WO2019200688A1 - 硅片转移用组合机械手 - Google Patents

硅片转移用组合机械手 Download PDF

Info

Publication number
WO2019200688A1
WO2019200688A1 PCT/CN2018/091517 CN2018091517W WO2019200688A1 WO 2019200688 A1 WO2019200688 A1 WO 2019200688A1 CN 2018091517 W CN2018091517 W CN 2018091517W WO 2019200688 A1 WO2019200688 A1 WO 2019200688A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction cup
cantilever
robot
group
silicon wafer
Prior art date
Application number
PCT/CN2018/091517
Other languages
English (en)
French (fr)
Inventor
吴俊�
吴家宏
张凯胜
姚伟忠
孙铁囤
Original Assignee
常州亿晶光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州亿晶光电科技有限公司 filed Critical 常州亿晶光电科技有限公司
Publication of WO2019200688A1 publication Critical patent/WO2019200688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers

Definitions

  • the invention relates to the field of silicon wafer transfer technology, in particular to a combined robot for silicon wafer transfer.
  • the silicon wafer needs to be diffused after the velvet, and the silicon wafer needs to use a half-pitch flower basket in the process of the velvet process, a total of 100 slots, and the spacing between each slot of the 1-50 slots is 4.76 mm, the 50th slot and the 51 slot.
  • the spacing between the slots is 24mm, and the spacing between the slots of 51-100 slots is 4.76mm.
  • the diffusion process needs to transfer the silicon wafers in the basket to the quartz boat, and then put the quartz boat into the diffusion furnace, the quartz boat
  • the specification is a total of 200 slots, and the spacing of each slot is 2.38mm;
  • the insert robot grabs 50 sheets of silicon wafers with a pitch of 4.76 mm from the flower basket and inserts them into the quartz boat. This action, the capacity of 8000 pieces / h;
  • the insert robot grabs 50 sheets of silicon wafers with a pitch of 4.76 mm from the quartz boat and inserts them into the flower basket at one time, repeating this action repeatedly, with a capacity of 8000 pieces/h.
  • the technical problem to be solved by the present invention is that in order to solve the problem that the inserting robot can only grasp 50 silicon wafers at a time, resulting in low productivity, a combined robot for wafer transfer is now provided.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a combined manipulator for transferring silicon wafers, comprising a first robot, a second robot and a connecting seat;
  • the first manipulator includes a first cantilever and a first carrier plate fixed on the first cantilever, a first suction cup is fixed on an outer side of the first carrier, and the first cantilever is disposed on the connector;
  • the second robot includes a second cantilever and a second carrier plate fixed to the second cantilever, a second suction cup is fixed on an outer side of the second carrier, and the second cantilever is disposed on the first cantilever a first motor for driving the rotation of the second cantilever is fixed on the first cantilever;
  • the first suction cup group and the second suction cup group each include a plurality of suction cups for adsorbing silicon wafers equally spaced along the longitudinal direction of the first carrier sheet, and two adjacent ones of the first suction cup group and the second suction cup group
  • the spacing of the suction cups is D
  • the silicon wafer adsorbed by the suction cup in the first suction cup group and the silicon wafer adsorbed by the suction cup in the second suction cup group form a first along the first
  • the array of silicon wafers are equally spaced in the longitudinal direction of the carrier, and the spacing between adjacent two silicon wafers in the silicon array is d.
  • the first motor drives the second robot to rotate to the second suction cup group.
  • the first suction cup group is flush, so that the silicon wafer of the suction cup of the first suction cup group and the silicon wafer adsorbed by the second suction cup group form an array of silicon wafers, so that the spacing between the silicon wafers is reduced by 0.5 times, so as to be inserted into the quartz boat at one time. , thereby improving the efficiency of the transfer of silicon wafer between the flower basket and the quartz boat.
  • the first cantilever is rotatably disposed on the connecting base, and the connecting seat is fixed with a second motor for driving the rotation of the first cantilever, and the second motor is activated to realize the rotation of the first cantilever relative to the connecting seat, thereby implementing the first A suction cup group and a second suction cup group are rotated together to align the first suction cup group or the second suction cup group with the quartz boat or the flower basket for wafer grabbing.
  • the back surface of the suction cup has an air flow groove
