technical field of sintering flue gas treatment, and relates to a method for reducing nitrogen oxides and dioxins of sintering flue gas based on a ruthenium-based catalyst.
- Dioxins have strong carcinogenic and teratogenic effects. Dioxins are extremely difficult to degrade in the environment because of their high toxicity. They can be enriched in the food chain, have high fat solubility, and can be transported over long distances in the atmosphere, affecting regional and global environments. Known as "the poison of the century.” With the understanding of the harm of dioxin in human society, the Sweden Convention on Persistent Organic Pollutants was officially in force on May 17, 2004.
- Step Sintering and Pellet Industry Air Pollutant Emission Standards stipulates that from January 1, 2019, the particulate matter limit in sintering flue gas is 20mg/m 3 and the sulfur dioxide limit is 50 mg/m 3 , nitrogen oxide limit of 100 mg/m 3 and dioxin limit of 0.5 ng-TEQ/m 3 , of which 2+26 cities will be implemented from October 1, 2017.
- the particulate matter limit in sintering flue gas is 20mg/m 3 and the sulfur dioxide limit is 50 mg/m 3 , nitrogen oxide limit of 100 mg/m 3 and dioxin limit of 0.5 ng-TEQ/m 3 , of which 2+26 cities will be implemented from October 1, 2017.
- the dioxin removal technology for sintering flue gas.
- the first type is to add an amino or sulfur-containing compound to the sintering raw material, and the complex electrons of the sulfur and the catalyst are used to form a complex inhibitor.
- the reaction of dioxin formation, or the reaction of sulfur dioxide, amino groups and chloride ions, to reduce the chlorine source to inhibit the formation of dioxin, the effect of this method is that although the PCDD has good inhibition, the inhibition effect on PCDF is very low.
- the second type is activated carbon adsorption method, which utilizes the porous adsorption capacity of activated carbon to achieve the effect of adsorption and removal of dioxins.
- the activated carbon method equipment has high investment and operation cost, and how to treat the activated carbon after adsorption is also new.
- the third type is selective catalytic de-dioxin, the key is to choose a suitable catalyst, vanadium-titanium-based catalyst can achieve higher dioxin removal rate, but the price is high; the catalyst window temperature is unreasonable, sintering
- the flue gas needs to be reheated to about 300-450 °C for dioxin removal, and the temperature will occur again.
- the catalyst after the reaction contains Of V2O5 is highly toxic substances, there are serious pollution to the environment and biological, but also how to deal with new problems.
- the name of the invention is: flue gas SCO denitration catalyst and its preparation method (patent application number: CN201310465375.0, application date: 2013.09.30), which is ferric nitrate and cerium oxide (0.1-0.5) by impregnation method. %), titanium dioxide (mass content 80-90%), tungsten trioxide (2-10%) mixed with the molding agent mixed with calcined calcined, wherein the calcination temperature is from room temperature to 650-750 ° C calcination time 24- 72 hours.
- the shortcoming of this application is that it requires the use of expensive titanium dioxide (20,000/ton) and tungsten trioxide (150,000/ton).
- the name of the invention is: a preparation method of a rare earth-based composite multi-component denitration and de-dioxin catalyst (patent application number: CN201410467844.7, application date: 2014.09.16), through a rare earth composite
- the preparation method of multi-component denitration and de-dioxin catalyst comprises titanium dioxide (ie titanium white powder) and silicon powder as carrier, and ammonium metatungstate, ammonium metavanadate, cerium nitrate and cerium nitrate as active components in the auxiliary materials.
- auxiliary materials include monoethanolamine, citric acid, ammonia water, lactic acid, stearic acid, glass fiber, polymer fiber RP-CHOP, hydroxypropyl group Methyl cellulose, polyethylene oxide and water.
- the object of the present invention is to provide a catalyst production apparatus and a production method for removing dioxin and nitrogen oxides, and the performance of the prepared catalyst is poor, and the sulfhydryl-based catalyst is used to reduce the sulfur oxides of the sintering flue gas.
- the method for reducing sulfur oxides and dioxin of a flue gas based on a ruthenium-based catalyst wherein the flue gas passes through a sulphur-removing device loaded with a ruthenium-based catalyst, and blasts NH 3 and air into the abatement device, wherein ⁇
- the base catalyst comprises Ce:Mn and Fe, wherein the molar ratio of Ce:Mn is 0.25 to 1, and Fe is an auxiliary agent, and the molar ratio of Fe:Mn is 0.25-0.5 in the addition ratio range.
- the catalyst has a specific surface area of from 80 to 90 m -2 /g.
- the catalyst has a pore volume of 0.16 to 0.20 cm -3 /g and a pore diameter of 5.0 to 6.0 nm.
- the ruthenium-based catalyst is prepared by formulating ferrous sulfate, manganese chloride, and lanthanum nitrate into a catalyst active component solution, and then adding the oxalic acid solution to the catalyst active component solution, wherein the catalyst active component solution is The temperature is 0 to 5 ° C, and the mixture is mixed to form a precipitate during the stirring, and the precipitate is filtered, washed, dried, and calcined to obtain a catalyst.
- the temperature of the oxalic acid solution is from 50 to 60 °C.
- the specific steps of the preparation method of the ruthenium-based catalyst are as follows:
- the catalyst active component solution A is cooled to 0 to 5 ° C, and the aqueous oxalic acid solution B having a temperature of 50 to 60 ° C is added to the catalyst active component solution A, and stirring is continued to obtain a precipitation solution C;
- the precipitate solution C was filtered to obtain a precipitate, and the precipitate was dried, and the dried precipitate was calcined, and after completion of the calcination, it was ground to obtain a catalyst.
- the catalyst active component solution A is cooled and cooled by using an ice water bath.
- S400 the preparation of the catalyst, adding an additive to the calcined product, and simultaneously grinding to obtain a catalyst, the additive comprising potassium permanganate or potassium manganate.
- the calcination temperature during calcination is from 300 to 500 °C.
- the ruthenium-based catalyst comprises Ce:Mn and Fe, wherein the molar ratio of Ce:Mn is 0.25-1, Fe is an auxiliary agent, and the molar ratio of Fe:Mn is 0.25-0.5 in the addition ratio range; the sintering smoke is passed through the ruthenium-based catalyst
- Gas pollutants can reduce emissions, improve the removal efficiency of dioxins and nitrogen oxides, and reduce emissions of dioxins and nitrogen oxides in flue gas;
- the precipitate is filtered, washed, dried, and then added to a calcining apparatus for calcination, and calcined to obtain a catalyst.
- a calcining apparatus for calcination for calcination, and calcined to obtain a catalyst.
- the catalyst of the invention is not biologically toxic, and the base metal is the largest in rare metals, has excellent redox capability, and is inexpensive; and the invention
- the ruthenium-based catalyst still has a high catalytic effect at low temperatures.
