WO2019189822A1 - 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 - Google Patents
固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 Download PDFInfo
- Publication number
- WO2019189822A1 WO2019189822A1 PCT/JP2019/014168 JP2019014168W WO2019189822A1 WO 2019189822 A1 WO2019189822 A1 WO 2019189822A1 JP 2019014168 W JP2019014168 W JP 2019014168W WO 2019189822 A1 WO2019189822 A1 WO 2019189822A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- solid electrolyte
- active material
- electrode active
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0407—Methods of deposition of the material by coating on an electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solid electrolyte sheet, a negative electrode sheet for an all-solid secondary battery, and a method for producing each of the all-solid secondary battery.
- a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
- an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
- the organic electrolyte is liable to leak and may cause a short circuit inside the battery due to overcharge and overdischarge, and further improvements in reliability and safety are required. Under such circumstances, development of an all-solid secondary battery using an incombustible inorganic solid electrolyte instead of the organic electrolyte is being promoted.
- the all-solid-state secondary battery is composed of a solid anode, electrolyte, and cathode, which can greatly improve safety or reliability, which is a problem for batteries using organic electrolytes, and can also extend the service life. It will be.
- Patent Document 1 discloses that a first solid having a smooth surface is formed by thermoforming under a specific temperature condition, and a first solid layer is formed on the first solid layer by a vapor phase method. A technique for preventing a short circuit caused by dendrite by forming a two-solid layer is described. Patent Document 2 is not intended to prevent internal short-circuiting due to dendrites.
- oxide solids A technique for melting and solidifying glass after polishing the surface of a sintered body containing an electrolyte is described.
- JP 2013-89470 A Japanese Patent Laying-Open No. 2015-185462 JP 2014-93260 A JP 2014-221714 A
- the all-solid-state secondary battery When the present invention is incorporated in an all-solid-state secondary battery, the all-solid-state secondary battery is prevented (blocked) from reaching the positive electrode of the dendrite even if (rapid) charge / discharge of the all-solid-state secondary battery is repeated It is an object of the present invention to provide a method for producing a solid electrolyte sheet and a negative electrode sheet for an all-solid secondary battery, which can suppress the occurrence of a short circuit of the battery. Moreover, this invention makes it a subject to provide the method of manufacturing the all-solid-state secondary battery by which generation
- the present inventors have obtained a preform by pre-pressing inorganic solid electrolyte particles containing solid particles that are plastically deformed at a specific temperature at a temperature lower than the glass transition temperature of the solid particles.
- the solid electrolyte obtained from the preform by heating the preform to a temperature equal to or higher than the glass transition temperature and then subjecting the preform to higher pressure than pre-press molding at a temperature lower than the glass transition temperature. It has been found that the surface of the layer can block the growth of dendrites and can suppress the generation of cracks and cracks.
- the inorganic solid electrolyte particles containing the solid particles are heated at a temperature equal to or higher than the thermal decomposition temperature.
- ⁇ 1> a step of pre-pressing inorganic solid electrolyte particles including solid particles that are plastically deformed at 250 ° C. or lower at a temperature lower than the glass transition temperature of the solid particles; Heating the resulting preform to a temperature above the glass transition temperature; A step of subjecting the heated preform to a main molding at a temperature lower than the glass transition temperature under conditions of a higher pressing force than pre-press molding, A method for producing a solid electrolyte sheet, wherein a solid electrolyte layer comprising inorganic solid electrolyte particles is formed.
- ⁇ 2> The method for producing a solid electrolyte sheet according to ⁇ 1>, wherein in the heating step, one surface of the preform is subjected to a shearing treatment in a state where the preform is heated to a temperature equal to or higher than the glass transition temperature.
- ⁇ 3> a step of heating inorganic solid electrolyte particles including solid particles having a thermal decomposition temperature of 250 ° C. or lower and plastically deforming at 250 ° C.
- ⁇ 6> Any one of ⁇ 3> to ⁇ 5>, including a step of pre-press-molding the inorganic solid electrolyte particles at a temperature lower than the glass transition temperature of the solid particles before the heating step.
- shearing is performed in a state where one surface of the pre-pressed product obtained in the pre-press forming step is heated to a temperature equal to or higher than the thermal decomposition temperature of the solid particles. 6> The manufacturing method of the solid electrolyte sheet of description.
- ⁇ 8> The method for producing a solid electrolyte sheet according to any one of ⁇ 1> to ⁇ 7>, wherein a film of a metal capable of forming an alloy with lithium is provided on one surface of the solid electrolyte layer.
- a negative electrode active material is laminated on one surface of the solid electrolyte layer of the solid electrolyte sheet produced by the method for producing a solid electrolyte sheet according to any one of the above items ⁇ 1> to ⁇ 8>
- the manufacturing method of the negative electrode sheet for all-solid-state secondary batteries which forms an active material layer.
- the positive electrode active material layer is formed on the surface opposite to the negative electrode active material layer of the negative electrode sheet for all solid secondary battery manufactured by the method for manufacturing a negative electrode sheet for all solid secondary battery according to ⁇ 9> above.
- ⁇ 11> On the surface opposite to the surface on which the negative electrode current collector is provided of the solid electrolyte layer in the solid electrolyte sheet produced by the method for producing a solid electrolyte sheet according to any one of ⁇ 1> to ⁇ 8> above A method for producing an all-solid secondary battery, wherein a positive electrode active material layer is formed.
- the manufacturing method of the all-solid-state secondary battery as described in ⁇ 10> or ⁇ 11> which forms a ⁇ 12> positive electrode active material layer using the composition for positive electrodes containing a positive electrode active material and a negative electrode active material precursor. .
- ⁇ 13> The method for producing an all solid state secondary battery according to ⁇ 12>, wherein charging is performed after the formation of the positive electrode active material layer.
- ⁇ 14> The method for producing an all-solid-state secondary battery according to ⁇ 13>, wherein the charged positive electrode active material layer is pressurized and compressed.
- the method for producing a solid electrolyte sheet and the method for producing a negative electrode sheet for an all-solid secondary battery according to the present invention can be used even when charging / discharging of the all-solid secondary battery is repeated when incorporated into the all-solid secondary battery.
- the solid electrolyte sheet and the negative electrode sheet for an all-solid-state secondary battery that can prevent the short-circuit of the all-solid-state secondary battery from being generated can be prevented.
- the manufacturing method of the all-solid-state secondary battery of this invention can manufacture the all-solid-state secondary battery by which short circuit generation
- FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment manufactured by the method for manufacturing an all solid state secondary battery of the present invention.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- This all solid state secondary battery has a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
- the solid electrolyte layer manufactured by the method for manufacturing a solid electrolyte sheet of the present invention which will be described later, is used, the other configurations are not particularly limited, and are known configurations related to all-solid secondary batteries Can be adopted.
- the all-solid-state secondary battery can prevent the dendrite from reaching the positive electrode even when charging and discharging are repeated, and the occurrence of a short circuit is suppressed. More preferably, by applying a binding force to the all-solid battery, even when the amount of the negative electrode active material is reduced during discharge, contact between the solid electrolyte layer and the negative electrode active material is maintained. Is used, the decrease in battery capacity due to charging / discharging is suppressed (the amount of lithium deactivation due to charging / discharging can be reduced), and excellent cycle characteristics are also exhibited.
- the negative electrode active material layer is a metal layer (a negative electrode active material layer in a form in which the negative electrode active material layer is formed in advance) in addition to a previously formed negative electrode active material layer ( Negative electrode active material layer in a form in which the negative electrode active material layer is not formed in advance.
- each layer constituting the all-solid-state secondary battery may have a single layer structure or a multilayer structure as long as it has a specific function.
- FIG. 1 is a cross-sectional view schematically showing a stacking state of each layer constituting a battery in an embodiment of an all-solid secondary battery.
- the all-solid-state secondary battery 10 includes a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 stacked in this order as viewed from the negative electrode side.
- the adjacent layers are in direct contact with each other.
- the dendrite penetration preventing layer is not shown as an independent layer with respect to the solid electrolyte layer 3 because it is formed in the surface region of the solid electrolyte layer 3 as described later.
- the all-solid-state secondary battery manufactured by the manufacturing method of the all-solid-state secondary battery of this invention does not have the negative electrode active material layer 2, but the solid electrolyte layer 3 and the negative electrode collector 1 are laminated
- metal ions belonging to group 1 of the periodic table alkali metal ions
- ions of metals belonging to group 2 of the periodic table alkaline
- the all solid state secondary battery of this embodiment is one in which the metal deposited on the negative electrode current collector functions as a negative electrode active material layer.
- metallic lithium is said to have a theoretical capacity 10 times or more that of graphite, which is widely used as a negative electrode active material. Therefore, by forming metal lithium on the negative electrode current collector and laminating the solid electrolyte layer, a layer of metal lithium can be formed on the negative electrode current collector, and a high-energy density secondary battery can be formed.
- the all-solid-state secondary battery in a form in which the negative electrode active material layer is not formed (laminated) in advance has a high energy density because it can be made thinner.
- the all-solid-state secondary battery in a form in which the negative electrode active material layer is not formed in advance includes an uncharged mode (a mode in which the negative electrode active material is not deposited) and an already charged mode (a negative electrode active material is deposited). And both embodiments).
- the all-solid-state secondary battery in which the negative electrode active material layer is not formed in advance means that the negative electrode active material layer is not formed in the layer formation step in battery manufacture. The material layer is formed on the negative electrode current collector by charging.
- the solid electrolyte layer 3 is manufactured by the method for manufacturing a solid electrolyte sheet of the present invention, which will be described later, and is a particle of an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the Periodic Table And solid particles that are plastically deformed at 250 ° C. or lower, and other components as long as the effects of the present invention are not impaired.
- the inorganic solid electrolyte, solid particles, and other components will be described later.
- the solid electrolyte layer 3 is in a dense state with a small amount of voids on the entire surface area, and can block or prevent the dendrite that has grown from the negative electrode from reaching (penetrating) the positive electrode.
- the state where the solid electrolyte layer is dense means that the porosity is, for example, 3% or less, and more preferably 1% or less.
- the porosity is determined by observing an arbitrary cross section of the solid electrolyte layer with a scanning electron microscope (SEM), taking the obtained SEM photograph at a magnification of 30,000 times, and determining the area of the void region in a visual field of 3 ⁇ m ⁇ 2.5 ⁇ m. This area is calculated as a value (percentage) obtained by dividing the area by the visual field area (7.5 ⁇ m 2 ).
- the porosity can be calculated by observing an arbitrary surface instead of an arbitrary cross section of the solid electrolyte layer.
- the surface region of the solid electrolyte layer is in a dense state, the region other than the surface region has voids between the particles of the inorganic solid electrolyte, and the porosity is usually 10% or less.
- the solid electrolyte layer 3 produced by the method I for producing a solid electrolyte sheet of the present invention reaches the positive electrode of dendrites grown from the negative electrode depending on the surface region ((both) surface or (both) surface layer). (Penetration) can be blocked or prevented.
- the surface region of the solid electrolyte layer manufactured by the manufacturing method I of the solid electrolyte sheet of the present invention can prevent dendrite from penetrating, it can also be called a dendrite penetration preventing surface (dendrite penetration preventing layer).
- the details of the surface area (surface state, surface characteristics, etc.) exhibiting such a dendrite penetration prevention function are not yet clear, but are specified after heating to a specific temperature in a mixed state of inorganic solid electrolyte particles and solid particles.
- the main molding at this temperature is considered to be a dendrite penetration preventing surface by suppressing the generation of cracks and cracks while causing plastic flow on the surface and reducing the voids in the surface region.
- the state or characteristics of such a dendrite penetration preventing surface region for example, the solid particles are plastically deformed (plastic flow), and a surface state without voids (the solid particles fill the voids of the inorganic solid electrolyte particles by this plastic deformation). Dense surface state).
- the thickness of the dendrite penetration preventing layer varies depending on the manufacturing conditions and the like and is not uniquely determined. For example, it is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 2 ⁇ m.
- the region other than the surface region is the same as a normal one formed by molding a mixture of inorganic solid electrolyte particles and solid particles.
- the solid electrolyte layer 3 manufactured by the solid electrolyte sheet manufacturing method IA of the present invention to be described later is a dense layer as a whole in which voids between particles are embedded (reducing the porosity).
- the solid electrolyte sheet manufacturing method IA of the present invention described later when solid particles having a thermal decomposition temperature in a temperature region of less than 250 ° C. and plastically deforming at 250 ° C. or less are used, the solid particles are included.
- inorganic solid electrolyte particles (powder or preforms thereof) By heating inorganic solid electrolyte particles (powder or preforms thereof) at a temperature equal to or higher than the thermal decomposition temperature, the voids between the particles are filled (reducing the porosity) to form a dense solid electrolyte layer as a whole. can do.
- the solid electrolyte layer 3 can block the growth of dendrites even if dendrites are deposited during charging and discharging, and can suppress the generation of cracks and cracks.
- the state or characteristics of the bulk (inorganic solid electrolyte particles) that can prevent penetration of dendrites include a state in which the surface of the solid particles is modified (for example, plastic deformation, volume shrinkage, and smoothing) by thermal decomposition.
- Examples of the state or characteristics of the solid electrolyte layer that can prevent dendrite penetration include that the surface of the solid particles is denatured and the layer is easily plastically deformed.
- solid particles having a thermal decomposition temperature in a temperature range of less than 250 ° C. are used, a normal mixture obtained by molding a mixture of inorganic solid electrolyte particles and solid particles without pre-press molding the inorganic solid electrolyte particles
- the dense solid electrolyte layer described above can be more easily formed than the solid electrolyte layer.
- the thermal decomposition component on the surface of the solid particles promotes fusion between the particles, and the solid electrolyte obtained by pressure molding
- the porosity of the layer can be further reduced, and the generation of cracks and cracks can be more effectively suppressed.
- the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
- Content of the inorganic solid electrolyte particles, solid particles exhibiting plastic deformation, and other components in the solid electrolyte layer is the same as the content (mixing ratio) in 100% by mass of the solid components of the preform to be described later.
- the positive electrode active material layer 4 includes an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, a positive electrode active material, and other components within a range not impairing the effects of the present invention. Containing. Moreover, in the uncharged state after manufacture of an all-solid-state secondary battery, it is one of the preferable aspects to contain the negative electrode active material precursor mentioned later.
- the inorganic solid electrolyte, the positive electrode active material, the negative electrode active material precursor, and other components will be described later.
- the content of the positive electrode active material, the inorganic solid electrolyte, the negative electrode active material precursor, and other components in the positive electrode active material layer is the same as the content in 100% by mass of the solid component in the positive electrode composition described later.
- the negative electrode active material layer 2 is a negative electrode active material, preferably an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, a layer containing other components, lithium metal, etc. Is adopted.
- the inorganic solid electrolyte, the negative electrode active material, and other components will be described later.
- the lithium metal layer that can constitute the negative electrode active material layer means a lithium metal layer, and specifically includes a layer formed by depositing or molding lithium powder, a lithium foil, a lithium vapor deposition film, and the like.
- the content of the negative electrode active material, the inorganic solid electrolyte, and other components in the negative electrode active material layer is the same as the content in 100% by mass of the solid component in the negative electrode composition described later.
- the negative electrode active material layer is not formed in advance.
- the negative electrode active material layer is preferably a negative electrode active material layer containing a carbonaceous material in terms of small volume expansion and contraction due to charge and discharge, and can absorb the volume expansion and contraction of the negative electrode due to charge and discharge.
- a lithium metal layer, particularly a lithium foil is preferred in that one surface of the solid electrolyte layer (the surface disposed on the negative electrode side in the all-solid secondary battery) can be protected.
- a form in which the negative electrode active material layer is not formed in advance is preferable.
- a high battery capacity can be achieved, and a Si negative electrode is preferable in that the occurrence of a short circuit can be effectively prevented.
- the thicknesses of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer are not particularly limited.
- the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. Since the thickness of the negative electrode active material layer in the form in which the negative electrode active material layer is not formed in advance varies depending on the amount of metal deposited by charging, it is not uniquely determined.
- the thickness of at least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
- the thickness of the lithium metal layer can be set to, for example, 0.01 to 100 ⁇ m regardless of the thickness of the negative electrode active material layer.
- the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
- Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, and titanium, as well as aluminum or stainless steel surface treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
- the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
- the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
- the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
- the current collector surface is roughened by surface treatment.
- the all-solid-state secondary battery of the present invention also has a metal film capable of forming an alloy with lithium, which will be described later, between the solid electrolyte sheet and the negative electrode current collector.
- This metal film capable of forming an alloy with lithium is usually provided on the surface of the negative electrode current collector (surface disposed on the solid electrolyte layer side) or on the surface of the solid electrolyte layer forming the negative electrode active material layer (both are Not shown in FIG. 1).
- This metal film is disposed between the negative electrode active material layer and the negative electrode current collector when the all solid state secondary battery has a negative electrode active material layer.
- a functional layer, a member, or the like is appropriately interposed or disposed between or outside the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
- Each layer may be composed of a single layer or a plurality of layers.
- the all-solid-state secondary battery produced by the method for producing an all-solid-state secondary battery according to the present invention may be used as an all-solid-state secondary battery with the above-mentioned structure depending on the application, but in order to form a dry battery or the like
- a suitable housing may be metallic or made of resin (plastic).
- the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
- the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
- the solid electrolyte sheet produced by the method for producing a solid electrolyte sheet of the present invention is a sheet-like molded body that includes a solid electrolyte layer and can be used as a solid electrolyte layer of an all-solid secondary battery.
- the solid electrolyte sheet when the all-solid-state secondary battery has a form in which the negative electrode active material layer is not formed in advance, the solid electrolyte layer (forms having a negative electrode current collector) that forms the negative electrode active material layer (precipitates metallic lithium) Can be suitably used as a solid electrolyte layer adjacent to the negative electrode current collector.
- the solid electrolyte sheet has a metal film capable of forming an alloy with lithium, directly or via another layer, on the surface on which the negative electrode active material layer is formed (the surface on which the negative electrode current collector is provided). It is preferable. Moreover, this solid electrolyte sheet can also be used suitably for manufacture of the negative electrode sheet for all-solid-state secondary batteries mentioned later. Furthermore, it can also be used for the production of a positive electrode sheet for an all-solid secondary battery.
- the all-solid-state secondary battery of the present invention when using the solid electrolyte sheet of the present invention, has a positive electrode active material layer on the surface opposite to the surface on which the negative electrode current collector is provided of the solid electrolyte layer in the solid electrolyte sheet. It is the composition which has. Since the solid electrolyte layer included in the solid electrolyte sheet is the same as the solid electrolyte layer described in the all-solid-state secondary battery, description thereof is omitted.
- the solid electrolyte sheet does not have a layer that becomes the negative electrode active material layer of the all-solid-state secondary battery, but in addition to the solid electrolyte layer, a base material, a metal film capable of forming an alloy with lithium, and other layers, etc. You may have.
- the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include the materials described in the above current collector, sheet bodies (plate bodies) such as organic materials and inorganic materials, and the like.
- the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
- the inorganic material include glass and ceramic.
- the metal film capable of forming an alloy with lithium is not particularly limited as long as it is a metal film formed of a metal capable of forming an alloy with lithium.
- the metal capable of forming an alloy with lithium include metals such as Zn, Bi, and Mg in addition to Sn, Al, In, and the like, which will be described later with reference to a negative electrode active material. Of these, Zn, Bi and the like are preferable.
- the thickness of the metal film is not particularly limited, but is preferably 300 nm or less, more preferably 20 to 100 nm, and still more preferably 30 to 50 nm.
- the lithium metal deposition state due to charging can be effectively controlled, and a short circuit can be generated. Further effective suppression can be achieved (the time until a short circuit occurs can be prolonged (the number of charge / discharge cycles can be increased)). That is, since lithium metal is deposited by charging and forming an alloy with a metal that forms a metal film that is uniformly arranged at the interface with the solid electrolyte layer, local deposition of lithium metal can be suppressed. Thereby, it is thought that the arrival of the dendrite to the positive electrode can be effectively suppressed.
- the other layer examples include a protective layer (release sheet), a current collector, a coat layer, and a positive electrode active material layer.
- Solid electrolyte sheets particularly solid electrolyte sheets used in a form in which a negative electrode active material layer is not formed in advance (for example, those having the above metal film) have a negative electrode current collector on the side opposite to the solid electrolyte layer of the metal film. Preferably it is.
- the positive electrode active material layer is provided as the other layer, the positive electrode active material layer is provided on the side opposite to one surface of the solid electrolyte layer (the surface subjected to shear treatment in the case of shearing in Step B described later).
- a positive electrode current collector on the side of the active material layer opposite to the solid electrolyte layer.
- a solid electrolyte sheet when a solid electrolyte sheet has a positive electrode active material layer, it can also be called the positive electrode sheet for all-solid-state secondary batteries. Since the positive electrode active material layer and the solid electrolyte layer included in the positive electrode sheet for the all solid secondary battery are the same as the positive electrode active material layer and the solid electrolyte layer described in the all solid secondary battery, description thereof is omitted.
