WO2019189390A1 - 水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法 - Google Patents

水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法 Download PDF

Info

Publication number
WO2019189390A1
WO2019189390A1 PCT/JP2019/013248 JP2019013248W WO2019189390A1 WO 2019189390 A1 WO2019189390 A1 WO 2019189390A1 JP 2019013248 W JP2019013248 W JP 2019013248W WO 2019189390 A1 WO2019189390 A1 WO 2019189390A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
group
fluorine
meth
mass
Prior art date
Application number
PCT/JP2019/013248
Other languages
English (en)
French (fr)
Inventor
卓司 石川
秀典 尾崎
井本 克彦
良成 福原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980023083.7A priority Critical patent/CN111989355A/zh
Priority to EP19778188.3A priority patent/EP3778714A4/en
Priority to US17/043,434 priority patent/US20210070973A1/en
Publication of WO2019189390A1 publication Critical patent/WO2019189390A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/022Emulsions, e.g. oil in water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to an aqueous dispersion, a coating film and a coated article, and a method for producing an aqueous dispersion.
  • Fluoropolymers are excellent in weather resistance, chemical resistance, solvent resistance, heat resistance, antifouling properties, etc., and thus are used in a wide range of industrial fields and various studies have been made.
  • Patent Document 1 discloses a heavy weight characterized in that 1.0 to 300 parts by weight of an organosilane compound is subjected to a condensation reaction in the presence of 100 parts by weight (in terms of solid content) of an aqueous dispersion of fluoropolymer particles. A method for producing an aqueous dispersion of coalesced particles is described.
  • This indication aims at providing the aqueous dispersion which can form the coating film which is excellent in adhesiveness with a base material in view of the said present condition. Moreover, the manufacturing method of the aqueous dispersion which can form the coating film which is excellent in adhesiveness with a base material is provided.
  • the present disclosure is an aqueous dispersion containing a particulate resin composite containing a fluorine-containing resin and an inorganic polymer, wherein the fluorine-containing resin contains a hydrolyzable silyl group-containing unsaturated monomer unit. It relates to a characteristic aqueous dispersion.
  • the fluorine-containing resin preferably contains a fluoropolymer and a (meth) acrylic polymer, and the (meth) acrylic polymer preferably contains the hydrolyzable silyl group-containing unsaturated monomer unit.
  • the present disclosure is also an aqueous dispersion containing a particulate resin composite containing a fluorine-containing resin and an inorganic polymer, wherein the resin composite is characterized in that the inorganic polymer is segregated on the surface. It also relates to aqueous dispersions.
  • the fluorine-containing resin preferably contains a fluoropolymer and a (meth) acrylic polymer.
  • the inorganic polymer is preferably polysiloxane.
  • the resin composite preferably has a silicon atom / fluorine atom intensity ratio (silicon atom / fluorine atom) of 0.15 or more as measured by a semi-quantitative method using a transmission electron microscope.
  • the fluoropolymer preferably contains at least one fluoroolefin unit selected from the group consisting of vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, and chlorotrifluoroethylene.
  • the aqueous dispersion of the present disclosure is preferably an aqueous paint.
  • the present disclosure also relates to a coating obtained from the aqueous dispersion.
  • the present disclosure further relates to a coated article obtained by coating the aqueous dispersion on a substrate.
  • the present disclosure is further obtained by seed polymerization of a (meth) acryl monomer and a hydrolyzable silyl group-containing unsaturated monomer in an aqueous dispersion containing a fluoropolymer, and seed polymerization (
  • the present invention also relates to a method for producing an aqueous dispersion comprising a condensation polymerization step of condensation polymerization of silanol in the presence of a (meth) acrylic polymer.
  • the polycondensation step is preferably performed under acidic conditions.
  • the seed polymerization step and the condensation polymerization step are preferably carried out continuously while maintaining a temperature of 50 ° C. or higher.
  • the aqueous dispersion of this indication is provided with the above-mentioned composition, it can form the coat which is excellent in adhesiveness with a substrate.
  • the manufacturing method of this indication can manufacture the aqueous dispersion which can form the coating film which is excellent in adhesiveness with a base material.
  • 2 is a graph summarizing XPS measurement results of coating film surfaces obtained in Examples 1 to 6. It is the graph which put together the XPS measurement result of the coating-film surface obtained in Comparative Examples 2 and 3.
  • 2 is a secondary electron image obtained by observing the surface of a coating film obtained from the aqueous dispersion obtained in Example 1 with an SEM. It is the reflected electron image and element mapping image which observed the surface of the coating film obtained from the aqueous dispersion obtained in Example 1 by SEM.
  • 2 is a secondary electron image obtained by observing the surface of a coating film obtained from the aqueous dispersion obtained in Example 2 with an SEM.
  • the present disclosure is an aqueous dispersion containing a fluorine-containing resin and a particulate resin composite containing an inorganic polymer, wherein the fluorine-containing resin includes a hydrolyzable silyl group-containing unsaturated monomer unit.
  • the present invention relates to an aqueous dispersion (hereinafter also referred to as “first aqueous dispersion of the present disclosure”).
  • the fluorine-containing resin includes a hydrolyzable silyl group-containing unsaturated monomer unit.
  • the particulate resin composite contains a fluorine-containing resin and an inorganic polymer in the same particle. That is, the particulate resin composite is a particle containing an inorganic polymer in one particle. It is preferable.
  • the aqueous dispersion of the present disclosure is different from the aqueous dispersion obtained by simply mixing the fluorine-containing resin and the inorganic polymer. When the fluorine-containing resin and the inorganic polymer are present in the same particle, they may be chemically bonded or may not be bonded.
  • the hydrolyzable silyl group has a general formula: A group represented by —SiX 1 n X 2 3-n (X 1 is a C 1-10 alkoxy group, X 2 is H or a C 1-10 alkyl group, and n is an integer of 1 to 3). Preferably there is.
  • the reactivity of the hydrolyzable silyl group is preferably high, and the hydrolyzable silyl group is represented by —Si (OCH 3 ) n X 2 3-n or —Si (OC 2 H 5 ) n X 2 3-n is more preferable, and —Si (OCH 3 ) 3 or —Si (OC 2 H 5 ) 3 is still more preferable.
  • the fluorine-containing resin containing the hydrolyzable silyl group-containing unsaturated monomer unit is composed of a polymer constituting the resin based on a hydrolyzable silyl group-containing unsaturated monomer (hereinafter referred to as “hydrolyzable silyl group”). It is obtained by introducing “containing unsaturated monomer unit”.
  • CH 2 CHSi (OCH 3 ) 3
  • CH 2 CHSi (CH 3) (OCH 3) 2
  • CH 2 C (CH 3) Si (OCH 3) 3
  • CH 2 C (CH 3) Si (CH 3) (OCH 3) 2
  • CH 2 CHSi (OC 2 H 5)
  • CH 2 CHSi (OC 3 H 7)
  • CH 2 CHSi (OC 4 H 9)
  • CH 2 CHSi (OC 6 H 13 ) 3
  • CH 2 CHSi (OC 8 H 17)
  • CH 2 CHSi (OC 10 H 21)
  • CH 2 CHSi (OC 12 H 25)
  • CH 2 CHCOO (CH 2) 3 Si (OCH 3) 3
  • CH 2 CHCOO (CH 2) 3 Si (CH 3) (OCH 3) 2
  • CH 2 CHCOO (CH 2) 3 Si (OC 2 H 5)
  • CH 2 CHCOO (CH 2) 3 Si (CH 3) (OC 2 H 5)
  • CH 2 CHCOO (CH 2) 3 Si (CH 3)
  • the hydrolyzable silyl group-containing unsaturated monomer unit constitutes a fluorine-containing resin because it can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to a substrate.
  • the content is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more, based on all monomer units of the polymer. 5 mass% or less is preferable and 3 mass% or less is more preferable. If the amount of the hydrolyzable silyl group-containing unsaturated monomer unit is too large, the transparency of the coating film may be impaired. If the amount is too small, the solvent resistance and substrate adhesion of the coating film may be impaired.
  • the fluorine-containing resin may be composed only of a fluoropolymer, or may be a mixture of a fluoropolymer and a polymer other than the fluoropolymer, for example, a mixture of a fluoropolymer and a (meth) acrylic polymer. There may be.
  • the fluorine-containing resin is a mixture of a fluoropolymer and a (meth) acrylic polymer, and the (meth) acrylic polymer preferably contains the hydrolyzable silyl group-containing unsaturated monomer unit. That is, the resin composite includes a fluoropolymer, a (meth) acrylic polymer, and an inorganic polymer, and the (meth) acrylic polymer is a (meth) acrylic monomer unit and a hydrolyzable silyl group-containing unsaturated monomer unit. It is preferable to contain. With these characteristics, it is possible to form a coating film having excellent adhesion to the substrate.
  • the properties of fluoropolymers, (meth) acrylic polymers, and inorganic polymers are sufficiently exhibited, and a coating film that not only has excellent adhesion to the substrate but also has excellent antifouling properties and solvent resistance is formed.
  • the particulate resin composite contains a fluoropolymer, a (meth) acrylic polymer, and an inorganic polymer in the same particle.
  • the aqueous dispersion of the present disclosure is different from the aqueous dispersion obtained by simply mixing the fluoropolymer, the (meth) acrylic polymer, and the inorganic polymer.
  • the fluoropolymer, the (meth) acrylic polymer, and the inorganic polymer are present in the same particle, they may be chemically bonded or not bonded.
  • the resin composite is preferably one in which an inorganic polymer is segregated on the particle surface. More specifically, the particulate resin composite is preferably a particle in which an inorganic polymer is segregated on the surface of a particle composed of a fluorine-containing resin. The fact that the inorganic polymer is segregated on the surface of the resin composite particles can be confirmed, for example, by measuring the intensity ratio of inorganic atoms and fluorine atoms measured by a semi-quantitative method using a transmission electron microscope. .
  • the resin composite has an intensity ratio of silicon atoms to fluorine atoms measured by a semi-quantitative method using a transmission electron microscope ((strength of silicon atoms in particle portion ⁇ strength of particles). It is preferable that the intensity of the silicon atom in the non-part (blank) / (the intensity of the fluorine atom in the particle part ⁇ the intensity of the fluorine atom in the non-particle part (blank))) is 0.15 or more.
  • the intensity ratio (silicon atom / fluorine atom) is more preferably 0.3 or more, further preferably 0.4 or more, and particularly preferably 0.5 or more. Moreover, 1.0 or less is preferable, 0.9 or less is more preferable, and 0.8 or less is still more preferable.
  • the intensity ratio can be measured by the following method.
  • STEM observation of particles is performed with a scanning transmission electron microscope at an observation magnification of 225,000 times and an image size of 1024 ⁇ 1024 pixels.
  • the acceleration voltage is 200 kV
  • the scan time is 609 seconds and 58 scans are performed.
  • elemental mapping is performed 29 times with a scanning time of 609 seconds using an energy dispersive X-ray detector (Super-X, manufactured by Japan FP Corporation).
  • image analysis software ESPRIT 1, 9 manufactured by Bruker Biospin Co., Ltd.
  • Si atom / fluorine atom (strength of silicon atom at the particle location (particle) ⁇ strength of silicon atom at the blank location (blank)) / (particle size)
  • the intensity ratio of Si / F is calculated from the intensity of fluorine atoms at existing locations (particles) —the intensity of fluorine atoms at locations where no particles exist (blank))).
  • the resin composite preferably has a core-shell structure of a resin core made of a fluorine-containing resin (preferably a fluoropolymer and a (meth) acrylic polymer) and an inorganic polymer shell.
  • the resin composite preferably has a shell portion thickness of 5 nm or more, more preferably 10 nm or more, 15 nm or more, and even more preferably 20 nm or more.
  • the upper limit of the thickness of the shell portion is not particularly limited, but may be 50 nm or 40 nm.
  • the thickness of the shell part can be measured by, for example, a scanning transmission electron microscope.
  • the fluorine-containing resin and fluoropolymer preferably contain a fluoroolefin unit.
  • fluoroolefin examples include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE),
  • Perfluoroolefins such as chlorotrifluoroethylene (CTFE), vinyl fluoride (VF), vinylidene fluoride (VdF), trifluoroethylene, trifluoropropylene, hexafluoroisobutene, 2,3,3,3-tetrafluoro
  • CTFE chlorotrifluoroethylene
  • VF vinyl fluoride
  • VdF vinylidene fluoride
  • trifluoroethylene trifluoropropylene
  • hexafluoroisobutene 2,3,3,3-tetrafluoro
  • Non-perfluoroolefins such as propene, 1,3,3,3-tetrafluoropropene, and 1,1,3,3,3-pentafluoropropene are exemplified.
  • perfluoro (alkyl vinyl ether) examples include perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), and the like.
  • a functional group-containing fluoroolefin can also be used as the fluoroolefin.
  • fluoroolefin examples include iodine-containing monomers such as perfluoro (6,6-dihydro-6-iodo-3-oxa-1 described in JP-B-5-63482 and JP-A-62-12734. Periodinated vinyl ethers such as -hexene) and perfluoro (5-iodo-3-oxa-1-pentene) can also be used.
  • the fluoroolefin is preferably at least one selected from the group consisting of vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, and chlorotrifluoroethylene.
  • the fluoroolefin is more preferably vinylidene fluoride and at least one selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and chlorotrifluoroethylene.
  • the fluorine-containing resin and fluoropolymer may contain a non-fluorine monomer unit copolymerizable with the fluoroolefin in addition to the fluoroolefin unit.
  • non-fluorine monomers copolymerizable with the fluoroolefin include olefins such as ethylene, propylene, isobutylene and n-butene; vinyl ether monomers such as ethyl vinyl ether, cyclohexyl vinyl ether and methyl vinyl ether; vinyl acetate Vinyl ester monomers such as vinyl versatate, vinyl benzoate, vinyl pivalate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate; polyoxyethylene allyl ether, ethyl allyl ether, hydroxyethyl allyl ether, Examples include allyl ether monomers such as allyl alcohol; acrylic acid, acrylic acid ester, methacrylic acid, and me
  • ethyl vinyl ether, cyclohexyl vinyl ether, and vinyl versatate are preferable from the viewpoint of improving compatibility when used as a coating material, coating film hardness, transparency of the coating film, and film forming property.
  • the non-fluorinated monomer copolymerizable with the fluoroolefin preferably has a functional group having a good affinity with an aqueous medium from the viewpoint of stability.
  • a carboxyl group or a hydroxyl group is preferably selected as the functional group.
  • Monomers having a carboxyl group include undecylenic acid, crotonic acid, maleic acid, maleic acid monoester, vinyl acetic acid, cinnamic acid, 3-allyloxypropionic acid, itaconic acid, itaconic acid monoester, acrylic acid, methacrylic acid And unsaturated carboxylic acids.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy-2-methyl.
  • Examples thereof include hydroxyl group-containing vinyl monomers such as butyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, and glycerol monoallyl ether.
  • 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, undecylenic acid, crotonic acid, acrylic acid and methacrylic acid are preferred from the viewpoint of excellent polymerization reactivity and curability.
  • the fluoropolymer preferably contains a vinylidene fluoride unit as the fluoroolefin unit because it can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate.
  • the vinylidene fluoride unit in the fluoropolymer is 50 mol% or more with respect to all the polymerized units constituting the fluoropolymer, and 70 mol% or more. More preferably, it is preferably 95 mol% or less.
  • VdF / TFE / CTFE copolymer As the fluoropolymer, a VdF / TFE / CTFE copolymer is particularly preferable.
  • the fluoropolymer When the fluorine-containing resin is composed only of a fluoropolymer, the fluoropolymer preferably contains the hydrolyzable silyl group-containing unsaturated monomer unit and the fluoroolefin unit. Further, in addition to the fluoroolefin unit, a non-fluorine monomer unit copolymerizable with the fluoroolefin may be included. In this case, the fluoropolymer preferably has a content of the hydrolyzable silyl group-containing unsaturated monomer unit of 0.01% by mass or more based on the total monomer units, % Or more is more preferable. 5 mass% or less is preferable and 3 mass% or less is more preferable.
  • the amount of the hydrolyzable silyl group-containing unsaturated monomer unit is too large, the transparency of the coating film may be impaired. If the amount is too small, the solvent resistance and substrate adhesion of the coating film may be impaired. Moreover, it is preferable that the sum total of a fluoro olefin unit and a non-fluorine-type monomer unit is 95 mass% or more, and 97 mass% or more is more preferable.
  • the fluorine-containing resin consists only of a fluoropolymer
  • a non-fluorinated monomer copolymerizable with the above-mentioned fluoroolefin unit tetrafluoroethylene and chlorotrifluoroethylene are preferably selected from the viewpoint of good copolymerizability with non-fluorinated monomers.
  • Preferred examples of the non-fluorinated monomer copolymerizable with the fluoroolefin unit include the above-mentioned non-fluorinated monomers.
  • vinyl acetate, vinyl pivalate, ethyl vinyl ether, and cyclohexyl vinyl ether are preferable from the viewpoint of improving compatibility with a curing agent, coating film hardness, transparency of the coating film, and film forming property.
  • non-fluorinated monomers non-fluorinated monomers having a hydroxyl group or a carboxyl group are also preferably selected, and crotonic acid and undecylenic acid are preferably selected from the viewpoint of excellent stability of the aqueous dispersion.
  • a macromonomer may be included as a non-fluorinated monomer copolymerizable with the fluoroolefin.
  • the macromonomer those having a hydrophilic portion are preferable.
  • one having a vinyl ether group at one end is preferable because of excellent copolymerizability with a fluoroolefin.
  • this macromonomer may have a crosslinkable functional group such as a hydroxyl group or a carboxyl group at the terminal.
  • vinylsilanes are preferable.
  • CH 2 CHSi (OCH 3 ) 3
  • CH 2 CHSi (CH 3) (OCH 3) 2
  • CH 2 C (CH 3) Si (OCH 3) 3
  • CH 2 C (CH 3) Si (CH 3) (OCH 3) 2
  • CH 2 CHSi (OC 2 H 5)
  • CH 2 CHSi (OC 3 H 7)
  • CH 2 CHSi (OC 4 H 9)
  • CH 2 CHSi (OC 6 H 13 ) 3
  • CH 2 CHSi (OC 8 H 17)
  • CH 2 CHSi (OC 10 H 21)
  • CH 2 CHSi (OC 12 H 25) 3
  • the composition of the obtained fluorinated copolymer is fluoroolefin / non-fluorinated monomer (however, a non-fluorinated monomer having a carboxyl group).
  • Monomer and hydrolyzable silyl group-containing unsaturated monomer) / non-fluorinated monomer having carboxyl group / hydrolyzable silyl group-containing unsaturated monomer mass% ratio 30-60 / 10 to 69 / 0.01 to 10 / 0.01 to 5, more preferably 40 to 50/25 to 57 / 0.1 to 5 / 0.1 to 3.
  • the fluorine-containing resin is a mixture of a fluoropolymer and a (meth) acrylic polymer
  • the (meth) acrylic polymer preferably includes a hydrolyzable silyl group-containing unsaturated monomer unit.
  • the hydrolyzable silyl group-containing unsaturated monomer unit can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to a base material. It is preferable that it is 0.01 mass% or more with respect to all the monomer units which comprise an acrylic polymer, and it is more preferable that it is 0.1 mass% or more. 5 mass% or less is preferable and 3 mass% or less is more preferable. If the amount of the hydrolyzable silyl group-containing unsaturated monomer unit is too large, the transparency of the coating film may be impaired. If the amount is too small, the solvent resistance and substrate adhesion of the coating film may be impaired.
