WO2019198237A1 - コンパウンド及び成形体 - Google Patents

コンパウンド及び成形体 Download PDF

Info

Publication number
WO2019198237A1
WO2019198237A1 PCT/JP2018/015587 JP2018015587W WO2019198237A1 WO 2019198237 A1 WO2019198237 A1 WO 2019198237A1 JP 2018015587 W JP2018015587 W JP 2018015587W WO 2019198237 A1 WO2019198237 A1 WO 2019198237A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin
metal element
resin composition
epoxy resin
Prior art date
Application number
PCT/JP2018/015587
Other languages
English (en)
French (fr)
Inventor
井上 英俊
正彦 小坂
勇磨 竹内
洋希 関屋
翔平 山口
竹内 一雅
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207029368A priority Critical patent/KR102422919B1/ko
Priority to PCT/JP2018/015587 priority patent/WO2019198237A1/ja
Priority to JP2020513043A priority patent/JP7222394B2/ja
Priority to CN201880092311.1A priority patent/CN111954912A/zh
Priority to TW108112407A priority patent/TWI804603B/zh
Publication of WO2019198237A1 publication Critical patent/WO2019198237A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/30Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Definitions

  • the present invention relates to a compound and a molded body.
  • a compound containing a metal powder and a resin composition is used as a raw material for various industrial products such as an inductor, an electromagnetic wave shield, or a bonded magnet according to various physical properties of the metal powder (see Patent Document 1 below).
  • the compound When manufacturing an industrial product from a compound, the compound is supplied and filled into a mold to produce a molded body, and the molded body is taken out from the mold.
  • the mold release property of the molded product is required, but the molded product produced from the conventional compound does not have sufficient mold release property.
  • a wax releasing agent
  • An object of the present invention is to provide a compound that can suppress a decrease in mechanical strength of a molded article containing wax and is suitable for producing a molded article excellent in releasability, and a molded article including the compound. To do.
  • the compound according to one aspect of the present invention includes a metal element-containing powder and a resin composition, and the resin composition contains an epoxy resin and a synthetic wax.
  • the synthetic wax may be at least one of polyethylene and polyethylene oxide.
  • the epoxy equivalent of the epoxy resin may be 180 g / eq or more and 240 g / eq or less.
  • the content of the synthetic wax may be 0.5 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the content of the metal element-containing powder may be 90% by mass or more and less than 100% by mass.
  • the molded body according to one aspect of the present invention includes a cured product of the above compound.
  • the present invention it is possible to suppress a decrease in mechanical strength of a molded body containing wax, and to provide a compound suitable for producing a molded body having excellent releasability, and a molded body including the compound.
  • the compound according to this embodiment includes a metal element-containing powder and a resin composition.
  • the metal element-containing powder is composed of a plurality (large number) of metal element-containing particles.
  • the metal element-containing powder may contain, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the resin composition contains at least an epoxy resin and a synthetic wax.
  • the synthetic wax functions as a mold release agent.
  • the resin composition may contain other components in addition to the epoxy resin and the synthetic wax.
  • the resin composition may contain a curing agent.
  • the resin composition may contain a curing accelerator.
  • the resin composition may contain an additive.
  • the resin composition is a component that can include an epoxy resin, a synthetic wax, a curing agent, a curing accelerator, and an additive, and is the remaining component (nonvolatile component) excluding the organic solvent and the metal element-containing powder. Good.
  • the resin composition may contain another resin in addition to the epoxy resin.
  • the resin composition may contain another release agent in addition to the synthetic wax.
  • An additive is a remaining component except resin, mold release agent, a hardening
  • the additive is, for example, a coupling agent, a flame retardant, or a lubricant.
  • the compound may be a powder (compound powder).
  • the surface of the metal element-containing particles is easily covered with the natural wax (natural wax layer).
  • the natural wax natural wax layer.
  • a molded body produced from the compound is easily cracked starting from the portion of the natural wax covering the metal element-containing particles. Therefore, the molded product containing the conventional natural wax tends to have lower mechanical strength than the molded product containing no conventional natural wax.
  • the compound according to the present embodiment contains a synthetic wax. Since the synthetic wax is difficult to be adsorbed on the surface of the metal element-containing particles, the compound according to this embodiment can suppress a decrease in the mechanical strength of the molded body as compared with the compound containing the conventional natural wax. .
  • the synthetic wax is difficult to dissolve in the resin composition.
  • the synthetic wax easily comes into contact with the surface of the mold, and the molded body is easily separated from the mold.
  • the operational effects according to the present invention are not limited to the above items.
  • the compound may include a metal element-containing powder and a resin composition attached to the surface of each metal element-containing particle constituting the metal element-containing powder.
  • the resin composition may cover the entire surface of the particle, or may cover only a part of the surface of the particle.
  • the compound may include an uncured resin composition and a metal element-containing powder.
  • the compound may include a semi-cured resin composition (for example, a B-stage resin composition) and metal element-containing powder.
  • the compound may comprise both an uncured resin composition and a semi-cured product of the resin composition.
  • the compound may consist of a metal element-containing powder and a resin composition.
  • the epoxy equivalent of the epoxy resin may be 180 g / eq or more and 240 g / eq or less, or 190 g / eq or more and 220 g / eq or less.
  • a resin having a small epoxy equivalent is used, the mechanical strength of the molded body tends to increase.
  • the content of the metal element-containing powder in the compound is preferably 90% by mass or more and less than 100% by mass with respect to the total mass of the compound.
  • the content of the metal element-containing powder is preferably 90% by mass or more, more preferably 92% by mass or more, and still more preferably 94% by mass or more.
  • the content of the resin composition in the compound may be 0.2% by mass or more and 10% by mass or less, preferably based on the total mass of the compound (for example, the total mass of the metal element-containing powder and the resin composition). May be 4 mass% or more and 6 mass% or less.
  • the content of the synthetic wax in the compound may be 0.5 to 8 parts by mass, or 1 to 6 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the content of the synthetic wax is within the above range, the mechanical strength of the molded body is hardly lowered, and the mold release property of the molded body is easily improved.
  • the average particle diameter of the metal element-containing powder is not particularly limited, but may be, for example, 1 ⁇ m or more and 300 ⁇ m or less.
  • the average particle diameter may be measured by, for example, a particle size distribution meter.
  • the shape of the individual metal element-containing particles constituting the metal element-containing powder is not limited, and may be, for example, spherical, flat, prismatic, or needle-shaped.
  • the compound may include a plurality of types of metal element-containing powders having different average particle sizes.
  • the molded body formed from the compound can be used as various industrial products or their raw materials.
  • the industrial product manufactured using the compound may be, for example, an automobile, a medical device, an electronic device, an electric device, an information communication device, a home appliance, an acoustic device, and a general industrial device.
  • the compound when the compound includes a permanent magnet such as an Sm—Fe—N alloy or an Nd—Fe—B alloy as the metal element-containing powder, the compound may be used as a raw material for the bond magnet.
  • the compound when the compound includes a soft magnetic powder such as an Fe—Si—Cr alloy or ferrite as the metal element-containing powder, the compound may be used as a raw material (for example, a magnetic core) of an inductor (for example, an EMI filter) or a transformer.
  • an inductor for example, an EMI filter
  • a transformer When the compound contains iron and copper as the metal element-containing powder, a molded body (for example, a sheet) formed from the compound may be used as an electromagnetic wave shield.
  • the resin composition has a function as a binder (binder) of metal element-containing particles constituting the metal element-containing powder, and imparts mechanical strength to a molded body formed from the compound.
  • the resin composition contained in the compound is filled between the metal element-containing particles when the compound is molded at a high pressure using a mold, and binds the particles to each other.
