WO2019190103A1 - 용출 제어형 비료 - Google Patents

용출 제어형 비료 Download PDF

Info

Publication number
WO2019190103A1
WO2019190103A1 PCT/KR2019/003120 KR2019003120W WO2019190103A1 WO 2019190103 A1 WO2019190103 A1 WO 2019190103A1 KR 2019003120 W KR2019003120 W KR 2019003120W WO 2019190103 A1 WO2019190103 A1 WO 2019190103A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
weight
inorganic fine
fine particles
binder resin
Prior art date
Application number
PCT/KR2019/003120
Other languages
English (en)
French (fr)
Inventor
김찬중
이상려
이준석
장일
김지연
최재훈
Original Assignee
주식회사 엘지화학
주식회사 팜한농
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190027741A external-priority patent/KR102113261B1/ko
Application filed by 주식회사 엘지화학, 주식회사 팜한농 filed Critical 주식회사 엘지화학
Priority to MYPI2020003510A priority Critical patent/MY193432A/en
Priority to CN201980009287.5A priority patent/CN111683914B/zh
Priority to JP2020526522A priority patent/JP6929591B2/ja
Priority to AU2019242997A priority patent/AU2019242997B2/en
Priority to US16/964,924 priority patent/US11286213B2/en
Publication of WO2019190103A1 publication Critical patent/WO2019190103A1/ko
Priority to PH12020551384A priority patent/PH12020551384A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/012Additives activating the degradation of the macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to a dissolution-controlled fertilizer, and more particularly, to a dissolution-controlled fertilizer that has a high stability against moisture and a rigid structure, can easily control the dissolution period of the fertilizer, and can realize excellent photolysis efficiency.
  • the dissolution control fertilizer (Control led ease fertilizers, CRF) is slowly supplied to crops with fertilizers such as nitrogen, phosphorus and potassium for a long time.
  • Conventional fertilizers sprayed with water or sprayed in powder form usually do not last more than 20 days once sprayed. This is because crops are difficult to see the fertilizers because they have been washed out by the rain or penetrated deep into the ground.
  • Dissolution-controlled fertilizers reduce the rate of release of fertilizer components into polymer capsules to compensate for these common fertilizer shortcomings, allowing them to be released for long periods of time.
  • Polymer capsules are made of olefin resins, urethane resins, latex, acrylic resins, etc., and fertilizer components are dissolved while water vapor penetrates through the capsules, and is then released through the capsules by the osmotic principle.
  • the rate of penetration of the water and fertilizer components will depend on the composition of the capsule and to what thickness. This can be used to control the rate at which fertilizer components come out.
  • the duration of release of the fertilizer component from the capsule can be controlled from a minimum of 30 days to a maximum of 2 years. However, after release of the fertilizer, the capsule polymer does not decompose and 2019/190103 1 »(: 1 ⁇ 1 ⁇ 2019/003120
  • biodegradable polymers have a rapid water repellency and are decomposed by microorganisms in one to six months, fertilizer components are at least two months old. It was not suitable for use in dissolution controlled fertilizers that had to be released over the years.
  • the present invention has a high stability to the moisture and a rigid structure, and can provide a control line fertilizer that can easily control the elution period of the fertilizer and can also implement excellent photolysis efficiency.
  • a binder resin including a polyolefin and an ethylene vinyl acetate copolymer; And a photocatalytic complex in which a surfactant having a bar value of 1 to 6 is bonded to the surface or inside of the aggregate of the inorganic fine particles; and a photodegradable capsule comprising a fertilizer included in a space surrounded by the photodegradable capsule. Elution controlled fertilizer is provided.
  • a binder resin including a polyolefin and ethylene vinyl acetate copolymer; And a photocatalytic complex in which a surfactant having an agglomeration value of 1 to 6 is bonded to the surface or the inside of the aggregate of the inorganic fine particles; and a photodegradable capsule comprising a fertilizer included in a space surrounded by the photodegradable capsule.
  • Elution-controlled fertilizers may be provided.
  • the inventors have shown that the dissolution controlled fertilizer formed with a photodegradable capsule including the photocatalytic composite described above together with a binder resin including a polyolefin and an ethylene vinyl acetate copolymer has a high stability against moisture and a rigid structure and easily controls the dissolution period of the fertilizer. Experiment and confirm that it can realize excellent photolysis efficiency Completed.
  • the above-described dissolution control fertilizer may be characterized by uniformly dispersing the photocatalyst composite in the above-mentioned binder resin. Specifically, as the surfactant having an HLB value of 1 to 6 is bound to the surface or inside of the aggregate of the inorganic fine particles, the inorganic fine particles are uniformly produced in the dissolution-controlled fertilizer or in the dissolution-controlled fertilizer. It may be dispersed, and thus the aggregate of the inorganic fine particles may have a particle size not so large.
  • the photocatalyst composite may have a structure in which a surfactant having an HLB value of 1 to 6 is bonded to the surface or inside of the aggregate of the inorganic fine particles.
  • the structure and characteristics of such a photocatalytic composite are dispersed in the binder resin or a precursor thereof after first reacting an aggregate of an inorganic fine particle with a surfactant having an HLB value of 1 to 6 or by dispersing them in an organic solvent first. Can be obtained by reacting or reacting.
  • the aggregates of the inorganic fine particles are uniformly dispersed in the binder resin while not having a large particle size, so that the photodegradation reaction occurs locally when the photodegradable capsule is exposed to light, thereby preventing the photodegradation efficiency from deteriorating. It is possible to prevent the photodegradable capsules from remaining in the soil.
  • the dissolution-controlled fertilizer may be characterized by combining a surfactant having an HLB value of 1 to 6 on the surface or inside of the aggregate of the inorganic fine particles. That is, as the surfactant having the HLB value of 1 to 6 is bonded to the surface or the inside of the aggregate of the inorganic fine particles, the growth of the aggregate of the inorganic fine particles may be controlled, and the HLB value of 1 to 6 may also be controlled. Due to the nature of the surfactant has a high compatibility with the binder resin to enable the photocatalyst composite to be uniformly distributed in the binder resin.
