WO2019189707A1 - 二相ステンレスクラッド鋼板及びその製造方法 - Google Patents

二相ステンレスクラッド鋼板及びその製造方法 Download PDF

Info

Publication number
WO2019189707A1
WO2019189707A1 PCT/JP2019/013897 JP2019013897W WO2019189707A1 WO 2019189707 A1 WO2019189707 A1 WO 2019189707A1 JP 2019013897 W JP2019013897 W JP 2019013897W WO 2019189707 A1 WO2019189707 A1 WO 2019189707A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
clad
duplex stainless
stainless steel
steel sheet
Prior art date
Application number
PCT/JP2019/013897
Other languages
English (en)
French (fr)
Inventor
洋太 黒沼
浩文 大坪
横田 智之
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201980022339.2A priority Critical patent/CN111918979B/zh
Priority to US17/042,185 priority patent/US11891675B2/en
Priority to EP19775733.9A priority patent/EP3778958A1/en
Priority to KR1020207028716A priority patent/KR102389788B1/ko
Priority to JP2019540681A priority patent/JP6652224B1/ja
Publication of WO2019189707A1 publication Critical patent/WO2019189707A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the present invention relates to a duplex stainless steel clad steel plate used for, for example, a reaction vessel of a chemical plant and a manufacturing method thereof.
  • duplex stainless steel has been adopted in a high chloride environment such as seawater and in a severe corrosive environment such as an oil well or a gas well.
  • oil and gas well piping, flue gas desulfurization equipment, wastewater treatment facilities, seawater pumping generators and other structural members, papermaking rolls, centrifuges, pumps and valves, heat exchangers, etc. Steel is adopted.
  • a duplex stainless steel is a stainless steel having a composite structure in which two phases of an austenite phase and a ferrite phase are mixed, and has both excellent corrosion resistance and excellent strength characteristics. It is known that the corrosion resistance is most excellent when the area ratio (phase fraction) to the phase is approximately 1: 1.
  • the practical component composition of the duplex stainless steel is defined such that the area ratio (phase fraction) of the austenite phase and the ferrite phase is approximately in this vicinity.
  • SUS329Jl, SUS329J3L, SUS329J4L, and the like are standardized as bars and plates in the Japanese Industrial Standard (JIS).
  • JIS Japanese Industrial Standard
  • SUS329J1FB is standardized as a forged steel product
  • SCS10 is standardized as a cast steel product.
  • the price of alloy elements typified by Cr, Ni and Mo, which are the main raw materials for duplex stainless steel sometimes rises and fluctuates greatly.
  • the superior corrosion resistance of the duplex stainless steel can be utilized more economically when used as a clad steel having the same thickness as the solid material, rather than using the duplex stainless steel as a solid material.
  • a clad steel plate is a steel plate in which two or more types of steel plates having different properties are joined, for example, a base steel plate made of a so-called ordinary steel material such as carbon steel, and a high alloy steel plate exhibiting high corrosion resistance joined together. It is.
  • the clad steel plate is obtained by metallographically bonding dissimilar metals, and unlike plating, there is no fear of peeling.
  • the clad steel plate has various characteristics that cannot be achieved with a single metal or alloy.
  • the clad steel plate can provide the same corrosion resistance as solid wood while suppressing the amount of expensive alloy elements used, and at the same time can ensure the same strength and toughness as carbon steel and low alloy steel. Has the advantage of being able to achieve both economy and functionality.
  • the clad steel plate using a high alloy steel material as a laminated material is considered to be a very useful functional steel material, and in recent years, its needs are increasing in various industrial fields.
  • Patent Document 1 discloses that “in weight%, C: 0.15% or less, Si: 0.5% or less, Mn: 1.5% or less, Ni: 3.0%.
  • Ti 0.008 to 0.025%
  • B 0.0004 to 0.0020%
  • N 0.006 to 0.015%
  • SUS316L clad steel has been used as a material for reaction vessels in chemical plants.
  • duplex stainless steel clad steel such as SUS329J3L clad steel, which has better corrosion resistance than SUS316L clad steel.
  • the conventional duplex stainless steel clad steel sheet has insufficient corrosion resistance of the laminated material.
  • Patent Document 1 since only a suitable material is disclosed for the clad steel laminate, it is impossible to grasp the characteristics of the clad steel combined with the laminate and the base material. For this reason, in the clad steel using the base material described in Patent Document 1, sufficient corrosion resistance cannot be obtained.
  • clad steel is required to have higher base metal strength and toughness.
  • an object of the present invention is to provide a duplex stainless steel clad steel plate excellent in all of the corrosion resistance of a laminated material and the strength and toughness of a base material, and a method for producing the same.
  • the ferrite phase increases at a high temperature range from the melting point to 1200 ° C. In the middle temperature range of 600 to 900 ° C., different phases such as intermetallic compounds such as sigma phase and carbonitride precipitate. In a low temperature range of 450 to 500 ° C., a reaction considered to be decomposition of the ferrite phase occurs. Thus, the metal structure changes in each temperature range, and the corrosion resistance and strength characteristics change accordingly.
  • the problem is the precipitation of intermetallic compounds such as sigma phase, carbides such as Cr 23 C 6 , and nitrides such as Cr 2 N.
  • carbides such as Cr 23 C 6
  • nitrides such as Cr 2 N.
  • a layer lacking corrosion-resistant elements such as Cr and Mo is formed around the sigma-phase, carbide, nitride, and carbonitride, and the corrosion resistance is significantly lowered.
  • the present inventors investigated the relationship between precipitates and corrosion resistance using various test materials made of duplex stainless steel. As a result, it was found that the deterioration of corrosion resistance was caused by precipitates such as sigma phase, carbide, nitride and carbonitride. Furthermore, regarding the duplex stainless steel of the laminated material, the knowledge that there is a correlation between the amount of Cr and Mo contained in these precipitates (that is, the amount of Cr and Mo present as precipitates) and the corrosion resistance. Obtained. And even if it was a case where Cr of the duplex stainless steel as a laminated material was comparatively high, the manufacturing condition which reduces the amount of Cr which exists as a precipitate was discovered.
  • the base steel sheet is, by mass, C: 0.06 to 0.25%, Si: 0.05 to 0.50%, Mn: 0.70 to 1.60%, P: 0.030% or less.
  • Ni: 5.00 to 8.00%, Cr: 24.0% to 28.0%, Mo: 2.5 to 4.0%, and N: 0.08 to 0.30%, A second component composition containing PI defined by the formula (2) under the range of 34.0 to 43.0, the balance consisting of Fe and inevitable impurities; PI Cr + 3.3Mo + 16N (2) (In the above formula (2), the element symbol indicates the content (% by mass) of each element) A structure containing 35 to 65% of the ferrite phase by area fraction, A duplex stainless steel clad steel sheet, wherein the amount of precipitated Cr in the structure is 2.00% or less and the amount of precipitated Mo is 0.50% or less.
  • the second component composition of the duplex stainless steel sheet is, by mass, Cu: 1.50% or less, W: 1.50% or less, Co: 1.50% or less, Ti: 0.25%
  • the first component composition of the base steel sheet is, by mass, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.40% or less, and V: 0.050% or less.
  • [4] A method for producing a duplex stainless steel clad steel sheet in which a duplex stainless steel sheet as a laminated material is bonded to one or both surfaces of a base steel sheet,
  • the first material plate having the first component composition described in [1] or [3]
  • the duplex stainless steel plate as a laminated material Laminating the second component composition described above and a second material plate having a structure containing 35 to 65% of the ferrite phase by area fraction to obtain a clad slab; Heating the clad slab to 1050-1250 ° C .;
  • the step of cooling the clad rolled body so that
  • duplex stainless steel clad steel sheet of the present invention According to the method for producing a duplex stainless steel clad steel sheet of the present invention, it is possible to produce a duplex stainless steel clad steel sheet excellent in all of the corrosion resistance of the laminated material and the strength and toughness of the base material.
  • the duplex stainless steel clad steel sheet of the present invention is excellent in the corrosion resistance of the laminated material and the strength and toughness of the base material.
  • duplex stainless steel clad steel plate in which a duplex stainless steel plate as a bonding material is bonded to one side or both sides of a base steel plate.
  • the thickness of the duplex stainless steel clad steel plate is not particularly limited, but is preferably 6 to 45 mm.
  • the thicknesses of the base steel plate and the laminated material are preferably about 5 to 40 mm and 1 to 5 mm, respectively. In this embodiment, it is possible to achieve both improvement of pitting corrosion resistance and improvement of strength and toughness by using a duplex stainless clad steel in which a specific base material and a laminated material are combined.
  • the component composition of the base steel plate and the laminated material, which are constituent elements of the duplex stainless steel clad steel, will be described in detail.
  • the unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
  • Component composition of base steel sheet By using a low carbon steel having the following composition as a base steel plate, a duplex stainless steel clad having excellent mechanical properties such as strength and toughness can be provided.
  • C 0.06 to 0.25% C is an element that improves the strength of the steel, and by containing 0.06% or more, sufficient strength is exhibited. Therefore, the C content is 0.06% or more, and preferably 0.08% or more. However, if the amount of C exceeds 0.25%, weldability and toughness are deteriorated. Therefore, the C content is 0.25% or less, preferably 0.20% or less.
  • Si 0.05 to 0.50% Si is effective for deoxidation, and is contained at 0.05% or more in order to improve the strength of the steel. Further, Si is an element that inevitably enters steel from iron ore and other materials, and suppressing the Si content to less than 0.05% also causes an increase in cost in the steelmaking process. Accordingly, the Si content is 0.05% or more, and preferably 0.10% or more. However, if the amount of Si exceeds 0.50%, the surface properties and toughness of the steel are deteriorated. Therefore, the Si content is 0.50% or less, preferably 0.45% or less.
  • Mn 0.70 to 1.60%
  • Mn is an element that increases the strength of steel, and its effect is manifested at 0.70% or more. Therefore, the amount of Mn is 0.70% or more, and preferably 1.00% or more. However, if the amount of Mn exceeds 1.60%, weldability is impaired and alloy costs also increase. Therefore, the Mn content is 1.60% or less.
  • P 0.030% or less
  • P is an unavoidable impurity in steel, and when the amount of P exceeds 0.030%, toughness deteriorates. Therefore, the P content is 0.030% or less, preferably 0.020% or less, more preferably 0.015% or less. However, the amount of P is preferably 0.0001% or more from the viewpoint of dephosphorization cost.
  • S 0.010% or less S, like P, is an unavoidable impurity in steel. If the amount of S exceeds 0.010%, the toughness deteriorates. Therefore, the S content is 0.010% or less, preferably 0.005% or less, more preferably 0.003% or less. However, from the viewpoint of desulfurization cost, the amount of S is preferably 0.0001% or more, and more preferably 0.0003% or more.