- Figure 1 is a schematic view showing the structure of a production system of a ruthenium-based catalyst of the present invention
- FIG. 2 is a schematic structural view of a preparation device of the present invention
- Figure 3 is a schematic view showing the connection of the mixing device and the preparation device of the present invention.
- Figure 4 is an electron micrograph of a ruthenium-based catalyst prepared according to the present invention.
- Figure 5 is a flow chart showing a method of producing a rhodium-based catalyst of the present invention.
- reaction chamber 100, reaction chamber; 110, ice water bath; 111, water inlet; 112, water outlet; 120, stirring parts;
- a hot jet unit 131, a first gas tank; 132, a gas heater; 133, a hot gas nozzle; 134, a hot gas nozzle;
- 140 cold jet unit; 141, second gas tank; 142, gas cooler; 143, cold air nozzle; 144, cold air nozzle;
- 210 oxalic acid dropper
- 220 heating and insulation components
- 230 oxalic acid valve
- the method for reducing sulfur oxides and dioxin of the flue gas based on the ruthenium-based catalyst of the present embodiment the flue gas passes through a sulphur-removing device loaded with a ruthenium-based catalyst, and the NH 3 and the air are blown into the abatement device, wherein
- the ruthenium-based catalyst includes Ce:Mn and Fe, wherein the molar ratio of Ce:Mn is 0.25 to 1, and Fe is an auxiliary agent, and the molar ratio of Fe:Mn is 0.25-0.5 in the addition ratio range.
- the ruthenium-based catalyst of this example includes Ce:Mn and Fe, wherein the molar ratio of Ce:Mn is 0.25, Fe is an auxiliary agent, and the molar ratio of addition ratio of Fe:Mn is 0.25.
- the injection quantity of NH 3 is 10-20% of the content of nitrogen oxides in the sintering flue gas, and 10% is taken in this embodiment; the injection amount of air is 5-10% of the other content of the sintering flue gas, which is taken in this embodiment. 8%, no additional heating of the sintering flue gas.
- the denitration efficiency was 85%, and the dioxin emission reduction efficiency was 50%.
- the sintering flue gas outlet temperature is in the range of 100-200 ° C, while the existing catalysts exhibit relatively high catalytic activity above 300 ° C, while below 300 ° C, the catalytic activity tends to be very low, and the reheating of the sintering flue gas is bound to consume a large amount. Energy, increase energy consumption.
- the invention realizes that the low-temperature catalytic degradation of the pollutants can be achieved by using the ruthenium-based catalyst to reduce the nitrogen oxides and the dioxin in the flue gas under the condition of low temperature without heating.
- the reduction mechanism is that a cerium based catalyst promotes nitrogen oxides in flue gas of NH 3 reduction of N 2 produced in catalytic reduction process, a cerium-based catalyst promotes the dioxins in the flue gas during the catalytic reduction of Reductive decomposition, the formation of five poisonous substances.
- the PCDD/Fs in the gas phase undergoes chemical degradation at low temperatures under the action of a metal catalyst to form the final products CO 2 , H 2 O and HCl.
- the reaction process is as follows:
- the method for preparing the ruthenium-based catalyst used in the embodiment is: adding ferrous sulfate, manganese chloride, cerium nitrate and water to the mixing device 10, mixing to obtain a catalyst active component solution; and transferring the catalyst active component solution
- the ice water bath 110 outside the reaction chamber 100 cools the catalyst active component solution to 0 to 5 ° C, and then the oxalic acid solution of the oxalic acid pool 200 is added to the catalyst active group through the oxalic acid dropper 210.
- the reaction chamber 100 is mixed to form a precipitate during the stirring process, and the precipitate is filtered, washed, dried, and then added to the calcining apparatus 30 for calcination, and calcined to obtain a catalyst.
- the water is added to the oxalic acid pool 200 of the preparation device 20, and the heating and holding member 220 is turned on, and the heating and holding member 220 is used for heating and keeping the oxalic acid pool 200 and the oxalic acid dropping tube 210, and the liquid temperature of the oxalic acid pool 200 is maintained at 60 ° C.
- Catalyst Active Component Solution A is added to the reaction chamber 100 by the mixing device 10, and the catalyst active component solution A in the reaction chamber 100 is cooled by the ice water bath 110 and the cold jet unit 140, and the catalyst active component is Solution A is cooled to 0 to 5 ° C;
- the precipitate solution C was filtered to obtain a precipitate, and the obtained precipitate was washed with deionized water, suction-filtered three times, washed with an absolute ethanol solution, and suction filtered three times, and the obtained precipitate was dried at 70 ° C for 12 hours, and dried.
- the post-precipitate is added to the calcining apparatus 30 for calcination, wherein the calcination temperature is 300 to 500 ° C, the temperature rising rate during calcination is 1 to 2 ° C / min; the oxidation roasting time is 1 to 1.5 hours; the roasting of this embodiment
- the temperature was 400 ° C, the temperature rising rate during the calcination was 2 ° C / min, and the oxidizing roasting time was 1 hour to obtain a calcined product.
- the calcined calcined product is further added to the grinding apparatus 40 for grinding, and the particle--40 passage rate of the catalyst is more than 90%, thereby obtaining a rhodium-based catalyst.
- the ruthenium-based catalyst of this example includes Ce:Mn and Fe, wherein the molar ratio of Ce:Mn is 0.25, Fe is an auxiliary agent, and the molar ratio of addition ratio of Fe:Mn is 0.25. Detecting a cerium based catalyst to obtain a specific surface area of 84m -2 / g; pore volume of the catalyst was 0.17m -2 / g, a pore size of 5.5nm. The electron micrograph of the prepared ruthenium-based catalyst is shown in Fig. 4. It can be found from the analysis of the figure that the prepared ruthenium-based catalyst is mesoporous, the specific surface area of the catalyst is relatively large, and the catalytic activity is high.
- a production system of a ruthenium-based catalyst for synergistic removal of dioxins and nitrogen oxides of the present invention comprises a mixing device 10, a preparation device 20 and a calcining device 30 arranged in sequence; wherein the mixing device 10 is used for mixing the reaction component solution, the mixing device 10 includes a mixing tank 300 and a stirring mechanism 310, the stirring mechanism 310 is disposed at an upper portion of the mixing tank 300, and the stirring blade 311 at the bottom of the stirring mechanism 310 is extended to mix Inside the pool 300, the bottom of the mixing tank 300 is connected to the preparation device 20 via a pipe, and a control valve 301 is provided on the pipe.
- the above-mentioned preparation device 20 is used for preparing a catalyst product.
- the preparation device 20 includes a reaction chamber 100 and an oxalic acid pool 200.