- the solid electrolyte sheet, the following negative electrode sheet for an all solid secondary battery, and the positive electrode sheet for an all solid secondary battery can be collectively referred to as an all solid secondary battery sheet.
- the concept includes a positive electrode sheet for a secondary battery.
- the negative electrode sheet for an all-solid-state secondary battery produced by the method for producing an anode sheet for an all-solid-state secondary battery of the present invention comprises a negative electrode active material layer and a solid electrolyte layer.
- the surface and the surface of the solid electrolyte layer are stacked in contact with each other.
- This negative electrode sheet for an all solid secondary battery is a sheet-like molded body that can be used as a negative electrode active material layer and a solid electrolyte layer of an all solid secondary battery.
- the all-solid-state secondary battery of the present invention can be described by using the negative-electrode sheet for all-solid-state secondary battery of the present invention.
- the negative electrode sheet for an all-solid-state secondary battery may have a base material (current collector), other layers, etc. in addition to the negative electrode active material layer and the solid electrolyte layer.
- the substrate and other layers are as described above.
- the manufacturing method of the all-solid-state secondary battery of this invention is demonstrated with the manufacturing method of the solid electrolyte sheet of this invention, and the manufacturing method of the negative electrode sheet for all-solid-state secondary batteries of this invention.
- a solid electrolyte sheet, and a negative electrode sheet for an all-solid-state secondary battery, and the like are appropriately prepared.
- the solid electrolyte sheet is produced by the method for producing a solid electrolyte sheet of the present invention.
- the manufacturing method of the solid electrolyte sheet of this invention is a method of forming a solid electrolyte layer by performing the following process A, process B, and process C in order.
- “performing a process in order” means a time after which a certain process and another process are performed, and another process (pause process between a certain process and another process). Including the above) is also included.
- the aspect which performs a certain process and another process in order includes the aspect performed by changing time, a place, or a practitioner suitably.
- Step A Step of pre-pressing inorganic solid electrolyte particles containing solid particles that are plastically deformed at 250 ° C.
- Step B The obtained preform is subjected to the above glass transition. A step of heating to a temperature equal to or higher than the temperature.
- Step C A step of subjecting the heated preform to a main molding at a temperature lower than the glass transition temperature and higher pressurization than the pre-press molding in the step A.
- Step B1 A step of heating inorganic solid electrolyte particles containing solid particles having a thermal decomposition temperature of 250 ° C. or lower and plastically deforming at 250 ° C. or lower to a temperature equal to or higher than the thermal decomposition temperature of the solid particles
- Step C1 heated A step of pressure-molding the inorganic solid electrolyte particles at a temperature lower than the thermal decomposition temperature.
- the pressure forming step C1 can be performed at a temperature lower than the glass transition temperature of the solid particles.
- inorganic solid electrolyte particles containing solid particles having a thermal decomposition temperature of 250 ° C. or lower and plastically deforming at 250 ° C. or lower are obtained at a temperature lower than the glass transition temperature of the solid particles. You may have the process of pre-press-molding. In this case, in the heating step, the obtained preform is heated in place of the inorganic solid electrolyte particles.
- plastic solid particles that are plastically deformed at 250 ° C. or lower are referred to as plastic solid particles, and among the plastic solid particles, plastic solid particles having a thermal decomposition temperature at 250 ° C. or lower are referred to as low-temperature thermally decomposable plastic solid particles.
- plastic solid particles it means to include low-temperature thermally decomposable plastic solid particles unless otherwise specified.
- the method for producing a solid electrolyte sheet of the present invention having the above-mentioned steps A to C is referred to as production method I, and it can be used for either plastic solid particles or low-temperature thermally decomposable plastic solid particles regardless of the thermal decomposition temperature.
- manufacturing method IA the manufacturing method which performs the said process B1 and C1 using a low-temperature thermally decomposable plastic solid particle.
- manufacturing method IA the manufacturing method which performs the said process B1 and C1 using a low-temperature thermally decomposable plastic solid particle.
- manufacturing method I means that the manufacturing method I and the manufacturing method IA are included unless otherwise specified.
- manufacturing method I means that the manufacturing method IA is not included unless otherwise specified. The same applies to the method for producing a negative electrode sheet for an all-solid secondary battery and the method for producing an all-solid secondary battery described later.
- the inorganic solid electrolyte particle containing the solid particle which deforms plastically at 250 degrees C or less is prepared as a preforming material.
- the inorganic solid electrolyte particles containing solid particles that are plastically deformed at 250 ° C. or lower usually mean a mixture of solid particles and inorganic solid electrolyte particles that are plastically deformed at 250 ° C. or lower, but the inorganic solid electrolyte particles are 250 ° C. or lower.
- solid particles that are plastically deformed eg, sulfide-based inorganic solid electrolytes
- a mixture of these inorganic solid electrolyte particles and other inorganic solid electrolytes not plastically deformed at 250 ° C. or lower, and further 250 ° C. or lower.
- inorganic solid electrolyte particle group inorganic solid electrolyte particle group
- the solid particles and inorganic solid electrolyte particles used for the preforming material may be one kind or two kinds or more, respectively.
- plastic solid particles that plastically deform below 250 ° C-
- the plastic solid particles are not particularly limited as long as the particles have properties or physical properties that can be plastically deformed at 250 ° C. or lower. When such particles are used, the surface of the preform can be blocked from dendrite growth and the cracks and cracks can be prevented from occurring by the steps B and C described later.
- the plastic solid particles include a sulfide-based inorganic solid electrolyte described later, diphosphorus pentoxide, a boron nitride-sulfur mixture, and the like. Among these, a sulfide-based inorganic solid electrolyte is preferable. These plastic solid particles may be appropriately synthesized and commercially available products can be used.
- the following method may be mentioned as a method for synthesizing a boron nitride-sulfur mixture. That is, scale-shaped hexagonal boron nitride (hBN) having a long side of 0.4 ⁇ m and sulfur are set in a mass ratio of 1: 2, mixed in a mortar, and then hot pressed under conditions of a temperature of 170 ° C. and a pressure of 130 MPa. Then, a film body is obtained, and the obtained film body is ground with a mortar to obtain a powder. Thereby, it can be set as the solid particle which is filled with the hot-melted sulfur between the scaly hBN particles, and shows plastic deformability.
- hBN hexagonal boron nitride
- the plastic solid particles are particles having properties or physical properties that can be plastically deformed at 250 ° C. or lower can be determined as follows.
- a microhardness tester was used to perform a push-in test using a Barkovich indenter with a maximum push-in load of 100 mN, a load time of 10 seconds, a creep of 5 seconds, and a removal time of 10 seconds. From the displacement-load curve obtained in step 1, if the difference between the indentation depth after creep and the indentation depth after unloading is 10% or more of the indentation depth after creep, it is judged that the material has plastic deformation characteristics. .
- the measurement temperature is set at a temperature at which the upper limit is 250 ° C. and plastic deformation is possible.
- the indentation load is set to be about 1/10 of the film thickness of the film formed of plastic solid particles used as a test piece so that information on the entire sample can be obtained.
- the plastic solid particles preferably have a glass transition temperature. Based on the glass transition temperature of the plastic solid particles, the preforming material is subjected to the pre-press molding in step A, the heating in step B, and the main molding in step C in this order. It is possible to form a dendrite penetration preventing surface that effectively prevents the occurrence of such defects.
- the glass transition temperature of the plastic solid particles is not particularly limited, but is preferably, for example, 70 to 250 ° C., and more preferably 75 to 200 ° C.
- the glass transition temperature can be measured from an exothermic peak by measuring about 2 mg of plastic solid particles at a heating rate of 10 ° C./min using a sealed cell differential scanning calorimeter (SC-DSC).
- the measurement is performed using a stainless steel airtight container, and the atmosphere in the container is a nitrogen gas atmosphere.
- the temperature conditions in the steps A, B and C are preferably based on the lowest glass transition temperature.
- the plastic solid particles have a thermal decomposition temperature of 250 ° C. or lower. If this temperature range has a thermal decomposition temperature, it can be obtained without carrying out the pre-press molding step A if the heating temperature is set to a temperature equal to or higher than the thermal decomposition temperature in the heating step described later.
- the solid electrolyte layer can be a dense layer as a whole.
- the thermal decomposition temperature is not particularly limited as long as it is 250 ° C. or lower, and is preferably equal to or higher than the glass transition temperature, for example, preferably 120 to 250 ° C., and more preferably 150 to 220 ° C.
- the thermal decomposition temperature of the plastic solid particles is the temperature (heat) of the lower end of the observed endothermic peak (the portion where the chart starts dropping) in the chart obtained in the same manner as the measurement of the glass transition temperature. Decomposition start temperature).
- the plastic deformation temperature, the glass transition temperature, and the thermal decomposition temperature have the following relationship.
- the plastic deformation temperature is preferably a temperature lower than the glass transition temperature, and when a plurality of glass transition temperatures are confirmed, it is one of the preferred embodiments that the temperature is lower than the lowest glass transition temperature. .
- the plastic deformation temperature is preferably lower than the thermal decomposition temperature.
- the thermal decomposition temperature is usually a temperature higher than the glass transition temperature, and when a plurality of glass transition temperatures are confirmed, the temperature is higher than the lowest glass transition temperature.
- the relationship with other glass transition temperatures is not particularly limited, but for example, the thermal decomposition temperature is one of the preferred embodiments that is lower than the highest glass transition temperature.
- the particle size (volume average particle size) of the plastic solid particles is not particularly limited, but is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 10 micrometers or less, and it is more preferable that it is 1 micrometer or less.
- the average particle size of the plastic solid particles is a value measured in the same manner as the average particle size of inorganic solid electrolyte particles described later.
- inorganic solid electrolyte particles when used as the plastic solid particles, those having the plastic deformation temperature, glass transition temperature, and thermal decomposition temperature within the above temperature range are appropriately selected from the following inorganic solid electrolytes. .
- the inorganic solid electrolyte particles used for the preforming material are the following inorganic solid electrolyte particles.
- the inorganic solid electrolyte is an inorganic solid electrolyte
- the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt).
- PEO polyethylene oxide
- LiTFSI lithium bis (trifluoromethanesulfonyl) imide
- the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte solution or an inorganic electrolyte salt (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the polymer.
- the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electronic conductivity.
- the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
- a solid electrolyte material applied to this type of product can be appropriately selected and used.
- the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iV) a hydride-based solid electrolyte.
- the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
- a sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation.
- the compound which has property is preferable.
- the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
- L represents an element selected from Li, Na and K, and Li is preferred.
- M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
- A represents an element selected from I, Br, Cl and F.
- a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
- a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
- b1 is preferably 0 to 3, and more preferably 0 to 1.
- d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
- e1 is preferably from 0 to 5, and more preferably from 0 to 3.
- composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
- the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
- glass glass
- glass ceramic glass ceramic
- Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
- the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
- Li 2 S lithium sulfide
- P 2 S 5 diphosphorus pentasulfide
- simple phosphorus simple sulfur
- sodium sulfide sodium sulfide
- hydrogen sulfide lithium halide
- a sulfide of the element represented by M for example, SiS 2 , SnS, GeS 2
- the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
- the lithium ion conductivity can be increased.
- the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
- Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—G
- Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
- Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
- oxide-based inorganic solid electrolyte contains an oxygen atom, has an ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation.
- the compound which has property is preferable.
- the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
- the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
- Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
- lithium phosphate Li 3 PO 4
- LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
- LiPOD 1 LiPOD 1
- LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
- Halide-based inorganic solid electrolyte contains a halogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation.
- the compound which has property is preferable.
- the halide inorganic solid electrolyte is not particularly limited, and examples thereof include compounds such as Li 3 YBr 6 and Li 3 YCl 6 described in LiCl, LiBr, LiI, ADVANCED MATERIALS, 2018, 30, 1803075. Among these, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
- a hydride-based inorganic solid electrolyte contains a hydrogen atom, has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation.
- the compound which has property is preferable.
- the hydride-based inorganic solid electrolyte is not particularly limited, for example, LiBH 4, Li 4 (BH 4) 3 I, 3LiBH 4 -LiCl and the like.
- the inorganic solid electrolyte used in the method for producing a solid electrolyte sheet of the present invention is a particle.
- the inorganic solid electrolyte used for the manufacturing method of the negative electrode sheet for all-solid-state secondary batteries of this invention and formation of a positive electrode active material layer is particle
- the particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
- the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures.
- the inorganic solid electrolyte particles are diluted and adjusted in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water) in a 20 mL sample bottle.
- the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
- a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
- data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size.
- JIS Z 8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted. An inorganic solid electrolyte may be used individually by 1 type, and may be used in combination of 2 or more type.
- the preforming material may contain other components that may be contained in the solid electrolyte layer.
- examples of other components include a binder, an additive, and a dispersion medium described later.
- an organic polymer can be used, and a known organic polymer used for the production of an all-solid secondary battery can be used without any particular limitation.
- organic polymers include fluorine-containing resins, hydrocarbon-based thermoplastic resins, acrylic resins, polyurethane resins, polyurea resins, polyamide resins, polyimide resins, polyester resins, polyether resins, polycarbonate resins, and cellulose derivative resins. Is mentioned.
- a binder may be used individually by 1 type, or may be used in combination of 2 or more type.
- the preforming material includes a binder
- the content of the binder in the preforming material (solid component) is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 1 to 10% by weight, 2 to 5% by mass is more preferable.
- additives examples include thickeners, crosslinking agents (such as those that undergo a crosslinking reaction by radical polymerization, condensation polymerization, or ring-opening polymerization), polymerization initiators (such as those that generate an acid or radical by heat or light), An antifoaming agent, a leveling agent, a dehydrating agent, an antioxidant and the like can be contained.
- each component is mixed to prepare the preforming material.
- the preforming material can be obtained by mixing plastic solid particles, inorganic solid electrolyte particles, and other components as appropriate.
- the mixing method is not particularly limited, and examples thereof include a method using a known mixer such as a ball mill, a bead mill, or a disk mill.
- the mixing conditions are not particularly limited, but the mixed atmosphere is the same as the atmosphere in the pre-press molding described later, and the preferable atmosphere is also the same.
- the mixing ratio of the plastic solid particles and the inorganic solid electrolyte particles depends on the plastic deformability of the plastic solid particles, the temperature condition or the pressurizing condition in each step, and the specific use of the all-solid secondary battery, etc. An appropriate ratio is set.
- the content of the inorganic solid electrolyte in the preforming material is not particularly limited, and when considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance, the solid component In 100 mass%, it is preferable that it is 5 mass% or more, It is more preferable that it is 10 mass% or more, It is especially preferable that it is 15 mass% or more.
- the content of the plastic solid particles in the preforming material is not particularly limited, and is preferably 1 to 90% by mass and more preferably 5 to 80% by mass with respect to 100% by mass of the solid component.
- the total content of the inorganic solid electrolyte particles and the plastic solid particles in the preforming material is 100% by mass or less, preferably 80 to 100% by mass, and preferably 90 to 100% by mass in 100% by mass of the solid component.
- the solid component refers to a component that does not disappear by volatilization or evaporation when the preforming material is dried at 30 ° C. for 6 hours under a pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
- the content of the other components in the preforming material is not particularly limited and is set as appropriate.
- the prepared (prepared) preformed material is pre-press-molded in a layer or film form at a temperature lower than the glass transition temperature of the solid particles.
- the molding method in step A may be any method that can mold the preformed material into a predetermined shape, and various known molding methods can be applied. Press molding (for example, press molding using a hydraulic cylinder press) is possible. preferable.
- the pressing force at the time of molding is not particularly limited, but it is usually preferably set in the range of 50 to 1500 MPa, more preferably in the range of 100 to 300 MPa. When performing the process C mentioned later, it is still more preferable that it is set lower than the applied pressure in the main molding of the process C within the above range.
- the pre-pressing (pressing) time may be a short time (for example, within several hours) or a long time (one day or more).
- the temperature condition of the step A may be a temperature lower than the glass transition temperature of the solid particles, and can be set, for example, to ⁇ 30 to 200 ° C.
- pre-press molding is preferably performed at an environmental temperature of 0 to 50 ° C.
- the atmosphere during the pre-press molding is not particularly limited, and may be any of the atmosphere, dry air (dew point -20 ° C. or less) and inert gas (eg, argon gas, helium gas, nitrogen gas). Good. Since the inorganic solid electrolyte reacts with moisture, the atmosphere during the pre-press molding is preferably in dry air or in an inert gas.
- the base material or current collector that supports the preforming material can also be used.
- step A a preform of inorganic solid electrolyte particles containing plastic solid particles is obtained.
- the method IA for producing a solid electrolyte sheet of the present invention it is preferable not to perform the preforming step in terms of preventing an internal short circuit, but it can be performed within a range not impairing the effect of the present invention.
- the solid electrolyte sheet of the present invention is produced except that inorganic solid electrolyte particles containing plastic solid particles having a thermal decomposition temperature of 250 ° C. or lower or a mixture thereof are used from the above preformed materials. It can be carried out in the same manner as the above-mentioned preforming step A in Method I.
- the obtained preform is then heated to a temperature equal to or higher than the glass transition temperature of the solid particles (referred to as heat treatment).
- heat treatment a temperature equal to or higher than the glass transition temperature of the solid particles
- the plastic solid particles are plastically deformed (plastic flow), and a surface in which cracking and cracks are unlikely to occur in the solid electrolyte layer at the time of the main forming in Step C can be formed.
- the heating temperature in the step B may be equal to or higher than the glass transition temperature of the plastic solid particles, but a temperature exceeding the glass transition temperature is preferable, and a temperature higher than the glass transition temperature (Tg) by 5 ° C. or higher (Tg + 5 ° C. or higher).
- the heating temperature is to effectively plastically deform the plastically deformable particles.
- the heating temperature is the second glass transition temperature (also referred to as the second glass transition temperature) or lower from the low temperature side. It is preferable that The heating time may be any time as long as a dendrite penetration preventing surface can be formed on the preform, and is appropriately set according to the plastic deformability of the plastic solid particles, the mixing ratio of the plastic solid particles, the heating temperature, etc. Is not determined.
- the heating time can be set to 0.1 to 120 minutes, for example.
- step B only the above-described heat treatment may be performed, but the surface of the preform (in which plastic solid particles are present), usually one surface, is subjected to shear treatment (heat shear treatment) in a state heated to the above temperature. Is preferred).
- shear treatment heat shear treatment
- the surface of the preform is subjected to shearing treatment by applying a shearing force to the surface of the preform to cause heat to block dendrite growth, and cracks and cracks are generated. This refers to the treatment to prepare on a difficult surface.
- the effect of the heat treatment and the shear treatment is further enhanced by the heat shear treatment, and the surface of the preform can be effectively blocked from dendrite growth, and the surface is less likely to be cracked and cracked. Can be prepared.
- the shearing treatment performed under heating simply smoothes the surface of the oxide-based inorganic solid electrolyte sintered body (no plastic solid particles) in that the surface on which the plastic solid particles are present is prepared as the surface. It is different from the polishing process.
- the shear force acting on the surface of the preform can be expressed by the minimum shear energy acting (transmitted) on the surface (per unit area) of the preform, but the plasticity of the plastic solid particles It is set appropriately depending on the deformability, the mixing ratio of plastic solid particles (and the ratio existing on the surface), etc., and is not uniquely determined.
- the minimum shearing energy per unit area is defined by the number of rotations of the brush ⁇ the processing time ⁇ the frictional force.
- the minimum shear energy per unit area can be set to 100 (gf / mm 2 ) ⁇ mm (1000 Pa ⁇ m) or more.
- the number of rotations of the brush, the processing time, and the frictional force are also set as appropriate.
- the number of rotations of the brush is 100 to 15000 rpm, and the processing time is 0.01 to 30 minutes. More specifically, for example, conditions applied in examples described later can be given.
- the method for heat shearing is not particularly limited as long as the surface of the preform can be prepared to the specific surface in cooperation with the heat treatment, and for example (using a metal brush harder than plastic solid particles). Examples thereof include a surface brushing method and a method of rubbing the surface with a metal blade, and the surface brushing method is preferable from the viewpoint of productivity and production cost.
- the direction of applying a shearing force to the surface of the preform is not particularly limited as long as it is parallel to the surface, and may be a direction along one direction, a direction along multiple directions, a direction along a circumferential direction, or these. The direction etc. which combined are mentioned.
- the atmosphere in the heat treatment and the heat shear treatment is the same as that in the pre-press molding, and the preferable atmosphere is also the same.
- step B By carrying out the step B in this way and then carrying out the following step C, a preform with the surface subjected to heat treatment, preferably heat shear treatment, serving as a dendrite penetration preventing surface is obtained.
- heat treatment preferably heat shear treatment
- Step B1 Step of heating
- the inorganic solid electrolyte particles including the solid particles having a thermal decomposition temperature of 250 ° C. or lower and plastically deforming at 250 ° C. or lower are equal to or higher than the thermal decomposition temperature of the solid particles. Heat to the temperature of.
- the surface of the plastic solid particles can be modified by thermal decomposition while plastically deforming the plastic solid particles.