  • the surfactant may have an HLB value of 1-6, or 1-5, or 1-4, or 2-4 [hydrophilic lipophilic balance, HLB]. . 2019/190103 1 »(: 1 ⁇ 1 ⁇ 2019/003120
  • the solubility in the hydrophobic solvent of the coating solution is low or the particle dispersing ability in the coating solution is lowered, which may result in uneven distribution in the capsule.
  • the active agent may have low compatibility with the binder resin. For example, more than six In the case of using a surfactant having a local photolysis reaction may occur in the photodegradable capsule or the efficiency of the photodegradation reaction may be reduced, and the entire photodegradable capsule may not be decomposed due to an inefficient photolysis reaction and residues are left. Can be.
  • the dissolution control fertilizer can implement excellent photolysis efficiency. More specifically, the decomposition rate of the binder resin, which is derived from the weight change of the photodegradable capsule when the light of the wavelength of 300ä to 800ä at 400 intensity for 224 hours may be 40% or more, or 50% or more.
  • the inorganic fine particles may serve as a photocatalyst.
  • the dissolution control fertilizer of the embodiment is characterized in that the photocatalyst complex is uniformly dispersed in the binder resin to solve the problem that the photodegradable capsule remains in the soil.
  • the fertilizer Since the photocatalytic complex acts as a catalyst only while receiving light, the fertilizer is gradually released during the elution period while the photodegradable capsule is not decomposed while the fertilizer is released in the light-blocked soil. After the fertilizer is eluted, the dissolution control fertilizer is exposed to the topsoil by plowing, etc., so that the photodegradable capsule may be decomposed by light.
  • the inorganic fine particles may include primary particles having a cross-sectional diameter of 5 to 50 11 111.
  • the cross-sectional diameter of the primary particles of the inorganic fine particles is commonly known method, for example You can check it through a photo or BET measurement.
  • the aggregate of the inorganic fine particles contained in the elution-controlled fertilizer of the embodiment may have a particle size that is not very large, specifically, the aggregate of the inorganic fine particles has a cross-sectional diameter of 1_ or less, or 0.05 rn to 0.8 / ini It may have a cross-sectional diameter.
  • the cross-sectional diameters and diameters of the aggregates of the inorganic fine particles can also be determined through conventionally known methods, for example, SEM or TEM mi crotome.
  • the cross-sectional diameter may be adjusted to the above-described range as the surfactant having an HLB value of 1 to 6 is bonded to the surface or the inside thereof.
  • the cross-sectional diameter or the overall size of the aggregate of the inorganic fine particles is too large, a local photolysis reaction may occur in the photodegradable capsule or the efficiency of the photodegradation reaction may be deteriorated. Residue may be left without degradation.
  • the inorganic fine particles include titanium dioxide (Ti02), zinc oxide (ZnO), or a mixture thereof.
  • the binder resin may be a main material for forming the outer structure of the photodegradable capsule, and as described above, the binder resin may include a polyolefin and an ethylene vinyl acetate copolymer.
  • polystyrene resin examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene, polystyrene, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene
  • the ethylene vinyl acetate copolymer included in the binder resin is also not particularly limited, but for example, an ethylene vinyl acetate copolymer including 1 wt% to 45 wt% of vinyl acetate repeating units may be used.
  • the ethylene vinyl acetate copolymer has a melt index of 0.5 g / 10inin to 5.0 g / lOmi n, or 1.0 g / 10m in to 3.0 g / lOmi n measured at 190 ° C and 2.16 kg load according to ASTM D1238. Can be. 2019/190103 1 »(: 1 ⁇ 1 ⁇ 2019/003120
  • the weight ratio between the polyolefin and the ethylene vinyl acetate copolymer included in the binder resin is not particularly limited.
  • the binder resin may include a polyolefin: ethylene vinyl acetate copolymer in a weight ratio of 1: 1 to 6: 1. have.
  • the binder resin contains the polyolefin resin equal to or greater than the ethylene vinyl acetate copolymer, the dissolution rate of the fertilizer can be more easily controlled.
  • the photocatalyst composite may have a structure in which a surfactant having an anchoring value of 1 to 6 is bonded to the surface or inside of the aggregate of the inorganic fine particles.
  • the aggregate of the inorganic fine particles may serve as a photocatalyst, and when the elution-controlled fertilizer is exposed to the surface of the soil or the like, it is possible to start the photolysis reaction in the photodegradable capsule.
  • the surfactant is bonded to the surface or inside of the aggregate of the inorganic fine particles, thereby preventing the aggregates of the inorganic fine particles from growing excessively in size and having a higher compatibility with the binder resin so that the photocatalytic composite It is made to distribute uniformly to the said binder resin.
  • the surfactant having a change value of 1 to 6 is a span 120? 120), span 83 (3? 83), span 85? 85), Span 80 (3? / 80), Span 60 (5 Show 0), Span 40 (3? Show0), Polyoxyethylene-Block-Polyoxyethylene Glycol ([] 01>: 13 ⁇ 4, 16116- ⁇ 1 are ⁇ -1) 01: / 61: 11: / 16116 1 ( for 01), Breeze 52 (no.
  • the weight ratio of the aggregate of the inorganic fine particles and the surfactant having a seedling value of 1 to 6 is not particularly limited, and the amount of the inorganic fine particles dispersed in the organic solvent is adjusted according to the characteristics of the elution control fertilizer. The weight ratio and the like can also be adjusted.
  • the composite may include 0.01 to 50 parts by weight, or 1 to 20 parts by weight of a surfactant having a bar value of 1 to 6 with respect to 100 parts by weight of the aggregate of the inorganic fine particles.
  • a surfactant having a bar value of 1 to 6 with respect to 100 parts by weight of the aggregate of the inorganic fine particles.