  • the (meth) acrylic polymer contains (meth) acrylic monomer units.
  • examples of the (meth) acrylic monomer include (meth) acrylic acid and (meth) acrylic acid ester.
  • “(meth) acrylic acid” means acrylic acid or methacrylic acid.
  • the (meth) acrylic polymer preferably contains at least one acrylic monomer unit selected from the group consisting of acrylic acid, acrylic ester, methacrylic acid and methacrylic ester.
  • the total amount of the (meth) acrylic polymer constituting the (meth) acrylic polymer is preferably 64 to 99.995% by mass, more preferably 74 to 99.99% by mass and 74 to 95.5% by mass based on the body unit.
  • the (meth) acrylic polymer preferably contains an acrylate unit or a methacrylic ester unit because it can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate. More preferably, it contains an acrylate unit and a methacrylate unit.
  • a (meth) acrylic monomer having a hydrolyzable silyl group is not included.
  • the (meth) acrylic acid ester is preferably an alkyl alkyl ester having an alkyl group having 1 to 10 carbon atoms or an alkyl methacrylate having an alkyl group having 1 to 10 carbon atoms.
  • Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, methyl methacrylate, n-propyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate,
  • Examples include (meth) acrylic acid alkyl esters such as 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate.
  • 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxyethyl acrylate (2-HEA), 3-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, 4-hydroxypropyl acrylate, 4- Examples include hydroxyl-containing (meth) acrylic acid esters such as hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 6-hydroxyhexyl acrylate, and 6-hydroxyhexyl methacrylate. At least one selected from the group consisting of 2-HEMA and 2-HEA is preferred.
  • the hydroxyl group-containing (meth) acrylic acid ester unit is preferably 0 to 20% by mass relative to all monomer units constituting the (meth) acrylic polymer.
  • the hydroxyl group is a group represented by —OH but does not include a hydroxyl group constituting a part of a carboxy group (—COOH).
  • the (meth) acrylic acid ester is at least one selected from the group consisting of methyl methacrylate, n-butyl methacrylate, n-butyl acrylate, 2-ethylhexyl methacrylate, 2-ethylhexyl acrylate, and cyclohexyl methacrylate. Species are preferred.
  • the (meth) acrylic polymer preferably contains a hydrophilic group such as a hydroxyl group or a carboxy group from the viewpoint of long-term stability of the aqueous dispersion.
  • a carboxy group is particularly preferable.
  • the (meth) acrylic polymer can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate, it is also preferred that it contains an unsaturated carboxylic acid unit.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, vinyl acetic acid, crotonic acid, cinnamic acid, 3-allyloxypropionic acid, 3- (2-allyloxyethoxycarbonyl) propionic acid, itaconic acid, itaconic acid monoester Maleic acid, maleic acid monoester, maleic anhydride, fumaric acid, fumaric acid monoester, vinyl phthalate, vinyl pyromellitic acid, undecylenic acid and the like.
  • the unsaturated carboxylic acid unit can form a more excellent coating film due to adhesion with the substrate, it is 0.1 to 10 mass based on all monomer units constituting the (meth) acrylic polymer. %, Preferably 1 to 5% by mass.
  • the (meth) acrylic polymer can form a coating film that is more excellent in solvent resistance, antifouling properties, and adhesion to the substrate, it further contains a hydroxyl group-containing (meth) acrylic acid ester unit. Is more preferable.
  • the (meth) acrylic polymer can form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate, so that it is an acrylic acid ester unit, a methacrylic acid ester unit, an unsaturated carboxylic acid. More preferably, it contains a unit, a hydroxyl group-containing (meth) acrylic acid ester unit and a hydrolyzable silyl group-containing unsaturated monomer unit.
  • the resin composite includes an inorganic polymer.
  • the inorganic polymer is a polymer whose skeleton is formed of an inorganic element.
  • examples of such inorganic elements include silicon (Si), titanium (Ti), aluminum (Al), and zirconium (Zr). Si is preferable as the inorganic element.
  • As the inorganic polymer polysiloxane is more preferable.
  • polysiloxane examples include polycondensates of hydrolyzed organosilanes represented by the following general formula (3-1).
  • R 1 represents a monovalent organic group having 1 to 8 carbon atoms, and two R 1 s may be the same or different from each other, and R 2 is a straight chain having 1 to 5 carbon atoms or A branched alkyl group or an acyl group having 1 to 6 carbon atoms, and two R 2 s may be the same or different from each other, and n is an integer of 0 to 2. n is preferably 0 or 1.
  • examples of the monovalent organic group having 1 to 8 carbon atoms of R 1 include a phenyl group; a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group.
  • a phenyl group a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group.
  • acyl group such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, caproyl group; alkenyl group such as vinyl group and allyl group, and substituted derivatives of these groups Epoxy group, glycidyl group, (meth) acryloyloxy group, ureido group, amide group, fluoroacetamide group, isocyanate group and the like.
  • Examples of the substituent in the substituted derivative of R 1 include a halogen atom, a substituted or unsubstituted amino group, a hydroxyl group, a mercapto group, an isocyanate group, a glycidoxy group, a 3,4-epoxycyclohexyl group, and a (meth) acryloyloxy.
  • the total carbon number of R 1 composed of these substituted derivatives is 8 or less including the carbon atom in the substituent.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms of R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a sec-butyl group. , T-butyl group, n-pentyl group and the like.
  • Examples of the acyl group having 1 to 6 carbon atoms include acetyl group, propionyl group, butyryl group, valeryl group, caproyl group and the like. .
  • organosilane examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane; methyltrimethoxysilane, methyl Triethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n -Butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimeth
  • Tetraalkoxysilanes are preferably tetraethoxysilane
  • trialkoxysilanes are preferably methyltrimethoxysilane and methyltriethoxysilane
  • dialkoxysilanes are preferably dimethyldimethoxysilane and dimethyldiethoxysilane.
  • the above organosilanes can be used alone or in admixture of two or more.
  • the hydrolyzate of the above organosilane is a product in which the Si—OR 2 group in the organosilane is hydrolyzed to form a silanol (Si—OH) group.
  • the OR 2 group of the organosilane has Not all have to be hydrolyzed.
  • the polycondensate of the hydrolyzate of the above organosilane is a product in which silanol groups in the hydrolyzate are condensed to form a siloxane (Si—O—Si) bond. All of these groups are condensed. It is not necessary to have a part of the group condensed.
  • the organosilane polycondensate may be trialkoxysilanes alone or may be obtained from a combination of trialkoxysilanes 40 to 99 mol% and tetraalkoxysilanes 60 to 1 mol%. Also good.
  • the weather resistance can be improved by using trialkoxysilane and tetraalkoxysilane at this ratio.
  • dialkoxysilanes may be contained in a proportion of 0 to 55 mol%.
  • the present disclosure is also an aqueous dispersion containing a particulate resin composite containing a fluorine-containing resin and an inorganic polymer, wherein the resin composite is characterized in that the inorganic polymer is segregated on the surface.
  • the aqueous dispersion (hereinafter also referred to as “second aqueous dispersion of the present disclosure”).
  • the particulate resin composite is preferably a particle in which an inorganic polymer is segregated on the surface of a particle composed of a fluorine-containing resin.
  • the particulate resin composite contains a fluorine-containing resin and an inorganic polymer in the same particle, that is, the particulate resin composite is a particle containing an inorganic polymer in one particle. It is preferable that
  • the resin composite preferably has a core-shell structure of a resin core made of a fluorine-containing resin (preferably a fluoropolymer and a (meth) acrylic polymer) and an inorganic polymer shell.
  • the resin composite preferably has a shell part thickness of 5.0 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more.
  • the upper limit of the thickness of the shell portion is not particularly limited, but may be 40 nm.
  • the thickness of the shell part can be measured by, for example, a scanning transmission electron microscope.
  • the inorganic polymer is a polymer whose skeleton is formed of an inorganic element.
  • examples of such inorganic elements include silicon (Si), titanium (Ti), aluminum (Al), and zirconium (Zr).
  • Si is preferable as the inorganic element.
  • polysiloxane is more preferable, and the polysiloxane exemplified in the first aqueous dispersion of the present disclosure can be suitably used.
  • the fact that the inorganic polymer is segregated on the surface of the resin composite can be confirmed, for example, by measuring the intensity ratio of inorganic atoms and fluorine atoms measured by a semi-quantitative method using a transmission electron microscope.
  • the resin composite has an intensity ratio of silicon atoms to fluorine atoms measured by a semi-quantitative method using a transmission electron microscope ((strength of silicon atoms in particle portion ⁇ strength of particles).
  • the intensity ratio (silicon atom / fluorine atom) is more preferably 0.3 or more, further preferably 0.4 or more, and particularly preferably 0.5 or more. Moreover, 1.0 or less is preferable, 0.9 or less is more preferable, and 0.8 or less is still more preferable.
  • the method for measuring the intensity ratio is the same as that described in the first aqueous dispersion.
  • the preferred embodiment of the fluorine-containing resin is the same as the first aqueous dispersion of the present disclosure described above, and the embodiment shown in the first aqueous dispersion of the present disclosure is the same. It can be adopted as appropriate.
  • the fluorine-containing resin may be composed only of a fluoropolymer, or may be a mixture of a fluoropolymer and a polymer other than the fluoropolymer, for example, a mixture of a fluoropolymer and a (meth) acrylic polymer. There may be.
  • the preferred embodiment of the fluoropolymer is the same as the first aqueous dispersion of the present disclosure described above, and the embodiment shown in the first aqueous dispersion of the present disclosure is appropriately selected. Can be adopted.
  • the said fluorine-containing resin consists only of fluoropolymers, it is preferable that the said fluoropolymer contains the said hydrolysable silyl group containing unsaturated monomer unit and a fluoroolefin unit. Further, in addition to the fluoroolefin unit, a non-fluorine monomer unit copolymerizable with the fluoroolefin may be included.
  • the (meth) acrylic polymer preferably includes a (meth) acrylic monomer unit.
  • the (meth) acrylic polymer preferably includes a (meth) acrylic monomer unit and a hydrolyzable silyl group-containing unsaturated monomer unit.
  • the preferred embodiment is the same as the first aqueous dispersion of the present disclosure.
  • the resin composite has a mass ratio of fluoropolymer to (meth) acrylic polymer (fluoropolymer / (meth) acrylic polymer) of 90/10 to 10/90. It is preferably 80/20 to 20/80, more preferably 75/25 to 25/75. It is preferably 70/30 to 30/70, more preferably 65/35 to 35/65, and particularly preferably 60/40 to 40/60.
  • the mass ratio (fluoropolymer / (meth) acrylic polymer) is within the above range, it is possible to form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate.
  • the antifouling property of the coating film is improved, but the film forming property of the coating film may be lowered.
  • the film-forming property of a coating film will improve, but there exists a possibility that the weather resistance of a coating film may fall.
  • the resin composite has an inorganic polymer content of 0.1% by mass with respect to a total of 100% by mass of the fluoropolymer and the (meth) acrylic polymer. % Or more, more preferably 1.0% by mass or more, still more preferably 2.0% by mass or more, and particularly preferably 3.0% by mass or more. Moreover, it is preferable that it is 20 mass% or less, and it is more preferable that it is 10 mass% or less. When the content of the inorganic polymer is in the above range, the adhesion with the substrate can be further improved.
  • the resin composite preferably has an acid value of 1 to 20, more preferably 1 to 10, and still more preferably 4 or more. . If the acid value is too high, the adhesion and antifouling properties of the coating film may be inferior. Without the acid value, the stability of the emulsion may be inferior.
  • the hydroxyl value and the acid value can be calculated from the amount of each monomer used to synthesize the resin composite.
  • the resin composite preferably has a glass transition temperature (Tg) of 0 to 70 ° C., more preferably 10 to 60 ° C., and more preferably 20 to More preferably, it is 50 degreeC. If the glass transition temperature is too low, the antifouling property of the coating film may be impaired, and if it is too high, the film forming property of the coating film may be deteriorated.
  • Tg glass transition temperature
  • the resin composite preferably has a particle size of 50 to 300 nm, and more preferably 50 to 250 nm.
  • the mass ratio of the fluorine-containing resin to the inorganic polymer is 99.5 to 90 / 0.1 to 20
  • it is 99 to 92/1 to 15, more preferably 98 to 93/2 to 10, and particularly preferably 97 to 92/3 to 10.
  • the fluorine-containing resin is a mixture of a fluoropolymer and a (meth) acrylic polymer
  • the mass ratio of the fluoropolymer, the (meth) acrylic polymer, and the inorganic polymer (fluoropolymer / (meth) acrylic polymer / inorganic polymer) is It is preferably 90 to 10/10 to 90 / 0.1 to 20, more preferably 80 to 20/20 to 80/1 to 15, and 70 to 30/30 to 70/2 to 10. More preferably, it is particularly preferably 70 to 30/30 to 70/3 to 10.
  • the mass ratio (A / B / C) is within the above range, it is possible to form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to the substrate. If the amount of the inorganic polymer is too large, the film forming property may be deteriorated, and if the amount is too small, the adhesion may be deteriorated.
  • the content of the resin composite is not limited, but may include, for example, 10 to 60% by mass of the resin composite.
  • the first and second aqueous dispersions of the present disclosure include a pH adjuster, a film-forming aid, a curing agent, a curing accelerator, a curing retarder, a pigment, an antifreezing agent, a filler, and an antifoaming agent as necessary.
  • a pH adjuster a film-forming aid
  • a curing agent a curing accelerator
  • a curing retarder a pigment
  • an antifreezing agent a filler
  • an antifoaming agent as necessary.
  • Leveling agents, rheology adjusting agents, pH adjusting agents, preservatives, UV absorbers, antioxidants, matting agents, lubricants, algal control agents, and the like may be added. It is also preferable that the aqueous dispersion does not contain a pigment, a filler or the like from the viewpoint that a coating film having excellent transparency can be obtained.
  • the first and second aqueous dispersions of the present disclosure may further contain a film forming aid.
  • a film forming aid various commercially available film-forming aids can be used. Specifically, dipropylene glycol-n-butyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, diethylene glycol diethyl ether, ethylene glycol mono 2-ethylhexyl ether, diethyl adipate, 2,2,4- Examples thereof include polyhydric alcohol alkyl ethers such as trimethylpentane-1,3-diol monoisobutyrate and organic acid esters.
  • the first and second aqueous dispersions of the present disclosure may further include an antifoaming agent.
  • an antifoaming agent examples include organic antifoaming agents such as silicone antifoaming agents, surfactants, polyethers, and higher alcohols.
  • the first and second aqueous dispersions of the present disclosure are further adjusted to a pH of 7.0 or higher, more preferably 7.5 or higher, using a pH adjuster.
  • the pH adjuster include aqueous ammonia and amines.
  • a curing agent may be included.
  • the curing agent is selected according to the type of fluoropolymer or acrylic polymer.
  • an isocyanate curing agent, a melamine resin, a silicate compound, an isocyanate group-containing silane compound and the like can be preferably exemplified.
  • amino-based curing agents and epoxy-based curing agents are used for carboxyl group-containing fluorine-containing polymers, and carbonyl-group-containing curing agents, epoxy-based curing agents, acid anhydride-based curing agents are used for amino group-containing fluorine-containing polymers. Is usually adopted.
  • the curing agent also includes a non-blocking polyisocyanate compound, a block polyisocyanate compound, a melamine resin, a crosslinking agent having at least one group selected from the group consisting of an aziridine group, a carbodiimide group, and an oxazoline group, hydrazine Derivatives and the like.
  • Non-blocking polyisocyanate compounds are excellent in curability at room temperature and also in terms of crosslinking reactivity.
  • the non-block type polyisocyanate compound means a normal isocyanate compound other than the block type polyisocyanate compound obtained by reacting an alcohol or oxime compound with an isocyanate compound.
  • non-blocking polyisocyanate compound examples include non-blocking polyisocyanate modified with a polyethylene oxide compound described in JP-A-11-310700, JP-A-7-330861, JP-A-61-291613 and the like. Isocyanate compounds are preferred.
  • non-block type aliphatic polyisocyanate compound or a non-block type aromatic polyisocyanate compound modified with a polyethylene oxide compound is exemplified.
  • non-block type aliphatic polyisocyanate compounds are preferable from the viewpoint of excellent weather resistance.
  • examples of the alicyclic polyisocyanate compound include 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 1-isocyanato-3,3,5.
  • non-block type aliphatic polyisocyanate compounds examples include tolylene diisocyanate.
  • polyethylene oxide compound that is a modifier examples include polyoxyethylene monooctyl ether, polyoxyethylene monolauryl ether, polyoxyethylene monodecyl ether, polyoxyethylene monocetyl ether, polyoxyethylene monostearyl ether, polyoxyethylene mono Polyoxyethylene C8-24 alkyl ethers such as oleyl ether, preferably polyoxyethylene C10-22 alkyl ethers, especially polyoxyethylene alkyl ethers such as polyoxyethylene C12-18 alkyl ethers; for example polyoxyethylene monooctylphenyl ether , Polyoxyethylene monononyl phenyl ether, polyoxyethylene monodecyl phenyl ether, etc.
  • Polyoxyethylene monoalkylaryl ethers such as 2-alkyl-C6-12 aryl ethers; for example, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan distea Polyoxyethylene sorbitan-mono, di or tri C10-24 fatty acid esters such as polyoxyethylene sorbitan tristearate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene monolaurate, polyoxyethylene monostearate Nonionic emulsifiers such as polyoxyethylene mono C10-24 fatty acid esters such as acid esters, polyoxyethylene mono higher fatty acid esters, etc.
  • the modification can be performed, for example, by a method in which a polyisocyanate compound is mixed with a modifying agent in a solution and reacted by heating.
  • the ratio of the polyisocyanate compound to the modifier is 0.01 to 0.034 equivalent, preferably 0.015 to 0.03 equivalent, of the active hydrogen atom of the modifier with respect to 1 equivalent of isocyanate group in the polyisocyanate compound. You can choose from a range of degrees.
  • Examples of commercially available polyethylene oxide-modified non-blocking polyisocyanate compounds include Bihijoule 3100, Bihijoule TPLS2150 manufactured by Sumitomo Bayer Urethane Co., Ltd., and Duranate WB40-100 manufactured by Asahi Kasei Co., Ltd. It is not limited.
  • the non-blocking polyisocyanate compound is usually used in the form of an aqueous solution or an aqueous dispersion.
  • block type polyisocyanate compound known curing agents such as Sumidur BL3175 manufactured by Sumika Bayer Urethane Co., Ltd. and Duranate TPA-B80E manufactured by Asahi Kasei Co., Ltd. can be used.
  • crosslinking agent having an aziridine group examples include XAMA2 and XAMA7 supplied from BF-Goodrich.
  • examples of the crosslinking agent having a carbodiimide group include UCARLNK Crosslinker XL-29SE supplied by Union Carbide, Carbodilite E-02, E-04, SV-02, V-02V-02-L2, V, Nisshinbo Chemical Co., Ltd. -04, V-10 and the like are exemplified.