  • the cured product of the resin composition binds the metal element-containing particles more firmly to improve the mechanical strength of the molded body.
  • the resin composition contains at least an epoxy resin as a thermosetting resin.
  • the compound contains an epoxy resin that is relatively excellent in fluidity among thermosetting resins, the fluidity, storage stability, and moldability of the compound are improved.
  • the compound may contain other resins in addition to the epoxy resin as long as the effects of the present invention are not inhibited.
  • the resin composition may include at least one of a phenol resin and a polyamideimide resin as a thermosetting resin.
  • the resin composition may function as a curing agent for the epoxy resin.
  • the resin contained in the compound may be only a thermosetting resin, and the thermosetting resin may be only an epoxy resin or only an epoxy resin and a phenol resin.
  • the resin composition may include a thermoplastic resin.
  • the thermoplastic resin may be at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, for example.
  • the resin composition may include both a thermosetting resin and a thermoplastic resin.
  • the resin composition may include a silicone resin.
  • the resin composition preferably contains an epoxy resin.
  • the epoxy resin may be a resin having two or more epoxy groups in one molecule, for example.
  • Epoxy resins include, for example, biphenyl type epoxy resins, stilbene type epoxy resins, diphenylmethane type epoxy resins, sulfur atom-containing type epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, salicylaldehyde type epoxy resins, naphthols and phenols.
  • Type epoxy resin aralkyl type phenol resin epoxidized product, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcohol glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenolic resin glycidyl ether Epoxy resin, terpene-modified phenol resin glycidyl ether epoxy resin, cyclopentadiene epoxy resin, polycyclic aromatic ring-modified phenol resin Ricidyl ether type epoxy resin, naphthalene ring-containing phenol resin glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic type epoxy resin, halogenated phenol novolak type epoxy resin, ortho It is at least one selected from the group consisting of cresol novolac type epoxy resins, hydroquinone type epoxy resins, trimethylolpropane type epoxy resins,
  • the epoxy resin is a biphenyl type epoxy resin, an orthocresol novolak type epoxy resin, a phenol novolak type epoxy resin, a bisphenol type epoxy resin, an epoxy resin having a bisphenol skeleton, a salicylaldehyde novolak type epoxy resin, And at least one selected from the group consisting of naphthol novolac type epoxy resins.
  • the epoxy resin may be a crystalline epoxy resin. Despite the relatively low molecular weight of the crystalline epoxy resin, the crystalline epoxy resin has a relatively high melting point and excellent fluidity.
  • the crystalline epoxy resin (epoxy resin having high crystallinity) may be at least one selected from the group consisting of hydroquinone type epoxy resins, bisphenol type epoxy resins, thioether type epoxy resins, and biphenyl type epoxy resins, for example.
  • crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N -740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HHH, Epicron HP -4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, N500P-2, and N50 P-10 (trade name, manufactured by DIC Corporation), NC-3000, NC-3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000 , NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-50
  • the resin composition may contain one kind of epoxy resin among the above.
  • the resin composition may contain a plurality of types of epoxy resins among the above.
  • the resin composition may contain both a biphenyl type epoxy resin (YX-4000H) and an orthocresol novolac type epoxy resin (N500P-10) among the above epoxy resins.
  • Curing agents are classified into a curing agent that cures an epoxy resin in a range from low temperature to room temperature, and a heat curing type curing agent that cures an epoxy resin with heating.
  • the curing agent that cures the epoxy resin in the range from low temperature to room temperature include aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the thermosetting curing agent include aromatic polyamines, acid anhydrides, phenol novolac resins, and dicyandiamide (DICY).
  • the curing agent is preferably a thermosetting curing agent, more preferably a phenol resin, and even more preferably a phenol novolac resin.
  • a phenol novolac resin as a curing agent, a cured product of an epoxy resin having a high glass transition point is easily obtained. As a result, the heat resistance and mechanical strength of the molded body are easily improved.
  • phenol resin examples include aralkyl type phenol resin, dicyclopentadiene type phenol resin, salicylaldehyde type phenol resin, novolac type phenol resin, copolymer type phenol resin of benzaldehyde type phenol and aralkyl type phenol, paraxylylene and / or metaxylylene modified.
  • phenolic resin From the group consisting of phenolic resin, melamine modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene type naphthol resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, biphenyl type phenolic resin, and triphenylmethane type phenolic resin It may be at least one selected.
  • the phenol resin may be a copolymer composed of two or more of the above.
  • Tamorol 758 manufactured by Arakawa Chemical Industries, Ltd. or HP-850N manufactured by Hitachi Chemical Co., Ltd. may be used.
  • the phenol novolac resin may be, for example, a resin obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolac resin may be at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, for example.
  • the naphthols constituting the phenol novolac resin may be at least one selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, for example.
  • the aldehyde constituting the phenol novolac resin may be at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde, for example.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one kind of phenol resin among the above.
  • the resin composition may include a plurality of types of phenol resins among the above.
  • the resin composition may contain a kind of curing agent among the above.
  • the resin composition may contain plural kinds of curing agents among the above.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalent, more preferably 1 equivalent to 1 equivalent of the epoxy group in the epoxy resin. May be 0.6 to 1.4 equivalents, more preferably 0.8 to 1.2 equivalents.
  • the ratio of the active group in the curing agent is less than 0.5 equivalent, it is difficult to obtain a sufficient elastic modulus of the obtained cured product.
  • the ratio of the active groups in the curing agent exceeds 1.5 equivalents, the mechanical strength after curing of the molded body formed from the compound tends to decrease. However, even if the ratio of the active group in the curing agent is outside the above range, the effect according to the present invention can be obtained.
  • the curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin.
  • the curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole.
  • the resin composition may include a kind of curing accelerator.
  • the resin composition may include a plurality of types of curing accelerators. By containing a curing accelerator as a component of the resin composition, the moldability and releasability of the compound are easily improved.
  • the mechanical strength of a molded body (for example, an electronic component) manufactured using the compound is improved, or the compound in a high temperature / high humidity environment is improved. Storage stability is improved.
  • the blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained.
  • the blending amount of the curing accelerator is preferably 0.1 parts by mass or more and 30 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • it may be more preferably 1 part by mass or more and 15 parts by mass or less.
  • content of a hardening accelerator is 0.001 mass part or more and 5 mass parts or less with respect to 100 mass parts of total of the mass of an epoxy resin and a hardening
  • curing agent for example, phenol resin).
  • the compounding quantity of a hardening accelerator is less than 0.1 mass part, it is difficult to obtain sufficient hardening acceleration effect.
  • the compounding quantity of a hardening accelerator exceeds 30 mass parts, the storage stability of a compound tends to fall. However, even if it is a case where the compounding quantity and content of a hardening accelerator are outside the said range, the effect which concerns on this invention is acquired.
  • the resin composition contains a synthetic wax.
  • Synthetic wax facilitates separation of the molded body from the mold in the process of producing the molded body from the compound.
  • the synthetic wax may be a polyolefin.
  • the polyolefin may be at least one of polyethylene and polypropylene, for example.
  • the synthetic wax may be a polar wax.
  • the polar wax may be at least one selected from the group consisting of polyethylene oxide, grafted polyolefin, and copolymer, for example.
  • the synthetic wax may be at least one of polyethylene and oxidized polyethylene.
  • the resin composition may contain other wax in addition to the synthetic wax.
  • the other wax may be a natural wax.