  • it may comprise 0.05 to 8 parts by weight, or 0.1 to 5 parts by weight of the aggregate of the inorganic fine particles relative to 100 parts by weight of the binder resin.
  • the efficiency of the photodegradation reaction may be lowered, and the photodegradable capsules may not be decomposed due to insufficient photodegradation, and residues may remain. Can be.
  • the content of the aggregate of the inorganic fine particles in the photodegradable capsule to the binder resin is too large, the aggregate of the inorganic fine particles may grow significantly, so that a local photolysis reaction occurs or photolysis in the photodegradable capsule The efficiency of the reaction may be reduced, leaving the residue without leaving the entire photodegradable capsule.
  • the dissolution control fertilizer may further include a filler dispersed in the binder resin.
  • the type of the filler is not particularly limited, for example, the filler may include talc, bentonite, ocher, diatomaceous earth, silica, aluminosilicate, kaolite, starch, carbon, or a mixture of two or more thereof.
  • the content of the filler is not particularly limited, but in view of the mechanical properties and structural stability of the photodegradable capsule, the dissolution control fertilizer may be 10 to 300 parts by weight or 50 to 200 parts by weight of the filler relative to 100 parts by weight of the binder resin. It may include.
  • the fertilizer can be various known fertilizers, for example urea or complex fertilizers.
  • the fertilizer may be a granular core fertilizer having a granular form in order to be easily included in the photodegradable capsule.
  • the specific kind of the fertilizer is not limited, and conventionally known fertilizers can be used.
  • Preferred examples include urea, aldehyde condensation element, Nitrogen-containing organic compounds such as isobutylaldehyde condensation urea, formaldehyde condensation urea, guanylurea sulphate, and oxamide, ammonium nitrate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium sulfate, ammonium chloride, and sodium nitrate Potassium salts such as ammonium and nitrate compounds, potassium nitrate, potassium phosphate, potassium sulfate, and potassium chloride, calcium salts such as calcium phosphate, calcium sulfate, calcium nitrate, and calcium chloride, magnesium nitrate, magnesium chloride, magnesium phosphate, and magnesium sulfate Iron salts such as magnesium salts, ferrous nitrate, ferric nitrate, ferrous phosphat
  • the content of the fertilizer in the dissolution control fertilizer is not limited to a large amount, for example, may include 200 to 3000 parts by weight of the fertilizer relative to 100 parts by weight of the photodegradable capsule.
  • the photocatalyst complex may have a unique degree of dispersion in the photodegradable capsule. More specifically, the photocatalyst composite may be prepared by dispersing a surfactant having an HLB value of 1 to 6 in an organic solvent. In the state in which the inorganic fine particles and the surfactant having an HLB value of 1 to 6 are dispersed in an organic solvent, the ultrasonic fine particles and the high shear mixer (Hi gh-Shear Mi xer) or the bead mill (Bead mi ll) are used.
  • a surfactant having an HLB value of 1 to 6 can be bound to the surface or inside of the aggregate of inorganic fine particles.
  • the photocatalyst composite prepared as described above may be dispersed very uniformly in the binder resin, and thus the decomposition efficiency of the photocatalyst may be significantly increased.
  • the host control fertilizer may further include a component included in the known control lead fertilizer.
  • a component included in the known control lead fertilizer include, but are not limited to, amphipathic polymers.
  • the dissolution control fertilizer can be provided through a variety of manufacturing methods, for example, preparing a dispersion of the photocatalyst complex; Polyolefin, ethylene vinyl acetate copolymer, dispersion of the photocatalyst composite 2019/190103 1 »(: 1 ⁇ 1 ⁇ 2019/003120
  • organic solvent is not limited, tetrachloroethylene (X, cyclonuxene, dichloromethane 0X1), or 1, 2, 4- trichlorobenzene (113 ⁇ 4) etc. can be used.
  • a strong energy such as bead mills
  • a dispersion of the photocatalyst can be prepared a dispersion having a dispersion particle size of 5 to 1000 11111, or agglomerates of the inorganic fine particles having a cross-sectional diameter of 0.05 to 0.8.
  • a dissolution control fertilizer can be provided that has a high stability against moisture and a solid structure, can easily control the dissolution period of the fertilizer and can also implement excellent photolysis efficiency.
  • the solvent-controlled fertilizer may prevent soil contamination by preventing photodegradable capsules or hydrophilic polymers from remaining in the soil.
  • Figure 1 schematically shows the photolysis mechanism of the dissolution control fertilizer.
  • the internal fertilizer was completely eluted after the dissolution control fertilizer of the Examples and Comparative Examples and the coated fertilizer of the Comparative Examples.
  • the decomposition rate of the binder resin derived from the weight change of the coating film when irradiated with light for 224 hours under the above conditions was calculated by the following general formula (1), and the results are shown in Tables 1 and 2, respectively.
  • the decomposition rate of the binder resin is 40% or more, or 50% or more when the light of the wavelength of 300nm to 800nm is irradiated for 224 hours with the intensity of 400 w / nf for the dissolution control fertilizer of the embodiment
  • the coating fertilizer of the comparative example exhibits a decomposition rate of the binder resin of about 30% or less.
  • Experimental Example 2 Measurement of z- Mean Dispersion Particle Size of Ti3 ⁇ 4
  • the z-average dispersion particle size of Ti3 ⁇ 4 of the dispersion of the photocatalyst composite of Example 1 and the dispersion containing Ti0 2 of Comparative Example 1 was measured using Dynami c Light Scattering (Marvern Zetasi zer Nano ZS90). The results are shown in Table 3 below.
  • Table 3 Ti0 2 z-average dispersion particle size As shown in Table 3, the dispersion of the photocatalytic composite of Example 1 was about 300 02 is a particle size distribution using a gajyeoseo 2019/190103 1 »(: 1 ⁇ 1 ⁇ 2019/003120
  • a dispersion containing the group 02 of the check point is that the aggregate of the inorganic fine particle having a relatively large average particle size as gajyeoseo the average particle size distribution of at least about 10, 000 out of formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)