  • the front surface of the suction cup has an air hole communicating with the air flow groove
  • the side surface of the suction cup has an interface communicating with the air flow groove
  • the groove of the air flow groove is sealed with a groove cover
  • first carrier plate is fixedly connected to the first cantilever by a first boom
  • second carrier plate is fixedly connected to the second cantilever by a second boom, the second boom and the first cantilever respectively Located at both ends of the second cantilever.
  • the beneficial effects of the present invention are that the combined robot for silicon wafer transfer of the present invention greatly improves the transfer efficiency of the silicon wafer between the flower basket and the quartz boat by the mutual cooperation of the first robot and the second robot, and realizes the productivity compared with the existing model. Doubled.
  • FIG. 1 is a three-dimensional schematic view of a combined manipulator for transferring silicon wafers in the present invention
  • Figure 2 is a right side view of the combined robot for wafer transfer in the present invention.
  • Figure 3 is a front elevational view showing the combined manipulator for transferring silicon wafers in the present invention.
  • Figure 4 is a front elevational view showing the first suction cup group and the second suction cup group in the combined robot for wafer transfer according to the present invention
  • Figure 5 is a schematic exploded view of the side of the suction cup in the combined robot for transferring silicon wafers of the present invention
  • Figure 6 is a schematic exploded view of the other side of the suction cup in the combined mechanical hand piece for wafer transfer according to the present invention.
  • FIG. 7 is a three-dimensional schematic diagram of the first robot and the second robot respectively adsorbing the silicon wafer in the combined robot for wafer transfer according to the present invention
  • Figure 8 is a three-dimensional schematic view showing the formation of a silicon wafer array when the first chuck group and the second chuck group are flush in the combined robot for wafer transfer according to the present invention
  • Figure 9 is a three-dimensional schematic view of the flower basket of the present invention.
  • Figure 10 is a three-dimensional schematic view of a quartz boat in the present invention.
  • Figure 11 is a schematic view showing the assembly of the silicon wafer transfer robot of the present invention mounted on a six-axis robot;
  • Fig. 12 is a schematic view showing the use of the combined robot for transferring a silicon wafer of the present invention when it is mounted on a six-axis robot.
  • a silicon wafer transfer combined robot including a first robot, a second robot and a connector 3;
  • the first manipulator includes a first cantilever 1 and a first carrier plate 1-1 fixed to the first cantilever 1.
  • the first side of the first carrier plate 1-1 is fixed with a first suction cup set 1-2.
  • the first cantilever 1 is disposed on the connecting base 3;
  • the second robot includes a second cantilever 2 and a second carrier plate 2-1 fixed to the second cantilever 2, and the second side of the second carrier plate 2-1 is fixed with a second suction cup set 2-2.
  • the second cantilever 2 is rotatably disposed on the first cantilever 1, and the first cantilever 1 is fixed with a first motor 1-4 for driving the rotation of the second cantilever 2;
  • the silicon wafer 5 adsorbed by the suction cup 4 in the first chuck group 1-2 and the first The silicon wafer 5 adsorbed by the chuck 4 in the second chuck group 2-2 constitutes an array of silicon wafers 6 equally spaced along the length direction of the first carrier sheet 1-1, and between the adjacent two wafers 5 in the array of silicon wafers 6. The spacing is d.
  • the first cantilever 1 is rotatably disposed on the connecting base 3, and the second motor 3-1 for driving the rotation of the first cantilever 1 is fixed on the connecting base 3, and the first cantilever 1 can be realized by starting the second motor 3-1.
  • the flower basket 7 is gripped by the wafer 5.
  • the back surface of the suction cup 4 has an air flow groove 4-1
  • the front surface of the suction cup 4 has an air hole 4-2 communicating with the air flow groove 4-1
  • the side surface of the suction cup 4 has an interface 4 communicating with the air flow groove 4-1.
  • the slot of the air flow tank 4-1 is sealed with a slot cover 4-4, using a vacuum pump as a power source, the interface 4-3 on each suction cup 4 is connected to the vacuum pump through the air tube, thereby starting the vacuum pump
  • the air holes 4-2 on the suction cup 4 adsorb and fix the silicon wafer 5.