  • the other wax may be at least one selected from the group consisting of fatty acids such as higher fatty acids, fatty acid esters, partially saponified products of fatty acid esters, and metal soaps. From the viewpoint of easily improving the fluidity of the compound, the other wax preferably contains a fatty acid.
  • waxes include, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, lauric acid Fatty acid salts such as calcium phosphate, zinc laurate, zinc linoleate, calcium ricinoleate, zinc 2-ethylhexoate; stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxy stearin Acid amide, methylene bis stearamide, ethylene bis stearamide, ethylene bis laurate amide, distearyl adipate amide, ethylene bis oleate amide, dioleyl adipine Fatty acid amides such as amide, N-stearyl stearic acid amide
  • montanic acid wax As a commercially available product of montanic acid wax, at least one selected from the group consisting of Rico Wax E, Rico Wax OP, Ricorub E, and Ricolb WE40 (trade name, manufactured by Clariant Chemicals Co., Ltd.) may be used.
  • a commercially available product of stearic acid wax at least one of Lunac S-50V (titer: 56 ° C.) and Lunac S-90V (melting point: 68 ° C.) manufactured by Kao Corporation may be used.
  • amide wax As a commercially available product of amide wax, at least one of Recolbe FA1 (trade name manufactured by Clariant Chemicals Co., Ltd.) and DISPARLON 6650 (trade name manufactured by Enomoto Kasei Co., Ltd.) may be used.
  • the wax contained in the compound is appropriately selected according to the requirements in the design of the compound, such as the fluidity of the compound, mold release properties, molding temperature and pressure, and the melting point, dropping point and melt viscosity of the wax. Good.
  • the content of the synthetic wax contained in the compound may be 10 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of all the waxes contained in the compound.
  • the content of the synthetic wax is within the above range, the mechanical strength of the molded body is hardly lowered, and the mold release property of the molded body is easily improved.
  • the coupling agent improves the adhesion between the resin composition and the metal element-containing particles constituting the metal element-containing powder, and improves the flexibility and mechanical strength of the molded body formed from the compound.
  • the coupling agent may be at least one selected from the group consisting of, for example, a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound.
  • the silane coupling agent may be at least one selected from the group consisting of epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, acid anhydride silane and vinyl silane, for example. In particular, aminophenyl silane coupling agents are preferred.
  • the resin composition may contain one type of coupling agent among the above, and may contain multiple types of coupling agents among the above.
  • the compound may contain a flame retardant because of the environmental safety, recyclability, moldability and low cost of the compound.
  • the flame retardant is, for example, at least one selected from the group consisting of brominated flame retardants, bulb flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds, and aromatic engineering plastics. It may be.
  • the resin composition may contain one kind of flame retardant among the above, and may contain plural kinds of flame retardant among the above.
  • the metal element-containing powder may contain, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the specific gravity (density) of the metal element-containing powder may be, for example, 5 g / cm 3 or more.
  • the metal element-containing powder may be composed of at least one selected from the group consisting of simple metals, alloys and metal compounds, for example.
  • the alloy may contain at least one selected from the group consisting of a solid solution, a eutectic and an intermetallic compound.
  • the alloy may be, for example, stainless steel (Fe—Cr alloy, Fe—Ni—Cr alloy, etc.).
  • the metal compound may be an oxide such as ferrite.
  • the metal element-containing powder may contain one kind of metal element or plural kinds of metal elements.
  • the metal element contained in the metal element-containing powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the compound may contain one kind of metal element-containing powder, and may contain multiple kinds of metal element-containing powder.
  • the metal element-containing powder is not limited to the above composition.
  • the metal element contained in the metal element-containing powder include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum ( Al), tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium ( It may be at least one selected from the group consisting of Dy).
  • the metal element-containing powder may contain an element other than the metal element.
  • the metal element-containing powder may contain, for example, oxygen (O), beryllium (Be), phosphorus (P), boron (B), or silicon (Si).
  • the metal element-containing powder may be a magnetic powder.
  • the metal element-containing powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • Metal element-containing powders include, for example, Fe-Si alloys, Fe-Si-Al alloys (Sendust), Fe-Ni alloys (Permalloy), Fe-Cu-Ni alloys (Permalloy), Fe-Co alloys (Permendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy It may be a magnetic powder made of at least one selected from the group consisting of (alnico magnet) and ferrite.
  • the ferrite may be, for example, spinel ferrite, hexagonal ferrite, or garnet ferrite.
  • the metal element-containing powder may be a copper alloy such as a Cu—Sn alloy, a Cu—Sn—P alloy, a Cu—Ni alloy, or a Cu—Be alloy.
  • the metal element-containing powder may include one of the above elements and compositions, and may include multiple types of the above elements and compositions.
  • the metal element-containing powder may be Fe alone.
  • the metal element-containing powder may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, an Fe-Si-Cr-based alloy or an Nd-Fe-B-based alloy.
  • the metal element-containing powder may be at least one of amorphous iron powder and carbonyl iron powder.
  • the metal element-containing powder may be an Fe amorphous alloy.
  • Fe amorphous alloy powder Commercially available products of Fe amorphous alloy powder include, for example, AW2-08, KUAMET-6B2 (above, product names manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, trade name made by Daido Steel), MH45D, MH28D, MH25D, and MH20D (above, trade name made by Kobe Steel) At least one kind may be used.
  • AW2-08, KUAMET-6B2 above, product names manufactured by Epson Atmix Co., Ltd.
  • DAP 410L, DAP 430L, DAP HYB series aboveve, trade name made by Daido Steel
  • the metal element-containing powder and the resin composition are mixed while heating.
  • the resin composition adheres to a part or all of the surface of the metal element-containing particles constituting the metal element-containing powder and covers the particles, and the resin composition Part or all of the epoxy resin becomes a semi-cured product.
  • a compound may be obtained by further adding a release agent to the powder obtained by heating and mixing the metal element-containing powder and the resin composition.
  • the resin composition and the release agent may be mixed in advance.
  • a metal element-containing powder, a synthetic wax, an epoxy resin, a phenol resin or other curing agent, a curing accelerator, and a coupling agent may be kneaded in the tank.
  • the synthetic wax, epoxy resin, curing agent, and curing accelerator may be thrown into the tank to knead the raw materials in the tank.
  • a curing accelerator may be put in the tank, and the raw materials in the tank may be further kneaded.
  • a mixed powder (resin mixed powder) of synthetic wax, epoxy resin, curing agent, and curing accelerator in advance, and then knead the metal element-containing powder and coupling agent to prepare a mixed metal powder. Subsequently, the metal mixed powder and the resin mixed powder may be kneaded.
  • the kneading time depends on the type of kneading machine, the volume of the kneading machine, and the amount of compound produced, but is preferably 1 minute or more, more preferably 2 minutes or more, and more preferably 3 minutes or more. Is more preferable.
  • the kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of cure of the compound varies.
  • the heating temperature is, for example, an epoxy resin semi-cured product (B stage epoxy resin) and a cured epoxy resin (C stage epoxy resin). Any temperature may be used as long as the generation of is suppressed.
  • the heating temperature may be a temperature lower than the activation temperature of the curing accelerator.
  • the heating temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 70 ° C. or higher.
  • the heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
  • the resin composition in the tank is softened to easily cover the surface of the metal element-containing particles constituting the metal element-containing powder, and an epoxy resin semi-cured product is easily generated, Complete curing of the epoxy resin during kneading is easily suppressed.
  • the molded body according to the present embodiment may include the above compound.
  • the molded body according to the present embodiment may include a cured product of the above compound.
  • the molded body may consist only of a compound.
  • the molded body is at least one selected from the group consisting of an uncured resin composition, a semi-cured product of the resin composition (B-stage resin composition), and a cured product of the resin composition (C-stage resin composition). May be included.