- the voids between the particles can be filled (the porosity is reduced).
- step B1 as the material to be heated, inorganic solid electrolyte particles or a mixture thereof including plastic solid particles having a thermal decomposition temperature of 250 ° C. or less from the above preformed material, or the preform formed in the above step A Is used.
- the heating temperature in step B1 may be equal to or higher than the thermal decomposition temperature of the plastic solid particles, but is preferably higher than the thermal decomposition temperature, more preferably higher than the thermal decomposition temperature by 5 ° C or higher.
- the temperature is more preferably 10 to 50 ° C. higher than the decomposition temperature.
- the upper limit of the heating temperature is not particularly limited, but can be, for example, 250 ° C.
- the heating time may be any time as long as the surface of the plastic solid particles can be thermally decomposed, and is appropriately set according to the plastic deformability of the plastic solid particles, the mixing ratio of the plastic solid particles, the heating temperature, etc., and is uniquely determined. Is not to be done.
- the heating time can be set to 0.1 to 120 minutes, for example.
- the preform when used as a heating material, the heat shearing process in the process B can be performed.
- Step C Process of main forming
- the preformed body obtained in the step B is then applied at a temperature lower than the glass transition temperature of the plastic solid particles, which is higher than that of the prepressing molding in the step A.
- the main molding is performed under the conditions (Step C).
- the solid electrolyte layer in which the voids on the surface are further reduced by causing plastic flow on the surface without generating defects such as cracks and cracks on the dendrite penetration preventing surface formed in the step B can be formed.
- the main molding method may be a method in which vertical pressure is applied to the preform and molding is performed.
- the press molding mentioned as the preforming method is preferable.
- the main molding step (especially press molding) can employ the same molding method as the preliminary molding method (press molding) in step A, except that the pressure is set higher than that in the preliminary molding method in step A.
- the temperature condition in the main forming process may be a temperature lower than the glass transition temperature of the plastic solid particles, and the temperature condition of the process A can be adopted, but it is not necessary to set the same temperature condition as that of the process A.
- the pressurizing force in the main forming step is preferably set higher than the pressurizing force in the pre-forming step, and is usually more preferably set in the range of 100 to 1000 MPa, and is set in the range of 150 to 600 MPa. More preferably.
- the pressure difference between the applied pressure in the pre-forming step and the applied pressure in the main forming step is not particularly limited, but is preferably 10 to 1000 MPa, and more preferably 100 to 400 MPa, for example.
- the pressing direction is a direction perpendicular to the surface to be pressed of the preform (vertical pressure), and is usually the same as the pressing direction in step A.
- step A by carrying out step A, step B and step C in this order, a solid electrolyte sheet having a solid electrolyte layer having a dendrite penetration preventing surface that effectively prevents the occurrence of defects such as cracks and cracks is obtained. It is done.
- This solid electrolyte layer is the same as the solid electrolyte layer of the all-solid secondary battery (the solid electrolyte layer 3 produced by the production method I).
- Step C1 Step of pressure molding (main molding)
- the inorganic solid electrolyte particles and the like heat-treated in step B1 are then pressure-molded at a temperature lower than the thermal decomposition temperature of the plastic solid particles.
- the method and conditions for pressure molding are the same as those in Step C of Production Method I except for the temperature conditions.
- the pressure molding temperature in step C1 is a temperature lower than the thermal decomposition temperature of the plastic solid particles.
- pressure molding can be performed at a temperature higher than the main molding temperature of production method I.
- the temperature is equal to or lower than the crystallization temperature of the plastic solid particles in terms of the hardness (maintenance of the shape) of the solid electrolyte layer.
- the pressure molding temperature may be set to a temperature lower than the glass transition temperature (the lowest glass transition temperature) of the plastic solid particles.
- the pressure molding temperature is more preferably, for example, a temperature that is 10 ° C. or lower lower than the thermal decomposition temperature (Td) (the upper limit is a temperature of Td ⁇ 10 ° C.), and a temperature lower than 15 to 80 ° C. -(15 to 80) ° C.).
- a solid electrolyte layer having a high filling rate of inorganic solid electrolyte particles (low porosity) can be formed, preferably 130 ° C. or less, and preferably 120 ° C. or less.
- the lower limit of the pressure molding temperature is not particularly limited, and can be, for example, 70 ° C. or higher, preferably 100 ° C. or higher, and more preferably a temperature exceeding the glass transition temperature.
- the crystallization temperature of the plastic solid particles means the glass transition temperature existing on the lowest temperature side when the plastic solid particles have a plurality of glass transition temperatures of 150 ° C. or higher.
- the measuring method is obtained by reading the lowest exothermic peak temperature present at 150 ° C. or higher in the above glass transition temperature measuring method.
- step B1 and step C1 a solid electrolyte sheet provided with a solid electrolyte layer that effectively prevents the occurrence of defects such as cracks and cracks can be obtained.
- This solid electrolyte layer is the same as the solid electrolyte layer of the all-solid-state secondary battery (the solid electrolyte layer 3 manufactured by the manufacturing method IA).
- Process D Process of forming a metal film
- a step of providing (arranging) the metal film on one surface of the solid electrolyte layer is performed.
- the formation method in particular of a metal film is not restrict
- the conditions for the formation method are not particularly limited, and appropriate conditions are selected according to the metal species, thickness, and the like.
- the method for providing the metal film on the surface subjected to the shearing treatment is not particularly limited, but the method for forming the metal film by the above-described forming method on the surface subjected to the shearing treatment, and the metal film prepared in advance by the above-described forming method are laminated on the surface subjected to the shearing treatment. (Mounting) method, and further, a method of transferring (bonding and laminating) a metal film prepared in advance by the above forming method to a sheared surface.
- a method and conditions for laminating or transferring a metal film prepared in advance on a surface subjected to shearing treatment for example, a method and conditions for placing a negative electrode active material on a surface subjected to shearing treatment and pressing the metal film described later can be selected.
- the method for providing the current collector is not particularly limited, and a method and conditions for pressing the current collector or the like, which will be described later, after being placed on one surface can be selected.
- the production method I for carrying out the step A, the step B, the step C, preferably the step D, or the production method IA for carrying out the step B1 and the step C1, suitably the step A, preferably the step D,
- a solid electrolyte sheet having a heated solid electrolyte layer, preferably a metal film, is obtained.
- the solid electrolyte layer and the metal film are the same as the solid electrolyte layer and the metal film of the all solid state secondary battery.
- the solid electrolyte sheet of the present invention can be produced.
- the manufacturing method of the negative electrode sheet for all-solid-state secondary batteries is implemented according to the form of the negative electrode of an all-solid-state secondary battery. That is, when manufacturing an all solid secondary battery in which the negative electrode active material layer is formed in advance (when forming the negative electrode active material layer in the layer forming step in battery manufacturing), a negative electrode sheet for an all solid secondary battery is manufactured. . On the other hand, when producing an all-solid secondary battery in a form in which the anode active material layer is not formed in advance (when no anode active material layer is formed in the layer formation step in battery production), an anode sheet for an all-solid secondary battery is produced. There is no need.
- the method for producing a negative electrode sheet for an all-solid-state secondary battery according to the present invention is obtained by subjecting one surface of the solid electrolyte layer in the solid electrolyte sheet obtained by the method for producing a solid electrolyte sheet according to the present invention (heating shear treatment in step B and step B1). In this case, a step of pressure bonding and laminating a negative electrode active material on the surface subjected to heat shear treatment is performed. Thereby, a negative electrode active material layer can be formed on a specific surface of the solid electrolyte layer.
- a method for pressure-bonding and laminating the negative electrode active material is not particularly limited, and examples thereof include a method in which the negative electrode active material is placed (arranged) on one surface of the solid electrolyte layer and then pressed.
- the negative electrode active material to be used may be particles of the following negative electrode active material, or a molded body made of these particles.
- a molded object which consists of a negative electrode active material it can produce by the well-known method (The method of apply
- the negative electrode active material can also be used as a negative electrode composition mixed with an inorganic solid electrolyte, preferably a lithium salt, a conductive additive, other components mentioned in the preform, and a dispersion medium.
- lithium salt lithium salt, conductive additive, dispersion medium, etc.
- those used for all-solid secondary batteries can be used without particular limitation.
- This lithium metal layer can also be used as a laminate with the negative electrode current collector.
- the negative electrode active material used in the present invention is a substance capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
- the negative electrode active material is preferably one that can reversibly insert and release lithium ions.
- the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, metal or metalloid oxide (including complex oxide), simple lithium, lithium alloy, or lithium and alloy. And negative electrode active materials that can be formed (form an alloy with lithium).
- a carbonaceous material, an oxide of a metalloid element, a metal composite oxide, or lithium alone is preferable.
- a negative electrode active material capable of forming an alloy with lithium is preferable in that the capacity of the all-solid-state secondary battery can be increased.
- the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
- various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc.
- the carbonaceous material which baked resin can be mentioned.
- various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
- carbonaceous materials can be divided into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials depending on the degree of graphitization.
- the carbonaceous material preferably has a face spacing or density and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
- the carbonaceous material may not be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like may be used. You can also.
- hard carbon or graphite is preferably used, and graphite is more preferably used.
- the oxide of the metal or metalloid element applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of occluding and releasing lithium, and an oxide of a metal element (metal oxide) or a composite of metal elements Examples thereof include oxides or complex oxides of metal elements and metalloid elements (collectively referred to as metal complex oxides) and oxides of metalloid elements (metalloid oxides). As these oxides, amorphous oxides are preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferable.
- the metalloid element means an element having intermediate properties between a metal element and a non-metalloid element, and usually contains five elements of boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium. , Polonium and astatine.
- Amorphous means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having an apex in the region of 20 ° to 40 ° in terms of 2 ⁇ values. You may have.
- the strongest intensity of the crystalline diffraction lines seen from 40 ° to 70 ° in terms of 2 ⁇ values is 100 times or less than the diffraction line intensity at the apex of the broad scattering band seen from 20 ° to 40 ° in terms of 2 ⁇ values. Is preferably 5 times or less, and particularly preferably has no crystalline diffraction line.
- an amorphous oxide of a semimetal element or the chalcogenide is more preferable, and an element of Groups 13 (IIIB) to 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb, and Bi) (composite) oxides composed of a single species selected from a combination of two or more of them, or chalcogenides are particularly preferred.
- preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , and Sb 2.
- O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , GeS, PbS, PbS 2 , Sb 2 S 3 or Sb 2 S 5 is preferred.
- Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbonaceous materials that can occlude and / or release lithium ions or lithium metal, lithium alone, lithium Preferred examples include alloys and negative electrode active materials that can be alloyed with lithium.
- the metal or metalloid element oxide, particularly the metal (composite) oxide and the chalcogenide preferably contain at least one of titanium and lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
- the metal composite oxide containing lithium (lithium composite metal oxide) for example, a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, more specifically, Li 2 SnO 2 is used. Can be mentioned.
- the negative electrode active material for example, the metal oxide contains a titanium atom (titanium oxide). More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
- a titanium atom titanium oxide
- Li 4 Ti 5 O 12 lithium titanate [LTO]
- the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy usually used as the negative electrode active material of the secondary battery, and examples thereof include a lithium aluminum alloy.
- the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is normally used as a negative electrode active material for a secondary battery. Such an active material has a large expansion / contraction due to charge / discharge.
- Examples of such an active material include a negative electrode active material having a silicon atom or a tin atom, and metals such as Al and In, and a negative electrode active material having a silicon atom that enables higher battery capacity (a silicon atom-containing active material). ) Is preferred, and a silicon atom-containing active material having a silicon atom content of 50 mol% or more of all the constituent atoms is more preferred.
- a negative electrode containing these negative electrode active materials (such as a Si negative electrode containing a silicon atom-containing active material, a Sn negative electrode containing an active material having a tin atom) is used as a carbon negative electrode (such as graphite and acetylene black).
- a carbon negative electrode such as graphite and acetylene black.
- silicon atom-containing active material examples include silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys including titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, and the like (for example, LaSi 2 , VSi 2 , La—Si, Gd—Si, Ni—Si), or an organized active material (eg, LaSi 2 / Si), in addition to silicon atoms and tin atoms such as SnSiO 3 and SnSiS 3 An active material containing
- SiOx can be used as a negative electrode active material (semi-metal oxide) itself, and Si is generated by operation of an all-solid-state secondary battery, a negative electrode active material that can be alloyed with lithium (its Precursor material).
- Examples of the negative electrode active material having a tin atom include Sn, SnO, SnO 2 , SnS, SnS 2 , and an active material containing the above silicon atom and tin atom.
- complex oxide with lithium oxide for example, Li 2 SnO 2 can also be mentioned.
- the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
- the particle diameter (volume average particle diameter) of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
- a normal pulverizer or classifier is used.
- a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, etc. are preferably used.
- wet pulverization in the presence of water or an organic solvent such as methanol can also be performed.
- classification is preferably performed.
- the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used. Classification can be used both dry and wet.
- the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the inorganic solid electrolyte.
- the chemical formula of the compound obtained by the firing method can be calculated from the mass difference between the powders before and after firing as an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method.
- ICP inductively coupled plasma
- the surface of the negative electrode active material may be coated with another metal oxide.
- the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
- the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
- the content of the negative electrode active material in the negative electrode composition is not particularly limited, and is preferably 100% by mass or less, more preferably 10 to 80% by mass, based on 100% by mass of the solid component, and 20 More preferably, it is ⁇ 80% by mass.
- the total content of the inorganic solid electrolyte and the negative electrode active material in the negative electrode composition is preferably 5% by mass or more at 100% by mass of the solid component, It is more preferably 10% by mass or more, further preferably 15% by mass or more, still more preferably 50% by mass or more, particularly preferably 70% by mass or more, and 90% by mass or more. Most preferably it is.
- the content of the other components in the negative electrode composition is not particularly limited and can be set as appropriate, for example, the above-described content described in the preforming material.
- the negative electrode active material (negative electrode composition) is placed on one surface of the solid electrolyte layer and laminated by pressure bonding. Thereby, even if dendrite deposits on the negative electrode (negative electrode active material layer), the growth reaching the positive electrode of the dendrite can be blocked by the solid electrolyte layer (one surface (dendrite penetration preventing surface) or the entire surface).
- the pressure at the time of pressure lamination is not particularly limited as long as the negative electrode active material can be pressure laminated, and can be set to 1 MPa or more, for example, preferably 1 to 60 MPa, and more preferably 5 to 30 MPa.
- the pressure lamination may be performed under heating, but in the present invention, it is preferably performed without heating, and for example, it is preferable to perform pressure lamination at an environmental temperature of 0 to 50 ° C.
- the atmosphere in which the pressure-bonding lamination is performed is the same as the atmosphere during the preforming in the above step A.
- an all-solid two layer comprising a solid electrolyte layer and a negative electrode active material layer laminated on one surface (dendritic penetration preventing surface) of this solid electrolyte layer.
- a negative electrode sheet for a secondary battery can be produced.
- an all-solid-state secondary battery is manufactured through a different process according to the form of the negative electrode of the all-solid-state secondary battery to manufacture. That is, when manufacturing an all-solid secondary battery in a form in which the negative electrode active material layer is formed in advance, an all-solid secondary battery is manufactured through the manufacture of the above-described negative electrode sheet for an all-solid secondary battery. On the other hand, when manufacturing an all solid state secondary battery in which the negative electrode active material layer is not formed in advance, the all solid state secondary battery is manufactured using the above-described solid electrolyte layer sheet.
- the anode active material of the all-solid-state secondary battery anode sheet obtained by the method for producing an all-solid-state secondary battery anode sheet of the present invention is used.
- a positive electrode active material layer is formed on the surface opposite to the material layer.
- the positive electrode active material formed by the positive electrode active material layer may be particles of the following positive electrode active material, or may be used as a molded body made of these particles.
- this molded object can be produced similarly to the molded object which consists of negative electrode active materials.
- the positive electrode active material can also be used as a positive electrode composition mixed with an inorganic solid electrolyte, lithium salt, a conductive additive, other components mentioned in the preform, and a dispersion medium.
- This composition for positive electrodes may contain the negative electrode active material precursor mentioned later.
- the inorganic solid electrolyte, lithium salt, conductive additive, dispersion medium, etc. those used for all-solid secondary batteries can be used without particular limitation.
- the positive electrode active material used in the present invention is a substance capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
- a metal oxide preferably a transition metal oxide is preferable.
- the positive electrode active material is preferably one that can reversibly insert and release lithium ions.
- the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li such as sulfur, or a complex of sulfur and metal.
- the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred.
- this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, or B) may be mixed.
- the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
- transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
- transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
- transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
- (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
- (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
- Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
- a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
- the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
- the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
- the thickness can be 0.1 to 50 ⁇ m.
- an ordinary pulverizer or classifier may be used.
- the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
- the average particle diameter of the positive electrode active material particles can be measured by a method similar to the above-described method for measuring the volume average particle diameter of the inorganic solid electrolyte.
- the surface of the positive electrode active material may be surface-coated with another metal oxide.
- the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
- the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
- the content of the positive electrode active material in the positive electrode composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and further preferably 50 to 85% by mass in 100% by mass of the solid component. Preferably, it is 55 to 80% by mass.
- the total content of the inorganic solid electrolyte and the positive electrode active material in the positive electrode composition is preferably 5% by mass or more at 100% by mass of the solid component, It is more preferably 10% by mass or more, further preferably 15% by mass or more, still more preferably 50% by mass or more, particularly preferably 70% by mass or more, and 90% by mass or more. Most preferably it is.
- the content of the other components in the positive electrode composition is not particularly limited and can be set as appropriate, for example, the content described in the preforming material.
- the method for forming the positive electrode active material layer is not particularly limited, and a normal method can be applied.
- a method of placing the following positive electrode active material on the surface opposite to the negative electrode active material layer, and placing a molded body (sheet) obtained by forming the following positive electrode active material into a layer on the surface opposite to the negative electrode active material layer And a method of applying (drying) a positive electrode composition containing the following positive electrode active material on the surface opposite to the negative electrode active material layer. After the positive electrode active material is placed, it can be pressure-bonded and laminated, and examples of the pressure-bonding method include a pressure-bonding method in the negative electrode active material layer.
- Examples of the method of applying and drying the positive electrode composition include a method of heating the positive electrode composition applied by a known application method to an appropriately set temperature.
- the laminated body which consists of the said 3 layers is obtained by forming the above-mentioned negative electrode active material layer.
- the positive electrode active material layer includes a positive electrode active material described in ⁇ Method for manufacturing an all-solid secondary battery in a form in which the negative electrode active material layer is not formed in advance> It is preferable to form using the composition for positive electrodes containing a negative electrode active material precursor.
- a silicon material or a silicon-containing alloy has a large irreversible capacity, and there is usually a problem that a reduction in capacity (movable lithium ion amount) by the first charge is large.
- the positive electrode active material layer of the all-solid-state secondary battery including the Si negative electrode with the positive electrode composition containing the negative electrode active material precursor, the reduced metal ions are replenished (doped) (Si The above problem peculiar to the Si negative electrode can be suppressed by inserting metal ions into the negative electrode).
- the negative electrode active material precursor when the negative electrode active material precursor is contained in the positive electrode active material layer, expansion due to occlusion of metal ions or expansion due to metal precipitation during charging is caused by voids generated by the decomposition reaction of the negative electrode active material precursor in the positive electrode active material layer. Since it can cancel, destruction of a solid electrolyte layer can be prevented and arrival to the positive electrode of a dendrite can be suppressed more effectively. In addition, as will be described later, the energy density can be improved in a preferable mode of crushing the gap.
- the composition for positive electrodes containing a negative electrode active material precursor and the formation method of a positive electrode active material layer are mentioned later.
- the charged positive electrode active material layer is It is preferable to compress under pressure.
- voids formed in the positive electrode active material layer after charging are crushed (crushed), and the positive electrode active material layer is thinned (densified).
- the total thickness (volume) of the all-solid-state secondary battery is reduced, and the energy density is improved. Details of the step of charging the positive electrode active material layer and the step of applying pressure will be described in the following ⁇ Method for producing an all-solid-state secondary battery in which the negative electrode active material layer is not formed in advance>.
- an all-solid-state secondary battery can be manufactured.
- the constraining pressure at this time is not particularly limited, but is preferably 0.05 MPa or more, and more preferably 1 MPa. As an upper limit, for example, less than 10 MPa is preferable, and 8 MPa or less is more preferable.
- An all-solid-state secondary battery (before initialization) in which a negative electrode active material layer is formed in advance by providing necessary members for the laminate thus manufactured can be manufactured.
- the surface of the solid electrolyte sheet obtained by the method for manufacturing a solid electrolyte sheet of the present invention on which a negative electrode current collector is provided that is, all solid
- a positive electrode active material layer is formed on the surface opposite to the surface on which alkali metal ions or alkaline earth metal ions are deposited.
- the method for forming the positive electrode active material layer is a method for manufacturing an all-solid secondary battery in the form in which the negative electrode active material layer is formed in advance. This is the same as the method for forming the positive electrode active material layer.