- An upper portion of the reaction chamber 100 is provided with an oxalic acid pool 200, and the oxalic acid pool 200 is disposed.
- An oxalic acid dropper 210 is disposed under the oxalic acid pool 200.
- the top of the reaction chamber 100 is provided with a telescopic support arm 152.
- the telescopic support arm 152 is connected to the top of the reaction chamber 100 by a rotating support rod 151, and the end of the telescopic support arm 152 is provided with a clip.
- the holding mechanism 153, the clamping mechanism 153 is used for holding the oxalic acid dropper 210, and the oxalic acid dropper 210 is fixed to the upper part of the reaction chamber 100 by the clamping mechanism 153; the rotation angle of the rotating support rod 151 and the expansion and contraction of the telescopic support arm 152 can be adjusted.
- the length is such that the oxalic acid dropper 210 is disposed corresponding to the hot gas nozzle 133 such that the liquid ejected from the hot gas nozzle 133 heats only the liquid at the corresponding position of the oxalic acid dropper 210.
- An oxalic acid valve 230 is disposed on the oxalic acid dropper 210, and the oxalic acid valve 230 is used to control the flow rate of the oxalic acid solution.
- the oxalic acid pool 200 and the oxalic acid dropper 210 are externally provided with a heating and heat insulating member 220 for heating and holding the oxalic acid pool 200 and the oxalic acid dropping tube 210;
- the outside of the reaction chamber 100 is provided with an ice water bath 110, ice water
- the bath 110 is used for water bath cooling of the reaction chamber 100, and the water bath cooling of the ice water bath 110 can keep the catalyst active component solution A in the reaction chamber 100 cooled, and maintain the catalyst active component solution A at a relatively stable temperature.
- the interval thereby ensuring the stability of the prepared product and the properties of the product, thereby improving the mesoporous properties and catalytic properties of the catalyst;
- the calcining device 30 is used for roasting the product prepared by the preparation device 20.
- a hot air nozzle 133 is disposed in the reaction chamber 100 of the embodiment, and a hot gas nozzle 134 at the top of the hot air nozzle 133 is disposed corresponding to the oxalic acid drop tube 210, and the hot air nozzle 133 is connected to the first gas tank 131, and the hot air nozzle 133 is connected.
- a gas heater 132 is provided for heating the first gas tank 131 and collectively constitutes a hot air blowing unit 130 for heating the liquid of the surface layer.
- the hot gas jet head 134 of the hot air nozzle 133 blows a heating gas into the reaction chamber 100, and the temperature of the heated gas is 60 to 80 °C.
- the hot air nozzle 134 is provided with a temperature sensor for detecting the temperature of the gas ejected from the hot air nozzle 134, and adjusting the heating power of the gas heater 132, thereby adjusting the temperature of the ejected gas to be maintained at 60 to 80 °C.
- the hot gas jet head 134 is disposed in a diffused state, and ejects a diffused hot air flow to the solution in the upper portion of the reaction chamber 100.
- the distance between the hot gas jet head 134 and the solution liquid level 101 is 3 cm or less, so that the hot gas jet head 134
- the hot gas is heated to heat the liquid in the surface layer of the solution liquid surface 101, and in particular, the liquid in the surface layer corresponding to the position of the oxalic acid dropper 210 is heated, so that the oxalic acid solution and the catalyst which are dropped into the reaction chamber 100 by the oxalic acid dropper 210 are heated.
- the active component solution A solution is rapidly mixed uniformly, and under the push and stirring of the hot gas, the oxalic acid solution is quickly mixed with the solution, and local excess is not generated, thereby improving the efficiency of catalyst preparation, thereby improving the preparation quality of the catalyst.
- the stability of the prepared product and the properties of the product are ensured, and it is ensured that the dripped oxalic acid solution can be uniformly and rapidly mixed with the reaction solution.
- the side wall of the reaction chamber 100 is provided with a cold air nozzle 143.
- the front end of the cold air nozzle 143 is inserted into the reaction chamber 100, and a cold air nozzle 144 is disposed.
- the cold air nozzle 144 passes through the cold air nozzle 143 and the second gas tank. 141 is connected to form a cold air blowing unit 140.
- the cold air nozzle 143 is provided with a gas cooler 142 for cooling the gas, and the cold air blowing unit 140 is for injecting a cooling gas into the reaction chamber 100;
- the cold air shower head 144 is disposed obliquely upward, and the cooling gas is sprayed obliquely upward into the reaction chamber 100.
- the cold air shower head 144 is used for blowing a cooling gas into the reaction chamber 100, and the temperature of the cooling gas is 0 to 3 ° C; the cooling gas is used for cooling the liquid in the reaction chamber 100, thereby ensuring the stability of the prepared product and the performance of the product.
- the sprayed cooling gas accelerates the agitation of the solution in the reaction chamber 100, thereby making the reaction more uniform and avoiding local excess of production, thereby improving the mesoporous performance and catalytic performance of the catalyst.
- the distance between the hot gas nozzle 134 and the solution level 101 is smaller than the distance between the cold air nozzle 144 and the solution level 101; that is, the level of the air shower head 144 is lower than the level of the hot air nozzle 134, and the air shower head 144 is The angle of inclination in the vertical direction is 30 to 60°. Further, it is worth noting that the injection speed of the cold air shower head 144 is greater than the injection speed of the hot air spray head 134, the injection speed of the hot air spray head 134 is controlled, and the hot air spray head 134 does not cause splashing of the surface liquid.
- the lower portion of the reaction chamber 100 is provided with a stirring member 120 for stirring the solution in the reaction chamber 100.
- the stirring member 120 When the stirring member 120 is rotated to the vertical direction, the top of the stirring member 120 is on the same horizontal line as the hot air nozzle 134.
- the agitation member 120 cooperates with the cold air shower head 144 to improve the uniformity of mixing.
- the bottom of the ice water bath 110 is provided with a water inlet 111, and the other side of the ice water bath 110 is provided with a water outlet 112.
- the ice water flows into the ice water bath 110 through the water inlet 111, and flows out of the water outlet 112. Thereby, the cooling effect of the ice water bath 110 on the reaction chamber 100 is improved.
- the basic content of this embodiment is the same as that of Embodiment 1, except that in step 400, during the preparation of the catalyst, an additive is added to the calcined product, and the mixture of the calcined product and the additive is added to the grinding device 40 for grinding.
- the additive includes potassium permanganate or potassium manganate. Potassium permanganate or potassium manganate can decompose oxygen and manganese oxide under heating conditions, oxygen is beneficial to the catalytic effect, and manganese oxide is beneficial to supplement the consumption of catalyst manganese.
- the basic content of this embodiment is the same as that of Embodiment 1, except that in step 400, during the preparation of the catalyst, an additive is added to the calcined product, and the mixture of the calcined product and the additive is added to the grinding device 40 for grinding.