Abstract

본 발명은 용출 제어형 비료{CONTROLLED RELEASE FERTILIZERS}에 관한 것으로, 보다 상세하게는 폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함한 바인더 수지; 및 1 내지 6의 HLB 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 광촉매 복합체;를 포함하는 광분해성 캡슐과, 상기 광분해성 캡슐로 둘러싸인 공간에 포함된 비료를 포함하는, 용출 제어형 비료에 관한 것이다.

Description

【발명의 명칭】
용출 제어형 비료
【기술분야】
관련 출원(들)과의 상호 인용
본 출원은 2018년 3월 28일자 한국 특허 출원 제 10-2018-0035998호 및 2019년 3월 11일자 한국 특허 출원 제 10-2019-0027741호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 용출 제어형 비료에 관한 것으로 , 보다 상세하게는 수분에 대한 높은 안정성과 견고한 구조를 가지며 비료의 용출 기간을 용이하게 조절할 수 있고 아울러 우수한 광분해 효율을 구현할 수 있는 용출 제어형 비료에 관한 것이다.
【발명의 배경이 되는 기술】
시비(施肥)의 생력화 내지는 식물의 생육에 따른 비료의 효과를 발현시킬 목적으로 각종 용출제어형 비료가 개발되어 있다.
이러한 용출제어형 비료 (Cont rol led re l ease fert i l i zers , CRF)는 질소·인·칼륨 등 비료 성분이 오랫동안 서서히 작물에 공급된다. 물에 타서 살포하거나 분말 형태로 뿌리는 기존 비료는 보통 한번 뿌리면 효과가 20일 이상 지속되기 어렵다. 비에 씻겨나가거나 땅속 깊이 스며들어 작물이 비료 성분을 톱수하기 어렵기 때문인데, 이러한 문제점 때문에 비료를 과량으로 자주 뿌릴 수 밖에 없었다.
용출제어형 비료는 이런 일반 비료 단점을 보완하기 위하여 고분자 캡슐로 비료 성분의 방출 속도를 저하시켜 장기간 동안 방출되도록 한다. 고분자 캡슐은 올레핀계 수지, 우레탄계 수지, 라텍스, 아크릴 수지 등으로 만들어지며 캡슐을 통하여 수증기가 침투하면서 비료 성분이 녹은 후, 삼투압 원리에 의해 캡슐을 투과하여 방출된다. 캡슬을 어떤 성분으로, 어느 정도 두께로 만드느냐에 따라 물과 비료 성분의 침투 속도가 달라지게 된다. 이를 이용해 비료 성분이 밖으로 나오는 속도를 제어할 수 있다. 비료 성분이 캡슐에서 방출되는 기간은 최소 30일에서 최대 2년까지 조절할 수 있다. 하지만 비료 방출 후 캡슐고분자는 분해되지 않고 토양이나 2019/190103 1»(:1^1{2019/003120
하천에 남아 있게 되는 문제가 있다.
이 문제를 해결하기 위하여 생분해성 고분자를 캡슐소재로 이용하고자 하는 시도들이 이루어 졌으나, 생분해성 고분자는 수분짐투가 빠르고 1달에서 6개월 사이에 미생물에 의하여 분해되기 때문에 비료성분이 최소 한 달에서 2년에 걸쳐 방출되어야 하는 용출 제어형 비료에 사용되기 적합하지 않았다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 수분에 대한 높은 안정성과 견고한 구조를 가지며 비료의 용출 기간을 용이하게 조절할 수 있고 아울러 우수한 광분해 효율을 구현할 수 있는 용줄 제어형 비료를 제공하기 위한 것이다.
【과제의 해결 수단】
본 명세서에서는, 폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함한 바인더 수지; 및 1 내지 6의 바 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 광촉매 복합체 ;를 포함하는 광분해성 캡슐과, 상기 광분해성 캡슐로 둘러싸인 공간에 포함된 비료를 포함하는, 용출 제어형 비료가 제공된다.
이하 발명의 구체적인 구현예에 따른 용출 제어형 비료에 관하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함한 바인더 수지; 및 1 내지 6의 난ᅡ 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 광촉매 복합체;를 포함하는 광분해성 캡슐과, 상기 광분해성 캡슐로 둘러싸인 공간에 포함된 비료를 포함하는 , 용출 제어형 비료가 제공될 수 있다.
본 발명자들은 폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함한 바인더 수지와 함께 상술한 광촉매 복합체를 포함하는 광분해성 캡슐이 형성된 용출 제어형 비료가 수분에 대한 높은 안정성과 견고한 구조를 가지며 비료의 용출 기간을 용이하게 조절할 수 있고 아울러 우수한 광분해 효율을 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
상술한 용출 제어형 비료의 특징은 상기 광촉매 복합체를 상술한 바인더 수지에 균일하게 분산시킴에 따른 것이기도 하다. 구체적으로, 상기 1 내지 6의 HLB 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합됨에 따라서, 상기 용출 제어형 비료의 제조 과정이나 상기 용출 제어형 비료 내에서 상기 무기 미세 입자가 균일하게 분산될 수 있고, 이에 따라 상기 무기 미세 입자의 응집체는 그리 크지 않은 입경을 가질 수 있다.
상술한 바와 같이, 상기 광촉매 복합체는 1 내지 6의 HLB값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 구조를 가질 수 있다. 이러한 광촉매 복합체의 구조 및 특징은 1 내지 6의 HLB 값을 갖는 계면활성제와 무기 미세 입자의 응집체를 우선 반응시키거나 또는 이들을 유기 용매에 우선 분산시켜서 혼합한 이후에, 상기 바인더 수지 또는 이의 전구체에 분산시키거나 반응시켜서 얻어질 수 있다.
이처럼 상기 무기 미세 입자의 응집체가 그리 크지 않은 입경을 가지면서 상기 바인더 수지에 균일하게 분산되어, 상기 광분해성 캡슐이 빛에 노출시 국지적으로 광분해 반응이 일어나서 광분해 효율이 저하되는 현상을 방지할 수 있으며 광분해성 캡슐이 토양에 잔류하지 않게 할 수 있다.
