WO2019189219A1 - 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 - Google Patents

硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 Download PDF

Info

Publication number
WO2019189219A1
WO2019189219A1 PCT/JP2019/012933 JP2019012933W WO2019189219A1 WO 2019189219 A1 WO2019189219 A1 WO 2019189219A1 JP 2019012933 W JP2019012933 W JP 2019012933W WO 2019189219 A1 WO2019189219 A1 WO 2019189219A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
mass
spherical silica
cured product
Prior art date
Application number
PCT/JP2019/012933
Other languages
English (en)
French (fr)
Inventor
太郎 北村
健志 依田
克起 岡安
庸二 滝井
信人 伊藤
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Publication of WO2019189219A1 publication Critical patent/WO2019189219A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition (hereinafter also simply referred to as “composition”), a dry film, a cured product, and a printed wiring board.
  • composition a curable resin composition
  • dry film a dry film
  • cured product a cured product
  • printed wiring board a printed wiring board
  • a permanent film such as a solder resist used in the package substrate has a high reliability (insulation reliability (B-HAST). Resistance), high temperature humidification resistance (PCT resistance), cooling cycle resistance (TCT resistance), heat resistance, and the like) have been demanded.
  • a method for imparting high reliability to such a solder resist for package substrates for example, it is generally performed to improve characteristics such as rigidity by highly filling an inorganic filler in a curable resin composition. It has been broken.
  • these inorganic fillers especially spherical silica is widely used for improving the rigidity of the solder resist and improving the TCT resistance because of its excellent filling property and low coefficient of thermal expansion (CTE) (see Patent Document 1). .
  • the curable resin composition is highly filled with an inorganic filler such as spherical silica, there is a new problem that the B-HAST resistance and PCT resistance of the cured product deteriorate.
  • the object of the present invention is to ensure excellent reliability as a cured product such as high rigidity and excellent TCT resistance even if highly filled with an inorganic filler such as spherical silica in the curable resin composition, A curable resin composition excellent in B-HAST resistance and PCT resistance, a dry film using the same, a cured product, and a printed wiring board are provided.
  • the inventors paid attention to spherical silica excellent in high filling property, and conducted earnest studies for realizing the above-mentioned object.
  • the spherical resin is highly filled in the curable resin composition
  • the inventors have reduced the water absorption as a cured product because the amount of the resin component is reduced, while the B-HAST resistance and PCT are reduced. I noticed that tolerance tends to get worse.
  • the inventors have intensively studied the cause, and when the spherical resin is highly filled in the curable resin composition, moisture easily penetrates into the resin from the surface of the cured product through the interface between the inorganic filler and the resin. It was newly found that the ester bond of the resin in the cured product causes hydrolysis.
  • the curable resin composition of the present invention comprises (A) a carboxyl group-containing resin, (B) an epoxy resin having a dicyclopentadiene skeleton, (C) a photopolymerization initiator, (D) spherical silica,
  • the (D) spherical silica is characterized in that the content thereof is 50% by mass or more in the nonvolatile component of the composition.
  • the (B) epoxy resin having a dicyclopentadiene skeleton has an epoxy group ratio of 0.5 to 2 with respect to 1 mol of the carboxyl group in the (A) carboxyl group-containing resin. It is preferable to mix
  • the dry film of the present invention is characterized by having a resin layer obtained from the curable resin composition.
  • the cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • the printed wiring board of the present invention is characterized by having the above cured product.
  • the curable resin composition of the present invention it is possible to suppress the progress of hydrolysis such as ester bonds while preventing the water absorption of the cured product, and to prevent deterioration of insulation and adhesion.
  • B-HAST resistance is ensured while ensuring excellent reliability as a cured product such as high rigidity and excellent TCT resistance.
  • a curable resin composition excellent in PCT resistance, a dry film using the same, a cured product, and a printed wiring board can be obtained.
  • the curable resin composition of the present invention includes (A) a carboxyl group-containing resin, (B) an epoxy resin having a dicyclopentadiene skeleton, (C) a photopolymerization initiator, and (D) spherical silica. (D) The spherical silica has a content of 50% by mass or more in the nonvolatile component of the composition.