- the positive electrode composition forming the positive electrode active material layer is one of preferable embodiments that contains the positive electrode active material and the negative electrode active material precursor.
- This positive electrode composition preferably contains an inorganic solid electrolyte, and further may contain a lithium salt, a conductive additive, the above-mentioned other components, a dispersion medium, and the like.
- the negative electrode active material precursor is a compound that generates (releases) ions (metal ions) of metal elements belonging to Group 1 or Group 2 of the Periodic Table in the positive electrode active material layer by a charging step described later. .
- the generated metal ions reach the negative electrode current collector or the like by charging of the all-solid-state secondary battery and pre-dope the negative electrode active material layer.
- the metal ions reach the negative electrode current collector and combine with the electrons to precipitate as metal, thereby pre-doping the negative electrode active material layer.
- the negative electrode active material precursor is not particularly limited as long as it has such characteristics or functions, and examples thereof include compounds containing the above metal elements, but lithium as a supporting electrolyte used as a material for an all-solid secondary battery It differs from salt in that it releases lithium ions during the first charge and decomposes, and does not contribute to lithium ion release during the next charge.
- the negative electrode active material precursor is preferably an inorganic compound containing the metal element, more preferably an inorganic salt that generates the metal ion and anion, carbonate, oxidation of the metal element (alkali metal or alkaline earth metal). Or a hydroxide is more preferred, and a compound selected from carbonates is particularly preferred.
- the inorganic salt is not particularly limited, but is preferably one that generates gas in a normal temperature and normal pressure, preferably in a charging environment by decomposition. For example, carbonate generates metal element ions and carbonate ions by oxidative decomposition.
- the generated metal element ions become a constituent material of the negative electrode active material layer, and the carbonate ions are converted into carbon dioxide gas and released (disappeared) from the positive electrode active material layer to the outside. Therefore, the carbonate does not remain in the positive electrode active material layer including the decomposition product, and a decrease in battery characteristics (energy density) due to the carbonate content can be avoided.
- the metal element forming the negative electrode active material precursor is preferably lithium.
- Examples of the negative electrode active material precursor include carbonates, oxides, hydroxides, halides, carboxylates (for example, oxalates) of the above metal elements, and more specifically, as lithium salts,
- the composition for positive electrodes may contain 1 type of negative electrode active material precursors, or may contain 2 or more types.
- the average particle diameter of the negative electrode active material precursor is not particularly limited, but is preferably 0.01 to 10 ⁇ m, and more preferably 0.1 to 1 ⁇ m.
- the average particle diameter is a value measured in the same manner as the average particle diameter of the inorganic solid electrolyte particles described above.
- the content of the negative electrode active material precursor in the composition for the positive electrode varies depending on the ion amount of the metal element to be supplemented and the like, but is not uniquely determined.
- the positive electrode composition contains a negative electrode active material precursor
- the total content of the positive electrode active material and the negative electrode active material precursor in the positive electrode composition is the positive electrode composition not containing the negative electrode active material precursor.
- the content can be set to the same content as the positive electrode active material, preferably 70 to 90% by mass.
- ions of metal elements can be replenished (dope) without using a highly active material (for example, Li metal) at the time of manufacturing an all-solid-state secondary battery, thereby improving battery capacity. I can expect.
- a highly active material for example, Li metal
- the decrease in the amount of lithium due to the first charge is increased as in the case of the Si negative electrode.
- replenishment of lithium becomes possible by using the negative electrode active material precursor.
- carbonate disappears by generating metal element ions and carbonate ions by oxidative decomposition.
- the generated metal element ions become a constituent material of the negative electrode active material layer, and the carbonate ions are converted into carbon dioxide gas and released outside the layer.
- the carbonate does not remain in the positive electrode active material layer including the decomposition product, and it is possible to avoid a decrease in battery characteristics due to the inclusion of the carbonate (improve the energy density).
- the energy density can be further improved in a preferable mode in which the voids generated by the decomposition reaction of the carbonate are crushed.
- the lamination method and conditions at this time are not particularly limited, for example, the method and conditions of “pressure lamination” in the above-mentioned ⁇ Method for producing negative electrode sheet for all-solid-state secondary battery> can be applied.
- a laminate (all-solid-state secondary battery precursor) including a positive electrode active material layer, a solid electrolyte layer, a metal film, a negative electrode current collector, and the like can be manufactured.
- the obtained laminate is charged (after providing an appropriate member).
- an alkali metal or an alkaline earth metal is deposited on the surface of the negative electrode current collector to form a negative electrode active material layer (an all solid secondary with a negative electrode active material layer formed).
- the negative electrode active material can be replenished by charging as described above.
- the method for charging the laminate is not particularly limited, and a known method can be used.
- the charging conditions may be any conditions that can oxidatively decompose the negative electrode active material precursor in the positive electrode active material layer, and examples thereof include the following conditions.
- the charging step releases the anions (compounds generated from) of the negative electrode active material precursor to the outside of the laminate, so that the laminate is not sealed but opened. It is preferable to carry out below.
- the atmosphere at this time is the same as the atmosphere during preforming.
- charging may be performed once or a plurality of times.
- the charging can also be performed by initialization that is preferably performed after manufacturing or before use of the all solid state secondary battery.
- the step of charging can be performed in a state where the entire laminate is restrained and pressurized in the stacking direction.
- the constraining pressurization pressure when constraining the entire laminate can be set in the same range as the constraining pressurization pressure in the above-described ⁇ Method for producing an all-solid-state secondary battery in which the negative electrode active material layer is formed in advance>.
- the constrained pressure is within the above range, the alkali metal or alkaline earth metal precipitates well on the negative electrode current collector and dissolves easily during discharge, resulting in excellent battery performance (discharge deterioration) Difficult). Moreover, the short circuit by a dendrite can be prevented effectively.
- the negative electrode active material precursor in the positive electrode active material layer is oxidized and decomposed to generate metal ions and anions.
- the generated metal ions move to or near the negative electrode active material layer and dope the negative electrode active material layer.
- the anion may remain in the positive electrode active material layer, but is preferably changed into a gas and released to the outside of the laminate.
- a negative electrode active material layer is formed.
- the negative electrode active material precursor is used, voids derived from the oxidatively decomposed negative electrode active material precursor are generated in the positive electrode active material layer.
- the porosity in the positive electrode active material layer after charging is the type or particle size of the positive electrode active material, the conditions for forming the positive electrode active material layer, the negative electrode active material Since it varies depending on the type, particle size, content, etc. of the precursor, it is not uniquely determined, but it can be, for example, 5-30%, and preferably 15-25%.
- a positive electrode active material layer formed using a positive electrode composition containing a positive electrode active material and a negative electrode active material precursor is compressed after being charged as described above. It is preferable to do. By this pressure compression, the total thickness (volume) of the all-solid-state secondary battery is reduced, and the energy density is improved.
- the pressurizing step is preferably performed after the charging step and before the discharging step. The step of pressurizing the positive electrode active material layer only needs to compress at least the positive electrode active material layer. However, in consideration of compressing the positive electrode active material layer after charging, the laminate as an all-solid-state secondary battery precursor is added. It is preferable to compress the positive electrode active material layer by pressing.
- the method for pressurizing and compressing the positive electrode active material layer is not particularly limited, and various known pressurization methods can be applied, and pressurization (for example, pressurization using a hydraulic cylinder press) is preferable.
- the pressure in this process will not be specifically limited if it is a pressure which can crush a space
- the pressure is appropriately determined according to the type or content of the positive electrode active material, the amount of voids, etc., but is preferably set in the range of 10 to 1000 MPa, for example.
- the lower limit of the pressure is more preferably 40 MPa or more, further preferably 50 MPa or more, particularly preferably 60 MPa or more, and the upper limit is more preferably 1000 MPa or less, still more preferably 750 MPa or less.
- the press time is not particularly limited, and may be a short time (for example, within several hours) or a long time (one day or more).
- the positive electrode active material layer may be heated at the same time as the pressure compression, but in the present invention, it is preferable to perform pressure compression without heating, for example, pressure compression at an ambient temperature of 10 to 50 ° C. is preferable. .
- the atmosphere during pressure compression is not particularly limited, and includes a mixed atmosphere of the solid electrolyte composition.
- the pressurizing step is preferably performed without applying voltage (not charging / discharging) at least to the positive electrode active material layer, usually the all-solid secondary battery precursor.
- not applying a voltage includes not only a mode in which no voltage is applied to the positive electrode active material layer, but also a mode in which a voltage of 2.5 to 3.0 V corresponding to the end voltage of the initial discharge is applied. To do.
- the positive electrode active material layer is compressed until the porosity of the positive electrode active material layer after compression is smaller than the porosity of the positive electrode active material layer after charge.
- This compression is ideally performed until the voids derived from the negative electrode active material precursor are completely crushed (until the porosity of the positive electrode active material layer before charging is reached).
- compression is performed to a porosity that is 1.5%, preferably 1%, and more preferably 0.5% higher than the porosity of the positive electrode active material layer before charging.
- This pressurizing step is different from the pressurization constraint preferably applied when using the all-solid-state secondary battery in that the positive electrode active material layer is compressed (the gap is crushed).
- a pressurizing step is performed to manufacture an initially charged all-solid secondary battery.
- the all-solid-state secondary battery can be manufactured by restraining and pressing the obtained laminate or all-solid-state secondary battery in the stacking direction as appropriate.
- the constraining pressurization pressure at this time is not particularly limited, and can be set within the same range as the constraining pressurization pressure in the above-described ⁇ Method for producing an all-solid-state secondary battery in which a negative electrode active material layer is formed in advance>
- An all-solid-state secondary battery in a form in which a negative electrode active material layer is not formed in advance by providing necessary members for the laminated body thus manufactured can be manufactured.
- Each all-solid-state secondary battery manufactured by the above-described method for manufacturing each all-solid-state secondary battery is preferably initialized after manufacture or before use.
- the initialization is not particularly limited, and can be performed, for example, by performing charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
- a charging (initial charging) method in initialization for example, the method described in the step of charging the positive electrode active material layer can be applied. Although it does not restrict
- the metal ions are generated from or near the negative electrode active material layer and reach the positive electrode active material layer.
- the metal deposited in the charging step is ionized and moves to the positive electrode active material layer due to the discharging step (the negative electrode active material layer is reduced in volume) Or disappear).
- the metal ions that have reached the positive electrode active material layer do not completely fill the voids derived from the negative electrode active material precursor. It has a void that is crushed in the pressurizing step described later (remains).
- the porosity of the positive electrode active material layer after discharge at this time is not particularly limited.
- the restraint pressure may be released after the manufacturing, but it may be restrained and pressurized during use. It is preferable at the point which can prevent discharge deterioration.
- an all-solid-state secondary battery in which short-circuiting is suppressed can be produced.
- the occurrence of a short circuit can be suppressed even when the negative electrode active material layer is a layer made of graphite and a layer made of precipitated alkali metal or alkaline earth metal.
- an all-solid-state secondary battery that employs a lithium metal layer that is preferable as a negative electrode active material layer exhibits even higher charge / discharge cycle characteristics, and can greatly improve the reliability of suppressing the occurrence of short circuits.
- the method for producing an all-solid secondary battery of the present invention does not require providing a layer for suppressing penetration of dendrites other than the solid electrolyte layer, the negative electrode active material layer, and the positive electrode active material layer.
- the thickness can be reduced. Therefore, even if it has a dendrite penetration prevention surface, reduction of battery capacity can be avoided.
- the dendrite penetration preventing surface and the like can be formed by heat treatment and further pressure forming treatment, the process is simple and the process cost can be reduced as compared with the vapor phase method requiring high vacuum and high temperature sintering.
- the heat treatment is a physical process at a low temperature as compared with the gas phase method and high-temperature sintering, it can be applied even if the solid electrolyte layer contains an organic binder, an organic porous substrate, or the like.
- the solid electrolyte layer can be formed of a sulfide-based inorganic solid electrolyte having high ion conductivity, so that low interface resistance can be realized.
- a metal film is provided on one surface of the solid electrolyte layer, it is possible to more effectively suppress the arrival of the dendrite to the positive electrode.
- a positive electrode active material layer is formed using a positive electrode composition containing a negative electrode active material precursor, lithium can be replenished as described above, and it is composed of a silicon material or a silicon-containing alloy having a large irreversible capacity. Even when the Si negative electrode is used or the negative electrode active material layer is not formed in advance, sufficient battery characteristics can be imparted, and dendrites can be more effectively prevented from reaching the positive electrode.
- this positive electrode active material layer is pressure-compressed after charging, as described above, even if the Si negative electrode or the negative electrode active material layer is not formed in advance, voids formed by decomposition of the negative electrode active material precursor are formed.
- the positive electrode active material layer itself can be thinned by crushing, and the (volume) energy density can be further improved while maintaining sufficient battery characteristics.
- the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
- Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
- Li 2 S lithium sulfide
- P 2 S 5 diphosphorus pentasulfide
- 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere.
- This container is set in a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-P— S glass) 6.20 g was obtained.
- the ionic conductivity was 0.28 mS / cm.
- the particle diameter of the Li—PS—S glass based on the above measuring method was 1 ⁇ m.
- the obtained Li—PS—S glass was low-temperature pyrolyzable plastic solid particles. That is, the glass transition temperature Tg (temperature of the exothermic peak obtained by DSC measurement) in the measurement method is 100 ° C. (lowest Tg) and 220 ° C. (highest Tg), and the pyrolysis temperature Td (DSC measurement) The temperature at which the endothermic peak starts to drop) was 182 ° C. The crystallization temperature in the above measurement method was 220 ° C.
- the Li—PS—S glass had a difference in press-fit depth of 10% or more before the measurement temperature reached 250 ° C. It confirmed that it was a solid particle which showed plastic deformation.
- the temperature at which the inorganic solid electrolyte was plastically deformed (minimum) was ⁇ 20 ° C.
- Example 1 an all-solid secondary battery in which the negative electrode active material layer was formed in advance using a metal lithium foil as the negative electrode active material layer was manufactured by Manufacturing Method I.
- Manufacturing Method I 100 mg of the synthesized sulfide-based inorganic solid electrolyte (also corresponding to plastic solid particles) is placed in a cylinder with an inner diameter of 10 mm made by Macor (registered trademark), and the pressure is applied at 25 ° C. under an argon gas atmosphere. The pressure was set to 180 MPa and pressed (preliminary pressure molding) for 1 minute (step A). In this way, a preformed body made of a sulfide-based inorganic solid electrolyte was obtained.
- step B the obtained preform was heated at 200 ° C. for 20 minutes in an argon gas atmosphere.
- step B a preform having a dendrite penetration preventing surface was obtained.
- the preform was returned to room temperature (25 ° C.) under an argon gas atmosphere, and the pressurizing force was set to 550 MPa at this temperature and pressed (main molding) for 1 minute (step C).
- step C a solid electrolyte sheet composed of a solid electrolyte layer (thickness: 650 ⁇ m) having a dendrite penetration preventing surface in which generation of cracks and cracks was suppressed was obtained.
- the dendrite penetration preventing surface was formed as a thin layer (dendrite penetration preventing layer: porosity 1%) having a thickness of 10 ⁇ m or less that can be peeled off, and the degree of gray increased. Under this thin layer, a normal solid electrolyte layer was formed.
- a laminated sheet was prepared by laminating a negative electrode current collector made of a copper foil having a thickness of 8 ⁇ m and a metal lithium foil having a thickness of 20 ⁇ m.
- the laminated sheet is laminated on the solid electrolyte sheet so that the metal lithium foil of the laminated sheet is in contact with one surface (dendritic penetration preventing surface) of the produced solid electrolyte sheet, and the laminated sheet is heated at 25 ° C. in an argon gas atmosphere.
- the pressure was set to 24 MPa and pressure bonding was performed for 1 minute.
- a negative electrode sheet for an all-solid-state secondary battery comprising a solid electrolyte layer and a negative electrode active material layer and a negative electrode current collector in this order on the dendrite penetration preventing surface of the solid electrolyte layer was produced.
- a positive electrode sheet composed of a positive electrode current collector and a positive electrode active material layer was produced.
- 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container (made by Fritsch) made of zirconia, 2.0 g of Li—PS glass synthesized in Synthesis Example 1 above, and styrene butadiene rubber (product code 182907, Aldrich).
- 0.1 g and 22 g of octane as a dispersion medium were added. Thereafter, the container was set on a planetary ball mill P-7 manufactured by Fritsch, and stirred at a temperature of 25 ° C.
- the positive electrode composition obtained above (weight per unit area of the positive electrode active material with respect to a circular area of 10 mm in diameter is 11 mg) is applied to a 20 ⁇ m-thick aluminum foil to be a current collector using a Baker type applicator, and 80
- the composition for positive electrodes was dried by heating at 2 ° C. for 2 hours. Thereafter, using a heat press, the positive electrode layer composition dried to a predetermined density was pressurized (600 MPa, 1 minute) while being heated (120 ° C.). In this way, a positive electrode sheet having a positive electrode active material layer with a thickness of 110 ⁇ m was produced.
- the positive electrode active material layer of the disk-shaped sheet punched out into a disk shape having a diameter of 10 mm from the prepared positive electrode sheet is used as a solid electrolyte layer in a negative electrode sheet for an all-solid-state secondary battery (a disk-shaped sheet punched into a disk shape having a diameter of 10 mm).
- the liquid was prepared by applying a solution obtained by mixing a lithium ion battery electrolyte in PEO to a surface different from the one surface.
- a laminate including a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer having a dendrite penetration blocking layer, a positive electrode active material layer, and a positive electrode current collector was obtained.
- the entire obtained laminate was constrained with a restraining pressure of 8 MPa in the laminating direction to produce an all-solid secondary battery having the layer configuration shown in FIG.
- Example 2 an all solid state secondary battery in which no negative electrode active material layer was previously formed was manufactured by Manufacturing Method I.
- a negative electrode current collector sheet made of a copper foil having a thickness of 8 ⁇ m was prepared.
- the current collector sheet was laminated on the solid electrolyte sheet so that the current collector sheet was in contact with one surface (dendritic penetration preventing surface) of the solid electrolyte sheet produced in Example 1, and the 25 25
- the applied pressure was set to 24 MPa at 0 ° C. and pressure bonding was performed for 1 minute to obtain a laminate of the negative electrode current collector sheet and the solid electrolyte layer.
- the disk-shaped sheet punched from the positive electrode sheet produced in Example 1 on the surface opposite to the negative electrode current collector sheet of the solid electrolyte layer in this laminated body (disk-shaped laminated body punched into a disk shape having a diameter of 10 mm)
- a positive electrode active material layer is attached in the same manner as in Example 1, and a laminate comprising a negative electrode current collector, a solid electrolyte layer having a dendrite penetration blocking layer, a positive electrode active material layer, and a positive electrode current collector Got.
- the entire laminated body thus obtained was constrained in the laminating direction with a confining pressure of 8 MPa, and an all-solid secondary battery in a form in which a negative electrode active material layer was not formed in advance was manufactured.
- Example 3 an all-solid-state secondary battery having a form in which a negative electrode active material layer is formed in advance using a metal lithium foil as a negative electrode active material layer (adopting a heat shearing process as Step B) was manufactured by Manufacturing Method I. .
- an all-solid-state secondary battery was produced in the same manner as in Example 1 except that the above-described process B to be heat-treated was changed to a preferable process B to be heat-sheared as described below.
- the negative electrode current collector and the negative electrode active material layer were laminated on the following heat-sheared surface, and the positive electrode active material layer was laminated on the surface opposite to the heat-sheared surface.
- Step B One surface (0.78 mm 2 ) of the preform obtained in Step A of Example 1 was heated to 200 ° C. in an argon gas atmosphere, and a brushing treatment was performed using a stainless steel metal brush.
- the rotation speed of the metal brush was 10,000 rpm and the treatment time was 1 minute or more.
- the shearing force was applied by moving a metal brush arranged perpendicular to the surface of the compact in the in-plane direction.
- a preform was obtained in which one surface was heat-sheared (having a dendrite penetration preventing surface (having a porosity of 1% and a thickness of 3 ⁇ m or less)).
- Example 4 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all solid secondary battery in which the negative electrode active material layer was formed in advance was manufactured by the manufacturing method I (Step A, Step B, and Step C). . That is, in Example 1, an all-solid secondary battery was produced in the same manner as in Example 1 except that the heating temperature in Step B in the production of the solid electrolyte sheet was set to 150 ° C. (Step B). Thus, a solid electrolyte sheet comprising a solid electrolyte layer in which voids between particles were embedded was obtained. The porosity of this solid electrolyte layer was 8%.
- Example 5 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all solid secondary battery in which the negative electrode active material layer was formed in advance was manufactured by the manufacturing method IA (Step B1 and Step C1). That is, in Example 1, the process A in the production of the solid electrolyte sheet was not performed, the following process B1 was performed, and the obtained inorganic solid electrolyte particles were used in the process C (process C1). In the same manner, an all-solid secondary battery was manufactured. Thus, a solid electrolyte sheet comprising a solid electrolyte layer in which voids between particles were embedded was obtained. The porosity of this solid electrolyte layer was 7%.