상기 용출 제어형 비료의 특징은 상기 무기 미세 입자의 응집체의 표면 또는 내부에 상기 1 내지 6의 HLB 값을 갖는 계면활성제가 결합됨에 따른 것일 수 있다. 즉, 상기 1 내지 6의 HLB값을 갖는 계면활성제가 상기 무기 미세 입자의 응집체 표면 또는 내부에 결합됨에 따라서 상기 무기 미세 입자의 응집체의 성장을 조절할 수 있으며, 또한 상기 1 내지 6의 HLB 값을 갖는 계면활성제의 특성상 상기 바인더 수지와 높은 상용성을 가지게 되어 상기 광촉매 복합체가 상기 바인더 수지에 균일하게 분포할 수 있게 한다.
상술한 바와 같이, 상기 계면활성제는 1 내지 6 , 또는 1 내지 5 , 또는 1 내지 4 , 또는 2 내지 4의 HLB 값[친수성 친유성 밸런스, hydrophi l i c l i pophi l i c ba l ance , HLB]을 가질 수 있다. 2019/190103 1»(:1^1{2019/003120
상기 광촉매 복합체에 포함되는 계면활성제의 네 값이 상기 범위 보다 높은 경우 코팅액의 소수성 용매 내에서의 용해도가 낮거나 코팅액 내에서의 입자 분산 능력이 저하되어 캡슐 내에 불균일하게 분포될 수 있으며, 또한 상기 계면활성제가 상기 바인더 수지와의 상용성이 낮을 수 있다. 예를 들어, 6 초과의
Figure imgf000006_0001
갖는 계면활성제를 사용하는 경우, 상기 광분해성 캡슐에서 국지적인 광분해 반응이 일어나거나 또는 광분해 반응의 효율이 저하될 수 있고, 비효율적인 광분해 반응으로 인하여 광분해성 캡슐 전체가 분해되지 않고 잔류물이 남게 될 수 있다.
상술한 바와 같이, 상기 용출 제어형 비료는 우수한 광분해 효율을 구현할 수 있다. 보다 구체적으로, 300ä 내지 800ä의 파장의 빛을 400 의 강도로 224시간동안 빛을 조사시 상기 광분해성 캡슐의 무게 변화로 도출되는 상기 바인더 수지의 분해율이 40% 이상, 또는 50% 이상일 수 있다. 상기 무기 미세 입자는 광촉매 역할을 할 수 있다. 상기 구현예의 용출제어형 비료는 광분해성 캡슐이 토양에 잔류하는 문제를 해결하기 위하여 상기 바인더 수지에 상기 광촉매 복합체를 균일하게 분산하는 것을 특징으로 한다.
상기 광촉매 복합체는 빛을 받는 동안에만 촉매로 작용하게 되므로 빛이 차단되는 토양 내에서 비료가 방출되는 동안에는 광분해성 캡슐이 분해되지 않은 상태에서 용출 기간 동안 서서히 비료를 방출하게 된다. 그리고, 비료가 용출된 후 상기 용출 제어형 비료가 밭갈음 등으로 표토에 노출되면 빛에 의하여 상기 광분해성 캡슐이 분해될 수 있다.
상기 무기 미세 입자는 5 내지 50 11111의 단면 직경을 갖는 일차 입자를 포함할 수 있다. 상기 무기 미세 입자의 일차 입자의 단면 직경은 통상적으로 알려진 방법, 예를 들어
Figure imgf000006_0002
사진을 통한 확인이나, BET 측정 등을 통하여 확인할 수 있다.
상기 무기 미세 입자에 포함되는 일차 입자의 단면 직경이 너무 작으면, 결정화도가 떨어져서 광촉매 효율이 저하될 수 있다. 또한, 상기 무기 미세 입자에 포함되는 일차 입자의 단면 직경이 너무 크면, 광촉매 입자의 비표면적이 낮아져서 광촉매 효율이 저하될 수 있다. 한편, 상기 구현예의 용출 제어형 비료에 포함되는 상기 무기 미세 입자의 응집체가 그리 크지 않은 입경을 가질 수 있는데, 구체적으로 상기 무기 미세 입자의 응집체는 1_ 이하의 단면 직경, 또는 0.05 rn 내지 0.8 /ini의 단면 직경을 가질 수 있다. 상기 무기 미세 입자의 응집체의 단면 직경 또한 직경은 통상적으로 알려진 방법, 예를 들어 SEM 또는 TEM mi crotome 을 통하여 확인할 수 있다.
상기 무기 미세 입자의 응집체는 그 표면 또는 내부에 1 내지 6의 HLB 값을 갖는 계면활성제가 결합됨에 따라서 단면 직경이 상술한 범위로 조절될 수 있다.
상기 무기 미세 입자의 응집체의 단면 직경 또는 전체적인 크기가 너무 커지면, 상기 광분해성 캡슐에서 국지적인 광분해 반응이 일어나거나 또는 광분해 반응의 효율이 저하될 수 있고, 비효율적인 광분해 반응으로 인하여 광분해성 캡슐 전체가 분해되지 않고 잔류물이 남게 될 수 있다.
상기 무기 미세 입자의 구체적인 예로는 이산화티탄 (Ti02), 산화아연 (ZnO), 또는 이들의 혼합물을 들 수 있다. 한편, 상기 바인더 수지는 상기 광분해성 캡슐의 외부 구조를 형성하는 주된 재료일 수 있으며, 상술한 바와 같이 상기 바인더 수지는 폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함할 수 있다.
상기 폴리올레핀의 예가 크게 한정되는 것은 아니나, 예를 들어 고밀도 또는 저밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 공중합체, 폴리부텐, 부텐-에틸렌 공중합체, 부텐_ 프로필렌 공중합, 이들의 2종 이상의 혼합물 또는 이들의 2종 이상의 공중합체를 포함할 수 있다.
상기 바인더 수지에 포함되는 에틸렌비닐아세테이트 공중합체 또한 크게 한정되는 것은 아니나, 예를 들어 비닐아세테이트 반복 단위 1중량% 내지 45중량%를 포함하는 에틸렌비닐아세테이트 공중합체를 사용할 수 있다. 또한, 상기 에틸렌비닐아세테이트 공중합체는 ASTM D1238에 의하여 190°C 및 2. 16kg하중에서 측정한 용융 지수가 0.5 g/10inin 내지 5.0 g/lOmi n , 또는 1.0 g/ 10m i n 내지 3.0 g/lOmi n일 수 있다. 2019/190103 1»(:1^1{2019/003120
상기 바인더 수지에 포함되는 폴리올레핀 및 에틸렌비닐아세테이트 공중합체 간의 중량비가 크게 한정되는 것은 아니나, 예를 들어 상기 바인더 수지는 폴리올레핀 : 에틸렌비닐아세테이트 공중합체를 1 : 1 내지 6 : 1 의 중량비로 포함할 수 있다. 상기와 같이 상기 바인더 수지가 폴리올레핀 수지를 에틸렌비닐아세테이트 공중합체와 동등하거나 보다 많이 포함함에 따라서, 비료의 용출속도를 보다 용이하게 조절할 수 있다. 한편, 상기 광촉매 복합체는 1 내지 6의 此묘 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 구조를 가질 수 있다. 상술한 바와 같이, 상기 무기 미세 입자의 응집체는 광촉매 역할을 할 수 있으며, 상기 용출 제어형 비료가 토양의 표면 등으로 노출되면 광분해성 캡슐에서 광분해 반응을 시작될 수 있게 한다.