  • the composition containing the epoxy resin (B) having a dicyclopentadiene skeleton in the composition blocks the free space in the crosslinked structure of the cured product, It is considered that water molecules can be prevented from penetrating into the resin and hydrolysis of the resin cured product by water molecules can be suppressed.
  • an inorganic filler such as spherical silica is highly filled in the curable resin composition, excellent B- is obtained while ensuring excellent reliability as a cured product such as high rigidity and excellent TCT resistance. HAST resistance and PCT resistance can be maintained.
  • carboxyl group-containing resin various conventionally known carboxyl group-containing resins having a carboxyl group in the molecule can be used.
  • a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferable from the viewpoint of photocurability and development resistance.
  • the ethylenically unsaturated double bond is preferably derived from acrylic acid or methacrylic acid or a derivative thereof.
  • carboxyl group-containing resin having no ethylenically unsaturated double bond
  • Specific examples of the carboxyl group-containing resin include the following compounds (any of oligomers and polymers).
  • a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers
  • carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • bisphenol A type epoxy resin hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • a carboxyl group-containing photosensitive urethane resin obtained by adding a compound having a terminal (meth) acrylate.
  • a carboxyl group-containing photosensitive resin obtained by reacting a bifunctional or higher polyfunctional (solid) epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride to a hydroxyl group present in the side chain.
  • Two bases such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride are reacted with a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid by reacting the bifunctional oxetane resin.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reacting with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and then reacting with the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as an acid.
  • Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
  • (11) Obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a reaction product obtained by reacting a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule to the resins (1) to (11).
  • (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • the acid value of the carboxyl group-containing resin is suitably in the range of 30 to 150 mgKOH / g, more preferably in the range of 50 to 120 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is 30 mgKOH / g or more, alkali development is facilitated.
  • the acid value is 150 mgKOH / g or less, sufficient resistance to the developer in the exposed area is obtained, and a normal resist pattern is obtained. Can be reliably drawn, which is preferable.
  • the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, more preferably 5,000 to 100,000.
  • the weight average molecular weight is 2,000 or more, the development resistance of the film in the exposed area is improved and the resolution is excellent.
  • the weight average molecular weight is 150,000 or less, the solubility of the unexposed part is good and the resolution is excellent, and the storage stability may be improved.
  • the weight average molecular weight can be measured by gel permeation chromatography.
  • carboxyl group-containing resins are not limited to those listed above, and one kind may be used alone, or a plurality of kinds may be mixed and used. Of these, carboxyl group-containing resins synthesized using a phenol compound as a starting material, such as the carboxyl group-containing resins (10) and (11), are excellent in B-HAST resistance and PCT resistance, and can be suitably used.
  • Epoxy resin having dicyclopentadiene skeleton (B) Epoxy resin having dicyclopentadiene skeleton
  • skeleton can be used individually by 1 type or in combination of 2 or more types.
  • the ratio of the epoxy group is 0.5 to 2.5 mol, more preferably 0.8 to 2 with respect to 1 mol of the carboxyl group in the (A) carboxyl group-containing resin. It is preferable to mix
  • epoxy resin having a dicyclopentadiene skeleton in addition to (B) the epoxy resin having a dicyclopentadiene skeleton, other epoxy resins may be further blended within a range that does not impair the effects specific to the present invention.
  • other epoxy resins include epoxidized vegetable oils; bisphenol A type epoxy resins; hydroquinone type epoxy resins; bisphenol type epoxy resins; thioether type epoxy resins; brominated epoxy resins; novolac type epoxy resins; Epoxy resin; Bisphenol F type epoxy resin; Hydrogenated bisphenol A type epoxy resin; Glycidylamine type epoxy resin; Hydantoin type epoxy resin; Alicyclic epoxy resin; Trihydroxyphenylmethane type epoxy resin; Bixylenol type or biphenol type epoxy resin Or a mixture thereof; bisphenol S type epoxy resin; bisphenol A novolak type epoxy resin; tetraphenylolethane type epoxy resin; heterocyclic epoxy resin Diglycidyl phthalate resin; Tetraglycid
  • the total amount of the epoxy resin is converted into a non-volatile component and the component (B) It is preferable that the epoxy resin having a dicyclopentadiene skeleton is 10% by mass or more, and more preferably 20 to 80% by mass.