- Example 6 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all solid secondary battery in which the negative electrode active material layer was formed in advance was manufactured by the manufacturing method IA (Step B1 and Step C1). That is, in Example 5, the all-solid secondary was the same as Example 5 except that the heating temperature in Step C1 was 110 ° C. (temperature exceeding the lowest glass transition temperature and lower than the thermal decomposition temperature). A battery was manufactured. Thus, a solid electrolyte sheet comprising a solid electrolyte layer in which voids between particles were embedded was obtained. The porosity of this solid electrolyte layer was 6%.
- Example 7 an all-solid secondary battery having a metal film capable of forming an alloy with lithium and having no negative electrode active material layer formed in advance was manufactured by Manufacturing Method I.
- a Zn film having a thickness of 50 nm was formed on the surface of a copper foil having a thickness of 8 ⁇ m by sputtering.
- a Zn film and Example 1 were produced using a copper foil having a thickness of 8 ⁇ m formed with a Zn film having a thickness of 50 nm instead of the copper foil having a thickness of 8 ⁇ m.
- the negative electrode current collector (copper foil) was prepared in the same manner as in the production of the all-solid-state secondary battery of Example 2, except that one surface (dendrite penetration preventing surface) of the solid electrolyte sheet was in contact with the laminated electrolyte. ) And a solid electrolyte sheet (a dendrite penetration preventing surface), an all-solid-state secondary battery having a Zn film was manufactured.
- This all solid state secondary battery includes a solid electrolyte sheet having a Zn film (a metal film capable of forming an alloy with lithium) on one surface of the solid electrolyte sheet.
- Example 8 an all-solid secondary battery having a positive electrode active material layer formed using a negative electrode active material precursor and having no negative electrode active material layer formed in advance was manufactured by Manufacturing Method I.
- the production of the all-solid secondary battery of Example 2 the following composition for the positive electrode was used (the production of the positive electrode sheet was the same as that of Example 1).
- an all-solid secondary battery including a positive electrode active material layer containing a negative electrode active material precursor was manufactured.
- positive electrode active material LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide) 7.11 g, and Li 2 CO 3 (lithium carbonate, average particle diameter 1 ⁇ m) as a negative electrode active material precursor 0.79 g was charged into the container, and this container was set again on the planetary ball mill P-7, and mixing was continued for 15 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm. In this way, a positive electrode composition containing a negative electrode active material precursor was obtained.
- Example 9 an all-solid-state secondary battery having a positive electrode active material layer compressed and compressed using the laminate manufactured in Example 8 and having no negative electrode active material layer formed in advance was manufactured.
- the laminated body manufactured in Example 8 (all solid state secondary battery constrained at 8 MPa in the laminating direction) was initially prepared under the conditions of current 0.09 mA / cm 2 , voltage 4.25 V, charging time 20 hours, and temperature 25 ° C. Charged. By this initial charging, lithium ions generated from lithium carbonate were precipitated as lithium metal on the surface of the negative electrode current collector, and carbon dioxide gas was released outside the laminate.
- the porosity increases by 7% with respect to the positive electrode active material layer before the initial charge.
- -Pressurizing process After the initial charge, the stack is unconstrained, a pressure of 100 MPa is applied between the positive electrode current collector and the negative electrode current collector, and the all-solid-state secondary battery after the initial charge is pressed in the stacking direction. The active material layer was compressed. This compression was performed using a heat press machine at room temperature (25 ° C.) over 1 hour without applying voltage (charging and discharging) to the disc-shaped laminate.
- Comparative Example 1 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all-solid secondary battery in which the negative electrode active material layer was formed in advance (without the dendrite penetration blocking layer) was manufactured. That is, in Example 1, an all-solid secondary battery was produced in the same manner as in Example 1 except that Step A and Step B in the production of the solid electrolyte sheet were not performed (a dendrite penetration prevention layer was not formed). .
- Comparative Example 2 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all-solid secondary battery in which the negative electrode active material layer was formed in advance (without the dendrite penetration blocking layer) was manufactured. That is, in Example 1, except that Step A and Step B in the production of the solid electrolyte sheet were not performed (the dendrite penetration blocking layer was not formed), and the temperature of the main forming in Step C was changed to 200 ° C. In the same manner as in Example 1, an all-solid secondary battery was produced.
- Comparative Example 3 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all-solid secondary battery in which the negative electrode active material layer was formed in advance (without the dendrite penetration blocking layer) was manufactured. That is, in Example 1, an all-solid secondary battery was produced in the same manner as in Example 1 except that Step C in the production of the solid electrolyte sheet was not performed (the dendrite penetration prevention layer was not formed).
- Comparative Example 4 In this example, a metal lithium foil was used as the negative electrode active material layer, and an all solid state secondary battery in which the negative electrode active material layer was formed in advance was manufactured. That is, in Example 6, an all-solid-state secondary battery was manufactured in the same manner as in Example 6 except that the heating temperature in Step C1 was 200 ° C. (temperature exceeding the thermal decomposition temperature).
- Example 1 Charge and discharge efficiencies of 40 and 50 cycles were all stable at 99%. Furthermore, the discharge capacity after 50 cycles was stable at 99%.
- Example 2 The charge / discharge efficiency of 50 cycles was 97 to 99% (however, the discharge capacity after 50 cycles was 50%).
- Example 3 The charge / discharge efficiency of 30, 50 and 60 cycles was all stable at 99%.
- Example 4 The charge / discharge efficiency of 40 and 50 cycles was 50% or more.
- Example 5 The charge / discharge efficiency of 40 and 50 cycles was 60% or more.
- Example 6 The charge / discharge efficiency of 40 and 50 cycles was 65% or more.
- Example 7 The charge / discharge efficiency of 50 cycles was 97 to 99%, and the discharge capacity after 50 cycles was 90%.
- Example 8 The charge and discharge efficiencies of 70 cycles were all stable at 97 to 99%.
- the initial discharge capacity was the same as that of Example 2 (the same basis weight of the positive electrode active material) using 7.9 g of the positive electrode active material NCA.
- Example 9 The charge and discharge efficiencies of 70 cycles were all stable at 97 to 99%.
- the volume of the battery was reduced due to the thinning of the positive electrode active material layer. It was confirmed that the energy density was improved.
- Comparative Example 1 The charge / discharge efficiency in one cycle was 50% or less.
- Comparative Example 2 The charge / discharge efficiency in one cycle was 50% or less.
- Comparative Example 3 The charge / discharge efficiency in one cycle was 50% or less.
- Comparative Example 4 The charge / discharge efficiency of one cycle was 50% or less.
- the all-solid-state secondary batteries of Examples 1 to 4 and 7 to 9 having the solid electrolyte layer formed with the dendrite penetration prevention layer by performing Step A, Step B and Step C defined in the present invention are as follows.
- the all-solid-state secondary battery of each Example shows a high charging / discharging cycle characteristic, suppressing generation
- the all-solid-state secondary battery of Example 1 that employs lithium foil as the negative electrode active material layer has a stable charge and discharge efficiency of 99% for all 50 cycles, and the deposited lithium metal layer is used as the negative electrode active material layer.
- a high discharge capacity cycle characteristic is shown for the all-solid secondary battery of Example 2 adopted. Furthermore, it can be seen that when heat shear treatment is applied in Step B (Example 3), high charge / discharge cycle characteristics are stably exhibited (high reliability is exhibited) while suppressing the occurrence of internal short circuits. Further, the all-solid-state secondary battery of Example 7 having a Zn film between the negative electrode current collector (copper foil) and the sheared surface of the solid electrolyte sheet had a discharge capacity of 97 to 99% after 50 cycles. Thus, the time until the short circuit occurs can be extended, and the discharge capacity maintaining characteristics are improved.
- the all-solid-state secondary battery of Example 8 provided with the positive electrode active material layer containing a negative electrode active material precursor can suppress generation
- the all solid state secondary battery of Example 9 in which the positive electrode active material layer containing the negative electrode active material precursor was pressure-compressed after the initial charge showed a discharge capacity equivalent to that of Example 2, and the all solid state of Example 8 Compared with the secondary battery, the volume energy density is further improved. It can also be seen that the charge / discharge efficiencies of 70 cycles are all stable at 97 to 99%, and the occurrence of short circuits can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
このような状況下、有機電解液に代えて、不燃性の無機固体電解質を用いた全固体二次電池の開発が進められている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性若しくは信頼性を大きく改善することができ、また長寿命化も可能になるとされる。
デンドライトによる内部短絡の問題に対処すべく、特許文献1には、特定の温度条件で加熱成形して表面が滑らかな第一固体を形成し、この第一固体層の上に気相法により第二固体層を形成することにより、デンドライトによる短絡を防止する技術が記載されている。また、特許文献2は、デンドライトによる内部短絡の防止を課題とするものではないが、固体電解質部材中の貫通孔量を低減する(負極中のリチウム容量の低減を防止する)ため、酸化物固体電解質を含む焼結体の表面を研磨した後にガラスを溶融凝固させる技術が記載されている。
一方、全固体二次電池の製造においては、イオン伝導度を向上させるため、無機固体電解質の粒子で固体電解質層を形成する場合、無機固体電解質若しくは固体電解質層を加圧後に加熱する技術及び加熱下で加圧する技術が知られている(例えば特許文献3及び4参照。)。
引き続き検討を重ねたところ、上記固体粒子が、250℃未満の温度領域に熱分解温度(吸熱)を有している場合、この固体粒子を含む無機固体電解質粒子を熱分解温度以上の温度で加熱することにより、上記予備加圧成形をしなくても、更に充放電時にデンドライトが析出したとしても、デンドライトの成長をブロック可能で、しかも割れ及びヒビの発生を抑えた固体電解質層を形成できることを、見出した。
また、割れ及びヒビの発生を抑えた表面を有する固体電解質層、又は割れ及びヒビの発生を抑えた固体電解質層を有する固体電解質シートを、全固体二次電池に組み込むと、この全固体二次電池を繰り返し充放電しても、短絡発生を抑制できることを、見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
<1>250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、固体粒子のガラス転移温度未満の温度で予備加圧成形する工程と、
得られた予備成形体を、上記ガラス転移温度以上の温度に加熱する工程と、
加熱した予備成形体を、上記ガラス転移温度未満の温度において予備加圧成形よりも高い加圧力の条件で本成形する工程と、を有し、
無機固体電解質粒子からなる固体電解質層を形成する、固体電解質シートの製造方法。
<2>加熱する工程において、予備成形体をガラス転移温度以上の温度に加熱した状態で、予備成形体の一方の表面をせん断処理する、<1>に記載の固体電解質シートの製造方法。
<3>250℃以下の熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、固体粒子の熱分解温度以上の温度に加熱する工程と、
加熱した無機固体電解質粒子を、熱分解温度未満の温度において加圧成形する工程と、を有し、
無機固体電解質粒子からなる固体電解質層を形成する、固体電解質シートの製造方法。
<4>加圧成形する工程を、上記固体粒子のガラス転移温度未満の温度で行う、<3>に記載の固体電解質シートの製造方法。
<5>加圧成形する工程を、150℃未満の温度で行う、<3>又は<4>に記載の固体電解質シートの製造方法。
<6>上記加熱する工程の前に、上記無機固体電解質粒子を、上記固体粒子のガラス転移温度未満の温度で予備加圧成形する工程を有する、<3>~<5>のいずれか1つに記載の固体電解質シートの製造方法。
<7>上記加熱する工程において、上記予備加圧成形する工程で得られた予備加圧成形体の一方の表面を上記固体粒子の熱分解温度以上の温度に加熱した状態でせん断処理する、<6>に記載の固体電解質シートの製造方法。
<8>固体電解質層の一方の表面上に、リチウムと合金形成可能な金属の膜を設ける、<1>~<7>のいずれか1つに記載の固体電解質シートの製造方法。
<9>上記<1>~<8>のいずれか1つに記載の固体電解質シートの製造方法で製造した固体電解質シートにおける固体電解質層の一方の表面に、負極活物質を圧着積層して負極活物質層を形成する、全固体二次電池用負極シートの製造方法。
<10>上記<9>に記載の全固体二次電池用負極シートの製造方法で製造した全固体二次電池用負極シートの、負極活物質層とは反対側の表面に正極活物質層を形成する、全固体二次電池の製造方法。
<11>上記<1>~<8>のいずれか1つに記載の固体電解質シートの製造方法で製造した固体電解質シートにおける固体電解質層の、負極集電体を設ける表面と反対側の表面に正極活物質層を形成する、全固体二次電池の製造方法。
<12>正極活物質層を、正極活物質と負極活物質前駆体とを含有する正極用組成物を用いて形成する、<10>又は<11>に記載の全固体二次電池の製造方法。