  • the manufacturing method of the molded object which concerns on this embodiment may be equipped with the process of pressurizing a compound in a metal mold
  • the manufacturing method of a molded object may be provided with only the process of pressurizing a compound in a metal mold
  • the manufacturing method of a molded body may include a first step, a second step, and a third step. Below, the detail of each process is demonstrated.
  • a compact (B-stage compact) is obtained by pressurizing the compound in a mold.
  • the resin composition is filled between the individual metal element-containing particles constituting the metal element-containing powder.
  • the resin composition functions as a binder (binder) and binds the metal element-containing particles to each other.
  • Natural wax is easily adsorbed on the surface of metal element-containing particles.
  • a molded body containing a conventional natural wax is easily cracked starting from the portion of the natural wax covering the metal element-containing particles.
  • the compound according to the present embodiment contains a synthetic wax. Since the synthetic wax is difficult to be adsorbed on the surface of the metal element-containing particles, the compound according to this embodiment can suppress a decrease in the mechanical strength of the molded body.
  • the synthetic wax is difficult to disperse in the resin composition and tends to exist on the surface of the compound.
  • the synthetic wax easily comes into contact with the surface of the mold, and the molded body according to this embodiment is easily separated from the mold.
  • the molded body is cured by heat treatment to obtain a C-stage molded body.
  • the temperature of the heat treatment may be a temperature at which the resin composition in the molded body is sufficiently cured.
  • the temperature of the heat treatment is preferably 100 ° C. or higher and 300 ° C. or lower, more preferably 150 ° C. or higher and 250 ° C. or lower.
  • the heat treatment temperature exceeds 300 ° C., the metal element-containing powder is oxidized or the cured resin product is deteriorated by a trace amount of oxygen inevitably contained in the atmosphere of the heat treatment.
  • the heat treatment temperature holding time is preferably several minutes to 10 hours, more preferably 5 minutes. It may be 8 hours or less.
  • Example 1 [Preparation of compound] 90 g ortho-cresol novolac type epoxy resin, 10 g biphenyl type epoxy resin, 48 g phenol novolac resin (curing agent), 10 g phenol resin (curing agent), 2 g 2-undecylimidazole (curing accelerator), 9 g of 2-ethyl-4-methylimidazole (curing accelerator) and 1.0 g of polyethylene oxide (synthetic wax) were put into a plastic container. A resin mixture was prepared by mixing these raw materials in a plastic container for 10 minutes. The resin mixture corresponds to all other components of the resin composition excluding the coupling agent.
  • ortho-cresol novolac type epoxy resin EOCN-102S (epoxy equivalent 200 g / eq) manufactured by Nippon Kayaku Co., Ltd. was used.
  • biphenyl type epoxy resin YX-4000H (epoxy equivalent 192 g / eq) manufactured by Mitsubishi Chemical Corporation was used.
  • phenol novolac resin HP-850N (hydroxyl equivalent 106 g / eq) manufactured by Hitachi Chemical Co., Ltd. was used.
  • MEHC-7851SS hydroxyl equivalent 199 g / eq) manufactured by Meiwa Kasei Co., Ltd. was used.
  • a total amount of 2928 g of two types of amorphous iron powder was uniformly mixed for 5 minutes with a pressure type biaxial kneader (manufactured by Nippon Spindle Manufacturing Co., Ltd., capacity 5 L) to prepare a metal element-containing powder.
  • a pressure type biaxial kneader manufactured by Nippon Spindle Manufacturing Co., Ltd., capacity 5 L
  • 7.5 g of 3-glycidoxypropyltrimethoxysilane (coupling agent) was added to the metal element-containing powder in the biaxial kneader.
  • the contents of the biaxial kneader were heated to 90 ° C., and the contents of the biaxial kneader were mixed for 10 minutes while maintaining the temperature.
  • the above resin mixture was added to the contents of the biaxial kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 120 ° C.
  • the kneaded product obtained by the above melting and kneading was cooled to room temperature, the kneaded product was pulverized with a hammer until the kneaded product had a predetermined particle size.
  • the “melting” means melting of at least a part of the resin composition in the contents of the biaxial kneader.
  • the metal element-containing powder in the compound does not melt in the compound preparation process.
  • amorphous iron powder 9A4-II (average particle size 24 ⁇ m) manufactured by Epson Atmix Co., Ltd. and AW2-08 (average particle size 5.3 ⁇ m) manufactured by Epson Atmix Co., Ltd. were used.
  • As 3-glycidoxypropyltrimethoxysilane KBM-403 (molecular weight 236) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the compound of Example 1 was prepared by the above method.
  • the content of the metal element-containing powder in the compound was 94.5% by mass.
  • Example 1 The fluidity was evaluated using a flow tester CFT-100 manufactured by Shimadzu Corporation.
  • the compound 7g of Example 1 was shape
  • fluidity was evaluated under the conditions of 150 ° C., remaining heat of 20 seconds, and load of 60 kg.
  • the pushing distance (unit: mm) of the plunger until the flow of the compound stopped was measured as a flow tester stroke, and the flow tester stroke was used as an index of fluidity.
  • the fluidity of Example 1 is shown in Table 1 below.
  • a test piece was obtained by transfer molding of the compound of Example 1 at 165 ° C. The pressure applied to the compound was 13.5 MPa. The dimensions of the sample were 80 mm long ⁇ 10 mm wide ⁇ 3.0 mm thick. Using an autograph AGS-500A manufactured by Shimadzu Corporation, a three-point support type bending test was performed on the sample. In the bending test, one surface of the sample was supported by two fulcrums F arranged at an interval of 64 mm. A load W was applied to the center position between the two fulcrums F on the other surface of the sample. The load when the sample was broken was measured as mechanical strength (unit: MPa). The mechanical strength of Example 1 is shown in Table 1 below.
  • the compound of Example 1 was filled in the cavity of the mold.
  • the overall dimensions of the mold were 100 mm outer diameter x 63 mm thickness.
  • the dimension of the cavity portion was 10.2 mm in upper diameter ⁇ 12.5 mm in lower diameter ⁇ 20 mm in thickness.
  • a molded body was obtained by applying pressure to the compound in the mold at 180 ° C.
  • the pressure applied to the compound was 6.9 MPa.
  • the pressure was applied for 120 seconds.
  • a push-pull gauge manufactured by Imada Co., Ltd. the molded body was struck from above, and the molded body was extracted from the mold. The above process was performed 3 times.
  • the load (unit: N) when the molded body produced for the third time was removed from the mold was measured as the mold release force.
  • the mold release force of Example 1 is shown in Table 1 below. The smaller the mold release force of the molded body is, the better the molded body is.
  • the excellent releasability of the molded product means that the continuous moldability of the compound used in the molded product is excellent.
  • Example 2 to 6 In Examples 2 to 6, the composition shown in Table 1 below was used as a compound raw material. The mass (unit: g) of each composition used in Examples 2 to 6 was a value shown in Table 1 below. Except for these matters, the compounds of Examples 2 to 6 were individually prepared in the same manner as in Example 1. In the same manner as in Example 1, measurements and evaluations for the compounds of Examples 2 to 6 were performed. The results of measurement and evaluation in Examples 2 to 6 are shown in Table 1 below.
  • Comparative Examples 1 to 4 In Comparative Examples 1 to 4, the composition shown in Table 1 below was used as a compound raw material. The mass (unit: g) of each composition used in Comparative Examples 1 to 4 was a value shown in Table 1 below. Except for these matters, the compounds of Comparative Examples 1 to 4 were individually produced in the same manner as in Example 1. In the same manner as in Example 1, the measurements and evaluations for the compounds of Comparative Examples 1 to 4 were performed. The results of measurement and evaluation in Comparative Examples 1 to 4 are shown in Table 1 below.
  • PED-191 described in the following table is polyethylene oxide (synthetic wax) manufactured by Clariant Chemicals.
  • Lycocene PE3101TP described in the following table is polyethylene (synthetic wax) manufactured by Clariant Chemicals.
  • LicowaxE described in the following table is a montanic acid ester (natural wax) manufactured by Clariant Chemicals.
  • Reference numeral 1 is carnauba wax (natural wax) manufactured by Celalica NODA.
  • the release force of all examples and comparative examples was 100 N or less, but the mechanical strength of all comparative examples was clearly lower than that of all examples. According to the present invention, it is possible to provide a molded body capable of achieving both releasability and mechanical strength.
  • the compound according to the present invention can suppress a decrease in the mechanical strength of the molded product despite containing wax, and is suitable for the production of a molded product having excellent releasability. Therefore, the compound has high industrial value. Have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