  • a photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (C) photopolymerization initiator examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide and bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine.
  • photobleaching is also called photobleaching or photobleaching, and is a reaction that occurs because a fluorescent substance in an excited state is chemically activated and becomes unstable compared to the ground state.
  • a compound that acts as a photopolymerization initiator absorbs light in a specific wavelength region to generate radicals, the structure of the compound changes due to the generation of radicals, and light in that wavelength region changes. It means that it will not absorb. Thereby, since it becomes easy to let the light in the wavelength range pass, it becomes easy to photocure to a deep part.
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide IGM, Omnirad TPO
  • bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide BASF Japan, IRGACURE819
  • phenyl ( 2,4,6-trimethylbenzoyl) ethyl phosphinate IRGACURE TPO-L manufactured by BASF Japan Ltd.
  • the blending amount of the photopolymerization initiator excluding the oxime ester photopolymerization initiator is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the (A) carboxyl group-containing resin in terms of nonvolatile components.
  • the amount is 0.1 parts by mass or more, the photocurability of the resin composition is good, the coating film is hardly peeled off, and the coating properties such as chemical resistance are also good.
  • 30 parts by mass or less an effect of reducing outgas is obtained, and light absorption on the surface of the solder resist coating film is good, and the deep curability is hardly lowered. More preferably, it is 0.5 to 15 parts by mass.
  • the blending amount of the oxime ester photopolymerization initiator is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the (A) carboxyl group-containing resin in terms of nonvolatile components.
  • the amount is 0.01 parts by mass or more, the photocurability of the resin composition is good, and the coating film properties such as heat resistance and chemical resistance are also good.
  • the light absorption of the solder resist coating film is good, and the deep part curability is hardly lowered. More preferably, it is 0.5 to 3 parts by mass.
  • any spherical silica can be used as long as it can be used as a filler for electronic materials, and one kind may be used alone, or two or more kinds may be used in combination.
  • the shape of (C) spherical silica should just be spherical shape, and is not limited to a true spherical thing.
  • Suitable (C) spherical silica includes, for example, those having a sphericity measured as follows of 0.8 or more, but are not limited thereto.
  • spherical silica As (D) spherical silica, spherical silica (D1) having an average particle size of 300 nm to 1000 nm is preferably used, and more preferably, the average particle size is set to 500 nm to 900 nm.
  • the average particle diameter of (D) spherical silica is not only the particle diameter of primary particles but also the average particle diameter (D50) including the particle diameter of secondary particles (aggregates).
  • D50 value measured by laser diffraction method is measured by laser diffraction method.
  • An example of a measuring apparatus using a laser diffraction method is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd. Note that the maximum particle size (D100) and the particle size (D10) can be measured in the same manner using the above-described apparatus.
  • (D) two types of spherical silica having different average particle diameters can be used as the spherical silica. That is, in addition to spherical silica (D1) having an average particle diameter of 300 nm to 1000 nm, spherical silica (D2) having an average particle diameter of 1 nm or more and less than 300 nm can be used in combination.
  • spherical silica (D2) is filled into the gaps between the spherical silica (D1), the gap amount can be reduced.
  • (D) spherical silica can be highly filled in the composition, and a curable resin composition having a low resin content, that is, a high ratio of filler mass in the total mass can be obtained.
  • the particle size originally varies by 2 to 3 times.
  • spherical silica (D1) and spherical silica It is preferable that there is a difference of 5 times or more in the average particle diameter with D2).
  • the average particle diameter of the spherical silica (D1) is more preferably 8 times or more, and further preferably 10 times or more the average particle diameter of the spherical silica (D2).
  • the maximum particle diameter (D100) of the spherical silica (D1) is preferably 5 ⁇ m or less.
  • the maximum particle size varies depending on the use of the curable resin composition, and is preferably 5 ⁇ m or less for use in forming a cured film on a package substrate, for example.
  • the particle diameter (D10) of the spherical silica (D1) is preferably 5 times or more the average particle diameter (D50) of the spherical silica (D2).