  • cross-linking agents having an oxazoline group examples include Epocross K-1010E, Epocross K-1020E, Epocross K-1030E, Epocross K-2010E, Epocross K-2020E, Epocross K-2030E supplied from Nippon Shokubai Co., Ltd.
  • An example is Epocros WS-500.
  • the hydrazine derivative has at least two hydrazine residues and may particularly preferably be derived from saturated fatty acid dicarboxylic acids. Of particular importance are aliphatic carboxylic acid dihydrazides having 2 to 10 carbon atoms. Suitable dihydrazides of this type are malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide and / or sebacic acid dihydrazide. Carbonic polyhydrazide such as carbonic dihydrazide is exemplified.
  • the curing agent is preferably added in an amount of 0.1 to 5 molar equivalents, more preferably 0.5 to 1.5 molar equivalents relative to 1 equivalent of the curable functional group of the resin.
  • the content of the curable functional group of the resin can be calculated by appropriately combining NMR, FT-IR, elemental analysis, fluorescent X-ray analysis, and neutralization titration depending on the type of monomer.
  • curing accelerator examples include organic tin compounds, acidic phosphate esters, reaction products of acidic phosphate esters and amines, saturated or unsaturated polycarboxylic acids or acid anhydrides thereof, organic titanate compounds, amine compounds, Examples include lead octylate.
  • the mixing ratio of the curing accelerator is preferably 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 2 parts by mass with respect to 100 parts by mass of the resin, and 5.0 ⁇ 10 ⁇ 5 to 1.0 ⁇ 10 ⁇ 3. A mass part is more preferable.
  • the viscosity of the first and second aqueous dispersions of the present disclosure will be described.
  • the viscosity at 25 ° C. is preferably 1000 mPa ⁇ s or less when the solid concentration is 49 to 51% by mass, although there are differences depending on the application used. By being the said viscosity, it becomes the thing excellent by the handleability.
  • the viscosity is more preferably 500 mPa ⁇ s or less, and still more preferably 100 mPa ⁇ s or less.
  • the viscosity is a value obtained by measuring 100 mL of an aqueous dispersion at 25 ° C. using a B-type viscometer.
  • the first and second aqueous dispersions of the present disclosure include, for example, a seed polymerization step of seed polymerizing a (meth) acryl monomer and a hydrolyzable silyl group-containing unsaturated monomer in an aqueous dispersion containing a fluoropolymer. And a method including a condensation polymerization step of condensation polymerization of silanol in the presence of a (meth) acrylic polymer obtained by seed polymerization.
  • the present disclosure also relates to the above manufacturing method.
  • a dispersion containing particles containing a fluoropolymer and a (meth) acrylic polymer can be obtained.
  • the seed polymerization step can be performed by adding a (meth) acrylic monomer, a hydrolyzable silyl group-containing unsaturated monomer, and, if necessary, other monomers to an aqueous dispersion containing a fluoropolymer.
  • a method of dropping an emulsion containing a (meth) acryl monomer, a hydrolyzable silyl group-containing unsaturated monomer, a surfactant and water into an aqueous dispersion containing a fluoropolymer can be mentioned.
  • the aqueous dispersion contains water, and may contain an organic solvent such as alcohol, glycol ether and ester in addition to water.
  • the temperature of the seed polymerization step is not limited as long as the polymerization reaction proceeds, but is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and still more preferably 70 ° C. or higher. Moreover, since it is preferable to carry out at a normal pressure, less than 100 degreeC is preferable, 95 degreeC or less is preferable and 90 degreeC or less is more preferable.
  • an oil-soluble peroxide, a water-soluble radical polymerization initiator, or the like can be used as the polymerization initiator in the seed polymerization step.
  • These representative oil-soluble initiators such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP) have a risk of explosion and are expensive.
  • IPP diisopropyl peroxydicarbonate
  • NPP di-n-propyl peroxydicarbonate
  • scales tend to adhere to the wall of the polymerization tank during the polymerization reaction.
  • water-soluble radical polymerization initiator examples include persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium salt, and the like. Particularly, ammonium persulfate and potassium persulfate are used. preferable.
  • the addition amount of the polymerization initiator is not particularly limited, but it is added all at once in the initial stage of polymerization, sequentially or continuously, such that the polymerization rate is not significantly reduced (for example, several ppm to water concentration). do it.
  • the upper limit is a range in which the heat of polymerization reaction can be removed from the surface of the apparatus.
  • a molecular weight modifier or the like may be further added.
  • the molecular weight modifier may be added all at once in the initial stage, or may be added continuously or dividedly.
  • halogenated hydrocarbons for example, chloroform, carbon tetrachloride, etc.
  • mercaptans for example, n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan
  • Mercaptans are preferably used.
  • the amount of the molecular weight modifier used is usually about 0 to 5.0 parts by weight per 100 parts by weight of the (meth) acrylic monomer.
  • the aqueous dispersion containing the fluoropolymer preferably has a fluoropolymer content of 30 to 60% by mass based on the total amount of the aqueous dispersion.
  • the seed polymerization step is performed by adding 30 to 300% by mass of a (meth) acrylic monomer and 1 to 40% by mass of a hydrolyzable silyl group-containing unsaturated monomer with respect to 100% by mass of the fluoropolymer. be able to. More preferably, the addition amount of the (meth) acrylic monomer is 60 to 150% by mass, and the addition amount of the hydrolyzable silyl group-containing unsaturated monomer is 5 to 20% by mass.
  • the seed polymerization is preferably carried out in the presence of a non-reactive anionic surfactant, a reactive anionic surfactant, a non-reactive nonionic surfactant, a reactive nonionic surfactant, or the like.
  • the seed polymerization is preferably performed in the presence of at least one selected from the group consisting of a reactive anionic surfactant and a reactive nonionic surfactant, and is performed in the presence of a reactive anionic surfactant. It is more preferable.
  • Formula (3) CH 2 ⁇ C (X) COO— (BO) m — (PO) n — (EO) q —SO 3 Y (Wherein X is H or CH 3 ; BO is a butylene oxide unit; PO is a propylene oxide unit; EO is a CH 2 CH 2 O or CH (CH 3 ) O unit; m is an integer of 0 to 50; n is 0 An integer of ⁇ 100; q is an integer of 0 to 100; m + n + q is an integer of 10 to 150; Y is NH 4 or an alkali metal)) (3), Formula (4): CH 2 ⁇ CHCH 2 —O—R 1 —X (Wherein R 1 is a hydrocarbon chain optionally having an oxygen atom and / or a nitrogen atom, X is SO 3 Y (Y is NH 4 or an alkali metal)) (4) Etc.
  • R 1 in Formula (4) is a hydrocarbon chain that may have an oxygen atom and / or a nitrogen atom.
  • R 1 is preferably a hydrocarbon group containing an oxyalkylene group.
  • X is SO 3 Y (Y is NH 4 or an alkali metal).
  • Y is NH 4 or an alkali metal.
  • Na and K are preferable.
  • the oxyalkylene group include linear or branched oxyalkylene groups having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, and butylene oxide.
  • Examples of the compound represented by the formula (4) include the formula (4a):
  • R 1 ′ is a linear or branched hydrocarbon chain that may contain an oxygen atom, a phenyl group or a phenylene group; AO is a linear or branched oxy group having 2 to 4 carbon atoms; Preferred examples include compounds (4a) represented by an alkylene group; n is an integer of 1 to 100; and X is SO 3 Y (Y is NH 4 or an alkali metal atom).
  • R 1 ′ has preferably 1 to 51 carbon atoms, more preferably 5 to 21 carbon atoms, and still more preferably 10 to 16 carbon atoms.
  • n is preferably an integer of 1 to 60, more preferably an integer of 5 or more, further preferably an integer of 10 or more, more preferably an integer of 30 or less, still more preferably an integer of 20 or less, and particularly preferably an integer of 15 or less.
  • alkali metal atom Na and K are preferable.
  • R 3 ′ is a linear or branched hydrocarbon chain having 1 to 50 carbon atoms which may contain a phenyl group or a phenylene group; AO is a linear or branched chain having 2 to 4 carbon atoms; N is an integer of 1 to 100; X is SO 3 Y (Y is NH 4 or an alkali metal atom such as Na, K)), or (4a-1) The following formula (4a-2);
  • R 4 ′ is an alkyl group having 1 to 50 carbon atoms; AO is a linear or branched oxyalkylene group having 2 to 4 carbon atoms; n is an integer of 1 to 100; X is SO 3 Y (Y is NH 4 or an alkali metal atom such as Na, K).) (4a-2) is preferred.
  • R 3 ′ has 1 to 50 carbon atoms, preferably 5 to 20 and more preferably 10 to 15.
  • n is an integer of 1 to 100, preferably an integer of 1 to 60 from the viewpoint of dispersion stability and water resistance, more preferably an integer of 5 to 30, and an integer of 10 to 15. More preferably.
  • X is preferably SO 3 NH 4 .
  • AO is preferably ethylene oxide.
  • Examples of the commercially available compound (4a-1) include the SE series and SR series of ADEKA rear soap (both manufactured by ADEKA).
  • R 4 ′ is an alkyl group having 1 to 50 carbon atoms, preferably 5 to 20 and more preferably 10 to 15.
  • n is an integer of 1 to 100, preferably an integer of 1 to 20, and more preferably 5 to 15 from the viewpoint of dispersion stability and water resistance.
  • X is preferably SO 3 NH 4 .
  • AO is preferably ethylene oxide.
  • Examples of the commercially available compound (4a-2) include Aqualon KH-10 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • the amount of the reactive anionic surfactant added is preferably 0.15 to 100 parts by mass, more preferably 1 part by mass or more, and more preferably 2 parts by mass or more, with respect to 100 parts by mass of the seed particles.
  • 50 parts by mass or less is more preferable, and 10 parts by mass or less is still more preferable.
  • the polycondensation step can be performed by adding organosilane to an aqueous dispersion containing a fluoropolymer and an acrylic polymer obtained by seed polymerization.
  • the organosilane is hydrolyzed in the aqueous dispersion to form a silanol compound, and the silanol compound is polycondensed.
  • the condensation polymerization step it is preferable to add 0.5 to 20% by mass of organosilane with respect to 100% by mass of the total of the fluoropolymer and the acrylic polymer. More preferably, the added amount is 2.5 to 10% by mass.
  • the temperature of the said condensation polymerization process will not be limited if a condensation polymerization advances, 50 degreeC or more is preferable, 60 degreeC or more is more preferable, and 70 degreeC or more is still more preferable. Moreover, less than 100 degreeC is preferable, 95 degreeC or less is preferable and 90 degreeC or less is more preferable.
  • the condensation polymerization step is preferably performed after the acrylic monomer is polymerized, that is, after the seed polymerization step.
  • the polycondensation step is preferably performed under acidic conditions. By performing it under acidic conditions, a resin composite in which an inorganic polymer is segregated on the surface of the emulsified particles obtained in the seed polymerization step can be efficiently produced.
  • the polycondensation step is preferably performed at a pH of 1 to 6, more preferably 2 to 5.
  • the seed polymerization step and the condensation polymerization step are preferably performed continuously while maintaining a temperature of 50 ° C. or higher, and the temperature is preferably 60 ° C. or higher, more preferably 70 ° C. or higher. . If, after the seed polymerization step, the temperature is lowered to less than 50 ° C. and then the temperature is increased to perform condensation polymerization, the viscosity of the resulting aqueous dispersion may increase. Moreover, it is preferable to carry out at the same temperature as a previous process from a viewpoint of productivity.
  • the production method may include a step of obtaining an aqueous dispersion containing a fluoropolymer by subjecting the fluoroolefin to aqueous dispersion polymerization. That is, the production method of the present disclosure includes a step of aqueous dispersion polymerization of a fluoroolefin to obtain an aqueous dispersion containing a fluoropolymer, and an (meth) acryl monomer and a hydrolyzable silyl group in the aqueous dispersion containing a fluoropolymer.
  • the aqueous dispersion contains water.
  • the aqueous dispersion polymerization can be carried out in the presence of a non-reactive anionic surfactant, a reactive anionic surfactant, a non-reactive nonionic surfactant, a reactive nonionic surfactant, or the like, if desired.
  • these surfactants those exemplified in the seed polymerization step can be preferably used.
  • the first and second aqueous dispersions of the present invention are produced in the same manner as described above, they may contain, in addition to water, alcohol generated in the condensation polymerization step, that is, methanol or ethanol or both. Good.
  • the content is 100 ppm or more, or 1000 ppm or more, or 1% or more.
  • the aqueous dispersion can be suitably used as an aqueous paint.
  • the water-based paint is preferably a water-based clear paint.
  • Conventionally known methods and conditions can be adopted as a method for coating the aqueous dispersion. For example, a method of forming a coating film by applying a coating method such as spray coating, roll coating, flow coating, roller, brush, gravure / screen printing, etc. on a substrate, followed by drying at 5 to 200 ° C. It is done. By such a method, it is possible to form a coating film that is more excellent in solvent resistance, antifouling property, and adhesion to a substrate.
  • the present disclosure also relates to a coating film characterized by being obtained from the first and second aqueous dispersions described above.
  • the coating film obtained from the aqueous dispersion is excellent in adhesion to the substrate. Moreover, it is excellent also in solvent resistance, antifouling property, etc.
  • the present disclosure also relates to a coating film including a particulate resin composite having a surface segregated with an inorganic polymer.
  • the coating film is preferably constituted by an aggregated structure of a particulate resin composite in which an inorganic polymer is segregated.
  • the coating film of the present disclosure preferably has a honeycomb structure in which the resin composite is aggregated. It can be confirmed by surface observation with a scanning electron microscope that the coating film of the present disclosure has the honeycomb structure.
  • the coating film obtained from the aqueous dispersion obtained in Examples 1 to 3 to be described later has a honeycomb-like structure as shown in FIGS.
  • the coating film of the present disclosure preferably has segregated inorganic polymer on the surface. It can be confirmed by XPS measurement or the like that the inorganic polymer is segregated on the surface of the coating film. This can be confirmed by the fact that the intensity ratio of silicon atoms / fluorine atoms on the surface is larger than the intensity ratio of silicon atoms / fluorine atoms inside the coating film.
  • the coating film of the present disclosure preferably has a [surface silicon atom / fluorine atom intensity ratio] of 0.2 or more as measured by XPS. The intensity ratio is more preferably 0.3 or more.
  • the intensity ratio of silicon atoms / fluorine atoms inside the coating film is the intensity ratio of silicon atoms / fluorine atoms measured by exposing a scraped surface by irradiation with a gas cluster ion beam for 8 minutes under the following conditions.
  • XPS measurement can be performed under the following conditions. [Intensity ratio of silicon atom / fluorine atom] Measurement conditions: X-ray output 25W15KV Sputtering conditions: GCIB 5Kv20nA Under the above conditions, the surface of the prepared coated plate is analyzed by XPS to measure the strength of each element.
  • a gas cluster ion beam (GCIB) is irradiated for 2 minutes to give a cut surface (the depth when the PMMA was cut under the same conditions was 20 nm). Thereafter, the surface is analyzed by XPS, and the strength of each element is measured. By repeating this, the distribution of each element is measured.
  • the thickness of the coating film of the present disclosure is not limited, but is usually 1 to 100 ⁇ m.
  • the present disclosure also relates to a coated article obtained by coating the above-described aqueous dispersion on a substrate.
  • a transparent base material is preferable.
  • the transparent substrate include, for example, plastic substrates such as polyethylene terephthalate, acrylic resin, polycarbonate resin, and fluororesin, and metal substrates such as Galvalume steel plate (registered trademark), ZAM steel plate, cold rolled steel plate, and aluminum. , Glass, and other articles requiring transparency.
  • a coating film is formed by applying the above-mentioned aqueous dispersion to a base material made of Galvalume steel plate (registered trademark), cold-rolled steel plate, glass or polyethylene terephthalate, the resulting coating film is weather resistant. In addition to excellent solvent resistance and antifouling properties, it also has excellent adhesion to the substrate.
  • the coated article can be used in a wide range of applications.
  • electrical products microwave oven, toaster, refrigerator, washing machine, hair dryer, TV, video, amplifier, radio, electric kettle, rice cooker, radio cassette, cassette deck, compact disc player, video camera, personal computer, etc.
  • Interior and exterior air conditioner indoor units, outdoor units, air outlets and ducts, air conditioners such as air purifiers and heaters, lighting fixtures such as fluorescent lamps, chandeliers, reflectors, furniture, machine parts, decorative items , Combs, eyeglass frames, natural fibers, synthetic fibers (threads and woven fabrics obtained from them), office equipment (telephones, facsimiles, copiers (including rolls), photographs, overhead projectors, actual projectors, watches , Slide projector, desk, bookshelf, locker, book Interior / exterior of shelves, chairs, bookends, electronic white boards, etc., automobiles (wheels, door mirrors, moldings, door knobs, license plates, handles, instrument panels, etc.), or kitchen utensils (range
  • the apparatus and measurement conditions used for property evaluation are as follows.
  • XPS measuring device name VersaProbe II manufactured by ULVAC-PHI Measurement conditions: X-ray output 25W15KV Sputtering conditions: GCIB 5Kv20nA
  • XPS measuring device name VersaProbe II manufactured by ULVAC-PHI Measurement conditions: X-ray output 25W15KV Sputtering conditions: GCIB 5Kv20nA
  • a gas cluster ion beam GCIB
  • the depth when the PMMA was shaved under the same conditions was 20 nm.
  • the surface is analyzed by XPS, and the strength of each element is measured. By repeating this, the distribution of each element is measured.
  • the intensity ratio of Si / F was calculated from the intensity data of each element.
  • EDX measuring device name BRUKER XFlash6160 Acceleration voltage 15Kv Elemental mapping was performed at a measurement time of 200 seconds.
  • TEM measuring device name Scanning transmission electron microscope (TALOS F200X manufactured by Japan FI Eye Co., Ltd.) 1 part by weight of the aqueous dispersion obtained in Examples and Comparative Examples was diluted with 5000 parts by weight of pure water, sprayed onto a sheet mesh for transmission electron microscope observation with a thin film, and dried to semi-quantitatively. The particles to be analyzed were attached to the sheet mesh.
  • an osmium coater (Neoc-Pro neo-osmium coater manufactured by Meiwa Forsys Co., Ltd.) was coated with osmium having a film thickness of about 5 nm under a film forming condition of a vacuum degree of 2 Pa and a time of 10 seconds.
  • osmium having a film thickness of about 5 nm under a film forming condition of a vacuum degree of 2 Pa and a time of 10 seconds.
  • STEM observation of the particles was performed with a scanning transmission electron microscope (Talos F200X manufactured by Nippon FII Co., Ltd.) at an observation magnification of 225,000 times and an image size of 1024 ⁇ 1024 pixels.
  • the acceleration voltage was 200 kV, and the scan time was 609 seconds, and 58 scans were performed.
  • silicon atom / fluorine atom (strength of silicon atom at the location where the particle exists (particle) ⁇ strength of silicon atom at the location where the particle does not exist (blank)) / (particle ) Fluorine atom strength at locations where particles exist (particles-Strength of fluorine atoms at locations where particles do not exist (blank)) was used to calculate the strength ratio of Si / F.