  • Al 0.005 to 0.100% Al is added as a deoxidizer. Deoxidizing effect is exhibited at 0.005% or more. Therefore, the Al content is 0.005% or more, and preferably 0.010% or more. However, if the Al content exceeds 0.100%, the toughness of the welded portion is deteriorated. Therefore, the Al content is 0.100% or less, and preferably 0.070% or less.
  • Mo 0.01 to 0.15%
  • Mo is an element that improves the hardenability of steel, and improves the strength and toughness of the steel after rolling. The effect is manifested at a content of 0.01% or more. Therefore, the Mo amount is 0.01% or more, and preferably 0.05% or more. However, if the amount of Mo exceeds 0.15%, weldability is deteriorated. Therefore, the Mo amount is 0.15% or less.
  • Nb 0.010 to 0.040%
  • Nb precipitates as Nb nitride has the effect of suppressing the coarsening of austenite grains and improving the strength and toughness of the steel. Further, in the austenite region rolling, the recrystallization temperature region is expanded to a low temperature, crystal grains can be refined, and toughness is improved. These effects are obtained when the content is 0.010% or more. Therefore, the Nb content is 0.010% or more, preferably 0.013% or more, and more preferably 0.015% or more. However, if the Nb content exceeds 0.040%, coarse Nb nitrides are formed and the toughness deteriorates.
  • the Nb content is 0.040% or less, preferably 0.035% or less, more preferably 0.030% or less.
  • the inhibitory effect of the austenite grain coarsening can be exhibited more by making a ratio with the below-mentioned nitrogen atom or more into a predetermined value or more.
  • Ti Less than 0.005%
  • Ti forms a composite carbide and / or composite nitride with Nb.
  • the Ti content is less than 0.005%, preferably 0.003% or less, more preferably 0.001% or less.
  • the amount of Ti is preferably reduced as much as possible, but may be, for example, 0.0001% or more, or 0.0003% or more.
  • N 0.0010 to 0.0100%
  • N is an element indispensable for formation of Nb nitride, and Nb nitride is formed with a content of 0.0010% or more. Therefore, the N content is 0.0010% or more, preferably 0.0020% or more, more preferably 0.0025% or more. However, when the N amount exceeds 0.0100%, deterioration of weldability and toughness is caused. Therefore, the N content is 0.0100% or less, preferably 0.0070% or less, more preferably 0.0050% or less. Moreover, it is thought that the inhibitory effect of the coarsening of (gamma) grain (austenite grain) can be exhibited more by making ratio with Nb mentioned later into a predetermined value or more.
  • Nb / N 3.0 or more
  • Nb / N 3.0 or more
  • the precipitation of Nb nitride and the effect of solid solution Nb are sufficiently exhibited.
  • Nb / N is 3.0 or more, preferably 3.5 or more.
  • Nb / N can be 20.0 or less.
  • Ceq 0.35 to 0.45 Ceq is an index of the hardenability of steel and is represented by the following formula (1).
  • Ceq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
  • an element symbol shows content (mass%) of each element, and when not containing the said element, it calculates as zero.
  • Ceq is set to 0.35 or more, preferably 0.38 or more.
  • Ceq exceeds 0.45, weldability is impaired. For this reason, Ceq is set to 0.45 or less.
  • optional components are selected from the group consisting of Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.40% or less, and V: 0.050% or less. You may further contain 1 type, or 2 or more types.
  • Cu 0.50% or less
  • Cu is an element that improves the hardenability of the steel, and improves the strength and toughness of the steel after rolling. The effect is manifested at a content of 0.01% or more. Therefore, when the improvement of the hardenability by Cu is expected, the Cu content is preferably 0.01% or more, and more preferably 0.05% or more. However, when the amount of Cu exceeds 0.50%, deterioration of weldability and toughness is caused. Therefore, when adding Cu, the amount of Cu shall be 0.50% or less.
  • Ni 0.50% or less
  • Ni is an element that improves the hardenability of steel and is particularly effective in improving toughness. The effect is manifested at a content of 0.01% or more. Therefore, when the improvement of the hardenability by Ni is expected, the Ni content is preferably 0.01% or more, and more preferably 0.05% or more. However, if the Ni content exceeds 0.50%, the weldability is impaired and the alloy cost also increases. Therefore, when adding Ni, the amount of Ni is made 0.50% or less.
  • Cr 0.40% or less Cr, like Cu, is an element that improves the hardenability of steel, and improves the strength and toughness of the steel after rolling. The effect is manifested at a content of 0.01% or more. Therefore, when this effect by Cr is expected, the Cr content is preferably 0.01% or more, and more preferably 0.05% or more. However, if the Cr content exceeds 0.40%, deterioration of weldability and toughness is caused. Therefore, when adding Cr, the Cr content is 0.40% or less.
  • V 0.050% or less
  • V is an element that improves the strength of steel by forming carbonitride. The effect is manifested with a content of 0.001% or more. Therefore, when this effect by V is expected, the V amount is preferably 0.001% or more, and more preferably 0.005% or more. However, when the V content exceeds 0.050%, the toughness deteriorates. Therefore, when adding V, the amount of V is made into 0.050% or less.
  • the remainder other than the above is Fe and inevitable impurities.
  • the component composition of the base material is as follows: Ca: 0.010% or less, B: 0.0050% or less, Sn: 0.050% or less, Sb: 0.050% or less, Zr: 0.050% or less, W : 0.050% or less, Co: 0.050% or less, Mg: 0.020% or less, REM: 0.010% or less, O: 0.0100% or less within this range However, no significant change occurs in the characteristics of the base material.
  • C 0.030% or less C is inevitably one of the elements present in steel.
  • the C content is 0.030% or less, preferably 0.025% or less, more preferably 0.020% or less.
  • C amount shall be 0.001% or more from a viewpoint of manufacturing cost.
  • Si 1.00% or less
  • Si is an element that remarkably accelerates the precipitation of intermetallic compounds such as a sigma phase.
  • the amount of Si needs to be 1.00% or less. Therefore, the Si amount is 1.00% or less, preferably 0.50% or less, more preferably 0.40% or less. However, from the viewpoint of manufacturing cost, the Si amount is preferably 0.01% or more.
  • Mn 2.00% or less Mn is an element useful for deoxidation, preferably 0.01% or more.
  • the Mn content is 2.00% or less, preferably 1.70% or less, more preferably 1.50% or less, and still more preferably 1.00% or less.
  • the P content is 0.050% or less, preferably 0.040% or less, more preferably 0.020% or less.
  • the amount of P is preferably 0.0001% or more from the viewpoint of dephosphorization cost.
  • the S content is 0.0100% or less, preferably 0.0050% or less, more preferably 0.0020% or less.
  • the S amount is preferably 0.0001% or more.
  • Ni 5.00 to 8.00%
  • Ni is an essential element as an element for stabilizing the austenite phase which is one phase of the duplex stainless steel. The effect is exhibited by containing 5.00% or more. Therefore, the Ni content is 5.00% or more, preferably 5.50% or more, more preferably 5.70% or more, and still more preferably 6.00% or more. However, since Ni is an expensive metal, if it is contained in a large amount, the price of the alloy itself is increased. Therefore, the Ni content is 8.00% or less, preferably 7.50% or less, more preferably 7.00% or less.
  • the duplex stainless steel has excellent corrosion resistance when the ratio of the austenite phase to the ferrite phase is 35:65 to 65:35, preferably about 1: 1, so this phase ratio is satisfied. Therefore, the Ni content is 5.00 to 8.00%.
  • Cr 24.0% to 28.0% or less
  • Cr is an indispensable element for ensuring the corrosion resistance of the alloy and stabilizing the ferrite phase, which is the other phase of the duplex stainless steel.
  • a content exceeding 24.0% is necessary. Therefore, the Cr content is over 24.0%.
  • the Cr content is 28.0% or less, preferably 27.0% or less, more preferably 26.0% or less.
  • the duplex stainless steel has excellent corrosion resistance when the ratio of the austenite phase to the ferrite phase is 35:65 to 65:35, preferably about 1: 1, so this phase ratio is satisfied.
  • the Cr content is made 24.0% to 28.0% or less.
  • Mo 2.5-4.0%
  • Mo is also an important element for improving the corrosion resistance of the alloy. In order to exert the effect, it is necessary to contain 2.5% or more. Therefore, the Mo amount is 2.5% or more, preferably 3.0% or more. However, if the Mo content exceeds 4.0%, precipitation of the sigma phase is remarkably promoted, which adversely affects ductility and toughness. Therefore, the Mo amount is 4.0% or less.
  • the duplex stainless steel has excellent corrosion resistance when the ratio of the austenite phase to the ferrite phase is 35:65 to 65:35, preferably about 1: 1, so this phase ratio is satisfied. Therefore, the Mo content is set to 2.5 to 4.0%.
  • N 0.08 to 0.30%
  • N is important as an element for improving the corrosion resistance of the alloy, and is also effective as an element for improving the strength. In order to exhibit the effect, the content of 0.08% or more is necessary. Therefore, the N content is 0.08% or more, preferably 0.10% or more, more preferably 0.14% or more. However, if the N content exceeds 0.30%, precipitation of nitrides such as Cr 2 N is promoted, which adversely affects the corrosion resistance. Therefore, the N content is 0.30% or less, preferably 0.25% or less.
  • the duplex stainless steel has excellent corrosion resistance when the ratio of the austenite phase to the ferrite phase is 35:65 to 65:35, preferably about 1: 1, so this phase ratio is satisfied. Therefore, the N amount is set to 0.08 to 0.30%.
  • PI 34.0-43.0
  • PI is Pitting Index (pitting corrosion resistance index) and is defined by the following formula (2).
  • PI Cr + 3.3Mo + 16N (2)
  • an element symbol shows content (mass%) of each element.
  • the PI value calculated by the above formula (1) is an index value of the pitting corrosion resistance of the solution material having a fraction of sigma phase, carbide and nitride of 0%.
  • the pitting corrosion resistance is determined by the balance between the PI value and the amount of Cr and Mo contained in these precipitates. Is done.
  • the PI value increases, the pitting corrosion resistance of the base material improves.
  • the PI value is high, the content of Cr, Mo, or N naturally increases, so that the precipitate is likely to precipitate.
  • the amount of precipitated Cr or the amount of precipitated Mo described later increases, and as a result, the pitting corrosion resistance decreases. Therefore, in the present invention, the range of the PI value is 34.0 to 43.0.
  • Cu 1.50% or less
  • W 1.50% or less
  • Co 1.50% or less
  • Ti 0.25% or less
  • Nb 0.25%
  • Cu 1.50% or less Cu is an element that improves the corrosion resistance, and the effect is manifested when the content is 0.01% or more. For this reason, when improving corrosion resistance with Cu, it is preferable to make Cu amount 0.01% or more. However, if the amount of Cu exceeds 1.50%, the hot workability is significantly deteriorated. Therefore, when Cu is contained, the Cu content is 1.50% or less, preferably 1.00% or less.
  • W 1.50% or less W is an element that improves the corrosion resistance of the alloy, and the effect is manifested by inclusion of 0.01% or more. For this reason, when improving corrosion resistance by W, it is preferable to make the amount of W 0.01% or more. However, when the amount of W exceeds 1.50%, sigma phase precipitation is promoted. Therefore, when W is contained, the W amount is set to 1.50% or less, preferably 1.00% or less.