ワックスを含む成形体の機械的強度の低下を抑制することができ、離型性に優れる成形体の作製に適したコンパウンドが提供される。コンパウンドは、金属元素含有粉と、樹脂組成物と、を備え、樹脂組成物は、エポキシ樹脂及び合成ワックスを含有する。

Description

コンパウンド及び成形体
 本発明は、コンパウンド及び成形体に関する。
 金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、例えば、インダクタ、電磁波シールド、又はボンド磁石等の多様な工業製品の原材料として利用される(下記特許文献1参照。)
特開2014-13803号公報
 コンパウンドから工業製品を製造する場合、コンパウンドを型内へ供給及び充填して成形体を作製し、成形体を型から取り出す。成形体を型から取り出す際には、成形体の離型性が要求されるが、従来のコンパウンドから作製される成形体は、十分な離型性を有していなかった。離型性を向上するために、コンパウンドにワックス(離型剤)を添加することが考えられる。しかしながら、コンパウンドに従来のワックスを添加した場合、成形体の機械的強度が低下してしまう。
 本発明は、ワックスを含む成形体の機械的強度の低下を抑制することができ、離型性に優れる成形体の作製に適したコンパウンド、及び当該コンパウンドを備える成形体を提供することを目的とする。
 本発明の一側面に係るコンパウンドは、金属元素含有粉と、樹脂組成物と、を備え、樹脂組成物は、エポキシ樹脂及び合成ワックスを含有する。
 本発明の一側面に係る上記コンパウンドでは、合成ワックスが、ポリエチレン及び酸化ポリエチレンのうちの少なくとも一種であってよい。
 本発明の一側面に係る上記コンパウンドでは、エポキシ樹脂のエポキシ当量が、180g/eq以上240g/eq以下であってよい。
 本発明の一側面に係る上記コンパウンドでは、合成ワックスの含有量が、エポキシ樹脂100質量部に対して、0.5質量部以上8質量部以下であってよい。
 本発明の一側面に係る上記コンパウンドでは、金属元素含有粉の含有量が、90質量%以上100質量%未満であってよい。
 本発明の一側面に係る成形体は、上記コンパウンドの硬化物を備える。
 本発明によれば、ワックスを含む成形体の機械的強度の低下を抑制することができ、離型性に優れる成形体の作製に適したコンパウンド、及び当該コンパウンドを備える成形体が提供される。
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
<コンパウンドの概要>
 本実施形態に係るコンパウンドは、金属元素含有粉と、樹脂組成物と、を備える。
金属元素含有粉は、複数(多数)の金属元素含有粒子から構成される。金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。樹脂組成物は、少なくともエポキシ樹脂及び合成ワックスを含有する。合成ワックスは、離型剤として機能する。樹脂組成物は、エポキシ樹脂及び合成ワックスに加えて、他の成分を含有してよい。例えば、樹脂組成物は、硬化剤を含有してよい。樹脂組成物は、硬化促進剤を含有してよい。樹脂組成物は、添加剤を含有してよい。樹脂組成物は、エポキシ樹脂、合成ワックス、硬化剤、硬化促進剤及び添加剤を包含し得る成分であって、有機溶媒と金属元素含有粉とを除く残りの成分(不揮発性成分)であってよい。樹脂組成物は、エポキシ樹脂に加えて、別の樹脂を含有してよい。樹脂組成物は、合成ワックスに加えて、別の離型剤を含有してよい。添加剤とは、樹脂組成物のうち、樹脂、離型剤、硬化剤及び硬化促進剤を除く残部の成分である。添加剤は、例えば、カップリング剤、難燃剤、又は潤滑剤等である。コンパウンドは、粉末(コンパウンド粉)であってよい。
 ワックスの極性が高いほど、樹脂組成物に含まれるエポキシ樹脂とワックスとの相溶性が高くなり易く、樹脂組成物中にワックスが分散し易い。また、ワックスの極性が高いほど、ワックスは、金属元素含有粉を構成する金属元素含有粒子の表面に吸着し易い。天然ワックスは、合成ワックスに比べて、高い極性を有する傾向にある。したがって、離型剤として天然ワックスのみを含有するコンパウンドの作製過程では、コンパウンドの原料を混練している間に、天然ワックスが樹脂組成物中に分散し易く、天然ワックスが金属元素含有粒子の表面に吸着し易いと推定される。つまり、金属元素含有粒子の表面が天然ワックス(天然ワックス層)で覆われ易い。金属元素含有粒子の表面が天然ワックスで覆われている場合、コンパウンドから作製された成形体は、金属元素含有粒子を覆う天然ワックスの部分を起点にして割れ易い。したがって、従来の天然ワックスを含有する成形体は、従来の天然ワックスを含有しない成形体に比べて、機械的強度が劣る傾向にある。一方、本実施形態に係るコンパウンドは、合成ワックスを含有する。合成ワックスは、金属元素含有粒子の表面に吸着し難いため、本実施形態に係るコンパウンドは、従来の天然ワックスを含有するコンパウンドに比べて、成形体の機械的強度の低下を抑制することができる。また、本実施形態に係るコンパウンドの作製過程では、合成ワックスが、樹脂組成物中に溶解し難い。その結果、成形体の作製過程において、従来の天然ワックスのみを用いた場合に比べて、合成ワックスが金型の表面と接触し易く、成形体を金型から分離し易くなっていると推定される。ただし、本発明に係る作用効果は上記の事項に限定されない。
 コンパウンドは、金属元素含有粉と、当該金属元素含有粉を構成する個々の金属元素含有粒子の表面に付着した樹脂組成物と、を備えてよい。樹脂組成物は、当該粒子の表面の全体を覆っていてもよく、当該粒子の表面の一部のみを覆っていてもよい。コンパウンドは、未硬化の樹脂組成物と、金属元素含有粉と、を備えてよい。コンパウンドは、樹脂組成物の半硬化物(例えばBステージの樹脂組成物)と、金属元素含有粉と、を備えてよい。コンパウンドは、未硬化の樹脂組成物、及び樹脂組成物の半硬化物の両方を備えてもよい。コンパウンドは、金属元素含有粉と樹脂組成物とからなっていてよい。
 エポキシ樹脂のエポキシ当量は、180g/eq以上240g/eq以下、又は190g/eq以上220g/eq以下であってよい。エポキシ当量が小さい樹脂を用いると、成形体の機械的強度が高くなり易い。
 コンパウンドにおける金属元素含有粉の含有量は、コンパウンド全体の質量に対して、90質量%以上100質量%未満であることが好ましい。金属元素含粉の含有量が多くなると、成形体の離型性が担保し難く、作業性に劣る傾向がある。成形体の電気特性の観点から、金属元素含有粉の含有量は、90質量%以上が好ましく、92質量%以上がより好ましく、94質量%以上がさらに好ましい。
 コンパウンドにおける樹脂組成物の含有量は、コンパウンド全体の質量(例えば、金属元素含有粉及び樹脂組成物の質量の合計)に対して、0.2質量%以上10質量%以下であってよく、好ましくは4質量%以上6質量%以下であってよい。
 コンパウンドにおける合成ワックスの含有量は、エポキシ樹脂100質量部に対して、0.5質量部以上8質量部以下、又は1質量部以上6質量部以下であってよい。合成ワックスの含有量が上記の範囲内である場合、成形体の機械的強度が低下し難く、成形体の離型性が向上し易い。
 金属元素含有粉の平均粒子径は、特に限定されないが、例えば、1μm以上300μm以下であってよい。平均粒子径は、例えば粒度分布計によって測定されてよい。金属元素含有粉を構成する個々の金属元素含有粒子の形状は限定されないが、例えば、球状、扁平形状、角柱状又は針状であってよい。コンパウンドは、平均粒子径が異なる複数種の金属元素含有粉を備えてよい。
 コンパウンドに含まれる金属元素含有粉の組成又は組合せに応じて、コンパウンドから形成される成形体の電磁気的特性等の諸特性を自在に制御し、当該成形体を様々な工業製品又はそれらの原材料に利用することができる。コンパウンドを用いて製造される工業製品は、例えば、自動車、医療機器、電子機器、電気機器、情報通信機器、家電製品、音響機器、及び一般産業機器であってよい。例えば、コンパウンドが金属元素含有粉としてSm‐Fe‐N系合金又はNd‐Fe‐B系合金等の永久磁石を含む場合、コンパウンドは、ボンド磁石の原材料として利用されてよい。コンパウンドが金属元素含有粉としてFe‐Si‐Cr系合金又はフェライト等の軟磁性粉を含む場合、コンパウンドは、インダクタ(例えばEMIフィルタ)又はトランスの原材料(例えば磁芯)として利用されてよい。コンパウンドが金属元素含有粉として鉄と銅とを含む場合、コンパウンドから形成された成形体(例えばシート)は、電磁波シールドとして利用されてよい。
<コンパウンドの組成>
(樹脂組成物)
 樹脂組成物は、金属元素含有粉を構成する金属元素含有粒子の結合材(バインダ)としての機能を有し、コンパウンドから形成される成形体に機械的強度を付与する。例えば、コンパウンドに含まれる樹脂組成物は、金型を用いてコンパウンドが高圧で成形される際に、金属元素含有粒子の間に充填され、当該粒子を互いに結着する。成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属元素含有粒子同士をより強固に結着して、成形体の機械的強度が向上する。
 樹脂組成物は、熱硬化性樹脂として、少なくともエポキシ樹脂を含有する。コンパウンドが、熱硬化性樹脂の中でも比較的に流動性に優れたエポキシ樹脂を含むことにより、コンパウンドの流動性、保存安定性、及び成形性が向上する。ただし、本発明の効果が阻害されない限りにおいて、コンパウンドはエポキシ樹脂に加えて他の樹脂を含んでもよい。例えば、樹脂組成物は、熱硬化性樹脂として、フェノール樹脂及びポリアミドイミド樹脂のうち少なくも一種を含んでもよい。樹脂組成物がエポキシ樹脂及びフェノール樹脂の両方を含む場合、フェノール樹脂はエポキシ樹脂の硬化剤として機能してもよい。コンパウンドに含まれる樹脂は、熱硬化性樹脂のみであってよく、熱硬化性樹脂は、エポキシ樹脂のみ、又はエポキシ樹脂及びフェノール樹脂のみであってもよい。樹脂組成物は、熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでよい。樹脂組成物は、シリコーン樹脂を含んでもよい。
 エポキシ樹脂は熱硬化性樹脂の中でも流動性に優れているので、樹脂組成物はエポキシ樹脂を含有することが好ましい。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。
 エポキシ樹脂は、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、及びオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。
 流動性に優れている観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。