  • Adhesion test A coating obtained by applying the aqueous dispersions obtained in Examples and Comparative Examples to a glass plate and an aluminum plate with a bar coater # 10 and drying at 100 ° C. for 10 minutes. Then, 6 vertical 6 horizontal cuts were made with a cutter to make 25 squares, and a tape peeling test was conducted according to the cross-cut tape method (JIS K5400). All peeled off (0/25) ... ⁇ No peeling (25/25) ... ⁇ Partially peeled off (1-24 / 25) ... ⁇
  • VdF / TFE / CTFE polymer (VdF / TFE polymer) was placed in a 2-liter glass four-necked separable flask equipped with a stirrer, a reflux tube, a thermometer, and a dropping funnel.
  • the mass ratio (A / B / C) of the fluoropolymer (A), the (meth) acrylic polymer (B) and the siloxane polymer (polysiloxane) (C) was 50/45/5.
  • a sheet mesh sample for TEM measurement was prepared from the obtained aqueous dispersion by the procedure described above.
  • FIG. 15 shows a photograph obtained by TEM measurement of the created sheet mesh sample.
  • FIG. 16 shows a TEM measurement photograph of the sheet mesh sample by a semi-quantitative method.
  • the content of the siloxane polymer was calculated by the following formula based on the method for calculating the content in terms of hydrolysis condensate described in JP-A-2016-000808.
  • Total amount of siloxane polymer trimethoxymethylsilane feed amount ⁇ trimethoxymethylsilane conversion factor + tetraethoxysilane feed factor ⁇ tetraethoxysilane conversion factor trimethoxymethylsilane conversion factor: 0.493 Conversion factor of tetraethoxysilane: 0.288
  • Example 2 Synthesis of composite polymer particles A VdF / TFE / CTFE polymer (VdF / TFE polymer) was placed in a 2 liter glass four-necked separable flask equipped with a stirrer, reflux tube, thermometer, and dropping funnel.
  • / CTFE 72/15/13 (mol%) particles aqueous dispersion 731 parts by weight, methyl methacrylate (MMA) 108 parts by weight, n-butyl acrylate (BA) 151 parts by weight, n-butyl methacrylate (BMA) 0.03 parts by mass, 0.03 parts by mass of cyclohexyl methacrylate (CHMA), 0.03 parts by mass of 2-hydroxyethyl methacrylate (2-HEMA), 5.3 parts by mass of methacrylic acid, ⁇ -methacryloxypropyltrimethoxysilane 1 .8 parts by mass, 100 g of water, polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate Stirred placed 12.5 parts by mass ester ammonium salt while heated.
  • MMA methyl methacrylate
  • BA 151 parts by weight
  • BMA n-butyl methacrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • VdF / TFE / CTFE polymer (VdF / TFE polymer) was placed in a 2-liter glass four-necked separable flask equipped with a stirrer, a reflux tube, a thermometer, and a dropping funnel.
  • FIG. 15 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • MMA methyl methacrylate
  • BA n-butyl acrylate
  • BMA n-butyl methacrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • BA n-butyl acrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • ⁇ -methacryloxypropyltrimethoxysilane 100 g of water, polyoxy Ethylene-1- (allyloxymethyl) alkyl ether sulfate ammonium salt 12.5 Stirring Enter the amount unit while heated.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • MMA methyl methacrylate
  • BA n-butyl acrylate
  • BMA n-butyl methacrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • methacrylic acid 100 g of water, ammonium polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate 12.5 parts by mass of salt was added and heated with stirring.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • Comparative Example 2 To the aqueous dispersion obtained in Comparative Example 1, 62 parts by mass of trimethoxymethylsilane and 0.6 part by mass of tetraethoxysilane were added dropwise with stirring at room temperature over 0.5 hours, and then stirred for 1 hour. Got the body.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • Comparative Example 3 To the aqueous dispersion obtained in Comparative Example 1, 62 parts by mass of trimethoxymethylsilane and 0.6 part by mass of tetraethoxysilane were added dropwise at room temperature over 0.5 hours with stirring, and then stirred for 1 hour. Thereafter, the mixture was heated in a water bath with stirring, and when the bath temperature reached 80 ° C., the mixture was stirred for 2 hours. Thereafter, the reaction was terminated by cooling to room temperature to obtain an aqueous dispersion.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • MMA methyl methacrylate
  • BA n-butyl acrylate
  • BMA n-butyl methacrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • BA n-butyl acrylate
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • ⁇ -methacryloxypropyltrimethoxysilane 100 g of water, polyoxy Ethylene-1- (allyloxymethyl) alkyl ether sulfate ammonium salt 12.5 Stirring Enter the amount unit while heated.
  • FIG. 15 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • Example 5 To the aqueous dispersion obtained in Comparative Example 4, 62 parts by mass of trimethoxymethylsilane and 0.6 part by mass of tetraethoxysilane were added dropwise with stirring at room temperature over 0.5 hours, and then stirred for 1 hour to obtain an aqueous dispersion. Got the body.
  • FIG. 15 shows a photograph obtained by TEM measurement without washing the obtained aqueous dispersion.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • Example 6 To the aqueous dispersion obtained in Comparative Example 4, 62 parts by mass of trimethoxymethylsilane and 0.6 part by mass of tetraethoxysilane were added dropwise at room temperature over 0.5 hours with stirring, and then stirred for 1 hour. Next, the mixture was heated in a water bath with stirring, and stirred for 2 hours when the bath temperature reached 80 ° C. Thereafter, the reaction was terminated by cooling to room temperature to obtain an aqueous dispersion.
  • FIG. 15 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion.
  • FIG. 16 shows a photograph obtained by TEM measurement of the obtained aqueous dispersion by a semi-quantitative method.
  • Example 7 In Example 4, 512 parts by weight of an aqueous dispersion of VdF / TFE / CTFE polymer particles, 124 parts by weight of methyl methacrylate (MMA), 60 parts by weight of n-butyl acrylate (BA), n-butyl methacrylate ( BMA) was used in the same manner as Example 4 except that 145 parts by mass, cyclohexyl methacrylate (CHMA) was used at 12 parts by mass, 2-hydroxyethyl methacrylate (2-HEMA) was used at 19 parts by mass, and methacrylic acid was used at 11 parts by mass.
  • CHMA cyclohexyl methacrylate
  • 2-HEMA 2-hydroxyethyl methacrylate
  • methacrylic acid was used at 11 parts by mass.
  • test plate for initial water resistance Clear the following composition on a chromate-treated aluminum plate preheated to 60 ° C (prepared with an undercoat of the following composition so that the wet film thickness is 90 g / m 2 and dried overnight at room temperature): The coating composition was applied using a bar coater # 30 and dried for 3 minutes with a blower at 100 ° C. to prepare a test coated plate. This test coated plate was examined for initial water resistance. The results are shown in Table 1.
  • Base emulsion Movinyl DM774 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Pigment LIOFAST BLACK M232 manufactured by Toyocolor Co., Ltd.
  • Antifoaming agent BYK-028 manufactured by Big Chemie Film forming aid: Texanol manufactured by Eastman Chemical Co.
  • test coating plate for rain-strike test A test coated plate was prepared in the same manner as the preparation of the initial water resistant test coated plate except that a white pigment was used for the undercoat formulation. The coating film was exposed outdoors at a south surface of 45 ° for one month, and the state of surface rain streak was visually observed. In Example 1, no rain streak was observed. In Comparative Example 4, the rain streak was visually discriminated.
  • test coated plate for XPS measurement, surface SEM, adhesion test
  • the chromate-treated aluminum plate is preheated to 60 ° C., the aqueous dispersions obtained in Examples and Comparative Examples are applied with a bar coater # 10, and then dried with a 100 ° C. blower dryer for 3 minutes to prepare a test coated plate. Obtained.
  • FIGS. 1-10 the graph which plotted the XPS measurement result and [strength of Si / strength of F] is shown in FIGS.
  • the coating films obtained in the examples show that Si is segregated on the coating film surface, although the amount charged is smaller than that of fluorine.
  • FIGS. 3 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Example 1 with SEM
  • FIG. 4 is a result of reflected electron image and element mapping.
  • 4A is a reflected electron image
  • FIG. 4B is an element mapping image of fluorine atoms
  • FIG. 4C is an element mapping image of silicon atoms.
  • FIG. 5 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Example 2 by SEM
  • FIG. 6 is a result of reflected electron image and element mapping.
  • 6A is a reflected electron image
  • FIG. 6B is an element mapping image of fluorine atoms
  • FIG. 6C is an element mapping image of silicon atoms.
  • FIG. 7 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Example 3 by SEM
  • FIG. 8 is a result of reflected electron image and element mapping.
  • 8A is a reflected electron image
  • FIG. 8B is an element mapping image of fluorine atoms
  • FIG. 8C is an element mapping image of silicon atoms.
  • FIG. 9 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Comparative Example 1 by SEM
  • FIG. 10 is a result of reflected electron image and element mapping.
  • FIG. 10A is a reflected electron image
  • FIG. 10B is an element mapping image of fluorine atoms.
  • FIG. 11 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Comparative Example 2 by SEM
  • FIG. 12 is a result of reflected electron image and element mapping.
  • 12A is a reflected electron image
  • FIG. 12B is an element mapping image of fluorine atoms
  • FIG. 12C is an element mapping image of silicon atoms.
  • FIG. 12A is a reflected electron image
  • FIG. 12B is an element mapping image of fluorine atoms
  • FIG. 12C is an element mapping image of silicon atoms.
  • FIG. 13 is a secondary electron image obtained by observing the surface of the coating film obtained from the aqueous dispersion obtained in Comparative Example 3 by SEM
  • FIG. 14 is a result of reflected electron image and element mapping.
  • 14A is a reflected electron image
  • FIG. 14B is an element mapping image of fluorine atoms
  • FIG. 14C is an element mapping image of silicon atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Silicon Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本開示は、基材との密着性に優れる塗膜を形成することができる水性分散体を提供することを目的とする。 本開示は、フッ素含有樹脂および無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、前記フッ素含有樹脂が加水分解性シリル基含有不飽和単量体単位を含むことを特徴とする水性分散体に関する。

Description

水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法
本発明は、水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法に関する。
フルオロポリマーは、耐候性、耐薬品性、耐溶剤性、耐熱性、防汚性等に優れることから、広い産業分野において使用され、種々の検討がなされている。
例えば、特許文献1には、フッ素系重合体粒子の水性分散体100重量部(固形分換算)の存在下に、オルガノシラン化合物1.0~300重量部を縮合反応させることを特徴とする重合体粒子の水性分散体の製造方法が記載されている。
特開平5-170909号公報
本開示は、上記現状に鑑み、基材との密着性に優れる塗膜を形成することができる水性分散体を提供することを目的とする。また、基材との密着性に優れる塗膜を形成できる水性分散体の製造方法を提供する。