<13>正極活物質層の形成後に充電する、<12>に記載の全固体二次電池の製造方法。
<14>充電した正極活物質層を加圧して圧縮する、<13>に記載の全固体二次電池の製造方法。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
まず、本発明の各製造方法により製造される、全固体二次電池、固体電解質シート及び全固体二次電池用負極シートについて、好ましい実施形態を挙げて、説明する。
この全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有し、固体電解質層として、後述する本発明の固体電解質シートの製造方法により製造されたものを用いていたものであれば、それ以外の構成は特に限定されず、全固体二次電池に関する公知の構成を採用できる。全固体二次電池は、充放電を繰り返しても、デンドライトの正極への到達を防止でき、短絡発生が抑制される。更に好ましくは、全固体電池に拘束力を加えることで、放電時に負極活物質量が減少しても、固体電界質層と負極活物質との接触が維持され、とりわけ負極活物質層としてリチウム箔を採用した場合には、充放電による電池容量の低下が抑えられ(充放電によるリチウムの失活量を低減でき)、優れたサイクル特性をも示す。
本発明において、負極活物質層は、特に断らない限り、予め形成した負極活物質層(負極活物質層を予め形成する形態における負極活物質層)に加えて、充電により析出する金属の層(負極活物質層を予め形成しない形態における負極活物質層)を包含する。
本発明において、全固体二次電池を構成する各層は、特定の機能を奏する限り、単層構造であっても複層構造であってもよい。
一方、放電時には、負極に蓄積された上記のアルカリ金属イオン若しくはアルカリ土類金属イオンが正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
このように、負極活物質層を予め形成しない形態の全固体二次電池は、未充電の態様(負極活物質が析出していない態様)と、既充電の態様(負極活物質が析出している態様)との両態様を包含する。なお、本発明において、負極活物質層を予め形成しない形態の全固体二次電池とは、あくまで電池製造における層形成工程において負極活物質層を形成しないことを意味し、上記の通り、負極活物質層は、充電により負極用集電体上に形成されるものである。
固体電解質層3は、後述する本発明の固体電解質シートの製造方法により製造されたものであり、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質の粒子と、250℃以下で塑性変形する固体粒子と、本発明の効果を損なわない範囲で他の成分とを含有する。無機固体電解質、固体粒子及び他の成分については後述する。
この固体電解質層3は、その表面領域又は全体的に空隙の少ない密な状態となり、負極から成長してくるデンドライトの正極への到達(貫通)をブロック又は阻止することができる。
本発明において、固体電解質層が密な状態とは、空隙率が、例えば3%以下であることが好ましく、1%以下であることがより好ましい。空隙率は、固体電解質層の任意の断面を走査型電子顕微鏡(SEM)により観察し、得られたSEM写真を倍率3万倍で撮影し、視野3μm×2.5μm中の空隙領域の面積を求め、この面積を視野面積(7.5μm2)で除した値(百分率)として算出する。測定領域の厚みが1μm以下である場合、固体電解質層の任意の断面に代えて任意の表面を観察することにより、空隙率を算出することもできる。
なお、固体電解質層の表面領域を密な状態とした場合、表面領域以外の領域は、無機固体電解質の粒子間に空隙を有しており、通常、空隙率は10%以下である。
固体電解質層3において、表面領域以外の領域は、無機固体電解質の粒子と固体粒子との混合物を成形してなる通常のものと同様である。
後述する本発明の固体電解質シートの製造方法IAにおいて、250℃未満の温度領域に熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子する固体粒子を用いる場合、この固体粒子を含む無機固体電解質粒子(粉体又はその予備成形体)を、熱分解温度以上で加熱することにより、粒子間の空隙を埋めて(空隙率を低減して)全体的に密な固体電解質層を形成することができる。しかも、硫化物系無機固体電解質の粒子を用いると、後述する加熱する工程B1において粒子内の過剰硫黄が表面に析出(移行)して、析出してくるデンドライトとの反応物を形成して粒子間の空隙を充填すると考えられる。そのため、この固体電解質層3は、充放電時にデンドライトが析出しても、デンドライトの成長をブロック可能で、しかも割れ及びヒビの発生を抑えることができる。このようなデンドライト貫通阻止可能なバルク(無機固体電解質粒子)の状態若しくは特性としては、例えば、固体粒子の表面が熱分解によって変性(例えば塑性変形、体積収縮、平滑化)している状態が挙げられ、デンドライト貫通阻止可能な固体電解質層の状態若しくは特性としては、固体粒子の表面が変性して、層として塑性変形しやすい状態となること等が挙げられる。
250℃未満の温度領域に熱分解温度を有する固体粒子を用いる場合、無機固体電解質粒子を予備加圧成形しなくても、無機固体電解質の粒子と固体粒子との混合物を成形してなる通常の固体電解質層よりも、上述の密な固体電解質層を簡便に形成できる。この製造方法においては、予備加圧成形を行った後、熱分解温度以上に加熱すると、固体粒子の表面の熱分解成分が粒子間の融着を促進し、加圧成形して得られる固体電解質層の空隙率をより低減でき、割れ及びヒビの発生をより効果的に抑えることができる。
固体電解質層中の、無機固体電解質粒子、塑性変形を示す固体粒子及び他の成分の含有量は、後述する予備成形体の固形成分100質量%中の含有量(混合割合)と同じである。
正極活物質層4は、周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質と、正極活物質と、本発明の効果を損なわない範囲で他の成分とを含有する。また、全固体二次電池の製造後未充電状態においては、後述する負極活物質前駆体を含有していることが好ましい態様の1つである。無機固体電解質、正極活物質、負極活物質前駆体及び他の成分については後述する。
正極活物質層中の、正極活物質、無機固体電解質、負極活物質前駆体及び他の成分の含有量は、後述する正極用組成物における固形成分100質量%中の含有量と同じである。
負極活物質層2は、負極活物質、好ましくは周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有する無機固体電解質、更には他の成分を含有する層、リチウム金属等が採用される。無機固体電解質、負極活物質及び他の成分については後述する。
負極活物質層を構成しうるリチウム金属層とは、リチウム金属の層を意味し、具体的には、リチウム粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等を包含する。
負極活物質層中の、負極活物質、無機固体電解質及び他の成分の含有量は、後述する負極用組成物における固形成分100質量%中の含有量と同じである。
本発明においては、上述した通り、負極活物質層を予め形成しない形態とすることも好ましい。
本発明において、負極活物質層は、充放電による体積膨張及び体積収縮が小さい点で、炭素質材料を含む負極活物質層が好ましく、充放電による負極の体積膨張及び体積収縮を吸収でき、また固体電解質層の一方の表面(全固体二次電池において負極側に配置される表面)を保護できる点で、リチウム金属層、特にリチウム箔が好ましい。一方、電池容量の点では、負極活物質層を予め形成しない形態が好ましく、高い電池容量を達成できる上、短絡の発生を効果的に防止できる点では、Si負極が好ましい。負極活物質層がSi負極又は負極活物質層を予め形成しない形態において充電により金属イオンを補充する場合、Si負極及び上記形態の利点を活かしつつも、電池容量及びエネルギー密度の向上を図ることができる。
負極活物質層、固体電解質層及び正極活物質層の厚さは、それぞれ、特に限定されない。各層の厚さは、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。負極活物質層を予め形成しない形態における負極活物質層の厚さは、充電により析出する金属量により変動するので、一義的に決定されない。全固体二次電池においては、正極活物質層、固体電解質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。負極活物質層としてリチウム金属層を採用する場合、このリチウム金属層の厚さは、負極活物質層の上記厚さにかかわらず、例えば、0.01~100μmとすることができる。
正極集電体5及び負極集電体1は、電子伝導体が好ましい。
本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
本発明の全固体二次電池は、固体電解質シートと負極集電体との間に、後述する、リチウムと合金形成可能な金属の膜を有していることも好ましい態様の1つである。このリチウムと合金形成可能な金属の膜は、通常、負極集電体の表面(固体電解質層側に配置される表面)又は固体電解質層の負極活物質層を形成する表面に設けられる(いずれも図1において図示しない。)。この金属の膜は、全固体二次電池が負極活物質層を有している場合、負極活物質層と負極集電体との間に配置される。
本発明の全固体二次電池の製造方法により製造される全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池等の形態とするためには更に適当な筐体に封入して用いることも好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
本発明の固体電解質シートの製造方法により製造される固体電解質シートは、固体電解質層を備えており、全固体二次電池の固体電解質層として用いうるシート状成形体である。この固体電解質シートは、全固体二次電池が負極活物質層を予め形成しない形態である場合、負極活物質層を形成する(金属リチウムを析出させる)固体電解質層(負極集電体を有する態様においては、この負極集電体に隣接する固体電解質層)として好適に用いることもできる。この場合、固体電解質シートは、負極活物質層を形成する側の表面(負極集電体を設ける表面)上に、直接又は他の層を介して、リチウムと合金形成可能な金属の膜を有していることが好ましい。
また、この固体電解質シートは、後述する全固体二次電池用負極シートの製造に好適に用いることもできる。更に、全固体二次電池用正極シートの製造に用いることもできる。
本発明の全固体二次電池は、本発明の固体電解質シートを用いて言うと、固体電解質シートにおける固体電解質層の、負極集電体を設ける表面とは反対側の表面に正極活物質層を有する構成である。
この固体電解質シートが備えている固体電解質層は、上記全固体二次電池において説明した固体電解質層と同じであるので、説明を省略する。
基材としては、固体電解質層を支持できるものであれば特に限定されず、上記集電体で説明した材料、有機材料及び無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン及びセルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。
この金属膜の厚さは、特に制限されないが、300nm以下であることが好ましく、20~100nmであることがより好ましく、30~50nmであることが更に好ましい。
上記金属膜を有する固体電解質含有シートを、負極活物質層を予め形成しない形態の全固体二次電池に組み込むと、充電によるリチウム金属の析出状態を効果的に制御することができ、短絡発生を更に効果的に抑制できる(短絡が発生するまでの時間を長期化(充放電サイクル数を伸ばすことが)できる。)。すなわち、充電によりリチウム金属が、固体電解質層との界面に一様に配置された金属膜を形成する金属と合金を形成して析出するため、局所的なリチウム金属の析出を抑制できる。これにより、デンドライトの正極への到達を効果的に抑制できると考えられる。
他の層として正極活物質層を有する場合、正極活物質層は、固体電解質層の一方の表面(後述する工程Bでせん断処理する場合、せん断処理した表面)とは反対側に設けられ、正極活物質層の、固体電解質層とは反対側に正極集電体を有することが好ましい。本発明において、固体電解質シートが正極活物質層を有する場合、全固体二次電池用正極シートということもできる。この全固体二次電池用正極シートが備えている正極活物質層及び固体電解質層は、上記全固体二次電池において説明した正極活物質層及び固体電解質層と同じであるので、説明を省略する。
本発明において、固体電解質シート、下記全固体二次電池用負極シート及び全固体二次電池用正極シートを合わせて、全固体二次電池用シートということができ、固体電解質シートは、全固体二次電池用正極シートを含む概念である。
本発明の全固体二次電池用負極シートの製造方法により製造される全固体二次電池用負極シートは、負極活物質層と固体電解質層とを備えており、好ましくは、負極活物質層の表面と固体電解質層の表面(デンドライト貫通阻止面)とが接した状態に積層されている。この全固体二次電池用負極シートは、全固体二次電池の負極活物質層及び固体電解質層として用いうるシート状成形体である。
本発明の全固体二次電池は、本発明の全固体二次電池用負極シートを用いて言うと、全固体二次電池用負極シートの、負極活物質層とは反対側の表面に正極活物質層を有する構成である。
この固体電解質シートが備えている負極活物質層及び固体電解質層は、上記全固体二次電池において説明した負極活物質層及び固体電解質層と同じであるので、説明を省略する。
次に、本発明の全固体二次電池の製造方法を、本発明の固体電解質シートの製造方法及び本発明の全固体二次電池用負極シートの製造方法とともに、説明する。
全固体二次電池を製造するに際して、固体電解質シート、更には適宜に全固体二次電池用負極シート等を準備する。固体電解質シートは本発明の固体電解質シートの製造方法により製造する。
本発明の固体電解質シートの製造方法は、下記工程A、工程B及び工程Cを順に行うことにより、固体電解質層を形成する方法である。
本発明において、「工程を順に行う」とは、ある工程と他の工程とを行う時間的先後を意味するものであって、ある工程と他の工程との間に別の工程(休止工程を含む。)を行う態様も包含する。また、ある工程と他の工程とを順に行う態様には、時間、場所又は実施者を適宜に変更して行う態様も包含する。
工程A:250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、固体粒子のガラス転移温度未満の温度で予備加圧成形する工程
工程B:得られた予備成形体を、上記ガラス転移温度以上の温度に加熱する工程
工程C:加熱した予備成形体を、上記ガラス転移温度未満の温度で、上記工程Aの予備加圧成形よりも高い加圧力で本成形する工程
工程B1:250℃以下の熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、固体粒子の熱分解温度以上の温度に加熱する工程
工程C1:加熱した無機固体電解質粒子を、上記熱分解温度未満の温度で、加圧成形する工程
この製法方法において、加圧成形する工程C1は、上記固体粒子のガラス転移温度未満の温度で行うこともできる。
また、加熱する工程B1の前に、250℃以下の熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、この固体粒子のガラス転移温度未満の温度で予備加圧成形する工程を有していてもよい。この場合、加熱する工程において、得られた予備成形体を無機固体電解質粒子に代えて加熱する。
また、上記工程A~Cを有する本発明の固体電解質シートの製造方法を製造方法Iといい、熱分解温度に関わらず、塑性固体粒子でも低温熱分解性塑性固体粒子でも用いることができる。一方、低温熱分解性塑性固体粒子を用いて上記工程B1及びC1を行う製造方法を製造方法IAという。製造方法というときは、特に断らない限り、製造方法Iと製造方法IAを含む意味であり、製造方法Iというときは、特に断らない限り、製造方法IAを含まない意味である。上記の点は、後述する全固体二次電池用負極シートの製造方法及び全固体二次電池の製造方法も同様とする。
本発明の固体電解質シートの製造方法Iにおいては、工程Aを実施するに際して、250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、予備成形材料として、準備する。この250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子は、通常、250℃以下で塑性変形する固体粒子と無機固体電解質粒子との混合物を意味するが、無機固体電解質粒子が250℃以下で塑性変形する固体粒子にも相当する場合(例えば硫化物系無機固体電解質)、この無機固体電解質粒子と他の(250℃以下で塑性変形しない)無機固体電解質との混合物、更には250℃以下で塑性変形する1種若しくは2種以上の無機固体電解質粒子のみ(無機固体電解質粒子群)を用いることもできる。本発明においては、250℃以下で塑性変形する固体粒子及び無機固体電解質として硫化物系無機固体電解質を用いる態様が好ましい。予備成形材料に用いる固体粒子及び無機固体電解質粒子は、それぞれ、1種若でも2種以上でもよい。
塑性固体粒子は、250℃以下で塑性変形可能な特性若しくは物性を有する粒子であれば特に制限されない。このような粒子を用いると、後述する工程B及び工程Cにより、予備成形体の表面をデンドライトの成長をブロック可能で、しかも割れ及びヒビの発生を抑えた表面にすることができる。
塑性固体粒子としては、例えば、後述する硫化物系無機固体電解質、五酸化二リン、窒化ホウ素-硫黄混合物等が挙げられ、中でも、硫化物系無機固体電解質が好ましい。これらの塑性固体粒子は、適宜に合成してもよく市販品を用いることができる。例えば、窒化ホウ素-硫黄混合物の合成方法として次の方法が挙げられる。すなわち、長辺0.4μmの鱗片状の六方晶窒化ホウ素(hBN)と硫黄とを質量比1:2の割合に設定して乳鉢で混合した後、温度170℃、圧力130MPaの条件でホットプレスして膜体とし、得られた膜体を乳鉢ですりつぶして粉体とする。これにより、麟片状のhBN粒子の間に、熱溶融した硫黄が充填され、塑性変形性を示す固体粒子とすることができる。
塑性固体粒子が250℃以下で塑性変形可能な特性若しくは物性を有する粒子であるか否かは、以下のようにして、判断できる。すなわち、微小硬度試験機にて、バーコビッチ圧子を用いて最大押し込み加重100mN、負荷時間10秒、クリープ5秒、除加時間10秒で押し込み試験を行い、試験後に試料損傷が無く、押し込み試験の前後で得られた変位-荷重曲線から、クリープ後の圧入深さと、除荷後の圧入深さの差分がクリープ後圧入深さの10%以上であれば、塑性変形可能な特性を有すると判断する。測定温度は、上限を250℃とし、塑性変形が可能な温度で行う。具体的には、測定温度が250℃に到達するまでに上記差分が10%以上となれば、250℃以下で塑性変形する固体粒子とする。なお、押し込み加重は、試料全体の情報が得られるように、試験片として用いた、塑性固体粒子を成形した膜について、その膜厚の1/10程度となるように設定する。
本発明において、塑性固体粒子が複数のガラス転移温度を有する場合、上記工程A、B及びCの温度条件は、最も低温のガラス転移温度を基準とすることが好ましい。
本発明において、塑性固体粒子の熱分解温度は、上記ガラス転移温度の測定と同様にして得られたチャートにおいて、観測された吸熱ピークの低温側の裾(チャートの落ち込み開始部分)の温度(熱分解開始温度)とすることができる。
塑性変形温度は、ガラス転移温度よりも低い温度であることが好ましく、複数のガラス転移温度が確認される場合、最も低温のガラス転移温度よりも低い温度であることが好ましい態様の1つである。塑性変形温度は熱分解温度よりも低い温度であることが好ましい。
塑性固体粒子が熱分解温度を有する場合、熱分解温度は、通常、ガラス転移温度以上の温度であり、複数のガラス転移温度が確認される場合、最も低温のガラス転移温度よりも高い温度である。その他のガラス転移温度との関係は、特に制限されないが、例えば、熱分解温度は最も高温のガラス転移温度よりも低い温度であることが好ましい態様の1つである。
予備成形材料に用いる無機固体電解質粒子は、下記の無機固体電解質の粒子である。
本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF6、LiBF4、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族若しくは第二族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有さないものが一般的である。
本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
La1Mb1Pc1Sd1Ae1 式(I)
式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
硫化物系無機固体電解質は、例えば硫化リチウム(Li2S)、硫化リン(例えば五硫化二燐(P2S5))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS2、SnS、GeS2)の中の少なくとも2つ以上の原料の反応により製造することができる。
酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLi3YBr6、Li3YCl6等の化合物が挙げられる。中でも、Li3YBr6、Li3YCl6を好ましい。
水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第一族若しくは第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH4、Li4(BH4)3I、3LiBH4-LiCl等が挙げられる。
無機固体電解質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
予備成形材料は、固体電解質層に含有してもよい他の成分を含有していてもよい。
他の成分としては、バインダー、添加剤、後述する分散媒等が挙げられる。
予備成形材料が2種以上の成分で調製される場合、各成分を混合して予備成形材料を調製する。例えば、予備成形材料は、塑性固体粒子と無機固体電解質粒子と、適宜に他の成分を混合して得られる。混合方法は、特に制限されず、ボールミル、ビーズミル、ディスクミル等の公知の混合機を用いた方法が挙げられる。また、混合条件も、特に制限されないが、混合雰囲気としては、後述する予備加圧成形での雰囲気と同じであり、好ましい雰囲気も同じである。
本発明において、固形成分(固形分)とは、予備成形材料に、1mmHgの気圧及び窒素雰囲気下、30℃で6時間乾燥処理を行ったときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
他の成分の、予備成形材料中の含有量は、特に制限されず、適宜設定される。
工程Aにおいては、準備(調製)した予備成形材料を、固体粒子のガラス転移温度未満の温度で、通常層状又は膜状に、予備加圧成形する。
工程Aにおける成形方法は、予備成形材料を所定の形状に成形できる方法であればよく、公知の各種成形方法を適用することができ、プレス成形(例えば油圧シリンダープレス機を用いたプレス成形)が好ましい。成形時の加圧力は、特に限定されないが、通常、50~1500MPaの範囲に設定されることが好ましく、100~300MPaの範囲に設定されることがより好ましい。後述する工程Cを行う場合、上記範囲内において、工程Cの本成形での加圧力よりも低く設定されることが更に好ましい。予備加圧成形(プレス)時間は、短時間(例えば数時間以内)でも、長時間(1日以上)でもよい。工程Aの温度条件は、固体粒子のガラス転移温度未満の温度であればよく、例えば、-30~200℃に設定できるが、本発明においては、非加熱で予備加圧成形することが好ましく、例えば、0~50℃の環境温度で予備加圧成形することが好ましい。
予備加圧成形中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。無機固体電解質は水分と反応するため、予備加圧成形中の雰囲気は、乾燥空気下又は不活性ガス中が好ましい。
この工程において、予備成形材料を支持する上記基材又は集電体を用いることもできる。
本発明の固体電解質シートの製造方法Iにおいては、次いで、得られた予備成形体を、固体粒子のガラス転移温度以上の温度に加熱する(加熱処理という。)。これにより、例えば塑性固体粒子が塑性変形(塑性流動)して、工程Cの本成形時に固体電解質層に割れ割れ及びヒビが生じにくい表面を形成できる。工程Bにおける加熱温度は、塑性固体粒子のガラス転移温度以上であればよいが、このガラス転移温度を超える温度が好ましく、ガラス転移温度(Tg)に対して5℃以上高い温度(Tg+5℃以上の温度)であることがより好ましく、ガラス転移温度に対して10~150℃高い温度であることが更に好ましく、ガラス転移温度に対して55~150℃高い温度であることが更に好ましい。加熱温度の上限は、特に制限されないが、例えば250℃とすることができる。加熱温度は、塑性変形粒子を効果的に塑性変形させる点で、塑性固体粒子が複数のガラス転移温度を有する場合、低温側から2番目のガラス転移温度(第二ガラス転移温度ともいう。)以下であることが好ましい。加熱時間は、予備成形体にデンドライト貫通阻止面を形成できる時間であればよく、塑性固体粒子の塑性変形性、塑性固体粒子の混合割合、上記加熱温度等に応じて適宜に設定され、一義的に決定されるものではない。加熱時間は、例えば0.1~120分に設定することができる。
加熱せん断処理において、予備成形体の表面に作用させるせん断力は、予備成形体の表面(単位面積当たり)に作用した(伝達された)最小せん断エネルギーで表すことができるが、塑性固体粒子の塑性変形性、塑性固体粒子の混合割合(更には表面に存在する割合)等に応じて適宜に設定され、一義的に決定されるものではない。加熱せん断処理として後述する表面ブラッシング方法を採用する場合、単位面積当たりの最小せん断エネルギーは、ブラシ回転数×処理時間×摩擦力で、定義される。単位面積当たりの最小せん断エネルギーの一例を挙げると、100(gf/mm2)・mm(1000Pa・m)以上に設定することができる。ブラシの回転数、処理時間及び摩擦力も適宜に設定され、例えば、ブラシの回転数としては、100~15000rpmが挙げられ、処理時間としては、0.01~30分が挙げられる。より具体的には、例えば、後述する実施例で適用した条件が挙げられる。
予備成形体の表面にせん断力を作用させる方向等も、表面に平行な方向であれば特に制限されず、一方向に沿う方向でもよく、複数方向に沿う方向、周方向に沿う方向、又はこれらを組み合わせた方向等が挙げられる。
加熱処理及び加熱せん断処理する際の雰囲気は、上記予備加圧成形での雰囲気と同じであり、好ましい雰囲気も同じである。
本発明の固体電解質シートの製造方法IAおいては、250℃以下の熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、固体粒子の熱分解温度以上の温度に加熱する。これにより、固体粒子を含む無機固体電解質粒子(粉体又はその予備成形体)について、塑性固体粒子を塑性変形させつつ、塑性固体粒子の表面を熱分解して変性させることができる。予備成形体の場合には粒子間の空隙を埋める(空隙率を低減する)ことができる。
工程B1においては、加熱する材料として、上記予備成形材料の中から250℃以下の熱分解温度を有する塑性固体粒子を含む無機固体電解質粒子若しくはその混合物、又は上記工程Aで得られた予備成形体を用いる。
工程B1における加熱温度は、塑性固体粒子の熱分解温度以上であればよいが、この熱分解温度を超える温度が好ましく、熱分解温度に対して5℃以上高い温度であることがより好ましく、熱分解温度に対して10~50℃高い温度であることが更に好ましい。加熱温度の上限は、特に制限されないが、例えば250℃とすることができる。加熱時間は、塑性固体粒子の表面を熱分解できる時間であればよく、塑性固体粒子の塑性変形性、塑性固体粒子の混合割合、上記加熱温度等に応じて適宜に設定され、一義的に決定されるものではない。加熱時間は、例えば0.1~120分に設定することができる。