 エポキシ樹脂は、結晶性のエポキシ樹脂であってよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。結晶性のエポキシ樹脂の市販品は、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、N500P-2、及びN500P-10(以上、DIC株式会社製の商品名)、NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、BREN-10S(以上、日本化薬株式会社製の商品名)、YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。樹脂組成物は、上記のエポキシ樹脂の中でも、ビフェニル型エポキシ樹脂(YX-4000H)及びオルソクレゾールノボラック型エポキシ樹脂(N500P-10)の両方を含有してよい。
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された成形体も軟らかくなり易い。一方、成形体の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、さらに好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成形体の耐熱性及び機械的強度が向上し易い。
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール及びアミノフェノールからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α‐ナフトール、β‐ナフトール及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種であってよい。
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってよい。
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.6~1.4当量、さらに好ましくは0.8~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物の充分な弾性率が得られ難い。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された成形体の硬化後の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、アルキル基置換イミダゾール、又はベンゾイミダゾール等のイミダゾール類であってよい。樹脂組成物は、一種の硬化促進剤を備えてよい。樹脂組成物は、複数種の硬化促進剤を備えてもよい。樹脂組成物の成分として、硬化促進剤を含有することにより、コンパウンドの成形性及び離型性が向上し易い。また樹脂組成物の成分として硬化促進剤を含有することにより、コンパウンドを用いて製造された成形体(例えば、電子部品)の機械的強度が向上したり、高温・高湿な環境下におけるコンパウンドの保存安定性が向上したりする。
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、樹脂組成物の吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、100質量部のエポキシ樹脂に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上15質量部以下であってよい。硬化促進剤の含有量は、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の質量の合計100質量部に対して0.001質量部以上5質量部以下であることが好ましい。硬化促進剤の配合量が0.1質量部未満である場合、十分な硬化促進効果が得られ難い。硬化促進剤の配合量が30質量部を超える場合、コンパウンドの保存安定性が低下し易い。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。
 樹脂組成物は、合成ワックスを含有する。合成ワックスは、コンパウンドから成形体を作製する過程で、成形体を金型から分離し易くする。合成ワックスは、ポリオレフィンであってよい。ポリオレフィンは、例えば、ポリエチレン及びポリプロピレンのうちの少なくとも一種であってよい。合成ワックスは、極性ワックスであってもよい。極性ワックスは、例えば、酸化ポリエチレン、グラフト型ポリオレフィン、及びコポリマーからなる群より選ばれる少なくとも一種であってよい。合成ワックスは、ポリエチレン及び酸化ポリエチレンのうちの少なくとも一種であってよい。
 樹脂組成物は、上記合成ワックスに加えて、他のワックスを含有してよい。他のワックスは、天然ワックスであってよい。他のワックスは、高級脂肪酸等の脂肪酸、脂肪酸エステル、脂肪酸エステルの部分ケン化物、及び金属せっけんからなる群より選ばれる少なくとも一種であってよい。コンパウンドの流動性が向上し易い観点において、他のワックスは、脂肪酸を含有することが好ましい。
 他のワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、アマイドワックス、エステルワックス、カルナバワックス、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。
 モンタン酸ワックスの市販品としては、リコワックスE、リコワックスOP、リコルブE及びリコルブWE40(以上、クラリアントケミカルズ株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてもよい。ステアリン酸ワックスの市販品としては、花王株式会社製のルナックS‐50V(タイター:56℃)及びルナックS‐90V(融点:68℃)のうち少なくともいずれかを用いてもよい。アマイドワックスの市販品としては、リコルブFA1(クラリアントケミカルズ株式会社製の商品名)、及びDISPARLON6650(楠本化成株式会社製の商品名)のうち少なくともいずれかを用いてよい。コンパウンドの流動性、離型性、成形時の温度及び圧力、並びにワックスの融点、滴点及び溶融粘度等、コンパウンドの設計において要求される事項に応じて、コンパウンドに含まれるワックスが適宜選択されてよい。
 コンパウンドに含まれる合成ワックスの含有量は、コンパウンドに含まれる全てのワックスの質量100質量部に対して、10質量部以上100質量部未満であってよい。合成ワックスの含有量が上記の範囲内である場合、成形体の機械的強度が低下し難く、成形体の離型性が向上し易い。
 カップリング剤は、樹脂組成物と、金属元素含有粉を構成する金属元素含有粒子との密着性を向上させ、コンパウンドから形成される成形体の可撓性及び機械的強度を向上させる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも一種であってよい。特に、アミノフェニル系のシランカップリング剤が好ましい。樹脂組成物は、上記のうち一種のカップリング剤を含有してよく、上記のうち複数種のカップリング剤を含有してもよい。
 コンパウンドの環境安全性、リサイクル性、成形加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、鱗茎難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、上記のうち一種の難燃剤を含有してよく、上記のうち複数種の難燃剤を含有してもよい。
(金属元素含有粉)
 金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属元素含有粉の比重(密度)は、例えば、5g/cm以上であってよい。金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってよい。金属化合物とは、例えば、フェライト等の酸化物であってよい。金属元素含有粉は、一種の金属元素又は複数種の金属元素を含んでよい。金属元素含有粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の金属元素含有粉を含んでよく、複数種の金属元素含有粉を含んでもよい。
 金属元素含有粉は上記の組成物に限定されない。金属元素含有粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。金属元素含有粉は、金属元素以外の元素を含んでもよい。金属元素含有粉は、例えば、酸素(О)、ベリリウム(Be)、リン(P)、ホウ素(B)、又はケイ素(Si)を含んでもよい。金属元素含有粉は、磁性粉であってよい。金属元素含有粉は、軟磁性合金、又は強磁性合金であってよい。金属元素含有粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、Al‐Ni‐Co系合金(アルニコ磁石)及びフェライトからなる群より選ばれる少なくとも一種からなる磁性粉であってよい。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。金属元素含有粉は、Cu‐Sn系合金、Cu‐Sn‐P系合金、Cu-Ni系合金、又はCu‐Be系合金等の銅合金であってもよい。金属元素含有粉は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。
 金属元素含有粉は、Fe単体であってもよい。金属元素含有粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、又はNd‐Fe‐B系合金であってよい。金属元素含有粉は、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかであってもよい。金属元素含有粉がFe単体及びFe系合金のうち少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる成形体をコンパウンドから作製し易い。金属元素含有粉は、Feアモルファス合金であってもよい。Feアモルファス合金粉の市販品としては、例えば、AW2‐08、KUAMET‐6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。
<コンパウンドの製造方法>
 コンパウンドの製造では、金属元素含有粉と樹脂組成物(樹脂組成物を構成する各成分)とを加熱しながら混合する。例えば、金属元素含有粉と樹脂組成物とを加熱しながらニーダー、ロール、攪拌機などで混練してよい。金属元素含有粉及び樹脂組成物の加熱及び混合により、樹脂組成物が金属元素含有粉を構成する金属元素含有粒子の表面の一部又は全体に付着して当該粒子を被覆し、樹脂組成物中のエポキシ樹脂の一部又は全部が半硬化物になる。その結果、コンパウンドが得られる。金属元素含有粉及び樹脂組成物の加熱及び混合によって得られた粉末に、さらに離型剤を加えることによって、コンパウンドを得てもよい。予め樹脂組成物と離型剤とが混合されていてもよい。
 混練では、金属元素含有粉、合成ワックス、エポキシ樹脂、フェノール樹脂等の硬化剤、硬化促進剤、及びカップリング剤を槽内で混練してよい。金属元素含有粉及びカップリング剤を槽内に投入して混合した後、合成ワックス、エポキシ樹脂、硬化剤、及び硬化促進剤を槽内へ投入して、槽内の原料を混練してもよい。合成ワックス、エポキシ樹脂、硬化剤、カップリング剤を槽内で混練した後、硬化促進剤を槽内入れて、更に槽内の原料を混練してもよい。予め合成ワックス、エポキシ樹脂、硬化剤、及び硬化促進剤の混合粉(樹脂混合粉)を作製して、続いて、金属元素含有粉とカップリング剤とを混練して金属混合粉を作製して、続いて、金属混合粉と上記の樹脂混合粉とを混練してもよい。