本開示は、フッ素含有樹脂および無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、上記フッ素含有樹脂が加水分解性シリル基含有不飽和単量体単位を含むことを特徴とする水性分散体に関する。
上記フッ素含有樹脂は、フルオロポリマーおよび(メタ)アクリルポリマーを含み、上記(メタ)アクリルポリマーが前記加水分解性シリル基含有不飽和単量体単位を含むことが好ましい。
本開示はまた、フッ素含有樹脂および無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、上記樹脂複合体は、無機高分子が表面に偏析していることを特徴とする水性分散体にも関する。
上記フッ素含有樹脂はフルオロポリマーおよび(メタ)アクリルポリマーを含むことが好ましい。
上記無機高分子は、ポリシロキサンであることが好ましい。
上記樹脂複合体は、透過型電子顕微鏡による半定量法により測定されたシリコン原子とフッ素原子の強度比(シリコン原子/フッ素原子)が0.15以上であることが好ましい。
上記フルオロポリマーは、フッ化ビニル、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、及び、クロロトリフルオロエチレンからなる群より選択される少なくとも1種のフルオロオレフィン単位を含むものであることが好ましい。
本開示の水性分散体は水性塗料であることが好ましい。
本開示はまた、上記水性分散体から得られる塗膜にも関する。
本開示は更に、上記水性分散体を基材に塗装することにより得られる塗装物品にも関する。
本開示は更に、フルオロポリマーを含む水性分散体中で、(メタ)アクリルモノマー及び加水分解性シリル基含有不飽和単量体をシード重合するシード重合工程、及び、シード重合して得られた(メタ)アクリルポリマーの存在下でシラノールを縮重合する縮重合工程を含むことを特徴とする水性分散体の製造方法にも関する。
上記縮重合工程は、酸性条件下で行われることが好ましい。
上記シード重合工程及び縮重合工程は、50℃以上の温度を保ったまま連続して実施することが好ましい。
本開示の水性分散体は、上記構成を備えることから、基材との密着性に優れる塗膜を形成することができる。本開示の製造方法は、基材との密着性に優れる塗膜を形成できる水性分散体を製造することができる。
実施例1~6で得られた塗膜表面のXPS測定結果をまとめたグラフである。 比較例2及び3で得られた塗膜表面のXPS測定結果をまとめたグラフである。 実施例1で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 実施例1で得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 実施例2で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 実施例2で得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 実施例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 実施例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 比較例1で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 比較例1得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 比較例2で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 比較例2得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 比較例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像である。 比較例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した反射電子像及び元素マッピング像である。 実施例又は比較例で得られた水性分散体を、TEM測定して得られた写真である。 実施例又は比較例で得られた水性分散体を、半定量法によるTEM測定を行って得られた写真である。
以下、本発明を具体的に説明する。
本開示は、フッ素含有樹脂、及び、無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、上記フッ素含有樹脂が加水分解性シリル基含有不飽和単量体単位を含むことを特徴とする水性分散体(以下「本開示の第1の水性分散体」ともいう)に関する。
上記フッ素含有樹脂は、加水分解性シリル基含有不飽和単量体単位を含む。これにより、水性分散体から得られる塗膜の耐溶剤性、防汚性、及び、基材との密着性をより一層優れるものとすることができる。
上記粒子状の樹脂複合体は、フッ素含有樹脂と無機高分子とを同一粒子内に含有している、すなわち、上記粒子状の樹脂複合体は、一粒子中に無機高分子を含む粒子であることが好ましい。
この点で、本開示の水性分散体は、フッ素含有樹脂及び無機高分子を単に混合することにより得られる水性分散体とは相違する。
フッ素含有樹脂と無機高分子が同一粒子内に存在している場合、これらは化学的に結合していてもよいし、結合していなくてもよい。
上記加水分解性シリル基としては、一般式:
-SiX 3-n(XはC1-10のアルコキシ基、XはH又はC1-10のアルキル基、nは1~3の整数を表す。)で示される基であることが好ましい。
塗膜の耐溶剤性向上の観点から上記加水分解性シリル基の反応性は高い方がよく、上記加水分解性シリル基は、-Si(OCH 3-n又は-Si(OC 3-nであることがより好ましく、-Si(OCH又は-Si(OCであることが更に好ましい。
上記加水分解性シリル基含有不飽和単量体単位を含むフッ素含有樹脂は、該樹脂を構成するポリマーに加水分解性シリル基含有不飽和単量体に基づく重合単位(以下「加水分解性シリル基含有不飽和単量体単位」ともいう)を導入することで得られる。
上記加水分解性シリル基含有不飽和単量体としては、
CH=CHSi(OCH
CH=CHSi(CH)(OCH、CH=C(CH)Si(OCH
CH=C(CH)Si(CH)(OCH
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC13
CH=CHSi(OC17
CH=CHSi(OC1021
CH=CHSi(OC1225
CH=CHCOO(CHSi(OCH
CH=CHCOO(CHSi(CH)(OCH
CH=CHCOO(CHSi(OC
CH=CHCOO(CHSi(CH)(OC
CH=C(CH)COO(CHSi(OCH
CH=C(CH)COO(CHSi(CH)(OCH
CH=C(CH)COO(CHSi(OC
CH=C(CH)COO(CHSi(CH)(OC
CH=C(CH)COO(CHO(CHSi(OCH
CH=C(CH)COO(CH(CHSi(CH)(OCH
CH=C(CH)COO(CH11Si(OCH
CH=C(CH)COO(CH11Si(CH)(OCH
CH=CHCHOCO(o-C)COO(CHSi(OCH
CH=CHCHOCO(o-C)COO(CHSi(CH)(OCH
CH=CH(CHSi(OCH
CH=CH(CHSi(OCH
CH=CHO(CHSi(OCH
CH=CHCHO(CHSi(OCH
CH=CHCHOCO(CH10Si(OCH
等が挙げられる。
上記加水分解性シリル基含有不飽和単量体単位は、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、フッ素含有樹脂を構成するポリマーの全単量体単位に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。5質量%以下が好ましく、3質量%以下がより好ましい。上記加水分解性シリル基含有不飽和単量体単位は、多すぎると塗膜の透明性を損なうおそれがあり、少なすぎると塗膜の耐溶剤性、基材密着性を損なうおそれがある。
上記フッ素含有樹脂は、フルオロポリマーのみからなるものであってもよいし、フルオロポリマーと、フルオロポリマー以外のポリマーとの混合物であってもよく、例えば、フルオロポリマーと(メタ)アクリルポリマーの混合物であってもよい。
上記フッ素含有樹脂は、フルオロポリマーと(メタ)アクリルポリマーの混合物であり、(メタ)アクリルポリマーが上記加水分解性シリル基含有不飽和単量体単位を含むことが好ましい。
つまり、上記樹脂複合体は、フルオロポリマー、(メタ)アクリルポリマー、及び、無機高分子を含み、(メタ)アクリルポリマーが(メタ)アクリルモノマー単位及び加水分解性シリル基含有不飽和単量体単位を含むことが好ましい。これらの特徴によって、基材との密着性に優れる塗膜を形成することができる。また、フルオロポリマー、(メタ)アクリルポリマー及び無機高分子が有する特性が十分に発揮され、基材との密着性だけでなく、防汚性、耐溶剤性等にも優れる塗膜を形成することができる。
この場合、上記粒子状の樹脂複合体は、フルオロポリマーと(メタ)アクリルポリマーと無機高分子とを同一粒子内に含有している。この点で、本開示の水性分散体は、フルオロポリマー、(メタ)アクリルポリマー及び無機高分子を単に混合することにより得られる水性分散体とは相違する。
フルオロポリマーと(メタ)アクリルポリマーと無機高分子が同一粒子内に存在している場合、これらは化学的に結合していてもよいし、結合していなくてもよい。
上記樹脂複合体は、無機高分子が粒子表面に偏析しているものであることが好ましい。より具体的には、上記粒子状の樹脂複合体は、フッ素含有樹脂から構成される粒子の表面に無機高分子が偏析している粒子であることが好ましい。
無機高分子が樹脂複合体粒子の表面に偏析していることは、例えば、透過型電子顕微鏡による半定量法により測定された無機原子とフッ素原子の強度比を測定することで確認することができる。
例えば、無機高分子がポリシロキサンである場合、上記樹脂複合体は、透過型電子顕微鏡による半定量法により測定されたシリコン原子とフッ素原子の強度比((粒子部分のシリコン原子の強度―粒子のない部分(ブランク)のシリコン原子の強度)/(粒子部分のフッ素原子の強度―粒子のない部分(ブランク)のフッ素原子の強度))が0.15以上であることが好ましい。
上記強度比(シリコン原子/フッ素原子)は、0.3以上であることがより好ましく、0.4以上であることが更に好ましく、0.5以上であることが特に好ましい。また、1.0以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。
上記強度比は、以下の方法で測定することができる。
[強度比(シリコン原子/フッ素原子)の測定方法]
水性分散体の1重量部を純水5000倍重量部で希釈し、薄膜を張った透過型電子顕微鏡観察用シートメッシュに噴霧し、これを乾燥することで半定量分析を行う粒子をシートメッシュに付着させる。次いで、チャージアップを防ぐべくオスミウムコータ(メイワフォーシス株式会社製Neoc-Proネオオスミウムコータ)にて、真空度2Pa、時間10秒の製膜条件で、膜厚約5nmのオスミウムをコートする。
このシートメッシュ試料を用いて、走査透過型電子顕微鏡により、観察倍率225000倍で、画像サイズは1024×1024ピクセルとして粒子のSTEM観察を行う。加速電圧は200kVとし、スキャン時間は609秒で58回スキャンする。このSTEM観察時に、同時にエネルギー分散型X線検出器(日本エフイー・アイ株式会社製Super-X)を用いて、スキャン時間609秒で29回スキャンし元素マッピングを行う。得られたデータをもとに、画像解析ソフト(ブルカ―・バイオスピン株式会社製ESPRIT 1,9)を用いて、粒子の存在する箇所(粒子)と粒子の存在しない箇所(ブランク)に存在するフッ素、ケイ素の各元素の半定量分析を行う。得られた各元素の強度を取り、(シリコン原子/フッ素原子=(粒子の存在する箇所(粒子)のシリコン原子の強度―粒子の存在しない箇所(ブランク)のシリコン原子の強度)/(粒子の存在する箇所(粒子)のフッ素原子の強度―粒子の存在しない箇所(ブランク)のフッ素原子の強度))よりSi/Fの強度比を算出する。
上記樹脂複合体は、フッ素含有樹脂(好適には、フルオロポリマー及び(メタ)アクリルポリマー)からなる樹脂のコアと無機高分子のシェルとのコアシェル構造を有していることが好ましい。樹脂複合体は、シェル部の厚みが、5nm以上であることが好ましく、10nm以上、15nm以上、さらには20nm以上であることがより好ましい。シェル部の厚みの上限は、特に限定されないが、50nmであってよく、40nmであってよい。
シェル部の厚みは、例えば、走査透過型電子顕微鏡によって測定することができる。
上記フッ素含有樹脂およびフルオロポリマーは、フルオロオレフィン単位を含むことが好ましい。上記フルオロオレフィンとしては、例えば、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、
Figure JPOXMLDOC01-appb-C000001
などのパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)、フッ化ビニル(VF)、ビニリデンフルオライド(VdF)、トリフルオロエチレン、トリフルオロプロピレン、ヘキサフルオロイソブテン、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン、1,1,3,3,3-ペンタフルオロプロペンなどの非パーフルオロオレフィンが挙げられる。パーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)などが挙げられる。
また、上記フルオロオレフィンとして、官能基含有フルオロオレフィンも使用できる。
上記官能基含有フルオロオレフィンとしては、例えば、一般式:
CX =CX-(Rf)-Y
(式中、Yは-OH、-COOM、-SOF、-SO(Mは水素原子、NH基またはアルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基またはシアノ基;XおよびXは同じかまたは異なりいずれも水素原子またはフッ素原子;Rfは炭素数1~40の2価の含フッ素アルキレン基若しくは含フッ素オキシアルキレン基、または炭素数2~40のエーテル結合を含有する2価の含フッ素アルキレン基若しくは含フッ素オキシアルキレン基;mは0または1)で示される化合物が挙げられる。
上記官能基含有フルオロオレフィンの具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
等が挙げられる。
上記フルオロオレフィンとして、ヨウ素含有モノマー、例えば、特公平5-63482号公報や特開昭62-12734号公報に記載されているパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)、パーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのパーフルオロビニルエーテルのヨウ素化物も使用できる。
なかでも、上記フルオロオレフィンとしては、フッ化ビニル、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、及び、クロロトリフルオロエチレンからなる群より選択される少なくとも1種であることが好ましい。
また、上記フルオロオレフィンは、ビニリデンフルオライドと、テトラフルオロエチレン、ヘキサフルオロプロピレン及びクロロトリフルオロエチレンからなる群より選択される少なくとも1種と、であることがより好ましい。
上記含フッ素含有樹脂およびフルオロポリマーは、上記フルオロオレフィン単位の他に、フルオロオレフィンと共重合可能な非フッ素系単量体単位を含んでいてもよい。上記フルオロオレフィンと共重合可能な非フッ素系単量体としては、たとえばエチレン、プロピレン、イソブチレン、n-ブテンなどのオレフィン類;エチルビニルエーテル、シクロヘキシルビニルエーテル、メチルビニルエーテルなどのビニルエーテル系単量体;酢酸ビニル、バーサティック酸ビニル、安息香酸ビニル、ピバリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニルなどのビニルエステル系単量体;ポリオキシエチレンアリルエーテル、エチルアリルエーテル、ヒドロキシエチルアリルエーテル、アリルアルコール、などのアリルエーテル系単量体;後述するアクリル酸、アクリル酸エステル、メタクリル酸及びメタクリル酸エステルなどがあげられる。なかでも、塗料として用いた際の相溶性、塗膜硬度、塗膜の透明性、造膜性を向上させる点からエチルビニルエーテル、シクロヘキシルビニルエーテル、バーサティック酸ビニルが好ましい。
また、上記フルオロオレフィンと共重合可能な非フッ素系単量体としては、安定性の観点から水媒体と親和性の良い官能基を有することが好ましい。官能基としてカルボキシル基や水酸基が好ましく選ばれる。
カルボキシル基を有する単量体としては、ウンデシレン酸、クロトン酸、マレイン酸、マレイン酸モノエステル、ビニル酢酸、桂皮酸、3-アリルオキシプロピオン酸、イタコン酸、イタコン酸モノエステル、アクリル酸、メタクリル酸などの不飽和カルボン酸があげられる。
水酸基を有する単量体としては、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテルなどの水酸基含有ビニル単量体などが例示できる。なかでも重合反応性、硬化性が優れる点から2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ウンデシレン酸、クロトン酸、アクリル酸、メタクリル酸が好ましい。
上記フルオロポリマーは、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、フルオロオレフィン単位として、ビニリデンフルオライド単位を含むことが好ましい。(メタ)アクリルポリマーとの相溶性の観点からは、フルオロポリマーは、ビニリデンフルオライド単位が、フルオロポリマーを構成する全重合単位に対して50モル%以上であることが好ましく、70モル%以上であることがより好ましく、95モル%以下であることが好ましい。
上記フルオロポリマーとしては、VdF/TFE/CTFE共重合体〔VTC〕、VdF/TFE共重合体、VdF/TFE/HFP共重合体、VdF/CTFE共重合体、VdF/HFP共重合体、及び、PVdFからなる群より選択される少なくとも1種であることが好ましく、VdF/TFE/CTFE=40~99/1~50/0~30(モル%)、VdF/TFE=50~99/1~50(モル%)、VdF/TFE/HFP=45~99/0~35/5~50(モル%)、VdF/CTFE=40~99/1~30(モル%)、及び、VdF/HFP=50~99/1~50(モル%)からなる群より選択される少なくとも1種であることがより好ましい。
上記フルオロポリマーとしては、VdF/TFE/CTFE共重合体が特に好ましい。VdF/TFE/CTFE共重合体は、VdF/TFE/CTFE=40~99/1~49.9/0.1~30(モル%)がより好ましく、50~95/2.5~25/2.5~25(モル%)が更に好ましく、70~90/5~20/5~20(モル%)が特に好ましい。
上記フッ素含有樹脂がフルオロポリマーのみからなる場合、フルオロポリマーは、上記加水分解性シリル基含有不飽和単量体単位、及び、フルオロオレフィン単位を含むことが好ましい。また、フルオロオレフィン単位の他に、フルオロオレフィンと共重合可能な非フッ素系単量体単位を含んでいてもよい。
この場合、上記フルオロポリマーは、上記加水分解性シリル基含有不飽和単量体単位の含有量が、全単量体単位に対して0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。5質量%以下が好ましく、3質量%以下がより好ましい。上記加水分解性シリル基含有不飽和単量体単位は、多すぎると塗膜の透明性を損なうおそれがあり、少なすぎると塗膜の耐溶剤性、基材密着性を損なうおそれがある。
また、フルオロオレフィン単位及び非フッ素系単量体単位の合計が95質量%以上であることが好ましく、97質量%以上がより好ましい。
フッ素含有樹脂がフルオロポリマーのみからなる場合は、上述のフルオロオレフィン単位と共に共重合可能な非フッ素系単量体を共重合することが好ましい。
上述のフルオロオレフィン単位としては、テトラフルオロエチレン、及び、クロロトリフルオロエチレンが、非フッ素系単量体との共重合性が良い点から好ましく選ばれる。
フルオロオレフィン単位と共に共重合可能な非フッ素系単量体としては、たとえば上述の非フッ素系単量体が好ましくあげられる。
なかでも、硬化剤への相溶性、塗膜硬度、塗膜の透明性、造膜性を向上させる点から、酢酸ビニル、ピバリン酸ビニル、エチルビニルエーテル、シクロヘキシルビニルエーテルが好ましい。
また、上述の非フッ素系単量体の中でも水酸基やカルボキシル基を持つ非フッ素系単量体も好ましく選ばれ、水性分散体の安定性が優れる点から、クロトン酸、ウンデシレン酸が好ましく選ばれる。
フルオロオレフィンと共に共重合可能な非フッ素系単量体として、マクロモノマーを含んでいてもよい。マクロモノマーとしては親水性部位を有しているものがよい。なかでも片末端がビニルエーテル基をもつものが、フルオロオレフィンとの共重合性に優れているために好ましい。また、このマクロモノマーは末端にヒドロキシル基やカルボキシル基のような架橋性官能基をもっていてもよい。
上記加水分解性シリル基含有不飽和単量体単位としては、ビニルシラン類が好ましい。
具体的には、
CH=CHSi(OCH
CH=CHSi(CH)(OCH、CH=C(CH)Si(OCH
CH=C(CH)Si(CH)(OCH
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC13
CH=CHSi(OC17
CH=CHSi(OC1021
CH=CHSi(OC1225
が好ましく例示される。
フルオロオレフィンと共に共重合可能な非フッ素系単量体を共重合する場合、たとえば得られる含フッ素共重合体の組成が、フルオロオレフィン/非フッ素系単量体(但し、カルボキシル基を持つ非フッ素系単量体及び加水分解性シリル基含有不飽和単量体を除く)/カルボキシル基を持つ非フッ素系単量体/加水分解性シリル基含有不飽和単量体(質量%比)で30~60/10~69/0.01~10/0.01~5であることが好ましく、さらには40~50/25~57/0.1~5/0.1~3であることが好ましい。
上記フッ素含有樹脂がフルオロポリマー及び(メタ)アクリルポリマーの混合物である場合、上記(メタ)アクリルポリマーは、加水分解性シリル基含有不飽和単量体単位を含むことが好ましい。これにより、水性分散体から得られる塗膜の耐溶剤性、防汚性、及び、基材との密着性をより一層優れるものとすることができる。
上記加水分解性シリル基及び加水分解性シリル基含有不飽和単量体としては上述したものと同様である。
上記加水分解性シリル基含有不飽和単量体としては、
CH=CHCOO(CHSi(OCH
CH=CHCOO(CHSi(CH)(OCH
CH=CHCOO(CHSi(OC
CH=CHCOO(CHSi(CH)(OC
CH=C(CH)COO(CHSi(OCH
CH=C(CH)COO(CHSi(CH)(OCH
CH=C(CH)COO(CHSi(OC
CH=C(CH)COO(CHSi(CH)(OC
CH=C(CH)COO(CHO(CHSi(OCH
CH=C(CH)COO(CH(CHSi(CH)(OCH
CH=C(CH)COO(CH11Si(OCH
CH=C(CH)COO(CH11Si(CH)(OCH
等が好ましく挙げられる。
上記加水分解性シリル基含有不飽和単量体単位は、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、フルオロポリマーおよび(メタ)アクリルポリマーを構成する全単量体単位に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。5質量%以下が好ましく、3質量%以下がより好ましい。上記加水分解性シリル基含有不飽和単量体単位は、多すぎると塗膜の透明性を損なうおそれがあり、少なすぎると塗膜の耐溶剤性、基材密着性を損なうおそれがある。
(メタ)アクリルポリマーは、(メタ)アクリルモノマー単位を含む。上記(メタ)アクリルモノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸エステル等が挙げられる。本明細書において、「(メタ)アクリル酸」はアクリル酸又はメタクリル酸を意味する。
上記(メタ)アクリルポリマーは、アクリル酸、アクリル酸エステル、メタクリル酸及びメタクリル酸エステルからなる群より選択される少なくとも1種のアクリルモノマー単位を含むことが好ましい。
上記(メタ)アクリル酸エステル単位は、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、(メタ)アクリルポリマーを構成する全単量体単位に対して、合計で、64~99.995質量%であることが好ましく、74~99.99質量%、74~95.5質量%であることがより好ましい。
(メタ)アクリルポリマーは、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、アクリル酸エステル単位又はメタクリル酸エステル単位を含むことが好ましく、アクリル酸エステル単位及びメタクリル酸エステル単位を含むことがより好ましい。
なお、本明細書において、単に「(メタ)アクリル酸エステル」「アクリル酸エステル」「メタクリル酸エステル」と記載した場合には、加水分解性シリル基を有する(メタ)アクリルモノマーを含まない。