  • the first carrier plate 1-1 is fixedly connected to the first cantilever 1 by the first suspension bar 1-3
  • the second carrier plate 2-1 is fixedly connected to the second cantilever 2 by the second suspension bar 2-3.
  • the second boom 2-3 and the first boom 1 are respectively located at two ends of the second cantilever 2.
  • the above-mentioned silicon wafer transfer combined robot is fixed to the execution end of the six-axis robot 9 through the connecting base 3 in use, and the half-intercept basket 7 and the quartz boat 8 are respectively placed on both sides of the six-axis robot 9. , the half-pitch flower basket 7 and the quartz boat 8 are each placed on different conveying devices;
  • the specification of the half-pitch flower basket 7 is specifically: a total of 100 slots, a spacing of 1.76 mm per slot between 1-50 slots, a spacing of 24 mm between the 50th slot and the 51 slot, and a spacing of 4.76 mm between the slots of 51-100 slots. ;
  • the specification of the quartz boat 8 is specifically a total of 200 slots, and the spacing of each slot is 2.38 mm;
  • the first mode of operation is that the silicon wafer 5 in the half-intercept basket 7 is introduced into the quartz boat 8, as follows:
  • the six-axis robot 9 drives the combined robot to move to the flower basket 7, and the first suction cup group 1-2 of the first robot is aligned with the silicon wafer 5 in the flower basket 7, and the six-axis robot 9 drives the combined robot.
  • the first chuck group 1-2 is sucked from the flower basket 7 by 50 silicon wafers 5, and the distance between adjacent two silicon wafers 5 adsorbed in the first chuck group 1-2 is 4.76 mm, followed by a six-axis robot 9 drives the combined mechanical hand to move;
  • the second motor 3-1 is started to flip the first robot and the second robot together, and the second suction cup 2-2 converted to the second robot is aligned with the silicon wafer 5 in the flower basket 7, the six-axis robot 9 drives the combined manipulator to move down, and then the second sucker group 2-2 draws 50 silicon wafers 5 from the flower basket 7, and the spacing between adjacent two silicon wafers 5 adsorbed in the second sucker group 2-2 is 4.76 mm. , then the six-axis robot 9 drives the combined robot to move;
  • the first motor 1-4 is started, and the second suction cup group 2-2 to which the second motor is rotated by the first motor 1-4 is flush with the first suction cup group 1-2, thereby realizing the first suction cup.
  • the silicon wafer 5 adsorbed by the group 1-2 adsorbed silicon wafer 5 and the second chuck group 2-2 constitutes a silicon wafer array 6, and the spacing between two adjacent silicon wafers 5 in the silicon wafer array 6 is 2.38 mm, and finally by six
  • the shaft robot 9 rotates the combined robot to the quartz boat 8, and then transfers all of the 100 wafers 5 in the basket 7 to the quartz boat 8 at one time.
  • the second mode of operation is that the silicon wafer 5 in the quartz boat 8 is introduced into the half-intercept basket 7, as follows:
  • the six-axis robot 9 drives the combined manipulator to move to the quartz boat 8, the first suction cup group 1-2 of the first robot hand and the second suction cup group 2-2 of the second robot hand are flush with each other, followed by six axes
  • the robot 9 drives the combined manipulator to move down, and the silicon wafer 5 adsorbed by the first sucker group 1-2 and the silicon wafer 5 adsorbed by the second chuck group 2-2 form a silicon wafer array 6, and the silicon wafer array 6 is phased.
  • the spacing between two adjacent silicon wafers 5 is 2.38 mm, that is, 100 silicon wafers 5 are taken from the quartz boat 8 at a time;
  • the six-axis robot 9 then drives the combined robot to move over the flower basket 7, and then activates the first motor 1-4, and the first motor 1-4 drives the second chuck 2-2 to which the second robot rotates.
  • the first suction cup group 1-2 is separated, and the distance between the adjacent two silicon wafers 5 adsorbed by the first robot and the second robot is 4.76 mm, which is consistent with the spacing of 4.76 mm per groove on the flower basket 7;
  • the six-axis robot 9 then drives the combined robot down and the first robot is aligned with the flower basket 7, so that the 50 silicon wafers 5 of the first robot are transferred to the flower basket 7, and then the six-axis robot 9 drives the combined robot.
  • the first robot and the second robot are flipped together, and the second suction cup 2-2 converted to the second robot is aligned with the flower basket 7, and then the six-axis robot 9 drives the The combination robot moves down to transfer the 50 silicon wafers 5 of the second robot to the flower basket 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