- the additive comprises potassium perchlorate, activated carbon and sintered ore powder.
- the potassium sulphate, the activated carbon and the sintered ore powder and the catalyst in the additive work together to make the smoke
- the conditions for reducing emissions are maintained, so that the catalyst has a better treatment effect on the pollutants. It is beneficial to the catalytic effect, especially the component manganese oxide in the additive is beneficial to supplement the consumption of effective elements in the catalyst, not only improves the abatement efficiency, but also improves the service life of the catalyst.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,属于烧结烟气治理技术领域。本发明烟气经过负载有铈基催化剂的减排装置,并向减排装置中鼓入NH 3和空气,其中铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25~1,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25-0.5,催化剂的比表面积为80~90m -2/g;催化剂的孔容为0.16~0.20cm -3/g、孔径为5.0~6.0nm。本发明通过铈基催化剂对烧结烟气的污染物进行减排,提高二噁英和氮氧化物的脱除效率,可以减少烟气中二噁英和氮氧化物的排放。
Description
本发明属于烧结烟气治理技术领域,涉及基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法。
随着钢产量的逐年上升,铁矿石烧结过程中产生的多氯代二苯并二噁英和多氯代二苯并呋喃(PCDDs/PCDFs)污染也随之愈发严重。二噁英具有强烈的致癌致畸作用,二噁英因其高毒性,在环境中极难降解,可以通过食物链富集,具有高脂溶性,能够在大气中远距离传输而影响到区域乃至全球环境被称为“世纪之毒”。随着人类社会对二噁英危害的认识,2004年5月17日《关于持久性有机污染物的斯德哥尔摩公约》在全球正式生效,同年6月25日,我国在第十届全国人大第十次会议上审批通过了《公约》并于11月11日对中国正式生效。随后2012年6月中国颁布了《钢铁烧结、球团工业大气污染物排放标准》,其中详细规定了企业烧结烟气中颗粒物限值为20mg/m
3、二氧化硫限值为200mg/m
3、氮氧化物限值为300mg/m
3、二噁英限值为0.5ng-TEQ/m
3。而新发布的《钢铁烧结、球团工业大气污染物排放标准》(修改意见稿)中规定自2019年1月1日起,烧结烟气中颗粒物限值为20mg/m
3、二氧化硫限值为50mg/m
3、氮氧化物限值为100mg/m
3、二噁英限值为0.5ng-TEQ/m
3,其中2+26城市自2017年10月1日起实施。目前国内有超过1000条铁矿石烧结工序,拥有脱二噁英设备的不到10条,因此迫切需要研究针对烧结烟气的二噁英脱除技术。
目前国内外烧结烟气氮氧化物、二噁英脱除技术主要有三类,第一类是在烧结原料里添加含氨基或硫的化合物,利用硫的孤对电子与催化剂形成络合物抑制二噁英生成反应,或是利用二氧化硫、氨基团与氯离子的反应,减少氯源抑制二噁英生成,此方法效果是上虽然对PCDD有较好的抑制,但是对PCDF的抑制效果很低,且不能脱除硫化物;第二类是活性炭吸附法,利用活性炭的多孔吸附能力,达到吸附脱除二噁英的效果,但是活性炭法设备投资运行成本高,吸附后的活性炭如何处理也是新的难题;第三类是选择性催化脱二噁英,其关键在于选择合适的催化剂,钒钛基催化剂虽然可以达到较高的二噁英脱除率,但是价格高昂;催化剂窗口温度不合理,烧结烟气需要再加热至300-450℃左右进行脱二噁英,而此温度会发生二噁英的再次生成;反应后的催化剂含有的V2O5为剧毒物质,对环境和生物有严重污染,如何处理也是新的问题。近年来,铈因为其出色的储氧、释放氧能力,优秀的氧化还原性,被用在持久性有机污染物(POPs)催化的研究中,且铈是稀有元素中丰富度最高的一种元素, 价格很低。因此,迫切需要开发一种适用于铁矿石烧结烟气脱二噁英的催化剂,为钢铁行业清洁生产提供有效保障。
经检索,发明创造的名称为:烟气SCO脱硝催化剂及其制备方法(专利申请号:CN201310465375.0,申请日:2013.09.30),其通过浸渍法将硝酸铁、二氧化铈(0.1-0.5%)、钛白粉(质量含量80-90%)、三氧化钨(2-10%)混合后与成型剂混炼陈腐制煅烧得,其中煅烧温度为从室温到650-750℃煅烧时间24-72小时。该申请案不足之处在于:需使用价格高昂的钛白粉(2万/吨)与三氧化钨(15万/吨)。
经检索,发明创造的名称为:一种稀土基复合多组分脱硝、脱二噁英催化剂的制备方法(专利申请号:CN201410467844.7,申请日:2014.09.16),通过一种稀土基复合多组分脱硝、脱二噁英催化剂的制备方法,以二氧化钛(即钛白粉)、硅粉为载体,以偏钨酸铵、偏钒酸铵、硝酸铈和硝酸镧为活性组分,在辅料伴随下,经过混炼、捏合、成型、干燥、焙烧制成;其中所述辅料包括一乙醇胺、柠檬酸、氨水、乳酸、硬脂酸、玻璃纤维、高分子聚合纤维RP-CHOP、羟丙基甲基纤维素、聚氧化乙烯和水。该申请案不足之处在于:需要经过多次混炼过程,操作复杂,虽然可以降低对烟气二噁英含量,但是对二噁英减排效果有限。
发明内容
1.发明要解决的技术问题
本发明的目的在于,针对现有脱除二噁英和氮氧化物的催化剂生产装置和生产方法较差,使得制备得到的催化剂的性能较差,提供基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法;通过铈基催化剂对烧结烟气的污染物进行减排,提高二噁英和氮氧化物的脱除效率,可以减少烟气中二噁英和氮氧化物的排放。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,烟气经过负载有铈基催化剂的减排装置,并向减排装置中鼓入NH
3和空气,其中铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25~1,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25-0.5。
优选地,催化剂的比表面积为80~90m
-2/g。
优选地,催化剂的孔容为0.16~0.20cm
-3/g、孔径为5.0~6.0nm。
优选地,铈基催化剂的制备方法为:将硫酸亚铁、氯化锰、硝酸铈配成催化剂活性组分溶液,再将草酸溶液加入到催化剂活性组分溶液中,其中催化剂活性组分溶液的温度为0~5℃,在搅拌的过程中混合反应生成沉淀,对沉淀进行过滤、洗涤、干燥、焙烧制得催化剂。
优选地,草酸溶液的温度为50~60℃。
优选地,铈基催化剂的制备方法具体的步骤如下:
S100、制备活性组分溶液
取4份FeSO
4·7H
2O、12份MnCl
2·4H
2O、1份Ce(NO
3)
3·6H
2O,1480份去离子水,并混合得到催化剂活性组分溶液A;
S200、配制草酸溶液
将草酸加入到50~60℃的水中,并混合均匀制得草酸水溶液B;
S300、制备沉淀溶液
将催化剂活性组分溶液A冷却至0~5℃,再将温度为50~60℃的草酸水溶液B加入到催化剂活性组分溶液A中,继续搅拌得到制得沉淀溶液C;