工程B1において、加熱材料として上記予備成形体を用いる場合、上記工程Bにおける加熱せん断処理を行うこともできる。
本発明の固体電解質シートの製造方法Iにおいては、次いで、工程Bで得られた予備成形体を、上記塑性固体粒子のガラス転移温度未満の温度において工程Aの予備加圧成形よりも高い加圧力の条件で、本成形する(工程C)。工程Cにより、工程Bで形成されたデンドライト貫通阻止面に割れ、ヒビ等の欠陥を発生させることなく表面に塑性流動を起こして、表面の空隙をより低減させた固体電解質層を形成できる。
本成形する方法は、予備成形体に垂直圧力を加えて成形する方法であればよく、例えば、予備成形法として挙げたプレス成形が好ましい。この本成形工程(とりわけプレス成形)は、加圧力を工程Aの予備成形法よりも高く設定すること以外は、工程Aの予備成形法(プレス成形)と同じ成形法を採用することができる。
本成形工程における温度条件は、塑性固体粒子のガラス転移温度未満の温度であればよく、工程Aの温度条件を採用できるが、工程Aの温度条件と同一条件に設定する必要はない。
本成形工程における加圧力は、予備成形工程での加圧力よりも高く設定されることが好ましく、通常、100~1000MPaの範囲に設定されることがより好ましく、150~600MPaの範囲に設定されることが更に好ましい。予備成形工程での加圧力と本成形工程における加圧力との圧力差は、特に制限されないが、例えば、10~1000MPaが好ましく、100~400MPaがより好ましい。加圧方向は、予備成形体の被加圧面に対して垂直方向であって(垂直圧力)、通常、工程Aにおける加圧方向と同じである。
本発明の固体電解質シートの製造方法IAおいては、次いで、塑性固体粒子の熱分解温度未満の温度において、工程B1で加熱処理した無機固体電解質粒子等を、加圧成形する。これにより、表面を変性させた無機固体電解質粒子又は空隙率の低い予備成形体から、全体的に密な、デンドライトの成長をブロック可能で、しかも割れ及びヒビの発生を抑えることができる固体電解質層を形成することができる。
加圧成形する方法及び条件は、温度条件以外は、上記製造方法Iの工程Cと同じである。工程C1における加圧成形温度は、塑性固体粒子の熱分解温度未満の温度である。すなわち、製造方法Iの本成形温度よりも高い温度で加圧成形できる。好ましくは、固体電解質層の堅さ(形状維持)の点で、塑性固体粒子の結晶化温度以下の温度である。製造方法IAの一形態においては、加圧成形温度は、塑性固体粒子のガラス転移温度(最も低温のガラス転移温度)未満の温度に設定してもよい。
加圧成形温度は、例えば、熱分解温度(Td)に対して、10℃以上低い温度(上限がTd-10℃の温度)であることがより好ましく、15~80℃低い温度(上限がTd-(15~80)℃の温度)であることが更に好ましい。具体的には、150℃未満であることが、無機固体電解質粒子の充填率が高い(空隙率の低い)固体電解質層を形成できる点で好ましく、130℃以下であることが好ましく、120℃以下であることがより好ましい。加圧成形温度の下限は、特に制限されず、例えば、70℃以上とすることができ、100℃以上が好ましく、ガラス転移温度を超える温度がより好ましい。
ここで、塑性固体粒子の結晶化温度は、塑性固体粒子が150℃以上に複数のガラス転移温度を有する場合、最も低温側に存在するガラス転移温度を意味する。その測定方法は、上記ガラス転移温度の測定方法において、150℃以上に存在する最も低温の発熱ピーク温度を読み取って求める。
固体電解質シートが上述の金属膜を有する場合、固体電解質層の一方の表面(負極集電体を設ける側の表面)上に金属膜を設ける(配置する)工程を行う。金属膜の形成方法は、特に制限されず、スパッタリング法、蒸着法、イオンプレーティング法等が挙げられる。形成方法の条件は、特に制限されず、金属種、厚さ等に応じて、適宜の条件が選択される。せん断処理された表面上に金属膜を設ける方法としては、特に制限されないが、せん断処理した表面上で上記形成方法により形成する方法、上記形成方法により予め作製した金属膜をせん断処理した表面に積層(載置)する方法、更には上記形成方法により予め作製した金属膜をせん断処理した表面に転写(圧着積層)する方法が挙げられる。予め作製した金属膜をせん断処理した表面に積層又は転写する方法及び条件としては、例えば、後述する、負極活物質をせん断処理した表面に載置し、更にはプレスする方法及び条件を選択できる。
集電体等を有する場合、集電体を設ける方法としては、特に制限されず、後述する、集電体等を一方の表面に載置した後にプレスする方法及び条件を選択できる。
全固体二次電池用負極シートの製造方法は、全固体二次電池の負極の形態に応じて、実施される。すなわち、負極活物質層を予め形成する形態の全固体二次電池を製造する場合(電池製造における層形成工程において負極活物質層を形成する場合)、全固体二次電池用負極シートを製造する。一方、負極活物質層を予め形成しない形態の全固体二次電池を製造する場合(電池製造における層形成工程において負極活物質層を形成しない場合)、全固体二次電池用負極シートを製造する必要はない。
負極活物質を圧着積層する方法は、特に限定されないが、例えば、負極活物質を固体電解質層の一方の表面に載置(配置)した後に、プレスする方法が挙げられる。
本発明においては、負極活物質として上述したリチウム金属層(リチウム箔、リチウム蒸着膜等)を用いることが好ましい。このリチウム金属層は負極集電体との積層体として用いることもできる。
本発明に用いる負極活物質は、周期律表第一族若しくは第二族に属する金属元素のイオンの挿入放出が可能な物質である。負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属若しくは半金属元素の酸化物(複合酸化物を含む。)、リチウム単体、リチウム合金、又は、リチウムと合金化(リチウムとの合金を形成)可能な負極活物質等が挙げられる。中でも、信頼性の点では、炭素質材料、半金属元素の酸化物、金属複合酸化物又はリチウム単体が好ましい。全固体二次電池の大容量化が可能となる点では、リチウムと合金形成可能な負極活物質が好ましい。
これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料でなくてもよく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
一般的に、これらの負極活物質を含有する負極(ケイ素原子含有活物質を含有するSi負極、スズ原子を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
ケイ素原子含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi2、VSi2、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi2/Si)、他にも、SnSiO3、SnSiS3等のケイ素原子及びスズ原子を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
スズ原子を有する負極活物質としては、例えば、Sn、SnO、SnO2、SnS、SnS2、更には上記ケイ素原子及びスズ原子を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、Li2SnO2を挙げることもできる。
負極活物質層を形成する場合、負極活物質層の単位面積(cm2)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
負極用組成物が無機固体電解質を含有する場合、負極用組成物中における無機固体電解質と負極活物質との合計含有量として、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、50質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
他の成分の、負極用組成物中の含有量は、特に制限されず、適宜設定され、例えば予備成形材料で説明した上記含有量とすることができる。
負極活物質(負極用組成物)は、固体電解質層の一方の表面に載置して圧着積層される。これにより、負極(負極活物質層)にデンドライトが析出しても固体電解質層(一方の表面(デンドライト貫通阻止面)又は全体)によってデンドライトの正極まで到達する成長をブロックできる。
圧着積層する際の圧力は、負極活物質を圧着積層可能な圧力であればよく、例えば、1MPa以上に設定することができ、1~60MPaが好ましく、5~30MPaがより好ましい。圧着積層は加熱下で行ってもよいが、本発明においては、非加熱下で行うことが好ましく、例えば、0~50℃の環境温度で圧着積層することが好ましい。圧着積層を行う雰囲気は、上記工程Aの予備成形中の雰囲気と同様である。
本発明の全固体二次電池の製造方法においては、製造する全固体二次電池の負極の形態に応じて、異なる工程を経て全固体二次電池を製造する。すなわち、負極活物質層を予め形成する形態の全固体二次電池を製造する場合、上述の、全固体二次電池用負極シートの製造を経て、全固体二次電池を製造する。一方、負極活物質層を予め形成しない形態の全固体二次電池を製造する場合、上述の、固体電解質層シートを用いて全固体二次電池を製造する。
負極活物質層を予め形成する形態の全固体二次電池を製造する場合、本発明の全固体二次電池用負極シートの製造方法で得られた全固体二次電池用負極シートの、負極活物質層とは反対側の表面に正極活物質層を形成する。
正極活物質層の形成する正極活物質は、下記正極活物質の粒子でもよく、この粒子からなる成形体として用いてもよい。なお、この成形体は、負極活物質からなる成形体と同様にして作製できる。正極活物質は、無機固体電解質、更には、リチウム塩、導電助剤、予備成形体で挙げた他の成分、分散媒と混合された正極用組成物として用いることもできる。この正極用組成物は後述する負極活物質前駆体を含有していてもよい。無機固体電解質、リチウム塩、導電助剤、分散媒等は、全固体二次電池に用いられるものを特に制限されることなく用いることができる。
本発明に用いる正極活物質は、周期律表第一族若しくは第二族に属する金属元素のイオンの挿入放出が可能な物質である。正極活物質としては、金属酸化物(好ましくは遷移金属酸化物)が好ましい。
中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素Ma(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素Mb(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Maの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn2O4(LMO)、LiCoMnO4、Li2FeMn3O8、Li2CuMn3O8、Li2CrMn3O8及びLi2NiMn3O8が挙げられる。
(MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO4及びLi3Fe2(PO4)3等のオリビン型リン酸鉄塩、LiFeP2O7等のピロリン酸鉄類、LiCoPO4等のリン酸コバルト類並びにLi3V2(PO4)3(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、Li2FePO4F等のフッ化リン酸鉄塩、Li2MnPO4F等のフッ化リン酸マンガン塩及びLi2CoPO4F等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、Li2FeSiO4、Li2MnSiO4及びLi2CoSiO4等が挙げられる。
本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
正極活物質層を形成する場合、正極活物質層の単位面積(cm2)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
正極用組成物が無機固体電解質を含有する場合、正極用組成物中における無機固体電解質と正極活物質との合計含有量として、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、50質量%以上であることがより一層好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
他の成分の、正極用組成物中の含有量は、特に制限されず、適宜設定され、例えば予備成形材料で説明した上記含有量とすることができる。
正極活物質層を形成する方法は、特に制限されず、通常の方法を適用できる。例えば、下記正極活物質を負極活物質層とは反対側の表面に載置する方法、下記正極活物質を層状に成形した成形体(シート)を負極活物質層とは反対側の表面に載置(貼付)する方法、負極活物質層とは反対側の表面に下記正極活物質を含有する正極用組成物を塗布乾燥する方法等が挙げられる。正極活物質を載置した後に圧着積層することもでき、圧着積層方法としては負極活物質層における圧着積層方法が挙げられる。正極用組成物を塗布乾燥する方法は、公知の塗布方法により塗布した正極用組成物を適宜設定した温度に加熱する方法が挙げられる。
特に負極活物質層として上述のSi負極を採用する場合、正極活物質層は、下記<負極活物質層を予め形成しない形態の全固体二次電池の製造方法>において説明する、正極活物質と負極活物質前駆体とを含有する正極用組成物を用いて形成することが好ましい。ケイ素材料又はケイ素含有合金は不可逆容量が大きく、通常、初回の充電による容量(可動リチウムイオン量)の目減りが大きいという問題がある。しかし、Si負極を備えた全固体二次電池の正極活物質層を、負極活物質前駆体を含有する正極用組成物で形成することにより、目減りした金属イオンを補充(ドープ)して(Si負極内に金属イオンを吸蔵させて)、Si負極に特有の上記問題を抑制できる。
また、正極活物質層に負極活物質前駆体を含有させると、充電時における金属イオン吸蔵による膨張若しくは金属析出による膨張を、正極活物質層で負極活物質前駆体の分解反応で発生した空隙によりキャンセルできるため、固体電解質層の破壊を防止でき、デンドライトの正極への到達をより効果的に抑制できる。しかも、後述するように空隙を圧潰する好ましい形態では、エネルギー密度の向上も可能となる。
負極活物質前駆体を含有する正極用組成物及び正極活物質層の形成方法は後述する。
正極活物質層を充電する工程及び加圧する工程の詳細は、下記<負極活物質層を予め形成しない形態の全固体二次電池の製造方法>において説明する。
次いで、適宜に、得られた積層体全体を積層方向に拘束加圧して、全固体二次電池を製造することができる。このときの拘束加圧圧力は、特に限定されないが、0.05MPa以上が好ましく、1MPaがより好ましい。上限としては、例えば、10MPa未満が好ましく、8MPa以下がより好ましい。
こうして製造した積層体に必要な部材を設けて、負極活物質層を予め形成する形態の(初期化前の)全固体二次電池を製造できる。
- 正極活物質層を形成する工程 -
負極活物質層を予め形成しない形態の全固体二次電池を製造する場合、本発明の固体電解質シートの製造方法により得られた固体電解質シートの、負極集電体を設ける表面(すなわち、全固体二次電池の充電により、アルカリ金属イオン又はアルカリ土類金属イオンを析出させる表面側)とは反対側の表面に、正極活物質層を形成する。
負極活物質層を予め形成しない形態の全固体二次電池の製造方法において、正極活物質層を形成する方法は、上述の負極活物質層を予め形成する形態の全固体二次電池の製造方法における、正極活物質層を形成する方法と同じである。
負極活物質前駆体は、後述する充電する工程により、正極活物質層中において、周期律表第一族若しくは第二族に属する金属元素のイオン(金属イオン)を発生(放出)させる化合物である。発生する金属イオンが全固体二次電池の充電により負極集電体等に到達して負極活物質層をプレドープする。全固体二次電池が負極活物質層を予め形成しない形態である場合、金属イオンが負極集電体に到達して電子と結合することにより金属として析出して、負極活物質層をプレドープする。
負極活物質前駆体は、このような特性若しくは機能を有するものであれば特に制限されず、上記金属元素を含む化合物が挙げられるが、全固体二次電池の材料として用いられる支持電解質としてのリチウム塩とは、初回充電時にリチウムイオンを放出して分解し、次回充電時にはリチウムイオン放出に寄与しない点で、異なる。
全固体二次電池が全固体リチウムイオン二次電池である場合、負極活物質前駆体を形成する金属元素はリチウムが好ましい。
負極活物質前駆体としては、上記金属元素の、炭酸塩、酸化物、水酸化物、ハロゲン化物、カルボン酸塩(例えばシュウ酸塩)等が挙げられ、より具体的には、リチウム塩として、例えば、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、硫化リチウム、リン化リチウム、硝酸リチウム、硫酸リチウム、リン酸リチウム、シュウ酸リチウム、ギ酸リチウム、酢酸リチウム等が挙げられ、炭酸リチウム、酸化リチウム又は水酸化リチウムが好ましく、空気中での安全に取り扱うことができる(吸湿性が低い)点で、炭酸リチウムがより好ましい。
正極用組成物は、負極活物質前駆体を1種含有していても、2種以上を含有していてもよい。
負極活物質前駆体の平均粒子径は、特に限定されないが、0.01~10μmであることが好ましく、0.1~1μmであることがより好ましい。平均粒子径は、上述の無機固体電解質粒子の平均粒子径と同様にして測定した値である。
負極活物質前駆体の、正極用組成物中の含有量は、補充する金属元素のイオン量等により変動するので、一義的に決定されないが、例えば、固形成分100質量%において、0~50質量%以下であることが好ましく、5~30質量%であることがより好ましく、7~20質量%であることが更に好ましい。
正極用組成物が負極活物質前駆体を含有する場合、正極用組成物中の、正極活物質と負極活物質前駆体との合計含有量は、負極活物質前駆体を含有しない正極用組成物中の、正極活物質と同じ上記含有量に設定することができ、好ましくは70~90質量%である。
特に炭酸塩は、酸化分解により、金属元素のイオンと炭酸イオンを発生して、消失する。発生した金属元素のイオンは負極活物質層の構成材料となり、炭酸イオンは炭酸ガスに変化して層外に放出される。そのため、炭酸塩は、分解物を含めて正極活物質層中に残存せず、炭酸塩の含有による電池特性の低下を避ける(エネルギー密度を向上させる)ことができる。しかも、炭酸塩の分解反応により生じた空隙を圧潰する好ましい形態では、エネルギー密度の更なる向上も可能となる。
上述のようにして、正極活物質層及び固体電解質層、更には金属膜、負極集電体等からなる積層体(全固体二次電池前駆体)を製造できる。
なお、固体電解質シートとして上述の全固体二次電池用正極シートを用いる場合は、この全固体二次電池用正極シートをそのまま、負極活物質層を予め形成しない形態の全固体二次電池の製造方法に用いることができる。
本製造方法においては、得られた上記積層体を(適宜の部材を設けた後に)充電する。この充電する工程を行うことにより、負極用集電体の表面上にアルカリ金属又はアルカリ土類金属を析出させて、負極活物質層を形成する(負極活物質層が形成された全固体二次電池を製造する)ことができる。特に、負極活物質前駆体を含有する正極用組成物で正極活物質層を形成すると、上述のように、充電により負極活物質を補充することができる。
積層体を充電する方法は、特に限定されず、公知の方法が挙げられる。充電条件は、正極活物質層中の負極活物質前駆体を酸化分解可能な条件であればよく、例えば下記条件が挙げられる。
電流:0.05~1mA/cm2
電圧:4.2~4.5V
充電時間:1~20時間
温度:25~60℃
負極活物質前駆体を用いる場合、充電する工程は、負極活物質前駆体の陰イオン(から発生する化合物)を積層体の外部に放出するため、積層体を密閉して行うのではなく、開放下で行うことが好ましい。このときの雰囲気は、予備成形中の雰囲気と同様である。
上記充電する工程において、充電は1回行ってもよく、複数回行ってもよい。
上記充電は、全固体二次電池を製造後又は使用前に好ましく行われる初期化によって、行うこともできる。
本発明の全固体二次電池の製造方法において、正極活物質と負極活物質前駆体とを含有する正極用組成物を用いて形成した正極活物質層を、上述の充電した後に加圧して圧縮することが好ましい。この加圧圧縮により、全固体二次電池の全厚(体積)が減少して、エネルギー密度が向上する。
加圧する工程は、充電する工程の後であって放電する工程の前に行うことが好ましい。
正極活物質層を加圧する工程は、少なくとも正極活物質層を圧縮できればよいが、充電後の正極活物質層を圧縮することを考慮すると、全固体二次電池前駆体としての上記積層体を加圧することにより正極活物質層を圧縮することが好ましい。
正極活物質層の加圧圧縮と同時に加熱してもよいが、本発明においては、非加熱で加圧圧縮することが好ましく、例えば、10~50℃の環境温度で加圧圧縮することが好ましい。加圧圧縮中の雰囲気としては、特に限定されず、固体電解質組成物の混合雰囲気が挙げられる。
この加圧する工程は、正極活物質層を圧縮(空隙を圧潰)する点で、全固体二次電池の使用時に好ましく適用する加圧拘束とは異なる。
上述の各全固体二次電池の製造方法により製造された各全固体二次電池は、好ましくは製造後又は使用前に初期化を行う。初期化は、特に限定されず、例えば、プレス圧を高めた状態で充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
初期化における充電(初期充電)方法としては、例えば、上記正極活物質層を充電する工程で説明した方法を適用できる。初期化における放電条件としては、特に制限されないが、例えば、下記条件が挙げられる。
電流:0.05~1mA/cm2
電圧:2.5~3.0V
充電時間:1~20時間
温度:25~60℃
また、固体電解質層の一方の表面上に金属膜を設けると、上述のように、デンドライトの正極への到達をより効果的に抑制できる。更に、負極活物質前駆体を含有する正極用組成物を用いて正極活物質層を形成すると、上述のように、リチウムを補充することができ、不可逆容量が大きなケイ素材料又はケイ素含有合金からなるSi負極を用いても、また負極活物質層を予め形成しない形態においても、十分な電池特性を付与することができるうえ、デンドライトの正極への到達をより効果的に抑制できる。この正極活物質層を充電後に加圧圧縮する場合には、上述のように、Si負極又は負極活物質層を予め形成しない形態であっても、負極活物質前駆体の分解により形成する空隙を圧潰して正極活物質層自体の薄層化が可能となり、十分な電池特性を維持しつつも、(体積)エネルギー密度の更なる向上が可能となる。
本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP-7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス)6.20gを得た。イオン伝導度は0.28mS/cmであった。Li-P-S系ガラスの上記測定方法による粒子径は1μmであった。得られたLi-P-S系ガラスは低温熱分解性塑性固体粒子であった。すなわち、上記測定方法におけるガラス転移温度Tg(DSC測定で得られる発熱ピークの温度)は100℃(最も低温のTg)及び220℃(最も高温のTg)であり、熱分解温度Td(DSC測定で得られる吸熱ピークの落ち込み開始温度)は182℃であった。また上記測定方法における結晶化温度は220℃であった。
このLi-P-S系ガラスは、上述の、微小硬度試験機による押し込み試験において、測定温度が250℃に到達するまでに圧入深さの差分が10%以上であったことから、250℃以下で塑性変形を示す固体粒子であることを確認した。なお、この無機固体電解質が塑性変形した(最低)温度は-20℃であった。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の全固体二次電池を、製造方法Iにより、製造した。
<固体電解質シートの製造>
合成した硫化物系無機固体電解質(塑性固体粒子にも相当する。)100mgを、マコール(登録商標)製の内径10mmのシリンダの中に入れて、アルゴンガス雰囲気下、25℃で、加圧力を180MPaに設定して、1分間プレス(予備加圧成形)した(工程A)。このようにして、硫化物系無機固体電解質からなる予備成形体を得た。
次いで、得られた予備成形体を、アルゴンガス雰囲気下、200℃で20分加熱した(工程B)。こうして、デンドライト貫通阻止面を有する予備成形体を得た。
次いで、この予備成形体を、アルゴンガス雰囲気下で常温(25℃)に戻し、この温度において加圧力を550MPaに設定して、1分間、プレス(本成形)した(工程C)。
こうして、割れ及びヒビの発生を抑えたデンドライト貫通阻止面を有する固体電解質層(厚さ650μm)からなる固体電解質シートを得た。デンドライト貫通阻止面は厚さ10μm以下の、割断で剥がすことができる薄層(デンドライト貫通阻止層:空隙率1%)として形成され、灰色の度合いが増していた。この薄層下には、通常の固体電解質層が形成されていた。
厚さ8μmの銅箔からなる負極集電体と厚さ20μmの金属リチウム箔とを貼り合わせてなる積層シートを準備した。この積層シートの金属リチウム箔が、製造した固体電解質シートの一方の表面(デンドライト貫通阻止面)に接するように、固体電解質シートに積層シートを積層して、アルゴンガス雰囲気下、25℃で、加圧力を24MPaに設定して、1分間圧着した。
こうして、固体電解質層と、この固体電解質層のデンドライト貫通阻止面上に負極活物質層及び負極集電体をこの順で備えた全固体二次電池用負極シートを作製した。
まず、正極集電体と正極活物質層とからなる正極シートを作製した。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例1で合成したLi-P-S系ガラス2.0gと、スチレンブタジエンゴム(商品コード182907、アルドリッチ社製)0.1gと、分散媒としてオクタン22gとを投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃で、回転数300rpmで2時間攪拌した。その後、正極活物質LiNi0.85Co0.10Al0.05O2(ニッケルコバルトアルミニウム酸リチウム)7.9gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、正極用組成物を得た。
次に、集電体となる厚み20μmのアルミニウム箔状に、上記で得られた正極用組成物(直径10mmの円面積に対する正極活物質の目付量は11mg)をベーカー式アプリケーターにより塗布し、80℃2時間加熱して、正極用組成物を乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように乾燥させた正極層用組成物を加熱(120℃)しながら加圧(600MPa、1分)した。このようにして、膜厚110μmの正極活物質層を有する正極シートを作製した。
得られた積層体全体を積層方向に8MPaの拘束圧で拘束して、図1に示す層構成を有する全固体二次電池を製造した。
本例では、負極活物質層を予め形成しない形態の全固体二次電池を、製造方法Iにより、製造した。
まず、厚さ8μmの銅箔からなる負極集電体シートを準備した。この集電体シートが、実施例1で製造した固体電解質シートの一方の表面(デンドライト貫通阻止面)に接するように、固体電解質シートに集電体シートを積層して、アルゴンガス雰囲気下、25℃で、加圧力を24MPaに設定して、1分間圧着して、負極集電体シートと固体電解質層との積層体を得た。
この積層体(直径10mmの円盤状に打ち抜いた円盤状積層体)における固体電解質層の、負極集電体シートとは反対側の表面に実施例1で作製した正極シートから打ち抜いた円盤状シートの正極活物質層を、実施例1と同様にして、貼り付けて、負極集電体と、デンドライト貫通阻止層を有する固体電解質層と、正極活物質層と、正極集電体とからなる積層体を得た。