  • the method for producing spherical silica is not particularly limited, and methods known to those skilled in the art can be applied.
  • it can be manufactured by burning silicon powder by a VMC (Vaporized Metal Combustion) method.
  • VMC Vehicleized Metal Combustion
  • a chemical flame is formed by a burner in an oxygen-containing atmosphere, and metal powder that constitutes part of the target oxide particles is introduced into the chemical flame in such an amount that a dust cloud is formed.
  • deflagration is caused to obtain oxide particles.
  • spherical silica (D1) is, for example, Admafine SO-C2, SO-E2 manufactured by Admatechs Co., Ltd., SFP-20M, SFP-manufactured by Denka Co., Ltd.
  • Examples of the spherical silica (D2) include, for example, Admanano manufactured by Admatechs Co., Ltd., UFP-30 manufactured by Denka Co., Ltd., Seahoster series manufactured by Nippon Shokubai Co., Ltd., Sakai Chemical Industry ( Examples include the Sciqas series manufactured by Co., Ltd., and SG-SO100 manufactured by Kyoritsu Material Co., Ltd.
  • the presence or absence of surface treatment of the spherical silica is not particularly limited, but the curable resin composition of the present invention is highly filled with (D) spherical silica and has a relatively low resin content.
  • Silica is preferably subjected to a surface treatment for improving dispersibility. Aggregation can be suppressed by using a filler that has been surface-treated.
  • spherical silica (D1) and spherical silica (D2) are used together as spherical silica, only one of them may be surface-treated, or both may be surface-treated.
  • the surface treatment method of the spherical silica is not particularly limited, and a known and commonly used method may be used, but a surface treatment agent having a curable reactive group, for example, a coupling agent having a curable reactive group as an organic group, etc. It is preferable to treat the surface of the inorganic filler.
  • silane, titanate, aluminate and zircoaluminate coupling agents can be used as the coupling agent.
  • silane coupling agents are preferred.
  • examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminomethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-amino.
  • the treatment amount of the coupling agent with respect to 100 parts by mass of (D) spherical silica is preferably 0.5 to 10 parts by mass.
  • the reactive functional group derived from coupling (D) applied to the spherical silica is not included in the compound having a photocurable reactive group or a thermosetting functional group.
  • Examples of the photocurable reactive group include ethylenically unsaturated groups such as vinyl group, styryl group, methacryl group, and acrylic group. Among these, at least one of a vinyl group and a (meth) acryl group is preferable.
  • thermosetting reactive groups include hydroxyl groups, carboxyl groups, isocyanate groups, amino groups, imino groups, epoxy groups, oxetanyl groups, mercapto groups, methoxymethyl groups, methoxyethyl groups, ethoxymethyl groups, ethoxyethyl groups, oxazoline groups, etc. Is mentioned. Among these, at least one of an amino group and an epoxy group is preferable.
  • the surface-treated (D) spherical silica may be contained in the curable resin composition of the present invention in a surface-treated state.
  • the (D) spherical silica may be surface-treated in the composition by separately blending, but it is preferable to blend the (D) spherical silica that has been surface-treated in advance.
  • By blending the (D) spherical silica that has been surface-treated in advance it is possible to suppress a decrease in crack resistance or the like due to the surface treatment agent that has not been consumed by the surface treatment that can remain when blended separately.
  • a predispersion liquid in which (D) spherical silica is predispersed in a solvent or a curable component, and the surface-treated (D) spherical silica is predispersed in a solvent. More preferably, the liquid is mixed into the composition, or after sufficiently surface-treating when the surface-untreated (D) spherical silica is predispersed in the solvent, this predispersed liquid is blended into the composition.
  • the spherical silica may be blended with the component (A) or the like in a powder or solid state depending on how the curable resin composition of the present invention is used, and after mixing with a solvent or a dispersant to form a slurry. And may be blended with the component (A).
  • the content of (D) spherical silica needs to be 50% by mass or more in the nonvolatile component of the composition, preferably 50% by mass to 85% by mass, more preferably 70% by mass to 85% by mass, More preferably, it is more than 80% by mass to 85% by mass.