一种硅片转移用组合机械手,包括第一机械手、第二机械手及连接座(3);第一机械手包括第一吸盘组(1-2);第二机械手包括第二吸盘组(2-2);当第二吸盘组(2-2)与第一吸盘组(1-2)齐平时,第一吸盘组(1-2)吸附的硅片(5)与第二吸盘组(2-2)吸附的硅片(5)构成一个硅片阵列(6)。

Description

硅片转移用组合机械手 技术领域
本发明涉及硅片转移技术领域,尤其是一种硅片转移用组合机械手。
背景技术
目前硅片在制绒后需要进行扩散,而制绒工艺中硅片所需采用的是半截距花篮,共100槽,1-50槽之间每槽间距为4.76mm,第50槽与51槽之间间距为24mm,51-100槽之间每槽间距为4.76mm,扩散工艺则需要将花篮中的硅片转移到石英舟内,然后将石英舟放入到扩散炉内,石英舟的的规格为共200槽,每槽间距2.38mm;
由于半截距花篮与石英舟的差异,目前在半截距花篮中的硅片导入到石英舟中时:插片机械手从花篮中一次抓取50张间距为4.76mm硅片插到石英舟,反复重复此动作,产能8000片/h;
目前在石英舟中的硅片导入到半截距花篮中时:插片机械手从石英舟中一次抓取50张间距为4.76mm硅片插到花篮,反复重复此动作,产能8000片/h.
上述做法所存在的缺陷在于机械手每次只能抓取50片,导致产能较低,显然需要多次在石英舟转移到花篮或花篮转移到石英舟之间的过程,耗时较长。
发明内容
本发明要解决的技术问题是:为了解决现有技术中插片机械手只能每次抓取50片硅片,导致产能较低的问题,现提供一种硅片转移用组合机械手。
本发明解决其技术问题所采用的技术方案是:一种硅片转移用组合机械手,包括第一机械手、第二机械手及连接座;
所述第一机械手包括第一悬臂及固定在第一悬臂上的第一承载板,所述第 一承载板的外侧面固定有第一吸盘组,所述第一悬臂设置在连接座上;
所述第二机械手包括第二悬臂及固定在第二悬臂上的第二承载板,所述第二承载板的外侧面固定有第二吸盘组,所述第二悬臂转动设置在第一悬臂上,所述第一悬臂上固定有用于驱动第二悬臂转动的第一电机;
所述第一吸盘组及第二吸盘组均包括沿第一承载板的长度方向等间隔分布的若干用于吸附硅片的吸盘,所述第一吸盘组及第二吸盘组中相邻两个吸盘的间距均为D,所述第一吸盘组中的硅片与第二吸盘组中的硅片相互错开排列,所错开的间距为d,其中,D=2d;
当第一电机带动第二悬臂转动至第二吸盘组与第一吸盘组齐平时,第一吸盘组中吸盘所吸附的硅片与第二吸盘组中吸盘所吸附的硅片构成一个沿第一承载板长度方向等间隔分布的硅片阵列,硅片阵列中相邻两个硅片之间的间距均为d。
本方案中通过第一机械手上的第一吸盘组和第二机械手上的第二吸盘组分别吸取一组硅片后,然后由第一电机带动第二机械手旋转至其上的第二吸盘组与第一吸盘组齐平,从而实现第一吸盘组吸盘的硅片与第二吸盘组吸附的硅片构成一个硅片阵列,使硅片间的间距缩小0.5倍,以便一次性插入到石英舟中,进而提高了硅片在花篮与石英舟之间转移的效率。
进一步地,所述第一悬臂转动设置在连接座上,所述连接座上固定有用于驱动第一悬臂转动的第二电机,启动第二电机可实现第一悬臂相对连接座旋转,进而实现第一吸盘组和第二吸盘组一并转动,以便使第一吸盘组或第二吸盘组对准石英舟或花篮进行硅片抓取。
进一步地,所述吸盘的背面具有有气流槽,所述吸盘的正面具有与气流槽连通的气孔,吸盘的侧面具有与气流槽连通的接口,所述气流槽的槽口处封堵 有槽盖,利用真空泵为动力源,每个吸盘上的接口均通过气管与真空泵接通,从而启动真空泵实现吸盘上的气孔将硅片吸附固定。