  • Co 1.50% or less Co is also an element that improves the corrosion resistance, and the effect is manifested by inclusion of 0.01% or more. For this reason, when improving corrosion resistance by Co, it is preferable to make Co amount 0.01% or more. However, when the Co content exceeds 1.50%, the alloy cost increases. Therefore, when Co is contained, the Co content is 1.50% or less, preferably 1.00% or less.
  • Ti 0.25% or less Ti has the property of being easily bonded to C, and when contained in the alloy, precipitation of carbides such as Cr 23 C 6 that are harmful to corrosion resistance can be delayed. The effect is manifested at 0.01% or more. Therefore, when this effect by Ti is expected, the Ti content is preferably set to 0.01% or more. However, even if the content exceeds 0.25%, the effect is not improved and the alloy cost increases. Therefore, when Ti is contained, the Ti amount is 0.25% or less, preferably 0.20% or less.
  • Nb 0.25% or less
  • Nb has the property of being easily bonded to C like Ti, and when contained in the alloy, precipitation of carbides such as Cr 23 C 6 that are harmful to corrosion resistance can be delayed. The effect is manifested at 0.01% or more. Therefore, when this effect by Nb is expected, the Nb content is preferably 0.01% or more. However, even if the content exceeds 0.25%, the effect is not improved and the alloy cost increases. Therefore, when Nb is contained, the Nb content is 0.25% or less, preferably 0.20% or less.
  • the remainder other than the above is Fe and inevitable impurities.
  • the component composition of the laminated material is Al: 0.05% or less, V: 0.2% or less, Ca: 0.02% or less, B: 0.01% or less, O: 0.02% or less, Sn : 0.2% or less, Sb: 0.2% or less, Zr: 0.2% or less, Mg: 0.02% or less, REM: 0.2% or less within this range
  • Ferrite phase area fraction 35-65%
  • the “area fraction of the ferrite phase” is a value estimated from the component composition of the duplex stainless steel plate, calculated according to the following formulas (3) to (5), or a value calculated from a microscope image described later. is there.
  • Ferrite phase area fraction (%) 4.01 Creq ⁇ 5.6 Nieq ⁇ 4.13
  • Creq Cr + 1.73Si + 0.88Mo
  • Nieq Ni + 24.55C + 21.75N + 0.4Cu (5)
  • an element symbol shows content (mass%) of each element, and when not containing the said element, it calculates as zero.
  • the duplex stainless steel sheet as a laminated material exhibits corrosion resistance when the phase fraction of the ferrite phase and the austenite phase is in the range of 35:65 to 65:35. If the value of the area fraction of the ferrite phase is 35 to 65%, the phase fraction of the ferrite phase and the austenite phase is approximately 35:65 to 65:35, and excellent corrosion resistance is exhibited. From this viewpoint, the area fraction of the ferrite phase is 35% or more, preferably 40% or more, more preferably 45% or more, 65% or less, preferably 60% or less, more preferably 55% or less. To do.
  • the area fraction of the ferrite phase can be calculated by a known method other than the method calculated from the above formula (3), and is not particularly limited.
  • it can be obtained by the following method. .
  • Ferrite phase, austenite phase, and precipitates (sigma phase, carbide, nitride, and carbonitride) by performing electrolytic etching on duplex stainless steel sheet and processing color photographs taken with an optical microscope with image processing software ), And the area fraction of each can be calculated. It has been confirmed that the value calculated by this method is correlated with the value calculated according to the above equation (3).
  • the area fraction is 100% in total of ferrite phase + austenite phase + precipitate (sigma phase, carbide, nitride, and carbonitride). When the precipitate is zero, ferrite phase + austenite phase 100%.
  • the structure of the laminated material contains a predetermined amount or more of Cr-based precipitates and Mo-based precipitates, corrosion resistance is deteriorated. Therefore, in the present invention, it is important to contain a predetermined amount or less of the amount of precipitated Cr and the amount of precipitated Mo (that is, the amount of Cr and Mo present as precipitates).
  • precipitate refers to one or more selected from the group consisting of sigma phase, carbide, nitride and carbonitride present in the structure of the laminated material.
  • Cr and Mo are generally widely known as elements that form a passive film.
  • Cr and / or Mo in the matrix collects in the precipitate, the concentration of Cr and / or Mo in the periphery of the precipitate is lowered, and in a corrosive environment, this low Cr and / or low Mo region is preferential. Corroded. This phenomenon is called sensitization.
  • sensitization When the amount of precipitated Cr exceeds 2.00% by mass%, sensitization proceeds and corrosion resistance deteriorates. Therefore, the amount of precipitated Cr is set to 2.00% or less.
  • the amount of precipitated Mo exceeds 0.50% by mass%, sensitization proceeds and corrosion resistance deteriorates. Therefore, the amount of precipitated Mo is set to 0.50% or less.
  • the amount of precipitated Cr and the amount of precipitated Mo can each be 0.00% or more.
  • the 1st material board used as a base material steel plate is melted so that it may become a component composition of said base material steel plate, and can be manufactured by a conventional method.
  • the 2nd raw material board used as the duplex stainless steel plate as a bonding material can be melted so that it may become a component composition of said bonding material, and can be manufactured by a conventional method.
  • the first material plate and the second material plate are laminated to assemble a clad slab. For example, as shown in FIG.
  • a clad slab 10 is formed by stacking two sets of laminates in which a first material plate 1 and a second material plate 2 are laminated so that the second material plates face each other. can do.
  • the release agent 3 can be applied between the two second material plates 2.
  • the release agent 3 is not particularly limited, relatively inexpensive as Al 2 O 3, preferably has a sufficient peelability.
  • reference numeral 4 is a spacer, and 5 is a welded portion. In consideration of warping during cooling, it is desirable that the two first material plates and the two second material plates have the same thickness. Of course, it goes without saying that it is not necessary to limit to the assembly system shown in FIG.
  • the clad slab thus obtained is heated and further hot-rolled to obtain a clad rolled body in which the base steel plate and the duplex stainless steel plate are joined.
  • Heating temperature 1050-1250 ° C
  • the reason why the heating temperature is set to 1050 ° C. or higher is to ensure the bondability between the base material steel plate and the laminated material and the toughness of the base material steel plate.
  • the heating temperature is 1050 ° C. or higher, preferably 1100 ° C. or higher.
  • the heating temperature exceeds 1250 ° C., the crystal grains are extremely coarse and the toughness of the base steel plate is deteriorated. Therefore, heating temperature shall be 1250 degrees C or less.
  • Rolling ratio 2.0 or more
  • the rolling ratio refers to the thickness of the clad slab before rolling / the thickness of the rolled clad body after rolling.
  • the reduction ratio is 2.0 or more, preferably 3.0 or more. Thereby, good bondability is obtained.
  • the crystal grain of a base material steel plate is refined
  • the reduction ratio can be 20.0 or less.
  • the rolled clad body is allowed to cool in the air and then reheated to 1000 to 1100 ° C.
  • Cooling means that the clad rolled body is exposed to the atmosphere without forced cooling by water injection or the like, and means air cooling without active cooling.
  • the positive cooling referred to here means “actively cooling with gas, liquid or a mixture thereof”.
  • the cooling stop temperature in the cooling is preferably 400 ° C. or lower.
  • Reheating temperature 1000-1100 ° C
  • the reason for reheating after hot rolling is to ensure the corrosion resistance of the laminated material. By performing reheating after hot rolling, the precipitate can be remelted and the corrosion resistance of the laminated material can be ensured.
  • the reheating temperature is set to 1000 ° C. or higher.
  • the reheating temperature is 1100 ° C. or lower, preferably 1050 ° C. or lower.
  • Cooling rate of the laminated material after reheating 0.8 ° C./s or more
  • the cooling rate of the laminated material is set to 0.8 ° C./s or more.
  • the cooling rate of the laminated material can be 100 ° C./s or less.
  • Cooling rate of base steel after reheating 1.0 ° C./s or more
  • the cooling rate of the base steel is set to 1.0 ° C./s or more, preferably 2.0 ° C./s or more.
  • the cooling rate of the base steel sheet can be 100 ° C./s or less.
  • the control of the cooling rate as described above can be realized by setting the cooling method and the cooling conditions in consideration of the thickness of the base steel plate and the laminated material, the form of the clad slab, and the like.
  • the cooling rate of the base steel plate becomes larger than the cooling rate of the laminated material.
  • the cooling rate of the base steel plate and the combined material are changed by changing the water cooling conditions on both sides of the clad rolled material.
  • the cooling rate can be individually controlled.
  • both the cooling stop temperature of the laminated material and base material steel plate after reheating shall be less than 200 degreeC.
  • a so-called tempering treatment is performed in which the clad rolled body thus cooled is heated at 700 ° C. or lower.
  • Tempering temperature 700 ° C. or less
  • the purpose of tempering is to adjust the strength of the base steel sheet. It can adjust to desired intensity
  • a known process may be further added before and after each process described above.
  • the obtained rolled clad body can be made into a final product plate by peeling between the laminated material and the laminated material coated with a release agent.
  • first material plates base material materials
  • second material plates materials for laminated materials
  • area fraction of the ferrite phase shown in Table 2 was calculated according to the above formula (3).
  • the joint strength between the laminated material and the base material was evaluated by a JIS G0601 shear strength test.
  • the shear strength test is a method in which the laminated material is peeled from the base material in parallel with the joining surface, and the joining property is evaluated from the maximum shear strength required for the peeling. When the shear strength was 200 MPa or more, it was judged that the bondability was good.
  • the toughness of the base steel plate was evaluated by a Charpy impact test.
  • a 10 ⁇ 10 mm size V-notch Charpy impact test piece prescribed in JIS Z2242 was taken from the base steel plate and subjected to a Charpy impact test.
  • the Charpy impact absorption energy value (vE ⁇ 20 ) at ⁇ 20 ° C. exceeds 100 J, it was judged that the toughness was good.
  • the clad steel sheets according to the invention examples 1 to 18 exhibited good corrosion resistance and toughness.
  • the component composition of the laminated material is outside the scope of the present invention.
  • the 19 to 29 clad steel sheets were inferior in corrosion resistance.
  • the 30 to 38 clad steel plate was inferior in toughness.
  • the composition of the laminated material and the composition of the base material are outside the scope of the present invention.
  • the 39 to 46 clad steel plates were inferior in both corrosion resistance and toughness. Among these, No. whose heating temperature is lower than the range of the present invention. No. 39 clad steel sheet and No. 39 whose rolling ratio is lower than the range of the present invention.
  • the shear strength was less than 200 MPa, and the bondability was poor.
  • the production conditions are outside the scope of the present invention.
  • the amount of precipitated Cr was outside the range of the present invention, and as a result, the corrosion resistance was poor.