400、催化剂的制备
将沉淀溶液C过滤得到沉淀物,并将沉淀物干燥,将干燥后的沉淀物进行焙烧,焙烧完成后进行研磨得到催化剂。
优选地,S300、制备沉淀溶液中采用冰水浴对催化剂活性组分溶液A进行冷却降温。
优选地,S400、催化剂的制备,在焙烧后的产物中加入添加剂,并同时进行研磨得到催化剂,所述添加剂包括高锰酸钾或锰酸钾。
优选地,焙烧过程中焙烧温度为300~500℃。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)本发明的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,烟气经过负载有铈基催化剂的减排装置,并向减排装置中鼓入NH
3和空气,其中铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25~1,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25-0.5;通过铈基催化剂对烧结烟气的污染物进行减排,提高二噁英和氮氧化物的脱除效率,可以减少烟气中二噁英和氮氧化物的排放;
(2)本发明的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,实现了在低温状态下,不用加热的情况下,采用铈基催化剂就可以对烟气中的氮氧化物和二噁英进行减排,实现了污染物的低温催化降解;
(3)本发明的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其中催化剂的制备方法是将硫酸亚铁、氯化锰、硝酸铈和水加入混匀装置中,混匀得到催化剂活性组分溶液;再将催化剂活性组分溶液转移至制备装置的反应腔中,反应腔外部的冰水浴池对催化剂活性组分溶液冷却至0~5℃,再将草酸池的草酸溶液通过草酸滴管加入到催化剂活性组分溶液中,反应腔在搅拌的过程中混合反应生成沉淀,对沉淀进行过滤、洗涤、干燥后加入到焙烧装置 中进行焙烧,焙烧后制得催化剂,相比含有钒等生物毒性较高的金属对环境污染严重,而本发明的催化剂没有生物毒性,且铈金属是稀有金属中储量最大的,拥有优秀的氧化还原能力,价格便宜;且本发明的铈基催化剂在低温下任然有较高的催化效果。
图1为本发明的铈基催化剂的生产系统的结构示意图;
图2为本发明的制备装置的结构示意图;
图3为本发明的混匀装置和制备装置的连接示意图;
图4为本发明制备的铈基催化剂的电镜图片;
图5为本发明的铈基催化剂的生产方法的流程图。
附图中的标号说明:
10、混匀装置;20、制备装置;30、焙烧装置;40、研磨装置;
100、反应腔;110、冰水浴池;111、进水口;112、出水口;120、搅拌部件;
130、热喷气单元;131、第一气罐;132、气体加热器;133、热气喷管;134、热气喷头;
140、冷喷气单元;141、第二气罐;142、气体冷却器;143、冷气喷管;144、冷气喷头;
151、转动支撑杆;152、伸缩支撑臂;153、夹持机构;
200、草酸池;201、电磁搅拌机构;202、机械搅拌器;
210、草酸滴管;220、加热保温部件;230、草酸阀;
300、混匀池;301、控制阀;310、搅拌机构;311、搅拌叶片。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述,附图中给出了本发明的若干实施例,但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例,相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件;当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件;本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明;本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
本实施例的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,烟气经过负载有铈基催化剂的减排装置,并向减排装置中鼓入NH
3和空气,其中铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25~1,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25-0.5。本实施例的铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25。
其中NH
3喷入质量为烧结烟气中氮氧化物质量含量的10~20%,本实施例取10%;空气的喷入量为烧结烟气其他含量的5~10%,本实施例取8%,不用对烧结烟气另外加热。检测得到脱硝效率为85%,二噁英的减排效率为50%。然而,烧结烟气出口温度在100-200℃内,而现有催化剂在300℃以上表现相当高的催化活性,而低于300℃时,催化活性往往很低,烧结烟气重新加热势必消耗大量能源,增加能耗。而本发明实现了在低温状态下,不用加热的情况下,采用铈基催化剂就可以对烟气中的氮氧化物和二噁英进行减排,实现了污染物的低温催化降解。
其中的减排机理在于,铈基催化剂在催化还原的过程中促进NH
3将烟气中的氮氧化物还原生产N
2,铈基催化剂在催化还原的过程中促进将烟气中的二噁英还原分解,生成五毒的物质。气相的PCDD/Fs在金属催化剂的作用下,低温即可发生化学降解,生成最终产物CO
2、H
2O和HCl。反应过程如下所示:
C1
2H
nCl
8-nO
2+(9+0.5n)O
2→(n-4)H
2O+12CO
2+(8-n)HCl
C1
2H
nCl
8-nO+(9.5+0.5n)O
2→(n-4)H
2O+12CO
2+(8-n)HCl
本实施例采用的铈基催化剂的制备方法是:将硫酸亚铁、氯化锰、硝酸铈和水加入混匀装置10中,混匀得到催化剂活性组分溶液;再将催化剂活性组分溶液转移至制备装置20的反应腔100中,反应腔100外部的冰水浴池110对催化剂活性组分溶液冷却至0~5℃,再将草酸池200的草酸溶液通过草酸滴管210加入到催化剂活性组分溶液中,反应腔100在搅拌的过程中混合反应生成沉淀,对沉淀进行过滤、洗涤、干燥后加入到焙烧装置30中进行焙烧,焙烧后制得催化剂。
S100、制备活性组分溶液
取3.3~6.6份FeSO
4·7H
2O、9.5份MnCl
2·4H
2O、1.3~5.2份Ce(NO
3)
3·6H
2O和去离子水加入到加入混匀装置10中,混匀装置10的搅拌速度200r/min、搅拌时间30min;在混匀装置10中混合得到催化剂活性组分溶液A;值得注意的是,本实施例的取3.3g的FeSO
4·7H
2O、9.5g的MnCl
2·4H
2O、1.3g的Ce(NO
3)
3·6H
2O和去离子水加入到加入混匀装置10中混合得到催化剂活性组分溶液A;
S200、配制草酸溶液
将水加入到制备装置20的草酸池200中,开启加热保温部件220,加热保温部件220用于对草酸池200和草酸滴管210进行加热保温,并保持草酸池200的液体温度达到60℃,再向溶液中加入草酸粉末,搅拌速度200r/min,搅拌时间30min,并混合均匀制得草酸水溶液B;
S300、制备沉淀溶液
1)催化剂活性组分溶液A由混匀装置10加入到反应腔100内,通过冰水浴池110和冷喷气单元140对反应腔100内的催化剂活性组分溶液A进行冷却,将催化剂活性组分溶液A冷却至0~5℃;
2)调节转动支撑杆151的转动角度和伸缩支撑臂152的伸缩长度,使得草酸滴管210与热气喷管133对应设置,开启热喷气单元130,热气喷头134向反应腔100内喷入加热气体,热气对反应腔100表层的液体进行加热,而后并将草酸水溶液B加入到催化剂活性组分溶液A中再将温度为60℃的草酸水溶液B加入到反应腔100的催化剂活性组分溶液A中,且草酸溶液滴加在与热气喷头134对应的位置,继续搅拌得到制得沉淀溶液C;