上記(メタ)アクリル酸エステルとしては、アルキル基の炭素数が1~10のアクリル酸アルキルエステル、又は、アルキル基の炭素数が1~10のメタクリル酸アルキルエステルが好ましい。上記(メタ)アクリル酸エステルとしては、たとえば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、メチルメタクリレート、n-プロピルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレート、2-エチルへキシルアクリレート、2-エチルヘキシルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレートなどの(メタ)アクリル酸アルキルエステルが挙げられる。
また、2-ヒドロキシエチルメタクリレート(2-HEMA)、2-ヒドロキシエチルアクリレート(2-HEA)、3-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、6-ヒドロキシヘキシルアクリレート、6-ヒドロキシヘキシルメタクリレート等の水酸基含有(メタ)アクリル酸エステルが挙げられ、なかでも、2-HEMA及び2-HEAからなる群より選択される少なくとも1種が好ましい。上記水酸基含有(メタ)アクリル酸エステル単位は、(メタ)アクリルポリマーを構成する全単量体単位に対して、0~20質量%であることが好ましい。
本明細書において、上記水酸基は、-OHで示される基であるが、カルボキシ基(-COOH)の一部を構成する水酸基を含まない。
上記(メタ)アクリル酸エステルとしては、メチルメタクリレート、n-ブチルメタクリレート、n-ブチルアクリレート、2-エチルへキシルメタクリレート、2-エチルへキシルアクリレート、及び、シクロヘキシルメタクリレートからなる群より選択される少なくとも1種が好ましい。
(メタ)アクリルポリマーは、水性分散体の長期安定性の観点から、水酸基やカルボキシ基などの親水性基を含むことが好ましい。特にカルボキシ基が好ましい。
(メタ)アクリルポリマーは、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、不飽和カルボン酸単位を含むことも好ましい。
上記不飽和カルボン酸としては、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸、3-アリルオキシプロピオン酸、3-(2-アリロキシエトキシカルボニル)プロピオン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、マレイン酸無水物、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル、ウンデシレン酸などがあげられる。なかでも、単独重合性が低く単独重合体ができにくい点、カルボキシル基の導入を制御しやすい点から、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、イタコン酸、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、3-アリルオキシプロピオン酸、及び、ウンデシレン酸からなる群より選択される少なくとも1種が好ましく、アクリル酸及びメタクリル酸からなる群より選択される少なくとも1種が特に好ましい。
上記不飽和カルボン酸単位は、基材との密着性により一層優れる塗膜を形成することができることから、(メタ)アクリルポリマーを構成する全単量体単位に対して、0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
(メタ)アクリルポリマーは、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、更に、水酸基含有(メタ)アクリル酸エステル単位を含むこともより好ましい。
(メタ)アクリルポリマーは、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができることから、アクリル酸エステル単位、メタクリル酸エステル単位、不飽和カルボン酸単位、水酸基含有(メタ)アクリル酸エステル単位及び加水分解性シリル基含有不飽和単量体単位を含むことが更に好ましい。
上記樹脂複合体は、無機高分子を含む。上記無機高分子は、骨格が無機元素で形成される高分子である。このような無機元素としては、シリコン(Si)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)等が挙げられる。無機元素としてはSiが好ましい。上記無機高分子としてはポリシロキサンがより好ましい。
上記ポリシロキサンとしては、例えば、下記一般式(3-1)で表されるオルガノシランの加水分解物の重縮合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数1~8の1価の有機基を示し、2個存在するRは相互に同一でも異なってもよく、Rは炭素数1~5の直鎖状もしくは分岐状のアルキル基または炭素数1~6のアシル基を示し、2個存在するRは相互に同一でも異なってもよく、nは0~2の整数である。)からなる。nは0また1が好ましい。
一般式(3-1)において、Rの炭素数1~8の1価の有機基としては、例えば、フェニル基;メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基等の直鎖状、分岐状もしくは環状のアルキル基;アセチル基、プロピオニル基、ブチリル基、バレリル基、ベンゾイル基、トリオイル基、カプロイル基等のアシル基;ビニル基、アリル基等のアルケニル基や、これらの基の置換誘導体のほか、エポキシ基、グリシジル基、(メタ)アクリロイルオキシ基、ウレイド基、アミド基、フルオロアセトアミド基、イソシアナート基等を挙げることができる。
の前記置換誘導体における置換基としては、例えば、ハロゲン原子、置換もしくは非置換のアミノ基、水酸基、メルカプト基、イソシアナート基、グリシドキシ基、3,4-エポキシシクロヘキシル基、(メタ)アクリロイルオキシ基、ウレイド基、アンモニウム塩基等を挙げることができる。但し、これらの置換誘導体からなるRの合計炭素数は、置換基中の炭素原子を含めて8以下である。
また、Rの炭素数1~5の直鎖状もしくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基等を挙げることができ、炭素数1~6のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基等を挙げることができる。
上記オルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン等のテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、i-プロピルトリメトキシシラン、i-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アタクリロイルオキシプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジ-i-プロピルジメトキシシラン、ジ-i-プロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ペンチルジメトキシシラン、ジ-n-ペンチルジエトキシシラン、ジ-n-ヘキシルジメトキシシラン、ジ-n-ヘキシルジエトキシシラン、ジ-n-ヘプチルジメトキシシラン、ジ-n-ヘプチルジエトキシシラン、ジ-n-オクチルジメトキシシラン、ジ-n-オクチルジエトキシシラン、ジ-n-シクロヘキシルジメトキシシラン、ジ-n-シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルジエトキシメチルシラン等のジアルコキシシラン類のほか、メチルトリアセチルオキシシラン、ジメチルジアセチルオキシシラン等を挙げることができる。
これらのオルガノシランの中でも、テトラアルコキシシラン類、トリアルコキシシラン類、ジアルコキシシラン類が好ましい。また、テトラアルコキシシラン類としては、テトラエトキシシランが好ましく、トリアルコキシシラン類としては、メチルトリメトキシシラン、メチルトリエトキシシランが好ましく、ジアルコキシシラン類としては、ジメチルジメトキシシラン、ジメチルジエトキシシランが好ましい。
上記オルガノシランは、単独でまたは2種以上を混合して使用することができる。
上記オルガノシランの加水分解物は、オルガノシラン中のSi-OR基が加水分解して、シラノール(Si-OH)基を形成したものであるが、ここでは、オルガノシランが有するOR基のすべてが加水分解されている必要はない。
また、上記オルガノシランの加水分解物の重縮合物は、該加水分解物中のシラノール基が縮合してシロキサン(Si-O-Si)結合を形成したものであるが、これらの基がすべて縮合している必要はなく、一部の基のみが縮合したものであってもよい。
上記オルガノシランの重縮合物は、トリアルコキシシラン類のみであってもよいし、トリアルコキシシラン類40~99モル%とテトラアルコキシシラン類60~1モル%との組み合わせから得られるものであってもよい。この割合でトリアルコキシシランとテトラアルコキシシラン類とを用いることにより、耐候性を向上させることができる。更に、ジアルコキシシラン類を0~55モル%の割合で含有してもよい。
本開示はまた、フッ素含有樹脂及び無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、上記樹脂複合体は、無機高分子が表面に偏析していることを特徴とする水性分散体(以下「本開示の第2の水性分散体」ともいう)にも関する。
上記粒子状の樹脂複合体は、フッ素含有樹脂から構成される粒子の表面に無機高分子が偏析している粒子であることが好ましい。
また、上記粒子状の樹脂複合体は、フッ素含有樹脂と無機高分子とを同一粒子内に含有している、すなわち、上記粒子状の樹脂複合体は、一粒子中に無機高分子を含む粒子であることが好ましい。
上記樹脂複合体は、フッ素含有樹脂(好適には、フルオロポリマー及び(メタ)アクリルポリマー)からなる樹脂のコアと無機高分子のシェルとのコアシェル構造を有していることが好ましい。樹脂複合体は、シェル部の厚みが、5.0nm以上であることが好ましく、10nm以上、さらには20nm以上であることがより好ましい。シェル部の厚みの上限は、特に限定されないが、40nmであってよい。
シェル部の厚みは、例えば、走査透過型電子顕微鏡によって測定することができる。
上記無機高分子は、骨格が無機元素で形成される高分子である。このような無機元素としては、シリコン(Si)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)等が挙げられる。無機元素としてはSiが好ましい。上記無機高分子としてはポリシロキサンがより好ましく、本開示の第1の水性分散体において例示したポリシロキサンを好適に使用できる。
無機高分子が樹脂複合体の表面に偏析していることは、例えば、透過型電子顕微鏡による半定量法により測定された無機原子とフッ素原子の強度比を測定することで確認することができる。
例えば、無機高分子がポリシロキサンである場合、上記樹脂複合体は、透過型電子顕微鏡による半定量法により測定されたシリコン原子とフッ素原子の強度比((粒子部分のシリコン原子の強度―粒子の内部分(ブランク)のシリコン原子の強度)/(粒子部分のフッ素原子の強度―粒子の内部分(ブランク)のフッ素原子の強度))(シリコン原子/フッ素原子)が0.15以上であることが好ましい。
上記強度比(シリコン原子/フッ素原子)は、0.3以上であることがより好ましく、0.4以上であることが更に好ましく、0.5以上であることが特に好ましい。また、1.0以下が好ましく、0.9以下がより好ましく、0.8以下が更に好ましい。
上記強度比の測定方法は第1の水性分散体において記載したものと同じである。
本開示の第2の水性分散体において、フッ素含有樹脂の好適な態様は、上述した本開示の第1の水性分散体と同様であり、本開示の第1の水性分散体で示した態様を適宜採用できる。上記フッ素含有樹脂は、フルオロポリマーのみからなるものであってもよいし、フルオロポリマーと、フルオロポリマー以外のポリマーとの混合物であってもよく、例えば、フルオロポリマーと(メタ)アクリルポリマーの混合物であってもよい。
本開示の第2の水性分散体において、フルオロポリマーの好適な態様は、上述した本開示の第1の水性分散体と同様であり、本開示の第1の水性分散体で示した態様を適宜採用できる。上記フッ素含有樹脂がフルオロポリマーのみからなる場合、上記フルオロポリマーは、上記加水分解性シリル基含有不飽和単量体単位、及び、フルオロオレフィン単位を含むことが好ましい。また、フルオロオレフィン単位の他に、フルオロオレフィンと共重合可能な非フッ素系単量体単位を含んでいてもよい。
本開示の第2の水性分散体において、(メタ)アクリルポリマーは、(メタ)アクリルモノマー単位を含むものであることが好ましい。上記(メタ)アクリルモノマーとしては、上述した本開示の第1の水性分散体と同様であり、本開示の第1の水性分散体で示した態様を適宜採用できる。
上記(メタ)アクリルポリマーは、(メタ)アクリルモノマー単位及び加水分解性シリル基含有不飽和単量体単位を含むことが好ましい。上記(メタ)アクリルポリマーが、(メタ)アクリルモノマー単位及び加水分解性シリル基含有不飽和単量体単位を含む場合、その好適な態様は本開示の第1の水性分散体と同様である。
本開示の第1及び第2の水性分散体において、上記樹脂複合体は、フルオロポリマーと(メタ)アクリルポリマーとの質量比(フルオロポリマー/(メタ)アクリルポリマー)が90/10~10/90であることが好ましく、80/20~20/80であることがより好ましく、75/25~25/75であることがより好ましい。70/30~30/70であることが好ましく、65/35~35/65であることが更に好ましく、60/40~40/60であることが特に好ましい。質量比(フルオロポリマー/(メタ)アクリルポリマー)が上記範囲内にあると、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができる。フルオロポリマーが多すぎると塗膜の防汚性は向上するが塗膜の造膜性が低下する恐れがある。(メタ)アクリルポリマーが多すぎると塗膜の造膜性は向上するが、塗膜の耐候性が低下する恐れがある。
本開示の第1及び第2の水性分散体において、上記樹脂複合体は、無機高分子の含有量が、フルオロポリマーと(メタ)アクリルポリマーとの合計100質量%に対して、0.1質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、2.0質量%以上であることが更に好ましく、3.0質量%以上が特に好ましい。また、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
無機高分子の含有量が上記範囲であることによって、基材との密着性をより優れたものとすることができる。
本開示の第1及び第2の水性分散体において、上記樹脂複合体は、酸価が1~20であることが好ましく、1~10であることがより好ましく、4以上であることが更に好ましい。酸価が高すぎると塗膜の密着性や防汚性が劣るおそれがある。酸価が無いとエマルジョンの安定性が劣るおそれがある。
上記水酸基価及び上記酸価は、上記樹脂複合体を合成するために使用した各モノマーの量から計算することができる。
本開示の第1及び第2の水性分散体において、上記樹脂複合体は、ガラス転移温度(Tg)が0~70℃であることが好ましく、10~60℃であることがより好ましく、20~50℃であることがさらに好ましい。ガラス転移温度が低すぎると、塗膜の防汚性を損なうおそれがあり、高すぎると塗膜の造膜性が悪くなるおそれがある。
本開示の第1及び第2の水性分散体において、上記樹脂複合体は、粒子径が50~300nmであることが好ましく、50~250nmであることがより好ましい。
本開示の第1及び第2の水性分散体は、フッ素含有樹脂と無機高分子との質量比(フッ素含有樹脂/無機高分子)が99.5~90/0.1~20であることが好ましく、99~92/1~15であることがより好ましく、98~93/2~10であることが更に好ましく、97~92/3~10であることが特に好ましい。
フッ素含有樹脂がフルオロポリマーと(メタ)アクリルポリマーとの混合物である場合、フルオロポリマーと(メタ)アクリルポリマーと無機高分子との質量比(フルオロポリマー/(メタ)アクリルポリマー/無機高分子)が90~10/10~90/0.1~20であることが好ましく、80~20/20~80/1~15であることがより好ましく、70~30/30~70/2~10であることが更に好ましく、70~30/30~70/3~10であることが特に好ましい。質量比(A/B/C)が上記範囲内にあると、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができる。無機高分子が多すぎると造膜性が悪くなるおそれがあり、少な過ぎると密着性が低下するなるおそれがある。
本開示の第1及び第2の水性分散体において、樹脂複合体の含有量は限定されるものではないが、例えば、10~60質量%の樹脂複合体を含むことができる。
本開示の第1及び第2の水性分散体は、必要に応じ、pH調整剤、造膜助剤、硬化剤、硬化促進剤、硬化遅延剤、顔料、凍結防止剤、充填剤、消泡剤、レベリング剤、レオロジー調整剤、pH調整剤、防腐剤、紫外線吸収剤、酸化防止剤、つや消し剤、潤滑剤、防藻剤等を添加してよい。上記水性分散体は、透明性に優れる塗膜が得られる点からは、顔料、充填剤等を含まないことも好ましい。
本開示の第1及び第2の水性分散体は、更に、造膜助剤を含んでもよい。上記造膜助剤としては、市販の各種造膜補助剤を使用することができる。具体的には、ジプロピレングリコール-n-ブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノ2-エチルヘキシルエーテル、アジピン酸ジエチル、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチレート等の多価アルコールアルキルエーテルや有機酸エステル等が挙げられる。
本開示の第1及び第2の水性分散体は、更に、消泡剤を含んでもよい。上記消泡剤としては、シリコーン系消泡剤や界面活性剤、ポリエーテル、高級アルコールなどの有機系消泡剤などが挙げられる。
本開示の第1及び第2の水性分散体は、更に、pH調整剤によりpHを7.0以上、さらにはpHを7.5以上にすることが好ましい。pH調整剤としては、アンモニア水やアミン類が挙げられる。
さらに、硬化剤を含んでもよい。硬化剤としては、フルオロポリマーやアクリルポリマーの種類に応じて選択され、たとえば水酸基含有含フッ素ポリマーに対しては、イソシアネート系硬化剤、メラミン樹脂、シリケート化合物、イソシアネート基含有シラン化合物等が好ましく例示できる。また、カルボキシル基含有含フッ素ポリマーに対してはアミノ系硬化剤やエポキシ系硬化剤が、アミノ基含有含フッ素ポリマーに対してはカルボニル基含有硬化剤やエポキシ系硬化剤、酸無水物系硬化剤が通常採用される。
上記硬化剤としては、また、非ブロック型ポリイソシアネート化合物、ブロック型ポリイソシアネート化合物、メラミン樹脂、アジリジン基、カルボジイミド基及びオキサゾリン基からなる群より選択される少なくとも1種の基を有する架橋剤、ヒドラジン誘導体等が挙げられる。
非ブロック型ポリイソシアネート化合物は、常温での硬化性に優れており、また架橋反応性の点でも優れている。
なお非ブロック型ポリイソシアネート化合物とは、アルコールやオキシム化合物とイソシアネート化合物との反応で得られるブロック型ポリイソシアネート化合物以外の、通常のイソシアネート化合物のことをいう。
非ブロック型ポリイソシアネート化合物としては、特開平11-310700号公報、特開平7-330861号公報、特開昭61-291613号公報等に記載されているポリエチレンオキシド化合物で変性された非ブロック型ポリイソシアネート化合物が好適である。
具体的には、ポリエチレンオキシド化合物で変性した非ブロック型脂肪族ポリイソシアネート化合物または非ブロック型芳香族ポリイソシアネート化合物が例示される。これらのなかでは、耐候性に優れる点から非ブロック型脂肪族系ポリイソシアネート化合物が好ましい。
非ブロック型脂肪族ポリイソシアネート化合物のうち鎖状脂肪族ポリイソシアネート化合物としては、たとえばトリメチレンジイソシアネート、テトラメチレンジイソシアネート、1,6-ジイソシアナトヘキサン(=ヘキサメチレンジイソシアネート)、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプトロエート等のジイソシアネート類;リジンエステルトリイソシアネート、1,4,8-トリイソシアネートオクタン、1,6,11-トリイソシアネートウンデカン、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートヘキサン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン等のポリイソシアネート類が例示できる。
非ブロック型脂肪族ポリイソシアネート化合物のうち脂環族ポリイソシアネート化合物としては、たとえば1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1-イソシアナト-3,3,5-トリメチル-5-イソシアナトメチル-シクロヘキサン(=イソホロンジイソシアネート)、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサン等のジイソシアネート類;1,3,5-トリイソシアネートシクロヘキサン、1,3,5-トリメチルイソシアネートシクロヘキサン、2-(3-イソシアネートプロピル)-2,5-ジ(イソシアネートメチル)-ビシクロ(2.2.1)ヘプタン、2-(3-イソシアネートプロピル)-2,6-ジ(イソシアネートメチル)-ビシクロ(2.2.1)ヘプタン、3-(3-イソシアネートプロピル)-2,5-ジ(イソシアネートメチル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ(2.2.1)ヘプタン、6-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-2-(3-イソシアネートプロピル)-ビシクロ(2.2.1)-ヘプタン、6-(2-イソシアネートエチル)-2-イソシアネートメチル-2-(3-イソシアネートプロピル)-ビシクロ(2.2.1)ヘプタン等のポリイソシアネート類が例示できる。
非ブロック型脂肪族ポリイソシアネート化合物としては、たとえばトリレンジイソシアネート等が挙げられる。
これらのイソシアネート化合物は単独でまたは2種以上組合わせて使用してもよい。
変性剤であるポリエチレンオキシド化合物としては、たとえばポリオキシエチレンモノオクチルエーテル、ポリオキシエチレンモノラウリルエーテル、ポリオキシエチレンモノデシルエーテル、ポリオキシエチレンモノセチルエーテル、ポリオキシエチレンモノステアリルエーテル、ポリオキシエチレンモノオレイルエーテル等のポリオキシエチレンC8~24アルキルエーテル、好ましくはポリオキシエチレンC10~22アルキルエーテル、特にポリオキシエチレンC12~18アルキルエーテル等のポリオキシエチレンアルキルエーテル類;たとえばポリオキシエチレンモノオクチルフェニルエーテル、ポリオキシエチレンモノノニルフェニルエーテル、ポリオキシエチレンモノデシルフェニルエーテル等のポリオキシエチレンC8~12アルキル-C6~12アリールエーテル等のポリオキシエチレンモノアルキルアリールエーテル類;たとえばポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタンジステアレート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン-モノ、ジまたはトリC10~24脂肪酸エステル等のポリオキシエチレンソルビタン高級脂肪酸エステル類;たとえばポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル等のポリオキシエチレンモノC10~24脂肪酸エステル等のポリオキシエチレンモノ高級脂肪酸エステル類等のノニオン性乳化剤として知られている化合物が例示できる。これらの化合物は単独でまたは2種以上組合わせて使用できる。好ましいものとしては、水分散性が容易である点からポリオキシエチレンC8~24アルキルエーテル、ポリオキシエチレンC8~12アルキルフェニルエーテルが挙げられる。
変性は、たとえば、溶液中にてポリイソシアネート化合物を変性剤と混合し、加熱して反応させる等の方法で行なうことができる。
上記ポリイソシアネート化合物と変性剤との割合は、ポリイソシアネート化合物中のイソシアネート基1当量に対して、変性剤の活性水素原子0.01~0.034当量、好ましくは0.015~0.03当量程度の範囲から選択できる。
ポリエチレンオキシド変性の非ブロック型ポリイソシアネート化合物の市販品としては、たとえば住友バイエルウレタン(株)製のバイヒジュール3100、バイヒジュールTPLS2150等;旭化成(株)製のデュラネートWB40-100等が挙げられるが、これらに限定されるものではない。
非ブロック型ポリイソシアネート化合物は、通常、水溶液または水分散液の形態で使用する。
ブロック型ポリイソシアネート化合物としては、住化バイエルウレタン(株)製スミジュールBL3175、旭化成(株)製のデュラネートTPA-B80E等の公知の硬化剤が使用できる。