Abstract

合せ材の耐食性と、母材の強度及び靱性の全てに優れた二相ステンレスクラッド鋼板を提供する。本開示は、母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板であって、前記母材鋼板は、Nb/Nが3.0以上、かつ下記式(1)で表わされるCeqが0.35~0.45である所定の成分組成を有し、前記二相ステンレス鋼板は、下記式(2)で定義されるPIが34.0~43.0である所定の成分組成と、フェライト相を面積分率で35~65%含む組織と、を有し、前記組織における析出Cr量が2.00%以下、かつ、析出Mo量が0.50%以下である。式(1):Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5、式(2):PI=Cr+3.3Mo+16N

Description

二相ステンレスクラッド鋼板及びその製造方法
 本発明は、例えば化学プラントの反応容器などに用いられる二相ステンレスクラッド鋼板及びその製造方法に関する。
 従来、海水などの高塩化物環境下や、油井あるいはガス井などの厳しい腐食性環境下において、二相ステンレス鋼が採用されてきた。具体的には、油井やガス井の配管類、排煙脱硫装置、排水処理施設及び海水揚水発電機などの構造部材、抄紙ロール、遠心分離器、ポンプ・バルブならびに熱交換器などに二相ステンレス鋼が採用されている。二相ステンレス鋼とは、オーステナイト相及びフェライト相の二相が混在した複合組織を有するステンレス鋼であり、優れた耐食性と優れた強度特性とを併せ持っており、この鋼では一般に、オーステナイト相とフェライト相との面積比率(相分率)がほぼ1:1の場合に耐食性が最も優れていることが知られている。したがって、二相ステンレス鋼の実用的な成分組成は、オーステナイト相とフェライト相との面積比率(相分率)がほぼこの付近になるように規定されている。このような観点から、日本工業規格(JIS)では棒材・板材として、SUS329Jl、SUS329J3L及びSUS329J4Lなどが規格化されている。また、鍛鋼品としてはSUS329J1FB、鋳鋼品としてはSCS10などが、規格化されている。
 一方、二相ステンレス鋼の主原料であるCr、Ni及びMoに代表される合金元素の価格は、時に高騰や大きな変動がある。このため、二相ステンレス鋼を無垢材として使用するよりも、無垢材と同一厚みのクラッド鋼として使用する方が、二相ステンレス鋼の優れた耐食性をより経済的に利用できる。
 クラッド鋼板とは、2種類以上の異なる性質の鋼板を接合させた鋼板、例えば、炭素鋼などのいわゆる普通鋼材からなる母材鋼板に、高い耐食性を示す高合金鋼板を合せ材として接合させた鋼板である。クラッド鋼板は、異種金属を金属学的に接合させたものであり、めっきとは異なり剥離する心配がない。また、クラッド鋼板は、単一の金属や合金では達し得ない種々の特性が得られる。
 例えば、合せ材として使用環境に応じた耐食性を有する鋼材を選択することにより、高価な合金元素の使用量を抑えつつ無垢材と同等の耐食性を確保することができる。また、母材鋼板には、高強度かつ高靭性の炭素鋼や低合金鋼を適用することができる。このように、クラッド鋼板では、高価な合金元素の使用量を抑えつつ無垢材と同等の耐食性が得られ、また、同時に炭素鋼や低合金鋼と同等の強度及び靭性を確保できるので、クラッド鋼板は、経済性と機能性とを両立できるという利点を有する。
 このため、高合金鋼材を合せ材に用いたクラッド鋼板は、非常に有益な機能性鋼材であると考えられており、近年、そのニーズが各種産業分野で益々高まっている。
 このようなクラッド鋼板に関する技術として、特許文献1には、「重量%で、C:0.15%以下、Si:0.5%以下、Mn:1.5%以下、Ni:3.0%以下、Ti:0.008~0.025%、B:0.0004~0.0020%、N:0.006~0.015%を含有し、残部がFeおよび不可避不純物からなることを特徴とする溶体化ままで靭性に優れるクラッド鋼用母材(請求項1)」が記載されている。
特開2000-61655号公報
 特に、化学プラントの反応容器用材料には、これまでSUS316Lクラッド鋼が使用されていた。近年、SUS316Lクラッド鋼より耐食性に優れたSUS329J3Lクラッド鋼のような二相ステンレスクラッド鋼への代替要求が高まっている。しかしながら、本発明者らの検討によると、従来の二相ステンレスクラッド鋼板では、合せ材の耐食性が不十分であることが判明した。特許文献1では、クラッド鋼の合せ材については適宜の材質としか開示されていないため、合せ材と母材とを組み合わせたクラッド鋼全体の特性を把握できない。このため、特許文献1に記載の母材を用いたクラッド鋼では、十分な耐食性を得ることができない。
 さらに、近年、寒冷地など低温環境におけるクラッド鋼の使用が増えていることを背景に、クラッド鋼には、より高い母材強度及び靱性が求められている。
 本発明は、上記課題に鑑み、合せ材の耐食性と、母材の強度及び靱性の全てに優れた二相ステンレスクラッド鋼板及びその製造方法を提供することを目的とする。
 上記課題を達成するべく、本発明者らが鋭意検討したところ、以下の知見を得た。
 二相ステンレスクラッド鋼に用いられる二相ステンレス鋼は、熱的影響による金属組織の変化に伴い、諸性質が変化する場合がある。例えば、融点~1200℃の高温域ではフェライト相が増加する。600~900℃の中温域では、シグマ相などの金属間化合物や炭窒化物など異種相が析出する。450~500℃の低温域では、フェライト相の分解と考えられる反応が起きる。このように、各温度域で金属組織が変化し、それに伴って耐食性や強度特性が変化する。上記の組織変化の中で問題となるのが、シグマ相などの金属間化合物、Cr23などの炭化物、及びCrNなどの窒化物の析出である。シグマ相、炭化物、窒化物及び炭窒化物の少なくとも一種が析出すると、その周囲にCrやMoなど耐食性元素の欠乏層が形成され、耐食性が著しく低下する。
 二相ステンレス鋼における耐食性を向上させるためには、合金成分を改良することも考えられる。例えば、Cr添加量を少なくすればシグマ相が析出しにくくなる。これは、シグマ相の基本構造がFe:Cr=1:1のように構成されているからである。同様にMo添加量を低減することにより、シグマ相の析出を遅延させることができる。しかしながら、CrやMoの添加量を低減すれば、合せ材の母相の耐食性に悪影響を及ぼす。すなわち、この方法によるシグマ相の析出の遅延は、全体として耐食性を劣化させることになり、一概にCrやMoの低減を図ることは好ましくない。また、C量を少なくすれば炭化物が析出しにくくなる。しかしながら、極端な低C化は製錬負荷を増大させ、その結果、製造コストが増大する。
 このように、合金成分の改良以外の方法で、二相ステンレス鋼のシグマ相、炭化物等の析出を防止して、全体として合せ材の耐食性を向上させる方法はこれまで確立されていなかった。特に、クラッド鋼を製造する場合には、母材の機械的特性を保持するという制約から、シグマ相、炭化物等を固溶する溶体化処理を行うことは困難であり、シグマ相、炭化物等の析出に伴う、合せ材の二相ステンレス鋼の耐食性低下の問題は未だに解決されていない。
 本発明者らは二相ステンレス鋼からなる種々の試験材を用いて、析出物と耐食性との関係を調査した。その結果、耐食性の劣化はシグマ相、炭化物、窒化物及び炭窒化物といった析出物によって引き起こされていることを突き止めた。さらに、合せ材の二相ステンレス鋼に関して、これら析出物中に含まれるCr量及びMo量(すなわち、析出物として存在するCr及びMoの量)と耐食性との間に相関があるとの知見を得た。そして、合せ材としての二相ステンレス鋼のCrが比較的高い場合であっても、析出物として存在するCr量を低減する製造条件を見出した。
 さらに、母材の成分組成に関して、所定の関係式で定義される指標Ceqと、Nb/Nを所定の範囲に限定することで、母材の強度及び靱性が向上するとの知見を得た。本発明は、上記知見に基づき完成されたものであり、その要旨は以下のとおりである。
 [1]母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板であって、
 前記母材鋼板は、質量%で、C:0.06~0.25%、Si:0.05~0.50%、Mn:0.70~1.60%、P:0.030%以下、S:0.010%以下、Al:0.005~0.100%、Mo:0.01~0.15%、Nb:0.010~0.040%、Ti:0.005%未満、及びN:0.0010~0.0100%を、Nb/Nが3.0以上、かつ下記式(1)で表わされるCeqが0.35~0.45の範囲の下に含有し、残部がFe及び不可避的不純物からなる第1の成分組成を有し、
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
 (上記式(1)中、元素記号は各元素の含有量(質量%)を示し、当該元素を含有しない場合はゼロとして算出する)
 前記二相ステンレス鋼板は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.0100%以下、Ni:5.00~8.00%、Cr:24.0%超え28.0%以下、Mo:2.5~4.0%、及びN:0.08~0.30%を、下記式(2)で定義されるPIが34.0~43.0の範囲の下に含有し、残部がFe及び不可避的不純物からなる第2の成分組成と、
 PI=Cr+3.3Mo+16N ・・・(2)
 (上記式(2)中、元素記号は各元素の含有量(質量%)を示す)
 フェライト相を面積分率で35~65%含む組織と、を有し、
 前記組織における析出Cr量が2.00%以下、かつ、析出Mo量が0.50%以下であることを特徴とする二相ステンレスクラッド鋼板。
 [2]前記二相ステンレス鋼板の第2の成分組成が、質量%で、Cu:1.50%以下、W:1.50%以下、Co:1.50%以下、Ti:0.25%以下及びNb:0.25%以下からなる群から選択される1種又は2種以上をさらに含有する、上記[1]に記載の二相ステンレスクラッド鋼板。
 [3]前記母材鋼板の第1の成分組成が、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.40%以下及びV:0.050%以下からなる群から選択される1種又は2種以上をさらに含有する、上記[1]又は[2]に記載の二相ステンレスクラッド鋼板。
 [4]母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板の製造方法であって、
 母材鋼板となる、上記[1]又は[3]に記載の第1の成分組成を有する第1素材板と、合せ材としての二相ステンレス鋼板となる、上記[1]又は[2]に記載の第2の成分組成、及びフェライト相を面積分率で35~65%含む組織を有する第2素材板とを積層させて、クラッドスラブを得る工程と、