400、催化剂的制备
将沉淀溶液C过滤得到沉淀物,并将所得的沉淀物用去离子水洗涤、抽滤三次,再用无水乙醇溶液洗涤、抽滤三次,将所得的沉淀物在70℃干燥12h,将干燥后的沉淀物加入到焙烧装置30中进行焙烧,其中焙烧温度为300~500℃,焙烧过程中的升温速度为1~2℃/min;氧化焙烧时间为1~1.5小时;本实施例的焙烧温度为400℃,焙烧过程中的升温速度为2℃/min;氧化焙烧时间为1小时,得到焙烧产物。再将焙烧好的焙烧产物加入到研磨装置40中进行研磨,研磨得到催化剂的颗粒-40目的通过率大于90%,得到铈基催化剂。本实施例的铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25。检测得到铈基催化剂的比表面积为84m
-2/g;催化剂的孔容为0.17m
-2/g、孔径为5.5nm。制备的到的铈基催化剂的电镜图片如图4所示,由图中分析可以发现,制备得到的铈基催化剂为介孔状态,催化剂的比表面积比较大,催化的催化活性较高。
实施例2
参照附图1所示,本发明的一种协同脱除二噁英和氮氧化物的铈基催化剂的生产系统,包括依次设置的混匀装置10、制备装置20和焙烧装置30;其中混匀装置10用于对反应组分溶液进行混合,混匀装置10包括混匀池300和搅拌机构310,搅拌机构310设置于混匀池300的上部,且搅拌机构310底部的搅拌叶片311延伸至混匀池300的内部,混匀池300的底部通过管道与制备装置20相连,管道上设置有控制阀301。
如图2和图3所示,上述的制备装置20用于制备催化剂产物,该制备装置20包括反应腔100和草酸池200,反应腔100的上部设置有草酸池200,该草酸池200内设置有电磁搅拌 机构201和机械搅拌器202;电磁搅拌机构201和机械搅拌器202用于对草酸池200内的草酸溶液进行搅拌。
草酸池200下设置有草酸滴管210,反应腔100的顶部设置有伸缩支撑臂152,伸缩支撑臂152通过转动支撑杆151与反应腔100的顶部相连,伸缩支撑臂152的端部设置有夹持机构153,夹持机构153用于加持草酸滴管210,草酸滴管210通过夹持机构153固定于反应腔100的上部;可以通过调节转动支撑杆151的转动角度和伸缩支撑臂152的伸缩长度,从而使得草酸滴管210与热气喷管133对应设置,使得热气喷管133喷出的液体仅仅对草酸滴管210对应位置的液体进行加热。草酸滴管210上设置有草酸阀230,该草酸阀230用于控制草酸溶液的流量。
草酸池200和草酸滴管210的外部设置有加热保温部件220,加热保温部件220用于对草酸池200和草酸滴管210进行加热保温;反应腔100的外部设置有冰水浴池110,冰水浴池110用于对反应腔100进行水浴冷却,冰水浴池110的水浴冷却可以保持反应腔100内的催化剂活性组分溶液A进行冷却,并将催化剂活性组分溶液A保持在相对稳定的温度反应区间,从而保证了制备产物的稳定性和产物的性能,进而可以提高催化剂的介孔性能和催化性能;所述焙烧装置30用于对制备装置20制备的产物进行焙烧。
本实施例的反应腔100内设置有热气喷管133,热气喷管133顶部的热气喷头134与草酸滴管210对应设置,热气喷管133与第一气罐131相连,且热气喷管133上设置有气体加热器132,该气体加热器132用于对第一气罐131进行加热热,并共同构成热喷气单元130,该热喷气单元130用于对表层的液体进行加热。热气喷管133的热气喷头134向反应腔100吹入加热气体,加热气体的温度为60~80℃。热气喷头134上设置有温度传感器,并用于检测热气喷头134喷出气体的温度,调控气体加热器132的加热功率,从而调整喷出气体的温度维持在60~80℃。该热气喷头134设置为扩散状态,并向反应腔100上部的溶液喷射出扩散状的热气流,值得注意的是热气喷头134与溶液液面101之间的距离小于等于3cm,从而使得热气喷头134喷出的热气对溶液液面101表层的液体进行加热,而且特别是对与草酸滴管210对应位置的表层的液体进行加热,使得由草酸滴管210滴入反应腔100内的草酸溶液与催化剂活性组分溶液A溶液迅速混合均匀,并在热气的推动和搅拌下,促进了草酸溶液迅速与溶液混合,并且不产生局部过剩,提高了催化剂制备的效率,进而可以提高催化剂的制备质量。从而即保证了制备产物的稳定性和产物的性能,而且又能保证滴入的草酸溶液能均匀、迅速的与反应溶液混合。
此外,值得注意的是反应腔100的侧壁上设置有冷气喷管143,冷气喷管143插入反应腔100内的前端设置有冷气喷头144,冷气喷头144经冷气喷管143与第二气罐141相连并 构成冷喷气单元140,冷气喷管143上设置有气体冷却器142,该气体冷却器142用于对气体进行冷却,冷喷气单元140用于向反应腔100内喷入冷却气体;该冷气喷头144倾斜向上设置,冷却气体倾斜向上的喷入反应腔100内。冷气喷头144用于向反应腔100吹入冷却气体,冷却气体的温度为0~3℃;冷却气体用于对反应腔100内的液体进行冷却,从而保证了制备产物的稳定性和产物的性能,与此同时,喷出的冷却气体加速了反应腔100内溶液的搅拌,从而使得反应更加均匀,避免生产局部过剩,进而可以提高催化剂的介孔性能和催化性能。
值得说明的是热气喷头134与溶液液面101之间的距离小于冷气喷头144与溶液液面101之间的距离;即冷气喷头144的水平高度位于热气喷头134的水平高度低,冷气喷头144与竖直方向的倾斜夹角为30~60°。此外,值得注意的是冷气喷头144的喷射速度大于热气喷头134的喷射速度,要控制热气喷头134的喷射速度,并且使得热气喷头134对表层液体不产生喷溅。
反应腔100的下部设置有搅拌部件120,搅拌部件120用于对反应腔100内的溶液进行搅拌,搅拌部件120转动至竖直方向时,搅拌部件120的顶部与热气喷头134在同一水平线上,搅拌部件120与冷气喷头144的共同作用,提高了混合的均匀性。此外,冰水浴池110一侧的底部设置有进水口111,冰水浴池110另一侧的顶部设置有出水口112,冰水经进水口111流入冰水浴池110中,并由出水口112流出,从而提高了冰水浴池110对反应腔100的冷却效果。
实施例3
本实施例的基本内容同实施例1,不同之处在于:在步骤400、催化剂的制备过程中,将添加剂加入到焙烧产物中,再将焙烧产物和添加剂的混合物加入到研磨装置40中进行研磨,其中添加剂包括高猛酸钾或者锰酸钾,高猛酸钾或者锰酸钾在加热的条件下能够分解出氧气和氧化锰,氧气有利于催化效果,氧化锰有利于补充催化剂锰的消耗。
实施例4
本实施例的基本内容同实施例1,不同之处在于:在步骤400、催化剂的制备过程中,将添加剂加入到焙烧产物中,再将焙烧产物和添加剂的混合物加入到研磨装置40中进行研磨,其中添加剂包括高猛酸钾、活性炭和烧结返矿粉末,在对烟气进行处理的过程中,添加剂中的高猛酸钾、活性炭和烧结返矿粉末和催化剂共同作用,使得在在对烟气中的氮氧化物和二噁英进行减排的过程中,保持较好的减排条件,从而使得催化剂对污染物具有较好的处理效果。有利于催化效果,特别是添加剂中的组分氧化锰有利于补充催化剂中的有效元素的消耗,不仅提高了减排效率,而且可以提高催化剂的使用寿命。
以上所述实施例仅表达了本发明的某种实施方式,其描述较为具体和详细,但并不能因 此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,本发明专利的保护范围应以所附权利要求为准。
Claims (9)
- 基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:烟气经过负载有铈基催化剂的减排装置,并向减排装置中鼓入NH 3和空气,其中铈基催化剂包括Ce:Mn和Fe,其中Ce:Mn的摩尔比均为0.25~1,Fe为助剂,添加比例范围Fe:Mn的摩尔比0.25-0.5。
- 根据权利要求1所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:催化剂的比表面积为80~90m -2/g。