상기 1 내지 6의
Figure imgf000008_0001
계면활성제는 상기 무기 미세 입자의 응집체의 표면 또는 내부에 결합되는데, 이에 따라 상기 무기 미세 입자의 응집체가 크기가 과도하게 성장하는 것을 방지하며 상기 바인더 수지와 보다 높은 상용성을 가지게 하여 상기 광촉매 복합체가 상기 바인더 수지에 균일하게 분포하게 한다.
상기 1 내지 6의 바止 값을 갖는 계면활성제는 스팬 120 ? 120), 스팬 83(3? 83) , 스팬 85 ? 85) , 스팬 80(3?/ 80) , 스팬 60(5쇼 0) , 스팬 40(3?쇼附0), 폴리옥시에틸렌-블록-폴리옥시에틸렌 글리콜([)01 > :1¾,16116-匕1이±-1)01:/61:11:/ 16116 용1 (:01) , 브리즈 52(아니 52) , 브리즈 72( 니 72), 브리즈 93(61- 1]' 93), 트리톤 35( '1- 011 35), 트리톤 사5(1> ^011 )(15), 페그놀 24-0 £6 1 24-0) , 레시틴, 모노올레인 , 탄트리올(¾가3 01); 또는 이들의 2종 이상의 혼합물이나 공중합체 일 수 있다. 상기 광촉매 복합체에서 상기 무기 미세 입자의 응집체와 상기 1 내지 6의 [묘 값을 갖는 계면활성제의 중량비가 크게 한정되는 것은 아니며, 상기 용출제어형 비료의 특성에 따라서 상기 유기 용매에 분산하는 양을 조절하여 상기 중량비 등도 조절 가능하다. 예를 들어, 상기 광촉매 2019/190103 1»(:1^1{2019/003120
복합체는 상기 무기 미세 입자의 응집체 100중량부 대비 상기 1 내지 6의 바 값을 갖는 계면활성제 0. 1 내지 50 중량부, 또는 1 내지 20중량부를 포함할 수 있다. 한편, 상기 바인더 수지 100중량부 대비 상기 무기 미세 입자의 응집체 0.05 내지 8중량부, 또는 0. 1 내지 5중량부를 포함할 수 있다.
상기 광분해성 캡슐에서 상기 바인더 수지 대비 무기 미세 입자의 응집체의 함량이 너무 낮으면 광분해 반응의 효율이 저하될 수 있으며, 충분하지 않은 광분해 반응으로 인하여 광분해성 캡슐 전체가 분해되지 않고 잔류물이 남게 될 수 있다. 또한, 상기 광분해성 캡슐에서 상기 바인더 수지 대비 무기 미세 입자의 응집체의 함량이 너무 크면, 상기 무기 미세 입자의 응집체가 크게 성장할 수 있고, 이에 따라 상기 광분해성 캡슐에서 국지적인 광분해 반응이 일어나거나 또는 광분해 반응의 효율이 저하되어 광분해성 캡슐 전체가 분해되지 않고 잔류물이 남게 될 수 있다. 한편, 상기 용출제어형 비료는 상기 바인더 수지에 분산되는 필러를 더 포함할 수 있다. 상기 필러의 종류가 크게 한정되는 것은 아니나, 예를 들어 상기 필러는 탈크, 벤토나이트, 황토, 규조토, 실리카, 알루미노실리케이트, 카올라이트, 전분, 카본, 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 필러의 함량이 크게 한정되는 것은 아니나, 상기 광분해성 캡슐의 기계적 물성이나 구조적 안정성을 고려하여 상기 용출제어형 비료는 상기 바인더 수지 100 중량부 대비 상기 필러 10 내지 300중량부, 또는 50 내지 200중량부를 포함할 수 있다. 상기 비료는 다양한 공지의 비료, 예를 들어 요소 또는 복합비료일 수 있다. 바람직한 양태에서, 상기 비료는 광분해성 캡슐 내에 포함되기 용이하기 위하여, 입상 형태를 갖는 입상 코어 비료일 수 있다.
상기 비료의 구체적인 종류가 한정되지 않으며, 통상적으로 공지된 비료를 사용할 수 있다. 바람직한 예는 요소(尿素), 알데히드축합 요소, 이소부틸알데히드축합 요소, 포름알데히드축합 요소, 구아닐우레아 술페이트, 및 옥사미드와 같은 질소함유 유기화합물, 질산암모늄, 인산이수소암모늄, 인산수소이암모늄, 황산암모늄 , 염화암모늄, 및 질산나트륨과 같은 암모늄 및 질산 화합물, 질산칼륨, 인산칼륨, 황산칼륨, 및 염화칼륨과 같은 칼륨염, 인산칼슘 , 황산칼슘 , 질산칼슘 , 및 염화칼슘과 같은 칼슘염, 질산마그네슘, 염화마그네슘, 인산마그네슘, 및 황산마그네슘과 같은 마그네슘염, 질산제일철, 질산제이철 , 인산제일철, 인산제이철, 황산제일철, 황산제이철, 염화제일철, 및 염화제이철과 같은 철염, 및 이들의 이중염, 또는 이들의 2이상의 혼합물이다.
상기 용출제어형 비료에서 비료의 함량이 크게 한정되는 것은 아니며 , 예를 들어 상기 광분해성 캡슐 100중량부 대비 상기 비료 200 내지 3000 중량부를 포함할 수 있다. 상기 광촉매 복합체는 상기 광분해성 캡슐에서 특유의 분산도를 가질 수 있다. 보다 구체적으로, 상기 광촉매 복합체는 상기 1 내지 6의 HLB 값을 갖는 계면활성제를 유기 용매에 분산하는 단계를 통하여 제조될 수 있다. 상기 무기 미세 입자와 상기 1 내지 6의 HLB 값을 갖는 계면활성제를 유기 용매에 분산한 상태에서 초음파, 고전단 믹서 (Hi gh-Shear Mi xer ) 또는 비드 밀 (Bead mi l l ) 등을 이용하여 강한 에너지를 전달함으로서, 상기 1 내지 6의 HLB 값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합될 수 있다. 이와 같이 제조된 광촉매 복합체는 상기 바인더 수지에 아주 균일하게 분산될 수 있으며, 이에 따라 광촉매의 분해 효율이 현저하게 증가될 수 있다.
상기 용줄 제어형 비료는 공지의 용줄제어형 비료에 포함되는 성분을 추가적으로 더 포함할 수 있다. 예를 들어, 이러한 성분은 양친매성 고분자 등이 있으나 이에 제한되는 것은 아니다. 한편 , 상기 용출 제어형 비료는 다양한 제조 방법을 통해서 제공 가능하며, 예를 들어 상기 광촉매 복합체의 분산액을 제조하는 단계; 폴리올레핀, 에틸렌비닐아세테이트 공중합체, 상기 광촉매 복합체의 분산액 2019/190103 1»(:1^1{2019/003120