アジリジン基を有する架橋剤の例としては、BF-グッドリッチ(BF-Goodrich)社から供給されるXAMA2、XAMA7などが例示される。
カルボジイミド基を有する架橋剤の例としては、ユニオンカーバイド社から供給されるUCARLNK Crosslinker XL-29SE、日清紡ケミカル社のカルボジライトE-02、E-04、SV-02、V-02V-02-L2、V-04、V-10などが例示される。
オキサゾリン基を有する架橋剤の例としては、(株)日本触媒から供給されるエポクロスK-1010E、エポクロスK-1020E、エポクロスK-1030E、エポクロスK-2010E、エポクロスK-2020E、エポクロスK-2030E、エポクロスWS-500などが例示できる。
上記ヒドラジン誘導体は少なくとも2個のヒドラジン残基を有し、そしてとくに有利には飽和脂肪酸ジカルボン酸から導かれるものであってよい。とくに重要なものは、2~10個の炭素原子を有する脂肪族カルボン酸ジヒドラジドである。この種の好適なジヒドラジドは、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジドおよび/またはセバシン酸ジヒドラジドである。炭酸のポリヒドラジドたとえば炭酸ジヒドラジドなどが例示される。
硬化剤は、上記樹脂の硬化性官能基1当量に対して、0.1~5モル当量となるように添加することが好ましく、より好ましくは0.5~1.5モル当量である。
上記樹脂の硬化性官能基の含有量は、NMR、FT-IR、元素分析、蛍光X線分析、中和滴定を単量体の種類によって適宜組み合わせることで算出できる。
硬化促進剤としては、例えば有機スズ化合物、酸性リン酸エステル、酸性リン酸エステルとアミンとの反応物、飽和または不飽和の多価カルボン酸またはその酸無水物、有機チタネート化合物、アミン系化合物、オクチル酸鉛等が挙げられる。
硬化促進剤は1種を用いてもよく、2種以上を併用してもよい。硬化促進剤の配合割合は上記樹脂100質量部に対して1.0×10-6~1.0×10-2質量部が好ましく、5.0×10-5~1.0×10-3質量部程度がより好ましい。
本開示の第1及び第2の水性分散体の粘度に関して説明する。使用される用途によって違いはあるが、一般的には、固形分濃度が49~51質量%の時、25℃における粘度が1000mPa・s以下であることが好ましい。上記粘度であることによって、取扱い性により優れたものとなる。上記粘度は500mPa・s以下であることがより好ましく、100mPa・s以下であることが更に好ましい。
上記粘度は、水性分散体100mLをB型粘度計を用いて25℃で測定した値である。
本開示の第1及び第2の水性分散体は、例えば、フルオロポリマーを含む水性分散体中で、(メタ)アクリルモノマー及び加水分解性シリル基含有不飽和単量体をシード重合するシード重合工程、及び、シード重合して得られた(メタ)アクリルポリマーの存在下でシラノールを縮重合する縮重合工程を含む方法によって好適に製造することができる。本開示は、上記製造方法にも関する。
上記シード重合工程により、フルオロポリマーと(メタ)アクリルポリマーを含む粒子を含む分散体を得ることができる。
上記シード重合工程は、フルオロポリマーを含む水性分散体中に、(メタ)アクリルモノマー及び加水分解性シリル基含有不飽和単量体並びに必要に応じて他のモノマーを添加して行うことができる。例えば、フルオロポリマーを含む水性分散体に、(メタ)アクリルモノマー、加水分解性シリル基含有不飽和単量体、界面活性剤及び水を含む乳化液を滴下して行う方法が挙げられる。
上記水性分散体は水を含み、水に加えて、アルコール、グリコールエーテル、エステル等の有機溶媒を含有してもよい。
上記シード重合工程の温度は、重合反応が進行するものであれば限定されないが、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましい。また、常圧で行うのが好ましいため100℃未満が好ましく、95℃以下が好ましく、90℃以下がより好ましい。
上記シード重合工程の重合開始剤としては、油溶性の過酸化物や水溶性ラジカル重合開始剤などが使用できる。これらの代表的な油溶性開始剤であるジイソプロピルパーオキシジカーボネート(IPP)やジ-n-プロピルパーオキシジカーボネート(NPP)などのパーオキシカーボネート類は爆発などの危険性があるうえ、高価であり、しかも重合反応中に重合槽の壁面などにスケールの付着を生じやすいという問題がある。フルオロポリマーの圧縮永久歪みをよりいっそう低下させるためには、水溶性ラジカル重合開始剤を使用することが好ましい。水溶性ラジカル重合開始剤としては、たとえば過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩などが好ましくあげられ、特に過硫酸アンモニウム、過硫酸カリウムが好ましい。
重合開始剤の添加量は特に限定されないが、重合速度が著しく低下しない程度の量(たとえば数ppm対水濃度)以上を、重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は装置面から重合反応熱を除熱できる範囲である。
上記シード重合工程では、さらに分子量調整剤などを添加してもよい。分子量調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい。分子量調整剤としては、ハロゲン化炭化水素(たとえばクロロホルム、四塩化炭素など)、メルカプタン類(たとえばn-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン)などが用いられる。メルカプタン系が好適に用いられる。分子量調整剤の使用量は、(メタ)アクリル単量体100重量部あたり通常0~5.0重量部程度である。
上記シード重合工程において、フルオロポリマーを含む水性分散体は、フルオロポリマーの含有量が水性分散体の全量に対して30~60質量%であることが好ましい。
上記シード重合工程は、フルオロポリマー100質量%に対し、30~300質量%の(メタ)アクリルモノマーと、1~40質量%の加水分解性シリル基含有不飽和単量体を添加して実施することができる。より好ましくは、(メタ)アクリルモノマーの添加量が60~150質量%であり、加水分解性シリル基含有不飽和単量体の添加量が5~20質量%である。
上記シード重合は、非反応性アニオン界面活性剤、反応性アニオン界面活性剤、非反応性ノニオン界面活性剤、反応性ノニオン界面活性剤等の存在下に実施することが好ましい。
上記シード重合は、反応性アニオン界面活性剤及び反応性ノニオン界面活性剤からなる群より選択される少なくとも1種の存在下に実施することが好ましく、反応性アニオン界面活性剤の存在下に実施することがより好ましい。
上記反応性アニオン界面活性剤としては、
式(3):CH=C(X)COO-(BO)-(PO)-(EO)-SO
(式中、XはHまたはCH;BOはブチレンオキサイド単位;POはプロピレンオキサイド単位;EOはCHCHOまたはCH(CH)O単位;mは0~50の整数;nは0~100の整数;qは0~100の整数;m+n+qは10~150の整数;YはNHまたはアルカリ金属である。)で示される化合物(3)、
式(4):CH=CHCH-O-R-X
(式中、Rは酸素原子および/または窒素原子を有していてもよい炭化水素鎖、XはSOY(YはNHまたはアルカリ金属)である。)で示される化合物(4)等が挙げられる。
式(4)中のRは、酸素原子および/または窒素原子を有していてもよい炭化水素鎖である。
上記Rは、オキシアルキレン基を含む炭化水素基であることが好ましい。
Xは、SOY(YはNHまたはアルカリ金属)である。アルカリ金属としては、Na、Kが好ましい。
上記オキシアルキレン基としては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等の炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基が挙げられる。
式(4)で示される化合物としては、式(4a):
Figure JPOXMLDOC01-appb-C000005
(式中、R’は直鎖状又は分岐状であり、酸素原子、フェニル基またはフェニレン基を含んでもよい炭化水素鎖;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;nは1~100の整数;XはSOY(YはNHまたはアルカリ金属原子)である。)で示される化合物(4a)が好ましく挙げられる。
’の炭素数は1~51が好ましく、5~21がより好ましく、10~16が更に好ましい。
nは、1~60の整数が好ましく、5以上の整数がより好ましく、10以上の整数が更に好ましく、30以下の整数がより好ましく、20以下の整数が更に好ましく、15以下の整数が特に好ましい。
上記アルカリ金属原子としては、Na、Kが好ましい。
式(4a)としては、次の式(4a-1):
Figure JPOXMLDOC01-appb-C000006
(式中、R’は直鎖状又は分岐状であり、フェニル基またはフェニレン基を含んでもよい炭素数1~50の炭化水素鎖;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;nは1~100の整数;XはSOY(YはNHまたはアルカリ金属原子、たとえばNa、K)である。)で示される化合物(4a-1)、又は、下記式(4a-2);
Figure JPOXMLDOC01-appb-C000007
(式中、R’は炭素数1~50のアルキル基;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;nは1~100の整数;XはSOY(YはNHまたはアルカリ金属原子、たとえばNa、K)である。)で示される化合物(4a-2)が好ましく挙げられる。
式(4a-1)において、R’は炭素数1~50であり、好ましくは5~20であり、より好ましくは10~15である。nは、1~100の整数であり、分散安定性および耐水性の点から1~60の整数であることが好ましく、5~30の整数であることがより好ましく、10~15の整数であることが更に好ましい。
Xは、SONHが好ましい。
AOは、エチレンオキサイドであることが好ましい。
化合物(4a-1)の市販品としては、例えば、アデカリアソープのSEシリーズ、SRシリーズ(いずれも、ADEKA社製)等を挙げることができる。
式(4a-2)において、R’は炭素数1~50のアルキル基であり、好ましくは5~20であり、より好ましくは10~15である。nは、1~100の整数であり、分散安定性および耐水性の点から1~20の整数であることが好ましく、5~15であることが更に好ましい。
Xは、SONHが好ましい。
AOは、エチレンオキサイドであることが好ましい。
化合物(4a-2)の市販品としては、例えば、アクアロンKH-10(第一工業製薬(株)製)等が挙げられる。
上記シード重合において、上記反応性アニオン界面活性剤の添加量は、上記シード粒子100質量部に対し、0.15~100質量部が好ましく、1質量部以上がより好ましく、2質量部以上が更に好ましく、50質量部以下がより好ましく、10質量部以下が更に好ましい。
上記縮重合工程は、シード重合して得られた、フルオロポリマー及びアクリルポリマーを含む水性分散体に、オルガノシランを添加することで実施することができる。
オルガノシランは、水性分散体中で加水分解されてシラノール化合物となり、該シラノール化合物が縮重合することとなる。
上記縮重合工程は、フルオロポリマー及びアクリルポリマーの合計100質量%に対し、0.5~20質量%のオルガノシランを添加することが好ましい。より好ましくは、上記添加量は2.5~10質量%である。
上記縮重合工程の温度は、縮重合が進行するものであれば限定されないが、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましい。また、100℃未満が好ましく、95℃以下が好ましく、90℃以下がより好ましい。
上記縮重合工程は、アクリルモノマーの重合後、すなわち、上記シード重合工程後に行うのが好ましい。
上記縮重合工程は、酸性条件下で行われることが好ましい。酸性条件下で行うことによって、シード重合工程で得られた乳化粒子表面に無機高分子が偏析した樹脂複合体を効率よく製造することができる。
上記縮重合工程は、1~6のpHで行うことが好ましく、2~5のpHで行うことがより好ましい。
本開示の製造方法において、上記シード重合工程及び縮重合工程は、50℃以上の温度を保ったまま連続して実施することが好ましく、上記温度は60℃以上が好ましく、70℃以上がより好ましい。シード重合工程の後に、温度を50℃未満に低下させた後に温度を上げて縮重合を行うと、得られる水性分散体の粘度が高くなるおそれがある。
また、生産性の観点から前工程と同じ温度で行うのが好ましい。
上記製造方法は、フルオロオレフィンを水性分散重合して、フルオロポリマーを含む水性分散体を得る工程を含んでもよい。すなわち、本開示の製造方法は、フルオロオレフィンを水性分散重合して、フルオロポリマーを含む水性分散体を得る工程、フルオロポリマーを含む水性分散体中で、(メタ)アクリルモノマー及び加水分解性シリル基含有不飽和単量体をシード重合するシード重合工程、及び、シード重合して得られた(メタ)アクリルポリマーの存在下でシラノールを縮重合する縮重合工程を含むことも好ましい。
上記水性分散重合において、上記水性分散体は水を含む。水に加えて、アルコール、グリコールエーテル、エステル等の有機溶媒を含有してもよい。
上記水性分散重合は、所望により、非反応性アニオン界面活性剤、反応性アニオン界面活性剤、非反応性ノニオン界面活性剤、反応性ノニオン界面活性剤等の存在下に実施することもできる。これらの界面活性剤は、シード重合工程で例示したものを好適に使用できる。
上記製法の様に製造されるため、本発明の第1及び第2の水性分散体は、水に加えて、縮重合工程で発生したアルコール、つまり、メタノールまたはエタノールまたはその両方を含有してもよい。
その含有量は、100ppm以上、もしくは1000ppm以上、もしくは1%以上である。
上記水性分散体は、水性塗料として好適に利用できる。上記水性塗料は、水性クリア塗料であることが好ましい。上記水性分散体を塗装する方法としては従来公知の方法と条件が採用できる。例えば、基材にスプレーコーティングやロールコーティング、フローコーティング、ローラー、刷毛、グラビア・スクリーン印刷などによる塗装などの塗装方法により塗布して塗膜を形成した後、5~200℃で乾燥する方法が挙げられる。このような方法によって、耐溶剤性、防汚性、及び、基材との密着性により一層優れる塗膜を形成することができる。
本開示は、上述の第1及び第2の水性分散体から得られることを特徴とする塗膜にも関する。上記水性分散体から得られる塗膜は基材との密着性に優れる。また、耐溶剤性、及び、防汚性等にも優れている。
本開示はまた、表面に無機高分子が偏析した粒子状の樹脂複合体を含む塗膜にも関する。
上記塗膜は、無機高分子が偏析した粒子状の樹脂複合体の凝集構造によって構成されていることが好ましい。
本開示の塗膜は、上記樹脂複合体が凝集した、蜂の巣状の構造を有することが好ましい。本開示の塗膜が上記蜂の巣状の構造を有することは、走査型電子顕微鏡による表面観察により確認することができる。例えば、後述する実施例1~3で得られた水性分散体から得られた塗膜は、図3、5及び7に示されるように、蜂の巣状の構造を有している。
本開示の塗膜は、表面に無機高分子が偏析していることが好ましい。塗膜表面に無機高分子が偏析していることは、XPS測定等により確認することができる。
表面のシリコン原子/フッ素原子の強度比が、塗膜内部のシリコン原子/フッ素原子の強度比より大きい事で確認できる。
本開示の塗膜は、XPSにより測定した[表面のシリコン原子/フッ素原子の強度比]が0.2以上であることが好ましい。上記強度比は0.3以上であることがより好ましい。
塗膜内部のシリコン原子/フッ素原子の強度比は、下記条件でガスクラスターイオンビームを8分間照射して削った面を出して測定したシリコン原子/フッ素原子の強度比である。
XPS測定は下記の条件で行うことができる。
[シリコン原子/フッ素原子の強度比]
測定条件: X線出力 25W15KV
スパッタ条件: GCIB 5Kv20nA
上記の条件で、作成した塗装板の表面をXPSで分析して各元素の強度を測定する。次に、表面を削るためガスクラスターイオンビーム(GCIB)を2分間照射して削った面を出す(同条件でPMMAを削った時の深さは20nmであった)。その後、XPSで表面分析し、各元素の強度を測定する。これを繰り返すことで、各元素の分布を測定する。
本開示の塗膜の厚みは限定されないが、通常、1~100μmである。
本開示は、上述の水性分散体を基材に塗装することにより得られることを特徴とする塗装物品にも関する。
上記基材としては、特に限定されないが、透明基材が好ましい。透明基材の具体例としては、例えば、ポリエチレンテレフタレート、アクリル樹脂、ポリカーボネート樹脂、フッ素樹脂等のプラスチック基材や、ガルバリウム鋼板(登録商標)、ZAM鋼板、冷間圧延鋼板、アルミなどの金属基材、ガラス、その他、透明性の要求される物品等が挙げられる。なかでも、特にガルバリウム鋼板(登録商標)、冷間圧延鋼板、ガラス又はポリエチレンテレフタレートからなる基材に、上述の水性分散体を塗布して塗膜を形成させた場合、得られる塗膜が耐候性、耐溶剤性及び防汚性に優れる上、基材との密着性にも優れる。
上記塗装物品は、幅広い用途で使用可能である。例えば、電気製品(電子レンジ、トースター、冷蔵庫、洗濯機、ヘアードライヤー、テレビ、ビデオ、アンプ、ラジオ、電気ポット、炊飯機、ラジオカセット、カセットデッキ、コンパクトディスクプレーヤー、ビデオカメラ、パーソナルコンピューターなど)の内外装、エアーコンディショナーの室内機、室外機、吹き出口およびダクト、空気清浄機、暖房機などのエアーコンディショナーの内外装、蛍光燈、シャンデリア、反射板などの照明器具、家具、機械部品、装飾品、くし、めがねフレーム、天然繊維、合成繊維(糸状のもの、およびこれらから得られる織物)、事務機器(電話機、ファクシミリ、複写機(ロールを含む)、写真機、オーバーヘッドプロジェクター、実物投影機、時計、スライド映写機、机、本棚、ロッカー、書類棚、いす、ブックエンド、電子白板など)の内外装、自動車(ホイール、ドアミラー、モール、ドアのノブ、ナンバープレート、ハンドル、インスツルメンタルパネルなど)、あるいは厨房器具類(レンジフード、流し台、調理台、包丁、まな板、水道の蛇口、ガスレンジ、換気扇など)の塗装用として、間仕切り、バスユニット、シャッター、ブラインド、カーテンレール、アコーディオンカーテン、壁、天井、床などの屋内塗装用として、外装用としては外壁、手摺り、門扉、シャッターなどの一般住宅外装、ビル外装など、窯業系サイジング材、発泡コンクリートパネル、コンクリートパネル、アルミカーテンウォール、鋼板、亜鉛メッキ鋼板、ステンレス鋼板、塩ビシート、PETフィルム、ポリカーボネート、アクリルフィルムなどの建築用外装材、サイジング材、窓ガラス、テント、太陽電池バックシート、太陽電池フロントシート、太陽電池架台、その他に広い用途を有する。
次に本発明を実施例及び比較例に基づいて説明するが、本発明はかかる例のみに限定されるものではない。
なお、特性の評価に使用した装置および測定条件は以下のとおりである。
(1)初期耐水性試験
被験塗板を60℃の水中に12時間浸漬し、続いて水温を5℃まで下げていき、その後、水槽から塗板を素早く取り出し、5℃の恒温槽内で2時間乾燥させ、JIS K5600-4-5に従い、日本電色工業株式会社製の色差計を用いて被験塗板の色彩をL表色系で測定し、ΔLを求め、試験前後での被験塗板の色差の大きさから白化の等級を評価した。
(2)白化の等級の評価基準
試験前後の色差ΔLの大きさにより、次の評価基準で評価した。
○:2未満
△:2以上5未満
×:5以上
(3)XPS測定
装置名:アルバックファイ社製 VersaProbeII
測定条件: X線出力 25W15KV
スパッタ条件: GCIB 5Kv20nA
上記の条件で、作成した塗装板の表面をXPSで分析して各元素の強度を測定する。
次に、表面を削るためガスクラスターイオンビーム(GCIB)を2分間照射して削った面を出す。なお、同条件でPMMAを削った時の深さは20nmであった。その後、XPSで表面分析し、各元素の強度を測定する。
これを繰り返すことで、各元素の分布を測定する。
各元素の強度のデータより、Si/Fの強度比を算出した。
(4)SEM測定
装置名:(株)日立製作所製のFE-SEM SU8020
加速電圧:3Kv
作成した塗装板の表面を、導電性を取る為に、Ptをコーティングした後、上記の装置で表面のSEMを測定した。
(5)EDX測定
装置名:BRUKER XFlash6160
加速電圧15Kv
元素マッピングは測定時間200秒で行った。
(6)TEM測定
装置名:走査透過型電子顕微鏡(日本エフイー・アイ株式会社製 TALOS F200X)
実施例および比較例で得た水性分散体の1重量部を純水5000倍重量部で希釈し、薄膜を張った透過型電子顕微鏡観察用シートメッシュに噴霧し、これを乾燥することで半定量分析を行う粒子をシートメッシュに付着させた。次いで、チャージアップを防ぐべくオスミウムコータ(メイワフォーシス株式会社製Neoc-Proネオオスミウムコータ)にて、真空度2Pa、時間10秒の製膜条件で、膜厚約5nmのオスミウムをコートした。
このシートメッシュ試料を用いて、走査透過型電子顕微鏡(日本エフイー・アイ株式会社製Talos F200X)により、観察倍率225000倍で、画像サイズは1024×1024ピクセルとして粒子のSTEM観察を行った。加速電圧は200kVとし、スキャン時間は609秒で58回スキャンした。このSTEM観察時に、同時にエネルギー分散型X線検出器(日本エフイー・アイ株式会社製Super-X)を用いて、スキャン時間609秒で29回スキャンし元素マッピングを行った。得られたデータをもとに、画像解析ソフト(ブルカ―・バイオスピン株式会社製ESPRIT 1,9)を用いて、粒子の存在する箇所と粒子の存在しない箇所に存在するフッ素及びケイ素の各元素の半定量分析を行った。粒子の存在しない箇所は、同じ写真の中で粒子近くの箇所を選び同様の測定面積で測定した。得られた各元素の強度を取り、下記式
シリコン原子/フッ素原子=(粒子の存在する箇所(粒子)のシリコン原子の強度-粒子の存在しない箇所(ブランク)のシリコン原子の強度)/(粒子の存在する箇所(粒子)のフッ素原子の強度-粒子の存在しない箇所(ブランク)のフッ素原子の強度))
によりSi/Fの強度比を算出した。
(7)粘度測定
実施例および比較例で得た水性分散体を100mLとり、これをB型粘度計で25℃で測定を行った。
(8)密着性試験
実施例および比較例で得た水性分散体をガラス板、アルミ板に、バーコーター#10で塗布し、100℃で10分乾燥して得られた塗膜について、2mm間隔で縦6本横6本の切り目をカッターで入れ25マスを作り、碁盤目テープ法(JIS K5400)に準じてテープ剥離試験を行った。
全てが剥離(0/25)・・・×
剥離なし(25/25)・・・○
一部が剥離(1~24/25)・・・△
実施例1:複合重合体粒子の合成
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液717質量部、メチルメタクリレート(MMA)112質量部、n-ブチルアクリレート(BA)115質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.3質量部、γ-メタクリロキシプロピルトリメトキシシラン1.8質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した。
次に、トリメトキシメチルシラン62質量部とテトラエトキシシラン0.6質量部を80℃で0.5時間かけて滴下し、その後1時間攪拌した。その後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として、フルオロポリマーと(メタ)アクリルポリマーとシロキサンポリマーの複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)とシロキサンポリマー(ポリシロキサン)(C)との質量比(A/B/C)は50/45/5であった。
得られた水性分散体より上述の手順でTEM測定用シートメッシュ試料を作成した。作成したシートメッシュ試料をTEM測定して得られた写真を図15に示す。図16に、同シートメッシュ試料の半定量法によるTEM測定写真を示す。
なお、上記シロキサンポリマーの含有量は、特開2016-000808号公報に記載の加水分解縮合物換算の含有量の算出方法に基づき、下記の式で算出した。トリメトキシメチルシラン、テトラエトキシシランの仕込み量から算出した。以下の実施例及び比較例でも同様である。
シロキサンポリマーの総量=トリメトキシメチルシランの仕込み量×トリメトキシメチルシランの換算係数+テトラエトキシシランの仕込み量×テトラエトキシシランの換算係数
トリメトキシメチルシランの換算係数:0.493
テトラエトキシシランの換算係数:0.288
実施例2:複合重合体粒子の合成
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液731質量部、メチルメタクリレート(MMA)108質量部、n-ブチルアクリレート(BA)151質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.3質量部、γ-メタクリロキシプロピルトリメトキシシラン1.8質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した。