 前記クラッドスラブを1050~1250℃に加熱する工程と、
 その後、前記クラッドスラブに圧下比が2.0以上となる熱間圧延を施して、前記母材鋼板と前記二相ステンレス鋼板とが接合されたクラッド圧延体を得る工程と、
 前記クラッド圧延体を放冷する工程と、
 その後、前記クラッド圧延体を1000~1100℃に再加熱する工程と、
 その後、前記クラッド圧延体を、前記二相ステンレス鋼板における冷却速度が0.8℃/s以上、かつ前記母材鋼板における冷却速度が1.0℃/s以上となるように、冷却する工程と、
 その後、前記クラッド圧延体を700℃以下で焼き戻しする工程と、
を有することを特徴とする二相ステンレスクラッド鋼板の製造方法。
 本発明の二相ステンレスクラッド鋼板の製造方法によれば、合せ材の耐食性と、母材の強度及び靱性の全てに優れた二相ステンレスクラッド鋼板を製造することができる。本発明の二相ステンレスクラッド鋼板は、合せ材の耐食性と、母材の強度及び靱性の全てに優れる。
クラッドスラブの模式的な断面図である。
 (二相ステンレスクラッド鋼板)
 本発明の一実施形態は、母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板に関する。二相ステンレスクラッド鋼板の板厚は特に限定されないが、6~45mmが好適である。また、母材鋼板及び合せ材の板厚はそれぞれ、5~40mm程度及び1~5mmが好適である。本実施形態では、特定の母材と合せ材とを組み合わせた二相ステンレスクラッド鋼により、耐孔食性の向上と、強度及び靱性の向上との両立を図ることができる。
 以下、二相ステンレスクラッド鋼の構成要素である母材鋼板及び合せ材の成分組成について詳説する。なお、成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
 [母材鋼板の成分組成]
 下記の成分組成の低炭素鋼を母材鋼板として用いることで、強度や靱性等の機械的特性に優れた二相ステンレスクラッド鋼を提供することができる。
 C:0.06~0.25%
 Cは鋼の強度を向上させる元素であり、0.06%以上含有させることで十分な強度を発現する。よって、C量は0.06%以上とし、0.08%以上が好ましい。しかし、C量が0.25%を超えると溶接性及び靱性の劣化を招く。したがって、C量は0.25%以下とし、0.20%以下が好ましい。
 Si:0.05~0.50%
 Siは脱酸に有効であり、また鋼の強度を向上させるために0.05%以上で含有させる。また、Siは鉄鉱石などの原料から鋼中へ不可避的に入る元素であり、Si量を0.05%未満に抑えることは製鋼過程でのコスト増を招くことにもなる。したがって、Si量は0.05%以上とし、0.10%以上が好ましい。しかしながら、Si量が0.50%を超えると鋼の表面性状及び靱性の劣化を招く。よって、Si量は0.50%以下とし、0.45%以下が好ましい。
 Mn:0.70~1.60%
 Mnは鋼の強度を上昇させる元素であり、0.70%以上でその効果を発現する。よって、Mn量は0.70%以上とし、1.00%以上が好ましい。しかしながら、Mn量が1.60%を超えると、溶接性が損なわれ、合金コストも増大する。したがって、Mn量は1.60%以下とする。
 P:0.030%以下
 Pは鋼中の不可避的不純物であり、P量が0.030%を超えると靱性が劣化する。したがって、P量は0.030%以下とし、好ましくは0.020%以下、より好ましくは0.015%以下である。ただし、脱燐コストの観点から、P量は0.0001%以上であることが好ましい。
 S:0.010%以下
 SもPと同様に、鋼中の不可避的不純物である。S量が0.010%を超えると靱性が劣化する。したがって、S量は0.010%以下とし、好ましくは0.005%以下、より好ましくは0.003%以下である。ただし、脱硫コストの観点から、S量は0.0001%以上であることが好ましく、0.0003%以上であることがより好ましい。
 Al:0.005~0.100%
 Alは脱酸剤として添加する。0.005%以上で脱酸効果を発揮する。よって、Al量は0.005%以上とし、0.010%以上が好ましい。しかしながら、Al量が0.100%を超えると溶接部の靱性劣化を招く。したがって、Al量は0.100%以下とし、0.070%以下が好ましい。
 Mo:0.01~0.15%
 Moは鋼の焼入れ性を向上させる元素であり、圧延後の鋼の強度及び靱性を向上させる。その効果は0.01%以上の含有で発現する。よって、Mo量は0.01%以上とし、0.05%以上が好ましい。しかしながら、Mo量が0.15%を超えると溶接性の劣化を引き起こす。したがって、Mo量は0.15%以下とする。
 Nb:0.010~0.040%
 NbはNb窒化物として析出し、オーステナイト粒の粗大化を抑制して、鋼の強度及び靱性を改善させる効果がある。また、オーステナイト域の圧延において再結晶温度域を低温まで拡大させ、結晶粒の微細化が可能となり、靱性が改善する。これらの効果は0.010%以上の含有により得られる。よって、Nb量は0.010%以上とし、0.013%以上が好ましく、0.015%以上がより好ましい。しかしながら、Nb量が0.040%を超えると、粗大なNb窒化物が形成されて靱性が劣化する。したがって、Nb量は0.040%以下とし、好ましくは0.035%以下、より好ましくは0.030%以下である。また、後述の窒素原子との比を所定値以上にすることで、オーステナイト粒の粗大化の抑制効果をより発揮することができる。
 Ti:0.005%未満
 Nbを必須元素として含む本実施形態の場合、TiはNbとの複合炭化物及び/又は複合窒化物を形成する。本実施形態のNb量では、Ti量が0.005%以上になると、粗大なTiとNbの複合炭化物及び/又は複合窒化物が形成されて、靱性が劣化することが確認された。よって、Ti量は、0.005%未満とし、好ましくは0.003%以下、より好ましくは0.001%以下とする。Ti量はできるだけ低減することが好ましいが、例えば0.0001%以上、あるいは0.0003%以上となり得る。
 N:0.0010~0.0100%
 NはNb窒化物の形成に不可欠な元素であり、0.0010%以上の含有でNb窒化物が形成される。よって、N量は0.0010%以上とし、好ましくは0.0020%以上、より好ましくは0.0025%以上である。しかしながら、N量が0.0100%を超えると、溶接性及び靱性の劣化を引き起こす。したがって、N量は0.0100%以下とし、好ましくは0.0070%以下、より好ましくは0.0050%以下とする。また、後述のNbとの比を所定値以上にすることで、γ粒(オーステナイト粒)の粗大化の抑制効果をより発揮することができると考えられる。
 Nb/N:3.0以上
 Nb/Nが3.0以上の場合、Nb窒化物の析出と固溶Nbの効果が十分に発現する。しかしながら、Nb/Nが3.0未満の場合、鋼中に固溶Nが存在するため、靱性の顕著な劣化が生じる。したがって、Nb/Nは3.0以上とし、好ましくは3.5以上とする。また、Nb/Nは20.0以下となり得る。
 Ceq:0.35~0.45
 Ceqは、鋼の焼き入れ性の指標であり、以下の式(1)で表わされる。
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
 上記式(1)中、元素記号は各元素の含有量(質量%)を示し、当該元素を含有しない場合はゼロとして算出する。
 Ceqを0.35以上とすることにより十分な焼き入れ性が確保可能で、良好な鋼の強度及び靱性が得られる。よって、Ceqは0.35以上とし、好ましくは0.38以上とする。しかしながら、Ceqが0.45を超えると溶接性が損なわれる。このため、Ceqは0.45以下とする。
 上記した基本成分に加えて、任意成分として、Cu:0.50%以下、Ni:0.50%以下、Cr:0.40%以下及びV:0.050%以下からなる群から選択される1種又は2種以上をさらに含有してもよい。
 Cu:0.50%以下
 Cuは鋼の焼入れ性を向上させる元素であり、圧延後の鋼の強度及び靱性を向上させる。その効果は0.01%以上の含有で発現する。よって、Cuによる焼き入れ性の向上を期待する場合は、Cu量を0.01%以上とすることが好ましく、0.05%以上がより好ましい。しかしながら、Cu量が0.50%を超えると、溶接性及び靱性の劣化を引き起こす。したがって、Cuを添加する場合、Cu量は0.50%以下とする。
 Ni:0.50%以下
 Niは鋼の焼き入れ性を向上させ、特に靱性の改善に効果的な元素である。その効果は0.01%以上の含有で発現する。よって、Niによる焼き入れ性の向上を期待する場合は、Ni量を0.01%以上とすることが好ましく、0.05%以上がより好ましい。しかしながら、Ni量が0.50%を超えると、溶接性を損ない、合金コストも増大する。したがって、Niを添加する場合、Ni量は0.50%以下とする。
 Cr:0.40%以下
 CrもCuと同様に、鋼の焼入れ性を向上させる元素であり、圧延後の鋼の強度及び靱性を向上させる。その効果は0.01%以上の含有で発現する。よって、Crによるこの効果を期待する場合は、Cr量を0.01%以上とすることが好ましく、0.05%以上がより好ましい。しかしながら、Cr量が0.40%を超えると、溶接性及び靱性の劣化を引き起こす。したがって、Crを添加する場合、Cr量は0.40%以下とする。
 V:0.050%以下
 Vは炭窒化物を形成することで、鋼の強度を向上させる元素である。その効果は0.001%以上の含有で発現する。よって、Vによるこの効果を期待する場合は、V量を0.001%以上とすることが好ましく、0.005%以上がより好ましい。しかしながら、V量が0.050%を超えると靱性が劣化する。したがって、Vを添加する場合、V量は0.050%以下とする。
 上記以外の残部はFe及び不可避的不純物である。なお、母材の成分組成は、Ca:0.010%以下、B:0.0050%以下、Sn:0.050%以下、Sb:0.050%以下、Zr:0.050%以下、W:0.050%以下、Co:0.050%以下、Mg:0.020%以下、REM:0.010%以下、O:0.0100%以下のいずれか1種以上をこの範囲で含有しても、母材の特性に顕著な変化は生じない。
 [合せ材の成分組成]
 次に、合せ材としての二相ステンレス鋼板の成分組成を説明する。
 C:0.030%以下
 Cは不可避的に鋼材中に存在する元素の一つである。C量が0.030%を超えると炭化物の析出が顕著に生じ、耐食性の劣化を引き起こす。したがって、C量は0.030%以下とし、好ましくは0.025%以下、より好ましくは0.020%以下とする。なお、C量は、製造コストの観点から0.001%以上とすることが好ましい。