및 선택적으로 필러를 혼합하여 코팅 조성물을 제조하는 단계; 및 상기 코팅 조성물로 입상 비료 코어의 표면을 피복하는 단계;를 포함하는 제조 방법을 통하여 제공할 수 있다.
상기 유기 용매의 구체적인 예가 한정되는 것은 아니나, 테트라클로로에틸렌 (孔 , 사이클로핵센 (抑 ) , 다이클로로메탄 0X1), 또는 1 , 2 , 4 -트리클로로벤젠 (11¾) 등을 사용할 수 있다.
상기 상기 광촉매 복합체의 분산액을 제조하는 단계에서는 초음파
Figure imgf000011_0001
또는 비드 밀 등과 같은 강한 에너지를 사용하여 분산액을 제조할 수 있으며, 예를 들어 초음파
Figure imgf000011_0002
등과 같은 강한 에너지를 사용하여 광촉매의 분산 입도를 5 내지 1000 11111 의 분산입도, 또는 상기 무기 미세 입자의 응집체가 0.05 내지 0.8 의 단면 직경을 갖는 분산액을 제조할 수 있다.
【발명의 효과】
본 발명에 따르면, 수분에 대한 높은 안정성과 견고한 구조를 가지며 비료의 용출 기간을 용이하게 조절할 수 있고 아울러 우수한 광분해 효율을 구현할 수 있는 용출 제어형 비료가 제공될 수 있다.
상기 용줄 제어형 비료는 광분해성 캡슐 또는 친수성 고분자 등이 토양에 잔류하지 않게 하여 토양 오염 등을 방지할 수 있다.
【도면의 간단한 설명】
도 1은 용출제어형 비료의 광분해 메커니즘을 개략적으로 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
[실시예: 용출제어형 비료의 제조]
실시예 1내지 5
(1) 광촉매 복합체의 제조
하기 표 1의 계면활성제 0.09§을 테트라클로로에틸렌에 용해시킨 후 2019/190103 1»(:1^1{2019/003120
하기 표 1에 기재된 양의 02 (일차입자의 평균입경: 21 빼)를 혼합하고, 초음파를 가하여 20분간 교반하여 계면활성제가 무기 미세 입자의 응집체의 표면 및 내부에 결합된 광촉매 복합체의 분산액을 제조하였다.
(2)용출제어형 비료의 제조
상기 제조된 광촉매 복합체의 분산액, 폴리에틸렌[니 (용융지수,
190°〔, 2. 16은하중, 쇼況 1)1238) : 약 8 용/10미比, 1)(밀도) : 0.925요/刷!] , 에틸렌비닐아세테이트 공중합체 [附(용융지수, 190 , 2. 161¾하중, 쇼射
01238) : 약 1 .8 요/10 11 , IX밀도) : 0.요간요/ 1, 비닐아세테이트 함량 약
20 중량%, 녹는점 85°〔], 및 탈크를 하기 표 1에 따른 함량으로 사용하여 조성의 혼합비로 테트라클로로에틸렌과 90°(:에서 균일하게 교반 혼합하고 고형분 농도가 5 중량%가 되도록 코팅액을 제조하였다.
그리고, 유동층 건조기를 사용하여 질소 비료 입자에 상기 코팅액을 도포하여 용출제어형 피복비료(실시예 1 내지 5)를 제조하였다. [비교예 1내지 3: 피복비료의 제조]
비교예 1
폴리에틸렌比0¾ , (용융지수, 190°(:, 2. 161낸하중, 요奸 1)1238) : 약 8 용/1(½ 에틸렌비닐아세테이트 공중합체
[附(용융지수,
Figure imgf000012_0001
1)1238) : 약 1 .8 g/10mi n, 1)(밀도) : 0.94§/011\ 비닐아세테이트 함량 약 20 중량%, 녹는점 85°(:], 및 탈크를 하기 표 1에 따른 함량으로 사용하여 조성의 혼합비로 테트라클로로에틸렌과 100°(:에서 균일하게 교반 혼합하고 고형분 농도가 5 중량%가 되도록 코팅액을 제조하였다.
그리고 , 유동층 건조기를 사용하여 질소 비료 입자에 상기 코팅액을 도포하여 피복비료(비교예 1)를 제조하였다. 비교예 2내지 3
하기 표 2에 기재된 바와 같이 계면활성제를 달리한 점을 제외하고 실시예 1과 동일한 방법으로 용출제어형 피복비료 (비교예 2 내지 3)를 각각 제조하였다 [실험예]
실험예 1: 광분해 특성 비교 시험
상기 실시예 및 비교예의 용출 제어형 비료 및 비교예의 피복 비료 후 내부 비료를 완전히 용출한
Figure imgf000013_0001
여 50°(:의 온도에서 300ä 내지
800ä의 파장의 빛을 40(細/ 의 강도로 상기 피복막에 조사하였다.
그리고, 상기 조건으로 224시간동안 빛을 조사 시 상기 피복막의 무게 변화로 도출되는 바인더 수지의 분해율을 하기 일반식 1로 구하고, 그 결과를 표 1 및 2에 각각나타내었다.
[일반식 1]
1付조사후피복 막무게 변화 _
광분해율 = X 100% 조사전 피복 막 내 수지 무게 比마¾ + 期幻 【표 1]
Figure imgf000013_0002
【표 2]
Figure imgf000014_0002
상기 표 1에 나타난 바와 같이, 실시예의 용출 제어형 비료에 대하여 300nm 내지 800nm의 파장의 빛을 400 w/nf의 강도로 224시간동안 빛을 조사 시 바인더 수지의 분해율이 40% 이상, 또는 50% 이상이라는 점이 확인되며, 이에 반하여 비교예의 피복 비료는 약 30%이하의 바인더 수지의 분해율을 나타낸다는 점이 확인되었다. 실험예 2: Ti¾의 z-평균분산 입도 측정
실시예 1의 광촉매 복합체의 분산액과 비교예 1의 Ti02가 포함된 분산액의 Ti¾의 z-평균 분산 입도를 Dynami c Light Scatter ing (Marvern Zetasi zer Nano ZS90)을 사용하여 측정하였다. 그 결과를 하기 표 3에 나타내었다. 【표 3】 Ti02 z-평균 분산 입도
Figure imgf000014_0003
상기 표 3에 나타난 바와 같이, 실시예 1의 광촉매 복합체의 분산액은 약 300
Figure imgf000014_0001
분산 입도를 가져서 사용된 02입자가 2019/190103 1»(:1^1{2019/003120
균질하게 분산되어 상대적으로 작은 평균 입경을 갖는 무기 미세 입자의 응집체가 형성되었다는 점이 확인된다.
이에 반하여, 비교예 2의 기02가 포함된 분산액의 02는 약 10 , 000 빼 이상의 평균 분산 입도를 가져서 상대적으로 큰 평균 입경을 갖는 무기 미세 입자의 응집체가 형성되었다는 점이 확인된다.