进一步地,所述第一承载板通过第一吊杆与第一悬臂固定连接,所述第二承载板通过第二吊杆与第二悬臂固定连接,所述第二吊杆及第一悬臂分别位于第二悬臂的两端。
本发明的有益效果是:本发明的硅片转移用组合机械手通过第一机械手和第二机械手的相互配合极大提升了硅片在花篮与石英舟之间的转移效率,相对现有模式实现产能提升一倍。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明中硅片转移用组合机械手的三维示意图;
图2是本发明中硅片转移用组合机械手的右视示意图;
图3是本发明中硅片转移用组合机械手的主视示意图;
图4是本发明硅片转移用组合机械手中第一吸盘组和第二吸盘组齐平时的主视示意图;
图5是本发明硅片转移用组合机械手中吸盘一侧的爆炸示意图;
图6是本发明硅片转移用组合机械手中吸盘另一侧的爆炸示意图;
图7是本发明硅片转移用组合机械手中第一机械手和第二机械手分别吸附上硅片的三维示意图;
图8是本发明硅片转移用组合机械手中第一吸盘组和第二吸盘组齐平时构 成硅片阵列的三维示意图;
图9是本发明中花篮的三维示意图;
图10是本发明中石英舟的三维示意图;
图11是本发明硅片转移用组合机械手安装在六轴机械手上的示意图;
图12是本发明硅片转移用组合机械手安装在六轴机械手上使用时的示意图。
图中:1、第一悬臂,1-1、第一承载板,1-2、第一吸盘组,1-3、第一吊杆,1-4、第一电机,2、第二悬臂,2-1、第二承载板,2-2、第二吸盘组,2-3、第二吊杆,3、连接座,3-1、第二电机,4、吸盘,4-1、气流槽,4-2、气孔,4-3、接口,4-4、槽盖,5、硅片,6、硅片阵列,7、花篮,8、石英舟,9、六轴机械手。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成,方向和参照(例如,上、下、左、右、等等)可以仅用于帮助对附图中的特征的描述。因此,并非在限制性意义上采用以下具体实施方式,并且仅仅由所附权利要求及其等同形式来限定所请求保护的主题的范围。
实施例1
如图1-8所示,一种硅片转移用组合机械手,包括第一机械手、第二机械手及连接座3;
所述第一机械手包括第一悬臂1及固定在第一悬臂1上的第一承载板1-1,所述第一承载板1-1的外侧面固定有第一吸盘组1-2,所述第一悬臂1设置在连 接座3上;
所述第二机械手包括第二悬臂2及固定在第二悬臂2上的第二承载板2-1,所述第二承载板2-1的外侧面固定有第二吸盘组2-2,所述第二悬臂2转动设置在第一悬臂1上,所述第一悬臂1上固定有用于驱动第二悬臂2转动的第一电机1-4;
所述第一吸盘组1-2及第二吸盘组2-2均包括沿第一承载板1-1的长度方向等间隔分布的50个用于吸附硅片5的吸盘4,所述第一吸盘组1-2及第二吸盘组2-2中相邻两个吸盘4的间距均为D,所述第一吸盘组1-2中的硅片5与第二吸盘组2-2中的硅片5相互错开排列,所错开的间距为d,其中,D=2d,D取4.76mm,d取2.38mm;
当第一电机1-4带动第二悬臂2转动至第二吸盘组2-2与第一吸盘组1-2齐平时,第一吸盘组1-2中吸盘4所吸附的硅片5与第二吸盘组2-2中吸盘4所吸附的硅片5构成一个沿第一承载板1-1长度方向等间隔分布的硅片阵列6,硅片阵列6中相邻两个硅片5之间的间距均为d。
所述第一悬臂1转动设置在连接座3上,所述连接座3上固定有用于驱动第一悬臂1转动的第二电机3-1,启动第二电机3-1可实现第一悬臂1相对连接座3旋转,进而实现第一吸盘组1-2和第二吸盘组2-2一并转动,以便使第一吸盘组1-2或第二吸盘组2-2对准石英舟8或花篮7进行硅片5抓取。