- 根据权利要求1所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:催化剂的孔容为0.16~0.20cm -3/g、孔径为5.0~6.0nm。
- 根据权利要求1-4任一项所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:铈基催化剂的制备方法为:将硫酸亚铁、氯化锰、硝酸铈配成催化剂活性组分溶液,再将草酸溶液加入到催化剂活性组分溶液中,其中催化剂活性组分溶液的温度为0~5℃,在搅拌的过程中混合反应生成沉淀,对沉淀进行过滤、洗涤、干燥、焙烧制得催化剂。
- 根据权利要求4所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:草酸溶液的温度为50~60℃。
- 根据权利要求4所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:铈基催化剂的制备方法具体的步骤如下:S100、制备活性组分溶液取4份FeSO 4·7H 2O、12份MnCl 2·4H 2O、1份Ce(NO 3) 3·6H 2O,1480份去离子水,并混合得到催化剂活性组分溶液A;S200、配制草酸溶液将草酸加入到50~60℃的水中,并混合均匀制得草酸水溶液B;S300、制备沉淀溶液将催化剂活性组分溶液A冷却至0~5℃,再将温度为50~60℃的草酸水溶液B加入到催化剂活性组分溶液A中,继续搅拌得到制得沉淀溶液C;S400、催化剂的制备将沉淀溶液C过滤得到沉淀物,并将沉淀物干燥,将干燥后的沉淀物进行焙烧,焙烧完成后进行研磨得到催化剂。
- 根据权利要求4所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:S300、制备沉淀溶液中采用冰水浴对催化剂活性组分溶液A进行冷却降温。
- 根据权利要求4所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:400、催化剂的制备,在焙烧后的产物中加入添加剂,并同时进行研磨得到催化剂,所述添加剂包括高锰酸钾或锰酸钾。
- 根据权利要求4所述的基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法,其特征在于:焙烧过程中焙烧温度为300~500℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2020/07230A ZA202007230B (en) | 2018-04-20 | 2020-11-19 | Method for reducing emission of nitrogen oxides and dioxins of sintering flue gas on basis of cerium-based catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810361856.X | 2018-04-20 | ||
CN201810361856.XA CN108434981A (zh) | 2018-04-20 | 2018-04-20 | 一种基于铈基催化剂减排烧结烟气脱硝、脱二噁英的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019200852A1 true WO2019200852A1 (zh) | 2019-10-24 |
Family
ID=63201198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/109846 WO2019200852A1 (zh) | 2018-04-20 | 2018-10-11 | 基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108434981A (zh) |
WO (1) | WO2019200852A1 (zh) |
ZA (1) | ZA202007230B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114768822A (zh) * | 2022-05-06 | 2022-07-22 | 合肥工业大学 | 一种环境友好与资源节约型高效低温脱硝催化剂的制备方法 |
CN115501888A (zh) * | 2022-10-21 | 2022-12-23 | 中科新天地(合肥)环保科技有限公司 | 高效协同脱硝和脱二噁英的催化剂及其制备方法 |
CN116251599A (zh) * | 2022-09-09 | 2023-06-13 | 南京信息工程大学 | 一种二噁英脱除催化剂及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108434981A (zh) * | 2018-04-20 | 2018-08-24 | 安徽工业大学 | 一种基于铈基催化剂减排烧结烟气脱硝、脱二噁英的方法 |
CN111569864A (zh) * | 2020-05-27 | 2020-08-25 | 珠海格力电器股份有限公司 | 一种催化净化甲醛的活性炭复合材料及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101011659A (zh) * | 2007-02-07 | 2007-08-08 | 南开大学 | 一种用于锅炉低温烟气的scr脱硝的催化剂及制备方法 |
CN102008956A (zh) * | 2010-12-27 | 2011-04-13 | 国电科学技术研究院 | 一种烟气脱NOx低温SCR催化剂的制备方法 |
CN108339507A (zh) * | 2018-04-20 | 2018-07-31 | 安徽工业大学 | 一种用于制备铈基催化剂的装置 |
CN108435199A (zh) * | 2018-04-20 | 2018-08-24 | 安徽工业大学 | 一种烧结烟气协同脱除二噁英和氮氧化物的铈基催化剂及其制备方法 |
CN108434981A (zh) * | 2018-04-20 | 2018-08-24 | 安徽工业大学 | 一种基于铈基催化剂减排烧结烟气脱硝、脱二噁英的方法 |
CN108465471A (zh) * | 2018-04-20 | 2018-08-31 | 安徽工业大学 | 一种协同脱除二噁英和氮氧化物的铈基催化剂的生产系统及方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0947661A (ja) * | 1995-08-04 | 1997-02-18 | Babcock Hitachi Kk | 排ガス浄化方法および浄化触媒 |
CN102114424B (zh) * | 2010-12-29 | 2012-10-24 | 国电科学技术研究院 | 一种低温烟气脱硝scr催化剂及制备方法 |
CN105363470A (zh) * | 2015-12-03 | 2016-03-02 | 广西阔能霸能源科技开发有限责任公司 | 一种燃煤烟气脱硝催化剂及其制备方法 |
CN106622212B (zh) * | 2016-12-08 | 2019-06-21 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种用于挥发性有机物治理的锰基催化剂及制备和应用 |
-
2018
- 2018-04-20 CN CN201810361856.XA patent/CN108434981A/zh active Pending
- 2018-10-11 WO PCT/CN2018/109846 patent/WO2019200852A1/zh active Application Filing
-
2020