Claims

2019/190103 1»(:1^1{2019/003120
【청구범위】
【청구항 11
폴리올레핀 및 에틸렌비닐아세테이트 공중합체를 포함한 바인더 수지; 및 1 내지 6의
Figure imgf000016_0001
값을 갖는 계면활성제가 무기 미세 입자의 응집체의 표면 또는 내부에 결합된 광촉매 복합체;를 포함하는 광분해성 캡슐과,
상기 광분해성 캡슐로 둘러싸인 공간에 포함된 비료를 포함하는, 용출 제어형 비료.
【청구항 2]
제 1항에 있어서,
300ä 내지 800·의 파장의 빛을 400 \ 112의 강도로 224시간동안 빛을 조사시 상기 광분해성 캡슐의 무게 변화로 도출되는 상기 바인더 수지의 분해율이 40% 이상인, 용출 제어형 비료 .
【청구항 3】
제 1항에 있어서,
상기 무기 미세 입자는 5 내지 50 의 단면 직경을 갖는 일차 입자를 포함하는, 용줄제어형 비료.
【청구항 4】
제 1항에 있어서,
상기 무기 미세 입자의 응집체는 1 1 이하의 단면 직경을 갖는, 용출 제어형 비료.
【청구항 5]
제 1항에 있어서,
상기 무기 미세 입자의 응집체는 0.05 1 내지 0.8 의 단면 직경을 갖는, 용출 제어형 비료. 2019/190103 1»(:1^1{2019/003120
【청구항 6]
제 1항에 있어서,
상기 무기 미세 입자는 이산화티탄( 02), 산화아연( 10), 또는 이들의 혼합물인 것인 , 용출제어형 비료.
【청구항 7]
게 1항에 있어서,
상기 광촉매 복합체는 상기 무기 미세 입자의 응집체 100중량부 대비 상기 1 내지 6의 바 값을 갖는 계면활성제 0. 1 내지 50 중량부를 포함하는, 용출제어형 비료.
【청구항 8]
제 1항에 있어서,
상기 바인더 수지 100중량부 대비 상기 무기 미세 입자의 응집체 0.05 내지 8중량부를 포함하는, 용출제어형 비료.
【청구항 91
제 1항에 있어서.
상기 바인더 수지 중 상기 폴리올레핀 : 에틸렌비닐아세테이트 공중합체의 중량비는 1 : 1 내지 6 : 1 인 것인 , 용출제어형 비료.
【청구항 10】
게 1항에 있어서,
상기 폴리올레핀은 고밀도 또는 저밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 공중합체, 폴리부텐, 부텐- 에틸렌 공중합체 및 부텐-프로필렌 공중합체로 이루어진 군으로부터 선택되는 하나 이상인, 용출제어형 비료.
【청구항 11】
게 1항에 있어서, 2019/190103 1»(:1^1{2019/003120
상기 에틸렌비닐아세테이트 공중합체는 비닐아세테이트 반복 단위 1중량% 내지 45중량%를 포함하는, 용출제어형 비료.
【청구항 12】
제 1항에 있어서 ,
상기 1 내지 6의 바 값을 갖는 계면활성제는 스팬 120(3?새120), 스팬 83(3?새83) , 스팬 85(3?쇼 5) , 스팬 80(3?새80) , 스팬 60 쇼 0) , 스팬 40比?새40), 폴리옥시에틸렌-블록-폴리옥시에틸렌 글리콜( 01:/61:117161½시) 10신<:-1)01 61:11 161½ 용1:,(:01), 브리즈 52(아 · 52), 브리즈 72(아니 72), 브리즈 93(아니 93), 트리톤 35(竹 011 35), 트리톤 사5(1>^011 사5) , 페그놀 24-0 묘01^ 24-0) , 레시틴, 모노올레인 , 및 피탄트리올 0¾가 11; 01)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 용출제어형 비료.
【청구항 13】
제 1항에 있어서,
상기 바인더 수지에 분산되는 필러를 더 포함하는, 용출제어형 비료.
【청구항 14】
제 13항에 있어서,
상기 바인더 수지 100 중량부 대비 상기 필러 10 내지 300중량부를 포함하는, 용출제어형 비료.
【청구항 15】
제 1항에 있어서 , 상기 비료는 입상의 비료인, 용출제어형 비료.
PCT/KR2019/003120 2018-03-28 2019-03-18 용출 제어형 비료 WO2019190103A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2020003510A MY193432A (en) 2018-03-28 2019-03-18 Controlled-release fertilizers
CN201980009287.5A CN111683914B (zh) 2018-03-28 2019-03-18 控释肥料
JP2020526522A JP6929591B2 (ja) 2018-03-28 2019-03-18 溶出制御型肥料
AU2019242997A AU2019242997B2 (en) 2018-03-28 2019-03-18 Controlled-release fertilizers
US16/964,924 US11286213B2 (en) 2018-03-28 2019-03-18 Controlled-release fertilizers
PH12020551384A PH12020551384A1 (en) 2018-03-28 2020-09-04 Controlled-release fertilizers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180035998 2018-03-28
KR10-2018-0035998 2018-03-28
KR10-2019-0027741 2019-03-11
KR1020190027741A KR102113261B1 (ko) 2018-03-28 2019-03-11 용출 제어형 비료

Publications (1)

Publication Number Publication Date
WO2019190103A1 true WO2019190103A1 (ko) 2019-10-03

Family

ID=68062237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003120 WO2019190103A1 (ko) 2018-03-28 2019-03-18 용출 제어형 비료

Country Status (1)

Country Link
WO (1) WO2019190103A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990035939A (ko) * 1995-05-27 1999-05-25 고토 기치 피복 농약 입제, 이의 제조방법 및 용도
KR20000071159A (ko) * 1997-02-19 2000-11-25 야마모토 카즈모토 분해성 피복 필름으로 피복된 입상 비료 및 이의 제조 방법
KR20100110949A (ko) * 2009-04-06 2010-10-14 주식회사 동부한농 용출제어형 자연분해 묘판처리제 피복비료
KR101331454B1 (ko) * 2013-08-07 2013-11-26 수산고분자 주식회사 완효성 입상 비료 및 이의 제조방법
KR101410859B1 (ko) * 2013-10-14 2014-07-01 (주) 포스텍글로벌 수중 부상 및 부유가 방지된 피복 입상 비료 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990035939A (ko) * 1995-05-27 1999-05-25 고토 기치 피복 농약 입제, 이의 제조방법 및 용도
KR20000071159A (ko) * 1997-02-19 2000-11-25 야마모토 카즈모토 분해성 피복 필름으로 피복된 입상 비료 및 이의 제조 방법
KR20100110949A (ko) * 2009-04-06 2010-10-14 주식회사 동부한농 용출제어형 자연분해 묘판처리제 피복비료
KR101331454B1 (ko) * 2013-08-07 2013-11-26 수산고분자 주식회사 완효성 입상 비료 및 이의 제조방법
KR101410859B1 (ko) * 2013-10-14 2014-07-01 (주) 포스텍글로벌 수중 부상 및 부유가 방지된 피복 입상 비료 및 이의 제조방법

Similar Documents

Publication Publication Date Title
JP2019528364A (ja) 銀ナノ粒子が含浸された銀ナノ有・無機複合樹脂の製造方法及びこれを利用して製造された抗生物性上水道管
WO2019190103A1 (ko) 용출 제어형 비료
JP6929591B2 (ja) 溶出制御型肥料
JP7146331B2 (ja) 溶出制御型肥料
JP7005098B2 (ja) 溶出制御型肥料
WO2019190104A1 (ko) 용출 제어형 비료
KR102534716B1 (ko) 용출제어형 비료를 위한 광분해성 캡슐 및 이를 포함하는 용출제어형 비료
JP4014699B2 (ja) 被覆粒状肥料
JP2000302585A5 (ko)
JP4804632B2 (ja) 被膜分解性のシグモイド溶出型被覆粒状肥料
KR102119815B1 (ko) 폴리옥시에틸렌 알킬(-아릴) 에테르를 포함하는 부상성이 개선된 용출제어형 비료 및 이의 제조방법
JP4302217B2 (ja) 被覆粒状肥料
JPH11335193A (ja) 分解性を有する被覆粒状肥料
JPH1160369A (ja) 被覆粒状肥料とその製造方法
WO2017216358A1 (en) Ammonium sulfate granules
JP2000239090A (ja) 被膜分解性の被覆粒状肥料
JPH10291880A (ja) 分解性被膜被覆粒状肥料とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526522

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019242997

Country of ref document: AU

Date of ref document: 20190318

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776779

Country of ref document: EP

Kind code of ref document: A1