所述吸盘4的背面具有有气流槽4-1,所述吸盘4的正面具有与气流槽4-1连通的气孔4-2,吸盘4的侧面具有与气流槽4-1连通的接口4-3,所述气流槽4-1的槽口处封堵有槽盖4-4,利用真空泵为动力源,每个吸盘4上的接口4-3均通过气管与真空泵接通,从而启动真空泵实现吸盘4上的气孔4-2将硅片5吸附固定。
所述第一承载板1-1通过第一吊杆1-3与第一悬臂1固定连接,所述第二承载板2-1通过第二吊杆2-3与第二悬臂2固定连接,所述第二吊杆2-3及第一悬臂1分别位于第二悬臂2的两端。
如图9-12所示,上述硅片转移用组合机械手在使用时通过连接座3固定在六轴机械手9的执行端,半截距花篮7和石英舟8分别放置在六轴机械手9的两侧,半截距花篮7和石英舟8各自放置在不同的输送装置上;
半截距花篮7的规格具体为:共100槽,1-50槽之间每槽间距为4.76mm,第50槽与51槽之间间距为24mm,51-100槽之间每槽间距为4.76mm;
石英舟8的的规格具体为共200槽,每槽间距2.38mm;
本实施例中有两种工作模式:
第一种工作模式为在半截距花篮7中的硅片5导入到石英舟8中,具体如下:
一、首先六轴机械手9驱动该组合机械手移动至花篮7处,并使第一机械手上的第一吸盘组1-2对准花篮7中的硅片5,六轴机械手9驱动该组合机械手下移,进而使第一吸盘组1-2从花篮7中吸取50片硅片5,第一吸盘组1-2中所吸附的相邻两个硅片5的间距为4.76mm,随后六轴机械手9驱动该组合机械手上移;
二、然后启动第二电机3-1使第一机械手和第二机械手一并翻转,实现转换为第二机械手上的第二吸盘组2-2对准花篮7中的硅片5,六轴机械手9驱动该组合机械手下移,随后第二吸盘组2-2从花篮7中吸取50片硅片5,第二吸盘组2-2中所吸附的相邻两个硅片5的间距为4.76mm,随后六轴机械手9驱动该组合机械手上移;
三、然后启动第一电机1-4,由第一电机1-4带动第二机械手旋转至其上的第二吸盘组2-2与第一吸盘组1-2齐平,从而实现第一吸盘组1-2吸附的硅片5与第二吸盘组2-2吸附的硅片5构成一个硅片阵列6,硅片阵列6中相邻两个硅片5的 间距为2.38mm,最后由六轴机械手9将该组合机械手转动至石英舟8处,然后一次性将花篮7中的100片硅片5全部转移至石英舟8中。
第二种工作模式为石英舟8中的硅片5导入到半截距花篮7中,具体如下:
一、首先六轴机械手9驱动该组合机械手移动至石英舟8处,第一机械手上的第一吸盘组1-2和第二机械手上的第二吸盘组2-2相互齐平,随后六轴机械手9驱动该组合机械手下移,实现第一吸盘组1-2所吸附的硅片5与第二吸盘组2-2所吸附的硅片5构成一个硅片阵列6,硅片阵列6中相邻两个硅片5的间距为2.38mm,即一次性从石英舟8中吸取100片硅片5;
二、然后六轴机械手9驱动该组合机械手移动至花篮7上方,然后启动第一电机1-4,由第一电机1-4带动第二机械手旋转至其上的第二吸盘组2-2与第一吸盘组1-2分离,实现第一机械手和第二机械手上所吸附的相邻两个硅片5的间距均为4.76mm,进而与花篮7上每槽间距4.76mm相吻合;
三、然后六轴机械手9驱动该组合机械手下移并使第一机械手对准花篮7,使第一机械手上的50片硅片5转移至花篮7中,然后六轴机械手9驱动该组合机械手上移,并启动第二电机3-1,使第一机械手和第二机械手一并翻转,实现转换为第二机械手上的第二吸盘组2-2对准花篮7,随后六轴机械手9驱动该组合机械手下移,使第二机械手上的50片硅片5转移至花篮7中。
上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (4)