 Si:1.00%以下
 Siはシグマ相など金属間化合物の析出を著しく促進する元素であり、シグマ相などの析出を抑えるには、Si量は1.00%以下とする必要がある。したがって、Si量は1.00%以下とし、好ましくは0.50%以下、より好ましくは0.40%以下とする。ただし、製造コストの観点から、Si量は0.01%以上が好ましい。
 Mn:2.00%以下
 Mnは脱酸に有用な元素であり、好ましくは0.01%以上で含有させる。一方、Mn量が2.00%を超えると、MnSを形成し耐食性を劣化させる。したがって、Mn量は2.00%以下とし、好ましくは1.70%以下、より好ましくは1.50%以下、さらに好ましくは1.00%以下とする。
 P:0.050%以下
 P量が0.050%を超えると靭性が劣化することに加え、耐食性が劣化する。したがって、P量は0.050%以下とし、好ましくは0.040%以下、より好ましくは0.020%以下とする。ただし、脱リンコストの観点から、P量は0.0001%以上であることが好ましい。
 S:0.0100%以下
 S量が0.0100%を超えると熱間加工性が劣化することに加え、耐食性が劣化する。したがって、S量は0.0100%以下とし、好ましくは0.0050%以下、より好ましくは0.0020%以下である。ただし、脱硫コストの観点から、S量は0.0001%以上であることが好ましい。
 Ni:5.00~8.00%
 Niは二相ステンレス鋼の一方の相であるオーステナイト相を安定化させる元素として必須の元素である。5.00%以上の含有により、その効果を発揮する。よって、Ni量は5.00%以上とし、好ましくは5.50%以上、より好ましくは5.70%以上、さらに好ましくは6.00%以上とする。しかしながら、Niは高価な金属であるために、多量に含有させると合金自体の高価格化を招く。したがって、Ni量は8.00%以下とし、好ましくは7.50%以下、より好ましくは7.00%以下とする。また、前述のように二相ステンレス鋼では、オーステナイト相とフェライト相との比率が35:65~65:35、好ましくはほぼ1:1の場合に耐食性が優れているので、この相比率を満足するためにも、Ni量は5.00~8.00%とする。
 Cr:24.0%超え28.0%以下
 Crは合金の耐食性を保証し、かつ二相ステンレス鋼の他方の相であるフェライト相を安定化するために必要不可欠な元素である。その効果を発揮させるためには、24.0%超えの含有量が必要である。よって、Cr量は24.0%超えとする。しかしながら、Cr量が28.0%を超えると、シグマ相の析出が促進され、延性や靭性に悪影響を及ぼす。したがって、Cr量は28.0%以下とし、好ましくは27.0%以下とし、より好ましくは26.0%以下とする。また、前述のように二相ステンレス鋼では、オーステナイト相とフェライト相との比率が35:65~65:35、好ましくはほぼ1:1の場合に耐食性が優れているので、この相比率を満足するためにも、Cr量は24.0%超え28.0%以下とする。
 Mo:2.5~4.0%
 Moも合金の耐食性を向上させる元素として重要である。その効果を発揮させるためには、2.5%以上の含有が必要である。よって、Mo量は2.5%以上とし、好ましくは3.0%以上とする。しかしながら、Mo量が4.0%を超えると、シグマ相の析出が著しく促進され、延性や靭性に悪影響を及ぼす。したがって、Mo量は4.0%以下とする。また、前述のように二相ステンレス鋼では、オーステナイト相とフェライト相との比率が35:65~65:35、好ましくはほぼ1:1の場合に耐食性が優れているので、この相比率を満足するためにも、Mo量は2.5~4.0%とする。
 N:0.08~0.30%
 Nは合金の耐食性を向上させる元素として重要であり、同時に、強度を向上させる元素としても有効である。その効果を発揮させるためには、0.08%以上の含有が必要である。よって、N量は0.08%以上とし、好ましくは0.10%以上、より好ましくは0.14%以上とする。しかしながら、N量が0.30%を超えると、CrNなどの窒化物の析出が促進され、耐食性に悪影響を及ぼす。したがって、N量は0.30%以下とし、好ましくは0.25%以下とする。また、前述のように二相ステンレス鋼では、オーステナイト相とフェライト相との比率が35:65~65:35、好ましくはほぼ1:1の場合に耐食性が優れているので、この相比率を満足するためにも、N量は0.08~0.30%とする。
 PI:34.0~43.0
 PIはPitting Index(耐孔食性指数)であり、下記式(2)で定義される。
 PI=Cr+3.3Mo+16N ・・・(2)
 上記式(2)中、元素記号は各元素の含有量(質量%)を示す。
 PI値が高いほど耐孔食性に優れており、十分な耐孔食性を得る観点から、本発明では34.0以上とし、好ましくは35.0以上とする。しかしながら、PI値が43.0を超えるとシグマ相、炭化物、窒化物及び炭窒化物の少なくとも一種が析出するリスクが高くなり、さらに合金コストの増大も招く。このため、PI値は43.0以下とし、好ましくは41.0以下とする。
 なお、上記式(1)によって算出されたPI値は、シグマ相、炭化物及び窒化物の分率が0%である溶体化材の耐孔食性の指標値である。一方、シグマ相、炭化物、窒化物及び炭窒化物のような析出物が析出する場合には、PI値とこれら析出物中に含まれるCr量及びMo量との兼ね合いによって、耐孔食性が決定される。PI値が高くなると母材の耐孔食性は向上する。しかしながら、PI値が高いと、Cr、Mo又はNの含有量も自ずと多くなるため、析出物は析出し易くなる。すると、後述の析出Cr量又は析出Mo量が増大し、結果としては耐孔食性が低下する。したがって、本発明においてPI値の範囲は34.0~43.0である。
 上記した基本成分に加えて、任意成分として、Cu:1.50%以下、W:1.50%以下、Co:1.50%以下、Ti:0.25%以下及びNb:0.25%以下からなる群から選択される1種又は2種以上をさらに含有してもよい。
 Cu:1.50%以下
 Cuは耐食性を向上させる元素であり、その効果は0.01%以上の含有で発現する。このため、Cuにより耐食性を向上させる場合には、Cu量を0.01%以上とすることが好ましい。しかし、Cu量が1.50%を超えると熱間加工性の著しい劣化を招く。したがって、Cuを含有する場合、Cu量は1.50%以下とし、好ましくは1.00%以下とする。
 W:1.50%以下
 Wは合金の耐食性を向上させる元素であり、その効果は0.01%以上の含有により発現する。このため、Wにより耐食性を向上させる場合には、W量を0.01%以上とすることが好ましい。しかしながら、W量が1.50%を超えるとシグマ相析出が促進される。したがって、Wを含有する場合、W量は1.50%以下とし、好ましくは1.00%以下とする。
 Co:1.50%以下
 Coも耐食性を向上させる元素であり、その効果は0.01%以上の含有により発現する。このため、Coにより耐食性を向上させる場合には、Co量を0.01%以上とすることが好ましい。しかしながら、Co量が1.50%を超えると合金コストが上昇する。したがって、Coを含有する場合、Co量は1.50%以下とし、好ましくは1.00%以下とする。
 Ti:0.25%以下
 TiはCと結合しやすい性質を有しており、合金中に含有すると耐食性に有害なCr23などの炭化物の析出を遅延させることができる。その効果は0.01%以上で発現する。したがって、Tiによるこの効果を期待する場合は、Ti量を0.01%以上とすることが好ましい。しかし、0.25%を超えて含有しても効果は向上せず、合金コストが増大する。したがって、Tiを含有する場合、Ti量は0.25%以下とし、好ましくは0.20%以下とする。
 Nb:0.25%以下
 NbもTiと同様にCと結合しやすい性質を有しており、合金中に含有すると耐食性に有害なCr23などの炭化物の析出を遅延させることができる。その効果は0.01%以上で発現する。したがって、Nbによるこの効果を期待する場合は、Nb量を0.01%以上とすることが好ましい。しかし、0.25%を超えて含有しても効果は向上せず、合金コストが増大する。したがって、Nbを含有する場合、Nb量は0.25%以下とし、好ましくは0.20%以下とする。
 上記以外の残部はFe及び不可避的不純物である。なお、合せ材の成分組成は、Al:0.05%以下、V:0.2%以下、Ca:0.02%以下、B:0.01%以下、O:0.02%以下、Sn:0.2%以下、Sb:0.2%以下、Zr:0.2%以下、Mg:0.02%以下、REM:0.2%以下のいずれか1種以上をこの範囲で含有しても、合せ材の特性に顕著な変化は生じない。
 [合せ材の組織]
 フェライト相の面積分率:35~65%
 本明細書において「フェライト相の面積分率」は、下記式(3)~(5)に従って算出される、二相ステンレス鋼板の成分組成から推定した値、又は後述の顕微鏡画像から算出した値である。
 フェライト相の面積分率(%)=4.01Creq-5.6Nieq-4.13 ・・・(3)
 Creq=Cr+1.73Si+0.88Mo ・・・(4)
 Nieq=Ni+24.55C+21.75N+0.4Cu ・・・(5)
 上記式(4)及び(5)中、元素記号は各元素の含有量(質量%)を示し、当該元素を含有しない場合はゼロとして算出する。
 前述したように、合せ材である二相ステンレス鋼板は、フェライト相とオーステナイト相の相分率が35:65~65:35の範囲で耐食性が発揮されることが明らかとなっている。フェライト相の面積分率の値が35~65%であれば、フェライト相とオーステナイト相との相分率がおよそ35:65~65:35となり、優れた耐食性が発現する。この観点から、フェライト相の面積分率は35%以上とし、好ましくは40%以上とし、より好ましくは45%以上とし、65%以下とし、好ましくは60%以下とし、より好ましくは55%以下とする。
 また、フェライト相の面積分率は、上記式(3)から算出する方法の他には公知の方法により算出することができ特に制限されることはないが、例えば以下の方法で求めることができる。二相ステンレス鋼板に対して電解エッチングを施し、光学顕微鏡により撮影したカラー写真を画像処理ソフトで処理することで、フェライト相、オーステナイト相、並びに析出物(シグマ相、炭化物、窒化物、及び炭窒化物)、それぞれの面積分率を算出することができる。この方法で算出した値は、上記の式(3)に従って算出される値と相関が認められることを確認している。なお、面積分率は、フェライト相+オーステナイト相+析出物(シグマ相、炭化物、窒化物、及び炭窒化物)の合計で100%であり、析出物がゼロの場合は、フェライト相+オーステナイト相で100%となる。