 混練時間は、混練機械の種類、混練機械の容積、コンパウンドの製造量にもよるが、例えば、1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることがさらに好ましい。また混練時間は、20分以下であることが好ましく、15分以下であることがより好ましく、10分以下であることがさらに好ましい。混練時間が1分未満である場合、混練が不十分であり、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が20分を超える場合、例えば、槽内で樹脂組成物(例えばエポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は、例えば、エポキシ樹脂の半硬化物(Bステージのエポキシ樹脂)が生成し、且つエポキシ樹脂の硬化物(Cステージのエポキシ樹脂)の生成が抑制される温度であればよい。加熱温度は、硬化促進剤の活性化温度よりも低い温度であってよい。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることがさらに好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して金属元素含有粉を構成する金属元素含有粒子の表面を被覆し易く、エポキシ樹脂の半硬化物が生成し易く、混練中のエポキシ樹脂の完全な硬化が抑制され易い。
<成形体>
 本実施形態に係る成形体は、上記のコンパウンドを備えてよい。本実施形態に係る成形体は、上記のコンパウンドの硬化物を備えてよい。成形体は、コンパウンドのみからなっていてよい。成形体は、未硬化の樹脂組成物、樹脂組成物の半硬化物(Bステージの樹脂組成物)、及び樹脂組成物の硬化物(Cステージの樹脂組成物)からなる群より選ばれる少なくとも一種を含んでいてよい。
<成形体の製造方法>
 本実施形態に係る成形体の製造方法は、コンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、コンパウンドを金型中で加圧する工程のみを備えてよく、当該工程に加えてその他の工程を備えてもよい。成形体の製造方法は、第一工程、第二工程及び第三工程を備えてもよい。以下では、各工程の詳細を説明する。
 第一工程では、上記の方法でコンパウンドを作製する。
 第二工程では、コンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得る。ここで、樹脂組成物が、金属元素含有粉を構成する個々の金属元素含有粒子間に充填される。そして樹脂組成物は、結合材(バインダ)として機能し、金属元素含有粒子同士を互いに結着する。天然ワックスは、金属元素含有粒子の表面に吸着し易い。従来の天然ワックスを含有する成形体は、金属元素含有粒子を覆う天然ワックスの部分を起点にして割れ易い。一方、本実施形態に係るコンパウンドは、合成ワックスを含有する。合成ワックスは、金属元素含有粒子の表面に吸着し難いため、本実施形態に係るコンパウンドは、成形体の機械的強度の低下を抑制することができる。また、合成ワックスは、樹脂組成物中に分散し難く、コンパウンドの表面に存在し易い。その結果、第二工程において、合成ワックスが金型の表面と接触し易く、本実施形態に係る成形体は、金型から分離し易い。
 第三工程では、成形体を熱処理によって硬化させ、Cステージの成形体を得る。熱処理の温度は、成形体中の樹脂組成物が十分に硬化する温度であればよい。熱処理の温度は、好ましくは100℃以上300℃以下、より好ましくは150℃以上250℃以下であってよい。成形体中の金属元素含有粉の酸化を抑制するために、熱処理を不活性雰囲気下で行うことが好ましい。熱処理温度が300℃を超える場合、熱処理の雰囲気に不可避的に含まれる微量の酸素によって金属元素含有粉が酸化されたり、樹脂硬化物が劣化したりする。金属元素含有粉の酸化、及び樹脂硬化物の劣化を抑制しながら樹脂組成物を十分に硬化させるためには、熱処理温度の保持時間は、好ましくは数分以上10時間以下、より好ましくは5分以上8時間以下であってよい。
 以下では実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
(実施例1)
[コンパウンドの調製]
 90gのオルソクレゾールノボラック型エポキシ樹脂、10gのビフェニル型エポキシ樹脂、48gのフェノールノボラック樹脂(硬化剤)、10gのフェノール樹脂(硬化剤)、2gの2-ウンデシルイミダゾール(硬化促進剤)、1.9gの2-エチル-4-メチルイミダゾール(硬化促進剤)、及び1.0gの酸化ポリエチレン(合成ワックス)を、ポリ容器に投入した。これらの原料をポリ容器内で10分間混合することにより、樹脂混合物を調製した。樹脂混合物とは、樹脂組成物のうちカップリング剤を除く他の全成分に相当する。
 オルソクレゾールノボラック型エポキシ樹脂としては、日本化薬株式会社製のEOCN‐102S(エポキシ当量200g/eq)を用いた。
 ビフェニル型エポキシ樹脂としては、三菱ケミカル株式会社製のYX‐4000H(エポキシ当量192g/eq)を用いた。
 フェノールノボラック樹脂としては、日立化成株式会社製のHP‐850N(水酸基当量106g/eq)を用いた。
 フェノール樹脂としては、明和化成株式会社製のMEHC‐7851SS(水酸基当量199g/eq)を用いた。
 2-ウンデシルイミダゾールとしては、四国化成工業株式会社製のC11Zを用いた。
 2-エチル-4-メチルイミダゾールとしては、四国化成工業株式会社製の2E4MZを用いた。
 酸化ポリエチレンとしては、クラリアントケミカルズ株式会社製のPED‐522を用いた。
 2種類のアモルファス系鉄粉の合計量2928gを、加圧式2軸ニーダー(日本スピンドル製造株式会社製、容量5L)で5分間均一に混合して、金属元素含有粉を調製した。7.5gの3-グリシドキシプロピルトリメトキシシラン(カップリング剤)を2軸ニーダー内の金属元素含有粉へ添加した。続いて、2軸ニーダーの内容物を90℃になるまで加熱し、その温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加して、内容物の温度を120℃に保持しながら、内容物を15分間溶融・混練した。以上の溶融・混練によって得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで混練物をハンマーで粉砕した。なお、上記の「溶融」とは、2軸ニーダーの内容物のうち樹脂組成物の少なくとも一部の溶融を意味する。コンパウンド中の金属元素含有粉は、コンパウンドの調製過程において溶融しない。
 アモルファス系鉄粉としては、エプソンアトミックス株式会社製の9A4‐II(平均粒径24μm)、及びエプソンアトミックス株式会社製のAW2‐08(平均粒径5.3μm)を用いた。
 3-グリシドキシプロピルトリメトキシシランとしては、信越化学工業株式会社製のKBM-403(分子量236)を用いた。
 以上の方法により、実施例1のコンパウンドを調製した。コンパウンド中の金属元素含有粉の含有量は94.5質量%であった。
[流動性の評価]
 流動性の評価は、株式会社島津製作所製のフローテスタCFT-100を用いて行った。実施例1のコンパウンド7gを成形して、タブレットを作製した。タブレットを用いて、150℃、余熱20秒、荷重60kgの条件にて、流動性の評価を実施した。コンパウンドの流動が停止するまでのプランジャーの押し込み距離(単位:mm)をフローテスターストロークとして測定し、フローテスターストロークを流動性の指標とした。実施例1の流動性は、下記表1に示される。
[曲げ試験:機械的強度の測定]
 165℃での実施例1のコンパウンドのトランスファー成形により、試験片を得た。コンパウンドに加えた圧力は13.5MPaであった。試料の寸法は、縦幅80mm×横幅10mm×厚さ3.0mmであった。株式会社島津製作所製のオートグラフAGS-500Aを用いて、試料に対して3点支持型の曲げ試験を実施した。曲げ試験では、64mmの間隔をおいて配置した2つの支点Fにより試料の一方の面を支持した。試料の他方の面における2つの支点F間の中央の位置に荷重Wを加えた。試料が破壊されたときの荷重を、機械的強度(単位:MPa)として測定した。実施例1の機械的強度は、下記表1に示される。
[離型性の評価]
 実施例1のコンパウンドを、金型の空洞部分に充填した。金型全体の寸法は、外径100mm×厚さ63mmであった。空洞部分の寸法は、上径10.2mm×下径12.5mm×厚さ20mmであった。180℃において、金型中のコンパウンドに圧力を加えることにより、成形体を得た。コンパウンドに加えた圧力は6.9MPaであった。圧力を加えた時間は120秒間であった。株式会社イマダ製のプッシュ-プルゲージを用いて、成形体を上から突いて、金型から成形体を抜き出した。以上の工程を3回行った。3回目に作製された成形体が金型から抜けた時の荷重(単位:N)を離型力として測定した。実施例1の離型力は、下記表1に示される。成形体の離型力が小さいほど、成形体は離型性に優れている。成形体の優れた離型性は、成形体に用いたコンパウンドの連続成形性が優れていることを意味する。
(実施例2~6)
 実施例2~6では、下記表1に示される組成物をコンパウンドの原料として用いた。実施例2~6で用いられた各組成物の質量(単位:g)は、下記表1に示される値であった。これらの事項を除いて実施例1と同様の方法で、実施例2~6其々のコンパウンドを個別に作製した。実施例1と同様の方法で、実施例2~6其々のコンパウンドに関する測定及び評価を行った。実施例2~6其々の測定及び評価の結果は、下記表1に示される。
(比較例1~4)
 比較例1~4では、下記表1に示される組成物をコンパウンドの原料として用いた。比較例1~4で用いられた各組成物の質量(単位:g)は、下記表1に示される値であった。これらの事項を除いて実施例1と同様の方法で、比較例1~4其々のコンパウンドを個別に作製した。実施例1と同様の方法で、比較例1~4其々のコンパウンドに関する測定及び評価を行った。比較例1~4其々の測定及び評価の結果は、下記表1に示される。
 下記表に記載のPED‐191は、クラリアントケミカルズ株式会社製の酸化ポリエチレン(合成ワックス)である。
 下記表に記載のリコセンPE3101TPは、クラリアントケミカルズ株式会社製のポリエチレン(合成ワックス)である。
 下記表に記載のLicowaxEは、クラリアントケミカルズ株式会社製のモンタン酸エステル(天然ワックス)である。
 下記表に記載のカルナバNo.1は、株式会社セラリカNODA製のカルナバワックス(天然ワックス)である。
Figure JPOXMLDOC01-appb-T000001
 全ての実施例及び比較例の離型力は100N以下であったが、全ての比較例の機械的強度は、全ての実施例よりも明らかに低かった。本発明によれば、離型性と機械的強度との両立が可能な成形体の提供が可能となる。
 本発明に係るコンパウンドは、ワックスを含むにもかかわらず成形体の機械的強度の低下を抑制することができ、離型性に優れる成形体の作製に適しているため、高い工業的な価値を有している。