  1. 一种硅片转移用组合机械手,其特征在于:包括第一机械手、第二机械手及连接座(3);
    所述第一机械手包括第一悬臂(1)及固定在第一悬臂(1)上的第一承载板(1-1),所述第一承载板(1-1)的外侧面固定有第一吸盘组(1-2),所述第一悬臂(1)设置在连接座(3)上;
    所述第二机械手包括第二悬臂(2)及固定在第二悬臂(2)上的第二承载板(2-1),所述第二承载板(2-1)的外侧面固定有第二吸盘组(2-2),所述第二悬臂(2)转动设置在第一悬臂(1)上,所述第一悬臂(1)上固定有用于驱动第二悬臂(2)转动的第一电机(1-4);
    所述第一吸盘组(1-2)及第二吸盘组(2-2)均包括沿第一承载板(1-1)的长度方向等间隔分布的若干用于吸附硅片(5)的吸盘(4),所述第一吸盘组(1-2)及第二吸盘组(2-2)中相邻两个吸盘(4)的间距均为D,所述第一吸盘组(1-2)中的硅片(5)与第二吸盘组(2-2)中的硅片(5)相互错开排列,所错开的间距为d,其中,D=2d;
    当第一电机(1-4)带动第二悬臂(2)转动至第二吸盘组(2-2)与第一吸盘组(1-2)齐平时,第一吸盘组(1-2)中吸盘(4)所吸附的硅片(5)与第二吸盘组(2-2)中吸盘(4)所吸附的硅片(5)构成一个沿第一承载板(1-1)长度方向等间隔分布的硅片阵列(6),硅片阵列(6)中相邻两个硅片(5)之间的间距均为d。
  2. 根据权利要求1所述的硅片转移用组合机械手,其特征在于:所述第一悬臂(1)转动设置在连接座(3)上,所述连接座(3)上固定有用于驱动第一悬臂(1)转动的第二电机(3-1)。
  3. 根据权利要求1所述的硅片转移用组合机械手,其特征在于:所述吸盘 (4)的背面具有有气流槽(4-1),所述吸盘(4)的正面具有与气流槽(4-1)连通的气孔(4-2),吸盘(4)的侧面具有与气流槽(4-1)连通的接口(4-3),所述气流槽(4-1)的槽口处封堵有槽盖(4-4)。
  4. 根据权利要求1所述的硅片转移用组合机械手,其特征在于:所述第一承载板(1-1)通过第一吊杆(1-3)与第一悬臂(1)固定连接,所述第二承载板(2-1)通过第二吊杆(2-3)与第二悬臂(2)固定连接,所述第二吊杆(2-3)及第一悬臂(1)分别位于第二悬臂(2)的两端。
PCT/CN2018/091517 2018-04-20 2018-06-15 硅片转移用组合机械手 WO2019200688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810357893.3 2018-04-20
CN201810357893.3A CN108565245B (zh) 2018-04-20 2018-04-20 硅片转移用组合机械手