 [析出Cr量及び析出Mo量]
 合せ材の組織が所定量以上のCr系の析出物及びMo系の析出物を含むと、耐食性の劣化が生じる。そのため、本発明では、析出Cr量及び析出Mo量(すなわち、析出物として存在するCr及びMoの量)を所定量以下含有することが肝要である。なお、本明細書における「析出物」とは、合せ材の組織中に存在するシグマ相、炭化物、窒化物及び炭窒化物からなる群から選択される1種又は2種以上をいう。
 Cr及びMoは不動態皮膜を形成する元素として一般的に広く知られている。析出物にマトリックス中のCr及び/又はMoが集まると、析出物周辺部のCr及び/又はMoの濃度が低くなり、腐食環境下では、この低Cr及び/又は低Moの領域が優先的に腐食される。この現象を鋭敏化という。質量%で析出Cr量が2.00%を超えると鋭敏化が進み、耐食性の劣化が生じる。そのため、析出Cr量は2.00%以下とする。同様に、質量%で析出Mo量が0.50%を超えると鋭敏化が進み、耐食性の劣化が生じる。そのため、析出Mo量は0.50%以下とする。析出Cr量及び析出Mo量は、それぞれ0.00%以上であり得る。
 (二相ステンレスクラッド鋼板の製造方法)
 本発明の一実施形態による二相ステンレスクラッド鋼板の製造方法を以下に説明する。母材鋼板となる第1素材板は、上記の母材鋼板の成分組成となるように溶製し、常法による製造することができる。合せ材としての二相ステンレス鋼板となる第2素材板は、上記の合せ材の成分組成となるように溶製し、常法による製造することができる。これらの第1素材板及び第2素材板を積層して、クラッドスラブを組み立てる。例えば、図1に示すように、第1素材板1と第2素材板2を積層した2組の積層体を、第2素材板同士が対向するように重ね合せることにより、クラッドスラブ10を形成することができる。この際、2つの第2素材板2の間には剥離剤3を塗布することができる。剥離剤3としては、特に限定されないが、Alのように比較的安価であり、十分な剥離性を有していることが好ましい。なお、図1中、符号4はスペーサー、5は溶接部である。冷却時の反りを考慮すると、2枚の第1素材板同士と、2枚の第2素材板同士は、等厚であることが望ましい。もちろん、図1に示す組立方式に限定する必要が無いことは言うまでも無い。
 こうして得たクラッドスラブを加熱し、さらに熱間圧延を実施して、母材鋼板と二相ステンレス鋼板とが接合されたクラッド圧延体を得る。
 加熱温度:1050~1250℃
 加熱温度を1050℃以上とするのは、母材鋼板と合せ材との接合性及び母材鋼板の靱性を確保するためである。1050℃を下回る加熱温度では、高温域での圧延量が十分に確保できず、接合性が劣化する。したがって、加熱温度は1050℃以上とし、好ましくは1100℃以上とする。一方、加熱温度が1250℃を超えると、結晶粒の粗大が著しく、母材鋼板の靱性の劣化が生じる。そのため、加熱温度は1250℃以下とする。
 圧下比:2.0以上
 圧下比とは、圧延前のクラッドスラブの厚さ/圧延後のクラッド圧延体の厚さをいう。クラッドスラブを高温で圧下することにより、金属相互の結合力が生じ、良好な接合が得られる。圧下比は2.0以上とし、好ましくは3.0以上とする。これにより、良好な接合性が得られる。また、母材鋼板の結晶粒が細粒化され、母材鋼板の靱性が向上する。圧下比は20.0以下とすることができる。
 次に、クラッド圧延体を大気中などで放冷した後、さらに1000~1100℃に再加熱する。
 放冷とは、注水等による強制冷却を行わずにクラッド圧延体を大気中に暴露することを意味し、積極的な冷却は行わず、空冷を意味する。ここでいう積極的な冷却とは、「積極的にガス、液体又はその混合物で冷却を行う」ことをいう。また、本実施形態では、耐食性、強度又は靱性の向上の観点から、クラッド圧延体を放冷した後、再加熱する間は積極的な冷却は行わないことが好ましい。放冷における冷却停止温度は400℃以下とすることが好ましい。
 再加熱温度:1000~1100℃
 熱間圧延後に再加熱を行うのは、合せ材の耐食性確保のためである。熱間圧延後に再加熱を行うことで、析出物の再溶解が可能であり、合せ材の耐食性を担保できる。再加熱温度が1000℃未満となると、二相ステンレス鋼のシグマ相及び/又は炭窒化物の析出が著しくなるため、耐食性の劣化が生じる。よって、再加熱温度は1000℃以上とする。また、再加熱温度が1100℃を超えると、母材鋼板の結晶粒が粗大となって、母材鋼板の靱性の劣化が顕著となる。したがって、再加熱温度は1100℃以下とし、好ましくは1050℃以下とする。
 再加熱後のクラッド圧延体を冷却する。その際、合せ材の二相ステンレス鋼板における冷却速度と、母材鋼板における冷却速度とを変える。
 再加熱後の合せ材の冷却速度:0.8℃/s以上
 合せ材の冷却速度が0.8℃/s未満では、合せ材中にシグマ相及び/又は炭窒化物の析出が生じて、合せ材の耐食性の劣化を引き起こす。したがって、合せ材の冷却速度は0.8℃/s以上とする。合せ材の冷却速度は100℃/s以下とすることができる。
 再加熱後の母材鋼板の冷却速度:1.0℃/s以上
 母材鋼板の冷却速度が1.0℃/s未満では、母材の焼き入れ性が十分でなく強度及び/又は靱性の劣化が生じる。したがって、再加熱後の母材鋼板の冷却速度は1.0℃/s以上とし、好ましくは2.0℃/s以上とする。母材鋼板の冷却速度は100℃/s以下とすることができる。
 上記のような冷却速度の制御は、母材鋼板及び合せ材の板厚やクラッドスラブの形態などを考慮して、冷却方法及び冷却条件を設定することにより実現できる。例えば、図1に示すクラッドスラブを用いる場合には、クラッド圧延材を両側から水冷すれば、母材鋼板の冷却速度は合せ材の冷却速度よりも大きくなる。また、各々1つの第1素材板と第2素材板とが積層されたクラッドスラブを用いる場合には、クラッド圧延材の両側で水冷条件を変えることにより、母材鋼板の冷却速度と合せ材の冷却速度とを個別に制御できる。なお、再加熱後の合せ材及び母材鋼板の冷却停止温度は、ともに200℃未満とすることが好ましい。
 こうして冷却したクラッド圧延体を700℃以下で加熱する、いわゆる焼き戻し処理を行う。
 焼き戻し温度:700℃以下
 焼き戻し処理を実施するのは、母材鋼板の強度調整が目的である。焼き戻し処理を実施することで所望の強度に調整することができる。また、炭化物の形態が変化して、靱性が改善する効果も期待できる。しかしながら、700℃を超える温度で焼き戻し処理を実施した場合、合せ材中に炭化物及び/又は窒化物が析出して、耐食性の劣化が生じる。したがって、焼き戻し温度は700℃以下とし、好ましくは650℃以下とする。焼き戻し温度は200℃以上とすることができる。
 上記各工程の前後には、必要により公知の工程をさらに付加してもよい。例えば、図1に示すクラッドスラブを用いた場合には、得られたクラッド圧延体について、剥離剤を塗布した合せ材-合せ材間を剥離することで最終製品板とすることができる。
 本発明に係る製造方法を用いることで、合せ材の耐食性、母材鋼板の強度及び靱性、合せ材と母材との接合強度の全てを兼備した二相ステンレスクラッド鋼板を製造することができる。
 表1に示す成分組成を有する、種々の水準の第1素材板(母材鋼板の素材)を作製した。表2に示す成分組成及びフェライト相の面積分率を有し、二相ステンレス鋼板からなる種々の水準の第2素材板(合せ材の素材)を作製した。なお、表2に示すフェライト相の面積分率は、上述の式(3)に従って算出した。第1素材板と第2素材板とを積層させて得たクラッドスラブに、表3に示す種々の水準の製造条件を適用して、表4に示す種々の水準の二相ステンレスクラッド鋼板を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られたクラッド鋼板について、以下の評価を実施し、結果を表4に示した。
 (1)析出Cr量及び析出Mo量の測定
 合せ材中の析出物の抽出には、10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール混合液(通称10%AA液と呼ぶ)中での電解抽出(通称SPEED法と呼ぶ)を適用した。ろ過によりフィルター上に捕集した抽出残渣を混酸(混酸成分比 硫酸10ml:硝酸10ml:過塩素酸5ml:水10ml)で溶解し、誘導結合プラズマ(ICP)発光分光分析することで析出Cr量と析出Mo量を求めた。
 (2)合せ材の耐食性(耐孔食性)評価
 耐食性は、ASTM G48-試験方法(E)により評価した。試験方法は20±2℃に加熱した6%FeCl水溶液中に試験片を24時間浸漬させ、試験後の合せ材表面に25μm以上の深さの孔食が発生していない場合に耐食性が良好であると判断した。
 (3)接合強度評価
 合せ材と母材の接合強度は、JIS G0601 せん断強さ試験によって評価した。せん断強さ試験は、合せ材を母材から接合面と平行に剥離し、その剥離に要した最大せん断強度から接合性を評価する方法である。せん断強度が200MPa以上の場合に接合性が良好であると判断した。
 (4)母材鋼板の靭性評価
 母材鋼板の靭性は、シャルピー衝撃試験によって評価した。母材鋼板からJIS Z2242に規定の10×10mmサイズVノッチシャルピー衝撃試験片を採取し、シャルピー衝撃試験を行った。-20℃におけるシャルピー衝撃吸収エネルギー値(vE-20)が100Jを超える場合に靭性が良好であると判断した。
 (5)母材鋼板の強度評価
 母材の強度は引張試験によって評価した。クラッド鋼板の合せ材を機械加工によって取り除いた、母材のみの領域からJIS 1A号の引張試験片を採取し、引張試験を行った。引張強度が550MPa程度となるように焼き戻し温度を調整した。
Figure JPOXMLDOC01-appb-T000004
 No.1~18の発明例によるクラッド鋼板は、良好な耐食性及び靱性を示した。合せ材の成分組成が本発明の範囲外であるNo.19~29のクラッド鋼板では、耐食性に劣っていた。母材の成分組成が本発明の範囲外であるNo.30~38のクラッド鋼板では、靱性に劣っていた。さらに、合せ材の成分組成と母材の成分組成が本発明の範囲外であるNo.39~46のクラッド鋼板では、耐食性と靱性の両方が劣っていた。その中でも、加熱温度が本発明の範囲よりも低いNo.39のクラッド鋼板、及び圧下比が本発明の範囲よりも低いNo.41のクラッド鋼板では、せん断強度が200MPa未満であり、接合性に劣っていた。製造条件が本発明の範囲外であるNo.47~49のクラッド鋼板では、析出Cr量が本発明の範囲を外れ、その結果耐食性が劣っていた。
 1  第1素材板(母材鋼板の素材)
 2  第2素材板(合せ材の素材)
 3  剥離剤
 4  スペーサー
 5  溶接部
 10 クラッドスラブ
 