Claims (6)

  1.  金属元素含有粉と、樹脂組成物と、を備え、
     前記樹脂組成物は、エポキシ樹脂及び合成ワックスを含有する、
    コンパウンド。
  2.  前記合成ワックスが、ポリエチレン及び酸化ポリエチレンのうちの少なくとも一種である、
    請求項1に記載のコンパウンド。
  3.  前記エポキシ樹脂のエポキシ当量が、180g/eq以上240g/eq以下である、
    請求項1又は2に記載のコンパウンド。
  4.  前記合成ワックスの含有量が、前記エポキシ樹脂100質量部に対して、0.5質量部以上8質量部以下である、
    請求項1~3のいずれか一項に記載のコンパウンド。
  5.  前記金属元素含有粉の含有量が、90質量%以上100質量%未満である、
    請求項1~4のいずれか一項に記載のコンパウンド。
  6.  請求項1~5のいずれか一項に記載のコンパウンドの硬化物を備える、成形体。
PCT/JP2018/015587 2018-04-13 2018-04-13 コンパウンド及び成形体 WO2019198237A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207029368A KR102422919B1 (ko) 2018-04-13 2018-04-13 컴파운드 및 성형체
PCT/JP2018/015587 WO2019198237A1 (ja) 2018-04-13 2018-04-13 コンパウンド及び成形体
JP2020513043A JP7222394B2 (ja) 2018-04-13 2018-04-13 コンパウンド及び成形体
CN201880092311.1A CN111954912A (zh) 2018-04-13 2018-04-13 复合物及成形体
TW108112407A TWI804603B (zh) 2018-04-13 2019-04-10 複合物及成形體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015587 WO2019198237A1 (ja) 2018-04-13 2018-04-13 コンパウンド及び成形体

Publications (1)

Publication Number Publication Date
WO2019198237A1 true WO2019198237A1 (ja) 2019-10-17

Family

ID=68164186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015587 WO2019198237A1 (ja) 2018-04-13 2018-04-13 コンパウンド及び成形体

Country Status (5)

Country Link
JP (1) JP7222394B2 (ja)
KR (1) KR102422919B1 (ja)
CN (1) CN111954912A (ja)
TW (1) TWI804603B (ja)
WO (1) WO2019198237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172685A (ja) * 2020-04-20 2021-11-01 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物
WO2022050170A1 (ja) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631720B (zh) * 2023-06-09 2023-12-12 广东美瑞克微金属磁电科技有限公司 一种eq型磁粉芯及其压制成型装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522441A (ja) * 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア 磁気若しくは磁化成形品を製造するための組成物、及びその組成物の製造方法
JP2016180154A (ja) * 2015-03-24 2016-10-13 Ntn株式会社 磁心用粉末および圧粉磁心、並びに磁心用粉末の製造方法
JP2017034097A (ja) * 2015-07-31 2017-02-09 日立化成株式会社 Nd−Fe−B系ボンド磁石用樹脂コンパウンド、Nd−Fe−B系ボンド磁石及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214034A (ja) * 2000-01-31 2001-08-07 Nippon Kayaku Co Ltd エポキシ樹脂組成物、樹脂結合型金属成型部品
AU2003202138A1 (en) * 2002-02-27 2003-09-09 Hitachi Chemical Co., Ltd. Encapsulating epoxy resin composition, and electronic parts device using the same
JP2005252221A (ja) * 2003-08-18 2005-09-15 Showa Denko Kk 電磁波吸収体
JP4894147B2 (ja) * 2005-01-31 2012-03-14 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
JP5193207B2 (ja) 2007-02-09 2013-05-08 株式会社日本触媒 シラン化合物、その製造方法及びシラン化合物を含む樹脂組成物
JP5085432B2 (ja) * 2008-05-26 2012-11-28 電気化学工業株式会社 着磁性異物を低減した球状金属酸化物粉末、その製造方法及び用途
JP2010222395A (ja) * 2009-03-19 2010-10-07 Ube Ind Ltd 磁性材樹脂複合体成形用ポリアミド樹脂組成物、磁性材樹脂複合材料、及び磁性材樹脂複合体
JP6159512B2 (ja) 2012-07-04 2017-07-05 太陽誘電株式会社 インダクタ
JP2015109367A (ja) * 2013-12-05 2015-06-11 日立化成株式会社 磁気シート材およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522441A (ja) * 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア 磁気若しくは磁化成形品を製造するための組成物、及びその組成物の製造方法
JP2016180154A (ja) * 2015-03-24 2016-10-13 Ntn株式会社 磁心用粉末および圧粉磁心、並びに磁心用粉末の製造方法
JP2017034097A (ja) * 2015-07-31 2017-02-09 日立化成株式会社 Nd−Fe−B系ボンド磁石用樹脂コンパウンド、Nd−Fe−B系ボンド磁石及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172685A (ja) * 2020-04-20 2021-11-01 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物
JP7484371B2 (ja) 2020-04-20 2024-05-16 株式会社レゾナック コンパウンド、成形体、及びコンパウンドの硬化物
WO2022050170A1 (ja) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物

Also Published As

Publication number Publication date
JPWO2019198237A1 (ja) 2021-04-22
KR102422919B1 (ko) 2022-07-20
CN111954912A (zh) 2020-11-17
TW201943791A (zh) 2019-11-16
KR20210003741A (ko) 2021-01-12
JP7222394B2 (ja) 2023-02-15
TWI804603B (zh) 2023-06-11

Similar Documents

Publication Publication Date Title
JP7416124B2 (ja) コンパウンド及びタブレット
JP7103413B2 (ja) コンパウンド及び成形体
TWI804603B (zh) 複合物及成形體
JP7136121B2 (ja) コンパウンド粉
CN111406085B (zh) 复合粉
WO2019229961A1 (ja) コンパウンド、成形体、及び電子部品
JP7484371B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7552161B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
TW202307064A (zh) 複合物、成形體及複合物的固化物
JP2023047606A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2022149538A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021112135A1 (ja) コンパウンド及び成形体
JP7500978B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7512658B2 (ja) コンパウンドの製造方法、コンパウンド用マスターバッチ、コンパウンド、成形体、及びコンパウンドの硬化物
JP7480565B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7480781B2 (ja) コンパウンド、成型体及び硬化物
WO2021153688A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021241513A1 (ja) コンパウンド、成型体、及び硬化物
JP2022167046A (ja) コンパウンド及び成形体
JP2023049648A (ja) 成形体の製造方法及び半導体装置の製造方法
WO2021153691A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914197

Country of ref document: EP

Kind code of ref document: A1