Publications (1)

Publication Number Publication Date
WO2019200688A1 true WO2019200688A1 (zh) 2019-10-24

Family

ID=63535772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091517 WO2019200688A1 (zh) 2018-04-20 2018-06-15 硅片转移用组合机械手

Country Status (2)

Country Link
CN (1) CN108565245B (zh)
WO (1) WO2019200688A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090767A (zh) * 2020-09-09 2020-12-18 安徽光华铝业制造有限公司 一种铝硅合金锭原料的分选设备
CN113764321A (zh) * 2021-08-10 2021-12-07 天津爱旭太阳能科技有限公司 石英舟装卸片装置、处理系统及控制方法
CN115547913A (zh) * 2022-09-19 2022-12-30 嘉兴市耐思威精密机械有限公司 一种光伏电池片用多片式吸盘组的吸盘结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100096366A (ko) * 2009-02-24 2010-09-02 서울산업대학교 산학협력단 반도체소자이송시스템
CN105374730A (zh) * 2015-10-23 2016-03-02 河北晶龙阳光设备有限公司 一种用于太阳能电池片转篮的机械手及其双机头转运装置
CN106252266A (zh) * 2016-10-26 2016-12-21 河北晶龙阳光设备有限公司 一种用于装卸石英舟内太阳能电池片的装卸装置
CN107658257A (zh) * 2017-08-14 2018-02-02 罗博特科智能科技股份有限公司 一种石墨舟硅片批量吸取装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201036124A (en) * 2009-03-20 2010-10-01 Advanced Semiconductor Eng Package structure and manufacturing method thereof
CN203225239U (zh) * 2013-05-07 2013-10-02 上海华力微电子有限公司 槽式湿法装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100096366A (ko) * 2009-02-24 2010-09-02 서울산업대학교 산학협력단 반도체소자이송시스템
CN105374730A (zh) * 2015-10-23 2016-03-02 河北晶龙阳光设备有限公司 一种用于太阳能电池片转篮的机械手及其双机头转运装置
CN106252266A (zh) * 2016-10-26 2016-12-21 河北晶龙阳光设备有限公司 一种用于装卸石英舟内太阳能电池片的装卸装置
CN107658257A (zh) * 2017-08-14 2018-02-02 罗博特科智能科技股份有限公司 一种石墨舟硅片批量吸取装置

Also Published As

Publication number Publication date
CN108565245A (zh) 2018-09-21
CN108565245B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2019200688A1 (zh) 硅片转移用组合机械手
WO2022068157A1 (zh) 一种组装前撕膜流水线
JP3862973B2 (ja) 極板積層体の極板分離供給装置
TWI336114B (en) Method for forming stacks of wafers to be doped one-sided, in particular solar wafers, and handling system for loading a process boat with wafer batches
TW201448102A (zh) 基板位置對準器
JP5169557B2 (ja) 基板昇降移送装置及び基板処理移送システム
CN218385170U (zh) 一种用于搬运晶圆的机械手臂
JP2013107285A (ja) タイヤ用プライ材料の製造装置
CN111037596A (zh) 取纸机器臂、取纸机器人及其运纸方法
CN214898376U (zh) 一种上下料设备的吸盘翻转装置
CN108190517A (zh) 平板类工件对位传送装置及方法
CN209758491U (zh) 一种适用于电芯叠片工序的极片搬运装置
CN210115261U (zh) 盖板玻璃双面擦拭设备
CN114193318B (zh) 一种蓝宝石衬底研磨自动上下料生产线及其控制方法
CN214446361U (zh) 适用于光伏组件的搬运装置
CN212049497U (zh) 一种智能家居加工用板材转运装置
TW202226445A (zh) 膠帶貼片機
ES2313535T3 (es) Dispositivo y procedimiento para individualizar y transportar substratos.
CN111824736A (zh) 一种扁平物料的搬运装置
CN218631977U (zh) 一种适用于晶圆的取放和翻转装置
CN215942990U (zh) 一种用于半导体机器人的后置偏心装置
WO2020062539A1 (zh) 一种周转式自动化装配流水线
CN216511430U (zh) 一种玻璃自动抓取设备
CN218975426U (zh) 晶圆抓手和晶圆传输设备
CN219152904U (zh) 一种双头机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915537

Country of ref document: EP

Kind code of ref document: A1