Claims (4)

  1.  母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板であって、
     前記母材鋼板は、質量%で、C:0.06~0.25%、Si:0.05~0.50%、Mn:0.70~1.60%、P:0.030%以下、S:0.010%以下、Al:0.005~0.100%、Mo:0.01~0.15%、Nb:0.010~0.040%、Ti:0.005%未満、及びN:0.0010~0.0100%を、Nb/Nが3.0以上、かつ下記式(1)で表わされるCeqが0.35~0.45の範囲の下に含有し、残部がFe及び不可避的不純物からなる第1の成分組成を有し、
     Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
     (上記式(1)中、元素記号は各元素の含有量(質量%)を示し、当該元素を含有しない場合はゼロとして算出する)
     前記二相ステンレス鋼板は、質量%で、C:0.030%以下、Si:1.00%以下、Mn:2.00%以下、P:0.050%以下、S:0.0100%以下、Ni:5.00~8.00%、Cr:24.0%超え28.0%以下、Mo:2.5~4.0%、及びN:0.08~0.30%を、下記式(2)で定義されるPIが34.0~43.0の範囲の下に含有し、残部がFe及び不可避的不純物からなる第2の成分組成と、
     PI=Cr+3.3Mo+16N ・・・(2)
     (上記式(2)中、元素記号は各元素の含有量(質量%)を示す)
     フェライト相を面積分率で35~65%含む組織と、を有し、
     前記組織における析出Cr量が2.00%以下、かつ、析出Mo量が0.50%以下であることを特徴とする二相ステンレスクラッド鋼板。
  2.  前記二相ステンレス鋼板の第2の成分組成が、質量%で、Cu:1.50%以下、W:1.50%以下、Co:1.50%以下、Ti:0.25%以下及びNb:0.25%以下からなる群から選択される1種又は2種以上をさらに含有する、請求項1に記載の二相ステンレスクラッド鋼板。
  3.  前記母材鋼板の第1の成分組成が、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.40%以下及びV:0.050%以下からなる群から選択される1種又は2種以上をさらに含有する、請求項1又は2に記載の二相ステンレスクラッド鋼板。
  4.  母材鋼板の片面又は両面に合せ材としての二相ステンレス鋼板が接合されている二相ステンレスクラッド鋼板の製造方法であって、
     母材鋼板となる、請求項1又は3に記載の第1の成分組成を有する第1素材板と、合せ材としての二相ステンレス鋼板となる、請求項1又は2に記載の第2の成分組成、及びフェライト相を面積分率で35~65%含む組織を有する第2素材板とを積層させて、クラッドスラブを得る工程と、
     前記クラッドスラブを1050~1250℃に加熱する工程と、
     その後、前記クラッドスラブに圧下比が2.0以上となる熱間圧延を施して、前記母材鋼板と前記二相ステンレス鋼板とが接合されたクラッド圧延体を得る工程と、
     前記クラッド圧延体を放冷する工程と、
     その後、前記クラッド圧延体を1000~1100℃に再加熱する工程と、
     その後、前記クラッド圧延体を、前記二相ステンレス鋼板における冷却速度が0.8℃/s以上、かつ前記母材鋼板における冷却速度が1.0℃/s以上となるように、冷却する工程と、
     その後、前記クラッド圧延体を700℃以下で焼き戻しする工程と、
    を有することを特徴とする二相ステンレスクラッド鋼板の製造方法。
     
PCT/JP2019/013897 2018-03-30 2019-03-28 二相ステンレスクラッド鋼板及びその製造方法 WO2019189707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980022339.2A CN111918979B (zh) 2018-03-30 2019-03-28 双相不锈钢包层钢板和其制造方法
US17/042,185 US11891675B2 (en) 2018-03-30 2019-03-28 Duplex stainless clad steel plate and method of producing same
EP19775733.9A EP3778958A1 (en) 2018-03-30 2019-03-28 Two-phase stainless-clad steel sheet and method for manufacturing same
KR1020207028716A KR102389788B1 (ko) 2018-03-30 2019-03-28 2상 스테인리스 클래드 강판 및 그의 제조 방법
JP2019540681A JP6652224B1 (ja) 2018-03-30 2019-03-28 二相ステンレスクラッド鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069297 2018-03-30
JP2018069297 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189707A1 true WO2019189707A1 (ja) 2019-10-03

Family

ID=68061892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013897 WO2019189707A1 (ja) 2018-03-30 2019-03-28 二相ステンレスクラッド鋼板及びその製造方法

Country Status (6)

Country Link
US (1) US11891675B2 (ja)
EP (1) EP3778958A1 (ja)
JP (1) JP6652224B1 (ja)
KR (1) KR102389788B1 (ja)
CN (1) CN111918979B (ja)
WO (1) WO2019189707A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872150A (zh) * 2020-08-05 2020-11-03 辽宁新华阳伟业装备制造有限公司 一种镍-不锈钢复合板的制作方法
WO2021157466A1 (ja) * 2020-02-06 2021-08-12 Jfeスチール株式会社 二相ステンレスクラッド鋼およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532144B (zh) * 2018-11-29 2021-01-12 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061655A (ja) 1998-08-25 2000-02-29 Japan Steel Works Ltd:The 溶体化ままで靭性に優れるクラッド鋼用母材および該クラッド鋼の製造方法
JP2010180459A (ja) * 2009-02-06 2010-08-19 Japan Steel Works Ltd:The 2相ステンレス鋼およびその製造方法
WO2013132863A1 (ja) * 2012-03-08 2013-09-12 Jfeスチール株式会社 耐海水ステンレスクラッド鋼
JP2014114466A (ja) * 2012-12-07 2014-06-26 Jfe Steel Corp 耐孔食性に優れた二相ステンレスクラッド鋼の合せ材及びそれを用いた二相ステンレスクラッド鋼並びにその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636993B2 (ja) 1989-04-25 1994-05-18 日本鋼管株式会社 耐食性および靭性に優れたステンレスクラッド鋼板の製造方法
JPH03285016A (ja) * 1990-04-02 1991-12-16 Nippon Steel Corp 耐食性及び靭性に優れた複合鋼板の製造方法
JPH0825040B2 (ja) * 1992-03-06 1996-03-13 新日本製鐵株式会社 優れた低温靭性を有するクラッド鋼板の製造方法
JP3260232B2 (ja) * 1993-03-15 2002-02-25 新日本製鐵株式会社 海岸高耐候性クラッド鋼板の製造方法
JP3699077B2 (ja) 2002-10-29 2005-09-28 株式会社日本製鋼所 溶接熱影響部の低温靭性に優れたクラッド鋼板用母材および該クラッド鋼板の製造方法
JP2005048203A (ja) * 2003-07-29 2005-02-24 Toshiba Corp 2相ステンレス鋼およびその製造方法および原子力装置用部材
WO2007032439A1 (ja) * 2005-09-15 2007-03-22 Sumitomo Metal Industries, Ltd. 三層ステンレスクラッド鋼板用素材、厚板および固体高分子型燃料電池セパレータ用鋼板の製造方法、ならびに固体高分子型燃料電池セパレータ
JP2008030086A (ja) * 2006-07-28 2008-02-14 Japan Steel Works Ltd:The 高強度クラッド鋼板の製造方法
CN104781439A (zh) * 2012-12-05 2015-07-15 杰富意钢铁株式会社 耐海水腐蚀性优异的不锈钢包层钢板
JP6149102B2 (ja) 2013-03-19 2017-06-14 新日鐵住金ステンレス株式会社 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
JP6210114B2 (ja) * 2013-10-21 2017-10-11 Jfeスチール株式会社 オーステナイト系ステンレスクラッド鋼板およびその製造方法
CN107075645B (zh) * 2014-11-11 2020-06-16 杰富意钢铁株式会社 Ni合金包层钢板及其制造方法
JP6437062B2 (ja) * 2016-08-10 2018-12-12 新日鐵住金ステンレス株式会社 クラッド鋼用二相ステンレス鋼及びクラッド鋼
US11692252B2 (en) * 2018-03-30 2023-07-04 Jfe Steel Corporation Duplex stainless clad steel plate and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061655A (ja) 1998-08-25 2000-02-29 Japan Steel Works Ltd:The 溶体化ままで靭性に優れるクラッド鋼用母材および該クラッド鋼の製造方法
JP2010180459A (ja) * 2009-02-06 2010-08-19 Japan Steel Works Ltd:The 2相ステンレス鋼およびその製造方法
WO2013132863A1 (ja) * 2012-03-08 2013-09-12 Jfeスチール株式会社 耐海水ステンレスクラッド鋼
JP2014114466A (ja) * 2012-12-07 2014-06-26 Jfe Steel Corp 耐孔食性に優れた二相ステンレスクラッド鋼の合せ材及びそれを用いた二相ステンレスクラッド鋼並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778958A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157466A1 (ja) * 2020-02-06 2021-08-12 Jfeスチール株式会社 二相ステンレスクラッド鋼およびその製造方法
JPWO2021157466A1 (ja) * 2020-02-06 2021-08-12
JP7054079B2 (ja) 2020-02-06 2022-04-13 Jfeスチール株式会社 二相ステンレスクラッド鋼およびその製造方法
CN111872150A (zh) * 2020-08-05 2020-11-03 辽宁新华阳伟业装备制造有限公司 一种镍-不锈钢复合板的制作方法
CN111872150B (zh) * 2020-08-05 2021-11-19 辽宁新华阳伟业装备制造有限公司 一种镍-不锈钢复合板的制作方法

Also Published As

Publication number Publication date
CN111918979B (zh) 2022-01-18
JPWO2019189707A1 (ja) 2020-04-30
US20210025023A1 (en) 2021-01-28
JP6652224B1 (ja) 2020-02-19
KR102389788B1 (ko) 2022-04-21
EP3778958A4 (en) 2021-02-17
KR20200124750A (ko) 2020-11-03
EP3778958A1 (en) 2021-02-17
CN111918979A (zh) 2020-11-10
US11891675B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2019189708A1 (ja) 二相ステンレスクラッド鋼板及びその製造方法
JP6857729B2 (ja) スーパーオーステナイトステンレス鋼圧延複合鋼板及びその製造方法
JP6477735B2 (ja) 二相ステンレスクラッド鋼およびその製造方法
JP7059357B2 (ja) 二相ステンレスクラッド鋼板およびその製造方法
JP2022506814A (ja) スーパー二相ステンレスクラッド鋼板及びその製造方法
WO2019189707A1 (ja) 二相ステンレスクラッド鋼板及びその製造方法
KR20140117547A (ko) 용접부 인성이 우수한 고인성 클래드 강판의 모재 및 그 클래드 강판의 제조 방법
JP6024643B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板の製造方法
JP6079611B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法
JP6390567B2 (ja) ステンレスクラッド鋼板の製造方法
JP6750572B2 (ja) 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
JP5928175B2 (ja) 耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法
CN111527222B (zh) 包层钢板
JP7006855B2 (ja) クラッド鋼およびその製造方法
JPS59222558A (ja) 高強度耐食鋼

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540681

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207028716

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019775733

Country of ref document: EP