得られた積層体全体を積層方向に8MPaの拘束圧で拘束して、負極活物質層を予め形成しない形態の全固体二次電池を製造した。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態(工程Bとして加熱せん断処理を採用)の全固体二次電池を、製造方法Iにより、製造した。
実施例1において、加熱処理する上記工程Bを下記の加熱せん断処理する好ましい工程Bに変更したこと以外は、実施例1と同様にして、全固体二次電池を製造した。
本例においては、負極集電体及び負極活物質層は下記の加熱せん断処理された表面に積層し、正極活物質層は加熱せん断処理された表面とは反対側の表面に積層した。
- 加熱せん断処理する工程B -
実施例1の工程Aで得られた予備成形体の一方の表面(0.78mm2)を、アルゴンガス雰囲気下、200℃に加熱した状態で、ステンレス鋼製の金属ブラシを用いて、ブラッシング処理した(工程B)。金属ブラシの回転数は10,000rpm、処理時間1分以上とした。せん断力は、成形体表面に垂直に配置した金属ブラシを面内方向に移動させて作用させた。こうして、一方の表面が加熱せん断処理された(デンドライト貫通阻止面(空隙率1%、厚さ3μm以下)を有する)予備成形体を得た。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の全固体二次電池を、製造方法I(工程A、工程B及び工程C)により、製造した。
すなわち、実施例1において、固体電解質シートの製造における工程Bの加熱温度を150℃に設定したこと(工程B)以外は、実施例1と同様にして、全固体二次電池を製造した。
こうして、粒子間の空隙が埋込まれた固体電解質層からなる固体電解質シートを得た。この固体電解質層の空隙率は8%であった。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の全固体二次電池を、製造方法IA(工程B1及び工程C1)により、製造した。
すなわち、実施例1において、固体電解質シートの製造における工程Aを行わず、下記工程B1を行い、得られた無機固体電解質粒子を工程Cに用いたこと(工程C1)以外は、実施例1と同様にして、全固体二次電池を製造した。
こうして、粒子間の空隙が埋込まれた固体電解質層からなる固体電解質シートを得た。この固体電解質層の空隙率は7%であった。
<工程B1>
合成例1で合成した硫化物系無機固体電解質(塑性固体粒子にも相当する。)を粉体のまま、アルゴンガス雰囲気下、200℃で20分加熱した。こうして、表面を熱分解して変性させた無機固体電解質粒子を得た。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の全固体二次電池を、製造方法IA(工程B1及び工程C1)により、製造した。
すなわち、実施例5において、工程C1の加熱温度を110℃(最も低温のガラス転移温度を超え、熱分解温度未満の温度)としたこと以外は、実施例5と同様にして、全固体二次電池を製造した。
こうして、粒子間の空隙が埋込まれた固体電解質層からなる固体電解質シートを得た。この固体電解質層の空隙率は6%であった。
本例では、リチウムと合金形成可能な金属の膜を有する、負極活物質層を予め形成しない形態の全固体二次電池を、製造方法Iにより、製造した。
厚さ8μmの銅箔の表面に、スパッタリングによって膜厚50nmのZn膜を形成した。実施例2の全固体二次電池の製造において、厚さ8μmの銅箔に代えて、膜厚50nmのZn膜を形成した厚さ8μmの銅箔を用いて、Zn膜と実施例1で製造した固体電解質シートの一方の表面(デンドライト貫通阻止面)とが接した状態に積層圧着したこと以外は、実施例2の全固体二次電池の製造と同様にして、負極集電体(銅箔)と固体電解質シート(デンドライト貫通阻止面)との間にZn膜を有する全固体二次電池を製造した。この全固体二次電池は、固体電解質シートの一方の表面上にZn膜(リチウムと合金形成可能な金属の膜)を有する固体電解質シートを含んでいる。
本例では、負極活物質前駆体を用いて形成した正極活物質層を有する、負極活物質層を予め形成しない形態の全固体二次電池を、製造方法Iにより、製造した。
実施例2の全固体二次電池の製造において、下記の正極用組成物を用いた(正極シートの作製は実施例1と同じである)こと以外は、実施例2の全固体二次電池の製造と同様にして、負極活物質前駆体を含有する正極活物質層を備えた全固体二次電池を製造した。
- 正極用組成物の調製 -
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記合成例1で合成したLi-P-S系ガラス2.0gと、スチレンブタジエンゴム(商品コード182907、アルドリッチ社製)0.1gと、分散媒としてオクタン22gとを投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃で、回転数300rpmで2時間攪拌した。その後、正極活物質LiNi0.85Co0.10Al0.05O2(ニッケルコバルトアルミニウム酸リチウム)7.11gと、負極活物質前駆体としてLi2CO3(炭酸リチウム、平均粒子径1μm)0.79gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、負極活物質前駆体を含有する正極用組成物を得た。
本例では、実施例8で製造した積層体を用いて加圧圧縮された正極活物質層を有する、負極活物質層を予め形成しない形態の全固体二次電池を製造した。
実施例8で製造した積層体(積層方向に8MPaで拘束した全固体二次電池)を、電流0.09mA/cm2、電圧4.25V、充電時間20時間及び温度25℃の条件で、初期充電した。この初期充電により、炭酸リチウムから発生したリチウムイオンが負極集電体表面にリチウム金属として析出され、炭酸ガスが積層体外に放出された。初期充電後の正極活物質層を観測したところ、初期充電前の正極活物質層に対して空隙率(上記測定方法による)が7%増大していた。
- 加圧する工程 -
初期充電後、積層体の拘束を外して、正極集電体と負極集電体との間に100MPaの圧力をかけて、初期充電後の全固体二次電池を積層方向に加圧して、正極活物質層を圧縮した。この圧縮は、ヒートプレス機を用いて、室温下(25℃)で、円盤状積層体に電圧を印加(充電及び放電)せずに、1時間かけて、行った。
この正極活物質層を観察したところ、初期充電前の正極活物質層に対して空隙率が1%増加した状態(初期充電前の正極活物質層における空隙率6%分の空隙を圧潰した状態)に圧縮(薄層化)されていた。
こうして充電及び圧縮して得られた積層体全体を積層方向に8MPaの拘束圧で拘束して、加圧圧縮された正極活物質層を有する全固体二次電池を製造した。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の(デンドライト貫通阻止層を有しない)全固体二次電池を製造した。
すなわち、実施例1において、固体電解質シートの製造における工程A及び工程Bを行わないこと(デンドライト貫通阻止層を形成しない)以外は、実施例1と同様にして、全固体二次電池を製造した。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の(デンドライト貫通阻止層を有しない)全固体二次電池を製造した。
すなわち、実施例1において、固体電解質シートの製造における工程A及び工程Bを行わず(デンドライト貫通阻止層を形成しない)、更に工程Cの本成形の温度を200℃に変更したこと以外は、実施例1と同様にして、全固体二次電池を製造した。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の(デンドライト貫通阻止層を有しない)全固体二次電池を製造した。
すなわち、実施例1において、固体電解質シートの製造における工程Cを行わないこと(デンドライト貫通阻止層を形成しない)以外は、実施例1と同様にして、全固体二次電池を製造した。
本例では、負極活物質層として金属リチウム箔を用いて、負極活物質層を予め形成する形態の全固体二次電池を製造した。
すなわち、実施例6において、工程C1の加熱温度を200℃(熱分解温度を超える温度)としたこと以外は、実施例6と同様にして、全固体二次電池を製造した。
実施例1~8及び比較例1~4で作製した各全固体二次電池について、0.09mA/cm2で1サイクル充放電して、初期化した。
この初期化(初期充電)により、実施例8の全固体二次電池は、炭酸リチウムから発生したリチウムイオンが負極集電体表面にリチウム金属として析出され、炭酸ガスが電池外に放出された。初期充電後の正極活物質層を観測したところ、初期充電前の正極活物質層に対して空隙率(上記測定方法による)が7%増大していた。
<評価:充放電サイクル特性試験>
上記で作製した各全固体二次電池を用いて、下記条件により(急速)充放電を行い、充放電サイクル特性試験(過酷促進条件)を実施した。
(条件)
25℃において、電流密度2.2mA/cm2で4.25Vまで充電し、電流密度2.2mA/cm2で2.5Vまで放電する充放電サイクルを1サイクルとして、30~70サイクル繰り返して行った。
充放電サイクル特性は、1サイクル毎に下記式から充放電効率を求めて評価した。なお、比較例1~4の全固体二次電池は、いずれも、1サイクルで短絡が発生したので、1サイクル後の充放電効率により評価した。
充放電効率=放電容量/充電容量
実施例1:40及び50サイクルの充放電効率が全て99%で安定していた。更に50サイクル後の放電容量は99%で安定していた。
実施例2:50サイクルの充放電効率は97~99%であった(ただし、50サイクル後の放電容量は50%であった。)。
実施例3:30、50及び60サイクルの充放電効率が全て99%で安定していた。
実施例4:40及び50サイクルの充放電効率が50%以上であった。
実施例5:40及び50サイクルの充放電効率が60%以上であった。
実施例6:40及び50サイクルの充放電効率が65%以上であった。
実施例7:50サイクルの充放電効率が97~99%であり、50サイクル後の放電容量は90%であった。
実施例8:70サイクルの充放電効率が全て97~99%で安定していた。
正極活物質NCAを7.9g用いた実施例2(正極活物質の目付量同一)と、同等の初期放電容量を示した。
実施例9:70サイクルの充放電効率が全て97~99%で安定していた。
正極活物質NCAを7.9g用いた実施例2(正極活物質の目付量同一)と、同等の初期放電容量を示したうえ、正極活物質層の薄層化により電池体積が減少して体積エネルギー密度が向上したことを確認した。
比較例1:1サイクルの充放電効率は50%以下であった。
比較例2:1サイクルの充放電効率は50%以下であった。
比較例3:1サイクルの充放電効率は50%以下であった。
比較例4:1サイクルの充放電効率が50%以下であった。
これに対して、本発明で規定する工程A、工程B及び工程Cを実施してデンドライト貫通阻止層を形成した固体電解質層を有する実施例1~4及び7~9の全固体二次電池は、いずれも、デンドライトによる内部短絡の発生を効果的に抑制できる。また、各実施例の全固体二次電池は、内部短絡の発生を抑制しつつも、高い充放電サイクル特性を示す。とりわけ負極活物質層としてリチウム箔を採用した実施例1の全固体二次電池は、50サイクル全ての充放電効率が99%で安定しており、負極活物質層として析出した金属リチウムの層を採用した実施例2の全固体二次電池に対して高い放電容量サイクル特性を示す。更に、工程Bにおいて加熱せん断処理を適用すると(実施例3)、内部短絡の発生を抑制しつつも、高い充放電サイクル特性を安定して示す(高い信頼性を示す)ことが分かる。
また、負極集電体(銅箔)と固体電解質シートのせん断処理された表面との間にZn膜を有する実施例7の全固体二次電池は50サイクル後の放電容量は97~99%であって短絡が発生するまでの時間を長期化することができ、また放電容量維持特性の向上もみられる。更に負極活物質前駆体を含有する正極活物質層を備えた実施例8の全固体二次電池は、短絡発生を抑制できるうえ、電池容量の低減を防止してエネルギー密度の向上が期待できる。更に、負極活物質前駆体を含有する正極活物質層を初期充電後に加圧圧縮した実施例9の全固体二次電池は、実施例2と同等の放電容量を示し、実施例8の全固体二次電池と比較して、体積エネルギー密度が更に向上している。また、70サイクルの充放電効率が全て97~99%で安定しており、短絡の発生を抑制できることが分かる。しかも、負極活物質層の体積膨張収縮に起因する、負極活物質層と固体電解質層との界面剥離を防止でき、高い放電容量を維持できる。
しかも、250℃以下に熱分解温度を有する塑性固体粒子を用いると、製造方法Iの工程Aを実施しなくても(実施例5及び6)、デンドライトによる内部短絡の発生を効果的に抑制できる。
また、各実施例の全固体二次電池は、内部短絡の発生を抑制しつつも、十分な充放電サイクル特性を示している。
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
Claims (14)
- 250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、前記固体粒子のガラス転移温度未満の温度で予備加圧成形する工程と、
得られた予備成形体を、前記ガラス転移温度以上の温度に加熱する工程と、
加熱した予備成形体を、前記ガラス転移温度未満の温度において前記予備加圧成形よりも高い加圧力の条件で本成形する工程と、を有し、
前記無機固体電解質粒子からなる固体電解質層を形成する、固体電解質シートの製造方法。 - 前記加熱する工程において、前記予備成形体を前記ガラス転移温度以上の温度に加熱した状態で、前記予備成形体の一方の表面をせん断処理する、請求項1に記載の固体電解質シートの製造方法。
- 250℃以下の熱分解温度を有し、かつ250℃以下で塑性変形する固体粒子を含む無機固体電解質粒子を、前記固体粒子の熱分解温度以上の温度に加熱する工程と、
加熱した前記無機固体電解質粒子を、前記熱分解温度未満の温度において加圧成形する工程と、を有し、
無機固体電解質粒子からなる固体電解質層を形成する、固体電解質シートの製造方法。 - 前記加圧成形する工程を、前記固体粒子のガラス転移温度未満の温度で行う、請求項3に記載の固体電解質シートの製造方法。
- 前記加圧成形する工程を、150℃未満の温度で行う、請求項3又は4に記載の固体電解質シートの製造方法。
- 前記加熱する工程の前に、前記無機固体電解質粒子を、前記固体粒子のガラス転移温度未満の温度で予備加圧成形する工程を有する、請求項3~5のいずれか1項に記載の固体電解質シートの製造方法。
- 前記加熱する工程において、前記予備加圧成形する工程で得られた予備加圧成形体の一方の表面を前記固体粒子の熱分解温度以上の温度に加熱した状態でせん断処理する、請求項6に記載の固体電解質シートの製造方法。
- 前記固体電解質層の一方の表面上に、リチウムと合金形成可能な金属の膜を設ける、請求項1~7のいずれか1項に記載の固体電解質シートの製造方法。
- 請求項1~8のいずれか1項に記載の固体電解質シートの製造方法で製造した固体電解質シートにおける前記固体電解質層の一方の表面に、負極活物質を圧着積層して負極活物質層を形成する、全固体二次電池用負極シートの製造方法。
- 請求項9に記載の全固体二次電池用負極シートの製造方法で製造した全固体二次電池用負極シートの、前記負極活物質層とは反対側の表面に正極活物質層を形成する、全固体二次電池の製造方法。
- 請求項1~8のいずれか1項に記載の固体電解質シートの製造方法で製造した固体電解質シートにおける前記固体電解質層の、負極集電体を設ける表面と反対側の表面に正極活物質層を形成する、全固体二次電池の製造方法。
- 前記正極活物質層を、正極活物質と負極活物質前駆体とを含有する正極用組成物を用いて形成する、請求項10又は11に記載の全固体二次電池の製造方法。
- 前記正極活物質層の形成後に充電する、請求項12に記載の全固体二次電池の製造方法。
- 充電した前記正極活物質層を加圧して圧縮する、請求項13に記載の全固体二次電池の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020511126A JP6799714B2 (ja) | 2018-03-30 | 2019-03-29 | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 |
KR1020207029352A KR20200131298A (ko) | 2018-03-30 | 2019-03-29 | 고체 전해질 시트, 전고체 이차 전지용 부극 시트 및 전고체 이차 전지의 제조 방법 |
CN201980023445.2A CN111954911B (zh) | 2018-03-30 | 2019-03-29 | 固体电解质片、全固态二次电池用负极片及全固态二次电池的制造方法 |
US17/033,955 US12125968B2 (en) | 2018-03-30 | 2020-09-28 | Solid electrolyte sheet, negative electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018068663 | 2018-03-30 | ||
JP2018-068663 | 2018-03-30 | ||
JP2018185020 | 2018-09-28 | ||
JP2018-185020 | 2018-09-28 | ||
JP2018-245385 | 2018-12-27 | ||
JP2018245385 | 2018-12-27 | ||
JP2019060213 | 2019-03-27 | ||
JP2019-060213 | 2019-03-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/033,955 Continuation US12125968B2 (en) | 2018-03-30 | 2020-09-28 | Solid electrolyte sheet, negative electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019189822A1 true WO2019189822A1 (ja) | 2019-10-03 |
Family
ID=68061981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014168 WO2019189822A1 (ja) | 2018-03-30 | 2019-03-29 | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6799714B2 (ja) |
KR (1) | KR20200131298A (ja) |
CN (1) | CN111954911B (ja) |
WO (1) | WO2019189822A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112117435A (zh) * | 2020-09-29 | 2020-12-22 | 珠海冠宇电池股份有限公司 | 全固态锂电池正极片及其制备方法以及全固态锂电池 |
JP2021136215A (ja) * | 2020-02-28 | 2021-09-13 | 日産自動車株式会社 | リチウムイオン二次電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11271247B1 (en) * | 2020-12-15 | 2022-03-08 | WATTRII, Inc. | Solid-state battery and method of forming same |
CN112635842B (zh) * | 2020-12-24 | 2024-08-02 | 蜂巢能源科技有限公司 | 一种固态电池及其处理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094482A (ja) * | 2010-10-01 | 2012-05-17 | Idemitsu Kosan Co Ltd | 硫化物固体電解質、硫化物固体電解質シート及び全固体リチウム電池 |
JP2014096311A (ja) * | 2012-11-12 | 2014-05-22 | National Institute Of Advanced Industrial & Technology | 固体電解質シート、電極シート、及び全固体二次電池 |
WO2018047946A1 (ja) * | 2016-09-12 | 2018-03-15 | 富士フイルム株式会社 | 電極層材、全固体二次電池電極用シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5848801B2 (ja) | 2006-10-19 | 2016-01-27 | 出光興産株式会社 | リチウムイオン伝導性固体電解質シート及びその製造方法 |
JP5277859B2 (ja) * | 2007-12-03 | 2013-08-28 | セイコーエプソン株式会社 | 硫化物系リチウムイオン伝導性固体電解質ガラスおよび全固体リチウム二次電池 |
JP2013089470A (ja) | 2011-10-18 | 2013-05-13 | Sumitomo Electric Ind Ltd | 非水電解質電池の製造方法、および非水電解質電池 |
JP6139864B2 (ja) | 2012-11-06 | 2017-05-31 | 出光興産株式会社 | 固体電解質成形体及びその製造方法、並びに全固体電池 |
JP6101223B2 (ja) * | 2014-02-25 | 2017-03-22 | 富士フイルム株式会社 | 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法 |
JP6185414B2 (ja) | 2014-03-25 | 2017-08-23 | トヨタ自動車株式会社 | 固体電池用の固体電解質部材の製造方法 |
US10164289B2 (en) * | 2014-12-02 | 2018-12-25 | Polyplus Battery Company | Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods |
FR3046498B1 (fr) * | 2015-12-31 | 2019-11-29 | I-Ten | Batterie entierement solide comprenant un electrolyte solide et une couche de materiau conducteur ionique |
-
2019
- 2019-03-29 KR KR1020207029352A patent/KR20200131298A/ko active IP Right Grant
- 2019-03-29 CN CN201980023445.2A patent/CN111954911B/zh active Active
- 2019-03-29 JP JP2020511126A patent/JP6799714B2/ja active Active
- 2019-03-29 WO PCT/JP2019/014168 patent/WO2019189822A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094482A (ja) * | 2010-10-01 | 2012-05-17 | Idemitsu Kosan Co Ltd | 硫化物固体電解質、硫化物固体電解質シート及び全固体リチウム電池 |
JP2014096311A (ja) * | 2012-11-12 | 2014-05-22 | National Institute Of Advanced Industrial & Technology | 固体電解質シート、電極シート、及び全固体二次電池 |
WO2018047946A1 (ja) * | 2016-09-12 | 2018-03-15 | 富士フイルム株式会社 | 電極層材、全固体二次電池電極用シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021136215A (ja) * | 2020-02-28 | 2021-09-13 | 日産自動車株式会社 | リチウムイオン二次電池 |
JP7488666B2 (ja) | 2020-02-28 | 2024-05-22 | 日産自動車株式会社 | リチウムイオン二次電池 |
CN112117435A (zh) * | 2020-09-29 | 2020-12-22 | 珠海冠宇电池股份有限公司 | 全固态锂电池正极片及其制备方法以及全固态锂电池 |
Also Published As
Publication number | Publication date |
---|---|
CN111954911A (zh) | 2020-11-17 |
KR20200131298A (ko) | 2020-11-23 |
US20210013544A1 (en) | 2021-01-14 |
CN111954911B (zh) | 2021-10-26 |
JPWO2019189822A1 (ja) | 2020-12-03 |
JP6799714B2 (ja) | 2020-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6799713B2 (ja) | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 | |
JP6966502B2 (ja) | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法 | |
JP6895533B2 (ja) | 電極積層体、全固体積層型二次電池及びその製造方法 | |
JP6799714B2 (ja) | 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法 | |
KR102501561B1 (ko) | 전고체 리튬 이온 이차 전지와 그 제조 방법, 및 부극용 적층 시트 | |
JP6948382B2 (ja) | 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート | |
JPWO2020059550A1 (ja) | 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法 | |
WO2020196042A1 (ja) | 全固体二次電池及びその製造方法 | |
WO2018168549A1 (ja) | 全固体二次電池及びその製造方法 | |
JP6920413B2 (ja) | 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法 | |
JP6828789B2 (ja) | 電極複合体の製造方法 | |
US12125968B2 (en) | Solid electrolyte sheet, negative electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery | |
JPWO2020203367A1 (ja) | 全固体二次電池用シート及び全固体二次電池の製造方法、並びに、全固体二次電池用シート及び全固体二次電池 | |
WO2022202901A1 (ja) | 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19775185 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020511126 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207029352 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19775185 Country of ref document: EP Kind code of ref document: A1 |