次に、トリメトキシメチルシラン93質量部とテトラエトキシシラン0.9質量部を80℃で0.5時間かけて滴下し、その後1時間攪拌した。その後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)とシロキサンポリマー(C)との質量比(A/B/C)は50/42.5/7.5であった。
図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
実施例3:複合重合体粒子の合成
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液744質量部、メチルメタクリレート(MMA)102質量部、n-ブチルアクリレート(BA)148質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.3質量部、γ-メタクリロキシプロピルトリメトキシシラン1.8質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した。
次に、トリメトキシメチルシラン125質量部とテトラエトキシシラン1.2質量部を80℃で0.5時間かけて滴下し、その後1時間攪拌した。その後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)とシロキサンポリマー(C)との質量比(A/B/C)は50/40/10であった。
また、図15に、得られた水性分散体をTEM測定して得られた写真を示す。図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
実施例4
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液710質量部、メチルメタクリレート(MMA)126質量部、n-ブチルアクリレート(BA)167質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.5質量部、γ-メタクリロキシプロピルトリメトキシシラン1.8質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した。
次に、トリメトキシメチルシラン31質量部とテトラエトキシシラン0.3質量部を80℃で0.5時間かけて滴下し、その後1時間攪拌した。その後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)とシロキサンポリマー(C)との質量比(A/B/C)は50/47.5/2.5であった。
図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
比較例1
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液710質量部、メチルメタクリレート(MMA)126質量部、n-ブチルアクリレート(BA)167質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.5質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)との質量比(A/B)は50/50であった。
図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
比較例2
比較例1で得た水性分散体に、トリメトキシメチルシラン62質量部とテトラエトキシシラン0.6質量部を攪拌下、室温で0.5時間かけて滴下し、その後1時間攪拌し、水性分散体を得た。
図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
比較例3
比較例1で得た水性分散体に、トリメトキシメチルシラン62質量部とテトラエトキシシラン0.6質量部を攪拌下、室温で0.5時間かけて滴下し、その後1時間攪拌した。その後、攪拌下に水浴中で加温し、槽温が80℃に達したところで、2時間撹拌した。その後、室温まで冷却して反応を終了し、水性分散体を得た。
図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
比較例4
撹拌機、還流管、温度計、滴下ロートを備えた内容量2リットルのガラス製四つ口セパラブルフラスコに、VdF/TFE/CTFE重合体(VdF/TFE/CTFE=72/15/13(モル%))の粒子の水性分散液710質量部、メチルメタクリレート(MMA)126質量部、n-ブチルアクリレート(BA)167質量部、n-ブチルメタクリレート(BMA)0.03質量部、シクロヘキシルメタクリレート(CHMA)0.03質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)0.03質量部、メタクリル酸5.5質量部、γ-メタクリロキシプロピルトリメトキシシラン1.8質量部、水100g、ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩12.5質量部を入れ撹拌しながら加温した。槽温が80℃に達したところで、重合開始剤の添加を始め2時間かけて滴下し重合した。滴下終了から2時間80℃で撹拌した後、室温まで冷却して反応を終了し、pH調整剤で中和を行い、pH8.0として複合重合体粒子の水性分散体を得た。フルオロポリマー(A)と(メタ)アクリルポリマー(B)との質量比(A/B)は50/50であった。
図15に、得られた水性分散体をTEM測定して得られた写真を示す。図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
実施例5
比較例4で得た水性分散体に、トリメトキシメチルシラン62質量部とテトラエトキシシラン0.6質量部を攪拌下、室温で0.5時間かけて滴下し、その後1時間攪拌し、水性分散体を得た。
図15に、得られた水性分散体を洗浄せずに、TEM測定して得られた写真を示す。図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
実施例6
比較例4で得た水性分散体に、トリメトキシメチルシラン62質量部とテトラエトキシシラン0.6質量部を攪拌下、室温で0.5時間かけて滴下し、その後1時間攪拌した。次に攪拌下に水浴中で加温し、槽温が80℃に達したところで、2時間撹拌した。その後、室温まで冷却して反応を終了し、水性分散体を得た。
図15に、得られた水性分散体をTEM測定して得られた写真を示す。図16に、得られた水性分散体を半定量法によるTEM測定を行って得られた写真を示す。
実施例7
実施例4で、VdF/TFE/CTFE重合体の粒子の水性分散液を512質量部、メチルメタクリレート(MMA)を124質量部、n-ブチルアクリレート(BA)を60質量部、n-ブチルメタクリレート(BMA)を145質量部、シクロヘキシルメタクリレート(CHMA)を12質量部、2-ヒドロキシエチルメタクリレート(2-HEMA)を19質量部、メタクリル酸を11質量部で用いた以外は、実施例4と同様に重合を行い、フルオロポリマー(A)と(メタ)アクリルポリマー(B)とシロキサンポリマー(C)との質量比(A/B/C)が35/60/5の複合重合体粒子の水性分散体を得た。
[初期耐水性用被験塗板の作成]
板温を60℃に予熱したクロメート処理アルミ板(予め下記組成の下塗り塗料をウェット膜厚が90g/mとなるように塗装し、室温で一晩乾燥させたもの)に、下記組成のクリア塗料組成物をバーコーター#30を用いて塗装し、100℃での送風式乾燥機で3分乾燥し、被験塗板を作成した。
この被験塗板について、初期耐水性を調べた。結果を表1に示す。
(下塗り塗料の処方)
ベースエマルション              92.90質量部
顔料                      4.66質量部
成膜助剤                    2.14質量部
消泡剤                     0.30質量部
また、使用した各成分はつぎのものである。
ベースエマルション:日本合成化学工業(株)製 モビニールDM774
顔料:トーヨーカラー(株)製 LIOFAST BLACK M232
消泡剤:ビックケミー社製 BYK-028
成膜助剤:イーストマンケミカル社製 テキサノール
(クリア塗料組成物の処方)
実施例および比較例で得た水性分散体        97.50質量部
成膜助剤                      2.44質量部
pH調整剤                     0.06質量部
また、使用した各成分はつぎのものである。
pH調整剤:28%アンモニア水
成膜助剤:ジエチレングリコールジエチルエーテル
[雨筋試験用被験塗板の作成]
下塗り処方に白顔料を用いた以外は、初期耐水用被験塗板の作成と同様にして被験塗板を作成した。
塗膜を屋外で南面45°、1ヶ月暴露し、表面雨筋汚れの状態を目視により観察した。
実施例1は、雨筋汚れが認められなかった。
比較例4は、雨筋汚れが目視で判別できた。
[XPS測定、表面SEM、密着性試験用被験塗板の作成]
クロメート処理アルミ板を60℃に予熱しておき、実施例および比較例で得られた水性分散体をバーコーター#10で塗布後、100℃の送風式乾燥機で3分間乾燥し、被験塗板を得た。
密着性試験用被験塗板の作成
ガルバリウム鋼板(登録商標)、PET板、ポリカーボネート板、冷間圧延鋼板やガラス板に実施例1~7および比較例1~4で得られた水性分散体をバーコーター#10で塗布後、100℃の送風式乾燥機で30分乾燥した。
ガラス板への密着性試験の結果、実施例1において、密着性評価は○で、碁盤目試験は、25/25であった。
ガルバリウム鋼板(登録商標)、PET板、ポリカーボネート板、冷間圧延鋼板への密着性試験の結果を表1に示す。
比較例4では密着性試験評価は×で、碁盤目試験の結果は0/25であった。
Figure JPOXMLDOC01-appb-T000008
また、XPS測定結果、[Siの強度/Fの強度]をプロットしたグラフを図1及び2に示す。実施例で得られた塗膜は、フッ素に比べて仕込み量が少ないにも関わらず、Siが塗膜表面に偏析していることがわかる。
表面SEMおよび元素マッピングの結果を図3~14に示す。元素マッピングの結果からも実施例で得られた塗膜は、フッ素に比べて仕込み量が少ないにも関わらず、Siが塗膜表面に偏析していることがわかる。
図3は実施例1で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図4は反射電子像及び元素マッピングの結果である。図4(a)は反射電子像、(b)はフッ素原子の元素マッピング像であり、(c)はシリコン原子の元素マッピング像である。
図5は実施例2で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図6は反射電子像及び元素マッピングの結果である。図6(a)は反射電子像、(b)はフッ素原子の元素マッピング像であり、(c)はシリコン原子の元素マッピング像である。
図7は実施例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図8は反射電子像及び元素マッピングの結果である。図8(a)は反射電子像、(b)はフッ素原子の元素マッピング像であり、(c)はシリコン原子の元素マッピング像である。
図9は比較例1で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図10は反射電子像及び元素マッピングの結果である。図10(a)は反射電子像、(b)はフッ素原子の元素マッピング像である。
図11は比較例2で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図12は反射電子像及び元素マッピングの結果である。図12(a)は反射電子像、(b)はフッ素原子の元素マッピング像であり、(c)はシリコン原子の元素マッピング像である。
図13は比較例3で得られた水性分散体から得られた塗膜の表面をSEMにより観察した二次電子像であり、図14は反射電子像及び元素マッピングの結果である。図14(a)は反射電子像、(b)はフッ素原子の元素マッピング像であり、(c)はシリコン原子の元素マッピング像である。

Claims (13)

  1. フッ素含有樹脂および無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、
    前記フッ素含有樹脂が加水分解性シリル基含有不飽和単量体単位を含む
    ことを特徴とする水性分散体。
  2. フッ素含有樹脂は、フルオロポリマーおよび(メタ)アクリルポリマーを含み、
    前記(メタ)アクリルポリマーが前記加水分解性シリル基含有不飽和単量体単位を含む請求項1記載の水性分散体。
  3. フッ素含有樹脂および無機高分子を含む粒子状の樹脂複合体を含有する水性分散体であって、
    前記樹脂複合体は、無機高分子が表面に偏析している
    ことを特徴とする水性分散体。
  4. フッ素含有樹脂がフルオロポリマーおよび(メタ)アクリルポリマーを含む請求項3記載の水性分散体。
  5. 無機高分子は、ポリシロキサンである請求項1~4のいずれかに記載の水性分散体。
  6. 樹脂複合体は、透過型電子顕微鏡による半定量法により測定されたシリコン原子とフッ素原子の強度比(シリコン原子/フッ素原子)が0.15以上である請求項5記載の水性分散体。
  7. フルオロポリマーは、フッ化ビニル、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、及び、クロロトリフルオロエチレンからなる群より選択される少なくとも1種のフルオロオレフィン単位を含む請求項2、4~6のいずれかに記載の水性分散体。
  8. 水性塗料である請求項1~7のいずれかに記載の水性分散体。
  9. 請求項1~8のいずれかに記載の水性分散体から得られることを特徴とする塗膜。
  10. 請求項1~8のいずれかに記載の水性分散体を基材に塗装することにより得られることを特徴とする塗装物品。
  11. フルオロポリマーを含む水性分散体中で、(メタ)アクリルモノマー及び加水分解性シリル基含有不飽和単量体をシード重合するシード重合工程、及び、
    シード重合して得られた(メタ)アクリルポリマーの存在下でシラノールを縮重合する縮重合工程を含むことを特徴とする水性分散体の製造方法。
  12. 縮重合工程は、酸性条件下で行われる請求項11記載の製造方法。
  13. シード重合工程及び縮重合工程は、50℃以上の温度を保ったまま連続して実施する請求項11又は12記載の製造方法。
PCT/JP2019/013248 2018-03-30 2019-03-27 水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法 WO2019189390A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023083.7A CN111989355A (zh) 2018-03-30 2019-03-27 水性分散体、涂膜和涂装物品以及水性分散体的制造方法
EP19778188.3A EP3778714A4 (en) 2018-03-30 2019-03-27 AQUEOUS DISPERSION, COATING FILM, COATED ARTICLE AND PROCESS FOR PRODUCING AQUEOUS DISPERSION
US17/043,434 US20210070973A1 (en) 2018-03-30 2019-03-27 Aqueous dispersion, coating film, coated article, and method for producing aqueous dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069586 2018-03-30
JP2018-069586 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189390A1 true WO2019189390A1 (ja) 2019-10-03

Family

ID=68059124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013248 WO2019189390A1 (ja) 2018-03-30 2019-03-27 水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法

Country Status (5)

Country Link
US (1) US20210070973A1 (ja)
EP (1) EP3778714A4 (ja)
JP (3) JP7046029B2 (ja)
CN (1) CN111989355A (ja)
WO (1) WO2019189390A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171021B2 (ja) * 2018-07-26 2022-11-15 ナトコ株式会社 水性樹脂組成物および塗膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291613A (ja) 1985-06-15 1986-12-22 バイエル・アクチエンゲゼルシヤフト ポリイソシアネ−ト組成物及び水性接着剤組成物
JPS6212734A (ja) 1985-03-28 1987-01-21 Daikin Ind Ltd 新規フルオロビニルエ−テルおよびそれを含む共重合体
JPH0310700A (ja) 1989-06-08 1991-01-18 Takara Shuzo Co Ltd パピローマウイルスの検出方法
JPH05170909A (ja) 1991-12-20 1993-07-09 Japan Synthetic Rubber Co Ltd 重合体粒子の水性分散体の製造方法
JPH07330861A (ja) 1994-06-13 1995-12-19 Nippon Polyurethane Ind Co Ltd 自己乳化型ポリイソシアネート混合物、並びにこれを用いた水性塗料組成物および水性接着剤組成物
WO1999021919A1 (fr) * 1997-10-24 1999-05-06 Daikin Industries, Ltd. Composition de dispersion aqueuse de fluoropolymere
WO2014112252A1 (ja) * 2013-01-17 2014-07-24 Jsr株式会社 含フッ素重合体、含フッ素重合体水性分散体およびその製造方法
JP2016000808A (ja) 2014-05-21 2016-01-07 旭化成ケミカルズ株式会社 水系コーティング剤組成物、塗膜、及び塗装製品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170909A (ja) * 1974-12-18 1976-06-19 Kyotaka Mukaiyama Kuiuchikohoyoootaajetsutotoritsukesochi
ATE302243T1 (de) * 2003-02-28 2005-09-15 3M Innovative Properties Co Fluoropolymerdispersion enthaltend kein oder wenig fluorhaltiges netzmittel mit niedrigem molekulargewicht
WO2009107414A1 (ja) 2008-02-27 2009-09-03 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ
CN102206299B (zh) * 2010-03-30 2014-03-12 大金工业株式会社 含氟种子聚合物颗粒的水性分散体和水性涂料组合物
KR101502710B1 (ko) * 2010-09-27 2015-03-13 다이킨 고교 가부시키가이샤 아크릴-불소 복합 중합체 입자
KR20140067149A (ko) * 2011-09-27 2014-06-03 다이킨 고교 가부시키가이샤 수성 분산체 및 그 제조 방법
WO2016171217A1 (ja) * 2015-04-21 2016-10-27 ダイキン工業株式会社 水性分散体、塗膜及び塗装物品
JP6179649B2 (ja) * 2015-09-09 2017-08-16 ダイキン工業株式会社 積層体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212734A (ja) 1985-03-28 1987-01-21 Daikin Ind Ltd 新規フルオロビニルエ−テルおよびそれを含む共重合体
JPH0563482B2 (ja) 1985-03-28 1993-09-10 Daikin Ind Ltd
JPS61291613A (ja) 1985-06-15 1986-12-22 バイエル・アクチエンゲゼルシヤフト ポリイソシアネ−ト組成物及び水性接着剤組成物
JPH0310700A (ja) 1989-06-08 1991-01-18 Takara Shuzo Co Ltd パピローマウイルスの検出方法
JPH05170909A (ja) 1991-12-20 1993-07-09 Japan Synthetic Rubber Co Ltd 重合体粒子の水性分散体の製造方法
JPH07330861A (ja) 1994-06-13 1995-12-19 Nippon Polyurethane Ind Co Ltd 自己乳化型ポリイソシアネート混合物、並びにこれを用いた水性塗料組成物および水性接着剤組成物
WO1999021919A1 (fr) * 1997-10-24 1999-05-06 Daikin Industries, Ltd. Composition de dispersion aqueuse de fluoropolymere
WO2014112252A1 (ja) * 2013-01-17 2014-07-24 Jsr株式会社 含フッ素重合体、含フッ素重合体水性分散体およびその製造方法
JP2016000808A (ja) 2014-05-21 2016-01-07 旭化成ケミカルズ株式会社 水系コーティング剤組成物、塗膜、及び塗装製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778714A4

Also Published As

Publication number Publication date
JP2020169332A (ja) 2020-10-15
EP3778714A4 (en) 2021-12-22
EP3778714A1 (en) 2021-02-17
JP2020105487A (ja) 2020-07-09
US20210070973A1 (en) 2021-03-11
CN111989355A (zh) 2020-11-24
JP6828786B2 (ja) 2021-02-10
JP7046029B2 (ja) 2022-04-01
JP2019183136A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
EP2762538B1 (en) Aqueous dispersion and method for producing same
JP3387392B2 (ja) 含フッ素系重合体水性分散組成物
JP5288036B2 (ja) 組成物、及び、塗装物品
JP5229367B2 (ja) アクリル−フッ素複合重合体粒子
WO2010110166A1 (ja) 低汚染性常温硬化型塗料組成物
JP5732968B2 (ja) 含フッ素シード重合体粒子の水性分散体、および水性塗料組成物
WO2010104142A1 (ja) 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
CN110951351A (zh) 含氟涂膜和制造方法
JP6432509B2 (ja) 水性塗料用組成物、水性塗料用キットおよび塗膜を有する物品
JP6828786B2 (ja) 水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法
JP6179649B2 (ja) 積層体
US9334417B2 (en) Coating composition and method for producing coating film
JP7152655B2 (ja) 水性分散液、塗膜及び塗装物品
JP2016079265A (ja) 航空機内装用の水性塗料用組成物および航空機内装材
JP7301010B2 (ja) 複合重合体粒子及びその製造方法
JP7176516B2 (ja) 水性塗料および塗膜付き基材
JP2015199944A (ja) 含フッ素シード重合体粒子の水性分散液の製造方法
JP2021147575A (ja) 水性分散液、塗料組成物、塗膜及び塗装物品
JP3765839B2 (ja) 樹脂組成物
JP2015199943A (ja) 含フッ素シード重合体粒子の水性分散液の製造方法
JP2019177651A (ja) 積層体塗膜
JP2006307054A (ja) 水性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019778188

Country of ref document: EP