- 2020-11-19 ZA ZA2020/07230A patent/ZA202007230B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101011659A (zh) * | 2007-02-07 | 2007-08-08 | 南开大学 | 一种用于锅炉低温烟气的scr脱硝的催化剂及制备方法 |
CN102008956A (zh) * | 2010-12-27 | 2011-04-13 | 国电科学技术研究院 | 一种烟气脱NOx低温SCR催化剂的制备方法 |
CN108339507A (zh) * | 2018-04-20 | 2018-07-31 | 安徽工业大学 | 一种用于制备铈基催化剂的装置 |
CN108435199A (zh) * | 2018-04-20 | 2018-08-24 | 安徽工业大学 | 一种烧结烟气协同脱除二噁英和氮氧化物的铈基催化剂及其制备方法 |
CN108434981A (zh) * | 2018-04-20 | 2018-08-24 | 安徽工业大学 | 一种基于铈基催化剂减排烧结烟气脱硝、脱二噁英的方法 |
CN108465471A (zh) * | 2018-04-20 | 2018-08-31 | 安徽工业大学 | 一种协同脱除二噁英和氮氧化物的铈基催化剂的生产系统及方法 |
Non-Patent Citations (2)
Title |
---|
JIANG, QIN ET AL.: "The Technical Equipment Embodiments and Evaluation on SCR Denitration/Dedioxin of Steelworks Sintering Flue Gas", 2017 SEMINARS FOR THE DENITRATION AND COMPREHENSIVE TREATMENT TECHNOLOGY OF SINTERING FLUE GAS, 25 August 2017 (2017-08-25), pages 28; 29 * |
QI, GONGSHIN ET AL.: "A Superior Catalyst for Low-Temperature NO Reduction with NH3", CHEMICAL COMMUNICATIONS, 3 March 2003 (2003-03-03), pages 848 - 849, XP002596639 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114768822A (zh) * | 2022-05-06 | 2022-07-22 | 合肥工业大学 | 一种环境友好与资源节约型高效低温脱硝催化剂的制备方法 |
CN114768822B (zh) * | 2022-05-06 | 2024-03-22 | 合肥工业大学 | 一种环境友好与资源节约型低温脱硝催化剂的制备方法 |
CN116251599A (zh) * | 2022-09-09 | 2023-06-13 | 南京信息工程大学 | 一种二噁英脱除催化剂及其制备方法 |
CN116251599B (zh) * | 2022-09-09 | 2024-05-14 | 南京信息工程大学 | 一种二噁英脱除催化剂及其制备方法 |
CN115501888A (zh) * | 2022-10-21 | 2022-12-23 | 中科新天地(合肥)环保科技有限公司 | 高效协同脱硝和脱二噁英的催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108434981A (zh) | 2018-08-24 |
ZA202007230B (en) | 2022-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019200852A1 (zh) | 基于铈基催化剂减排烧结烟气氮氧化物、二噁英的方法 | |
WO2015149499A1 (zh) | 一种低温高效脱硝催化剂及其制备方法 | |
CN104785302B (zh) | 选择性催化还原脱硝催化剂及其制法和应用 | |
CN106925265B (zh) | 一种过渡金属复合氧化物催化剂 | |
CN105363451B (zh) | 一种用于分解n2o的高效催化剂及其制备方法和应用 | |
CN101979140A (zh) | 一种选择性催化氧化氨气的金属负载型催化剂、制备方法及其应用 | |
KR102525003B1 (ko) | 질소 산화물 흡수제 슬러리 및 이의 제조와 사용 방법 | |
CN105597777A (zh) | 一种有序介孔碳负载Cu-Mn双金属脱硝催化剂及其制备方法 | |
Pu et al. | Low-cost Mn–Fe/SAPO-34 catalyst from natural ferromanganese ore and lithium-silicon-powder waste for efficient low-temperature NH3-SCR removal of NOx | |
CN108435199B (zh) | 一种烧结烟气协同脱除二噁英和氮氧化物的铈基催化剂及其制备方法 | |
CN105148927B (zh) | 一种抗水抗硫型烟气脱硝粉体催化剂、制备方法及其用途 | |
CN110586073A (zh) | 一种用于催化氧化消除窑炉烟气中二噁英的催化剂及其制备方法 | |
CN108514881B (zh) | 一种用于NH3催化氧化的纳米棒状结构的Cu-Ce催化剂、制备方法以及应用 | |
CN111617807A (zh) | 一种Fe改性纳米锰氧化物/MIL-125(Ti)催化剂及其制备方法 | |
CN107413350A (zh) | 混合稀土脱硝催化剂及其制备方法 | |
CN110252317B (zh) | 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂 | |
Luo et al. | Study on CO-SCR denitrification performance of Ho-modified OMS-2 catalyst | |
CN106881105A (zh) | 一种以交联纳米链自组装多孔球状二氧化钛为载体的板式低温催化剂及其制备方法和应用 | |
Li et al. | Mn MOF-derivatives synthesized based upon a mechanochemistry method for low-temperature NH3-SCR: From amorphous precursor to amorphous catalyst | |
CN110026204B (zh) | 一种环境友好型协同脱除二噁英和氮氧化物的催化剂 | |
CN108339507A (zh) | 一种用于制备铈基催化剂的装置 | |
NL2022095B1 (en) | System and method for producing cerium-based catalyst for combined removal of dioxins and nitrogen oxides | |
CN103349980B (zh) | 一种铈基催化剂及其制备方法和在氮氧化物选择性催化还原中的应用 | |
CN208554225U (zh) | 一种协同脱除二噁英和氮氧化物的铈基催化剂的生产系统 | |
CN106362727B (zh) | 一种提高铈基脱硝催化剂催化性能的方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18915177 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18915177 Country of ref document: EP Kind code of ref document: A1 |