  • (D) By making content of spherical silica into 50 mass% or more in the non-volatile component of a composition, hardened
  • CTE linear expansion coefficient
  • a photopolymerizable monomer can be blended with the curable resin composition of the present invention.
  • the photopolymerizable monomer is a compound having an ethylenically unsaturated double bond.
  • Examples of such photopolymerizable monomers include alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Hydroxyalkyl (meth) acrylates such as acrylates; Mono- or di (meth) acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane , Dipentaerythritol, trishydroxyethy
  • the photopolymerizable monomer can be used alone or in combination of two or more.
  • the content of the photopolymerizable monomer is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the (A) carboxyl group-containing resin in terms of nonvolatile components.
  • the blending amount is 0.5 parts by mass or more, the photocurability is good, and pattern formation is easy in alkali development after irradiation with active energy rays.
  • halation hardly occurs and good resolution can be obtained.
  • thermosetting catalyst can be mix
  • thermosetting catalyst include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl Examples include amines, amine compounds such as 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; phosphorus compounds such as tripheny
  • thermosetting catalyst can be used singly or in combination of two or more.
  • the blending amount of the thermosetting catalyst is preferably 0.5 to 10 parts by mass and more preferably 1 to 8 parts by mass in terms of nonvolatile components with respect to 100 parts by mass of the (A) carboxyl group-containing resin. .
  • the heat resistance is excellent.
  • the storage stability is improved.
  • the curable resin composition of the present invention may contain a colorant.
  • a colorant conventionally known colorants such as red, blue, green, yellow, white, and black can be used, and any of pigments, dyes, and pigments may be used.
  • CI the Society of Dyer's and Colorists (issued by The Society of Dyers and Colorists) number.
  • red colorant examples include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone.
  • blue colorant there are phthalocyanine series, anthraquinone series, and the like, and as the pigment series, a compound classified as Pigment can be used. In addition to these, metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • the green colorant includes phthalocyanine, anthraquinone and perylene. In addition to these, metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • Examples of the yellow colorant include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, and anthraquinone.
  • Examples of the white colorant include rutile type or anatase type titanium oxide.
  • Black colorants include carbon black, graphite, iron oxide, titanium black, anthraquinone, cobalt oxide, copper oxide, manganese, antimony oxide, nickel oxide, perylene, aniline, and sulfide. There are molybdenum and bismuth sulfide.
  • a colorant such as purple, orange or brown may be added for the purpose of adjusting the color tone.
  • the content of the colorant is preferably 0.18 to 0.50% by mass in terms of nonvolatile components per total amount of the curable resin composition.
  • the circuit concealing property is excellent, and when it is 0.50% by mass or less, the resolution is more excellent. More preferably, it is 0.20 mass% to 0.40 mass%.
  • the curable resin composition of the present invention can contain an organic solvent for the purpose of preparing the composition and adjusting the viscosity when applied to a substrate or a film.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol
  • the curable resin composition of the present invention may further include a photoinitiator aid, a cyanate compound, an elastomer, a mercapto compound, a urethanization catalyst, a thixotropic agent, an adhesion promoter, a block copolymer, and a chain transfer agent as necessary.
  • Polymerization inhibitors such as flame retardants such as silane coupling agents such as imidazole, thiazole and triazole, phosphinic acid salts, phosphoric acid ester derivatives and phosphorus compounds such as phosphazene compounds can be blended. As these, those known in the field of electronic materials can be used.
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the curable resin composition of the present invention is useful for forming a pattern layer as a permanent film of a printed wiring board such as a solder resist, a cover lay, and an interlayer insulating layer, and is particularly useful for forming a solder resist. Moreover, since the curable resin composition of the present invention can form a cured product having excellent film strength even in a thin film, it is used in a printed wiring board that is required to be thin, such as a package substrate (printed wiring board used for a semiconductor package). It can also be suitably used for forming a pattern layer. Furthermore, the cured product obtained from the curable resin composition of the present invention is preferably used for forming a pattern layer on a package substrate having a thin total thickness and lacking rigidity even in terms of high elastic modulus and low CTE. It can be done.
  • the curable resin composition of this invention can also be made into the form of the dry film provided with the support (carrier) film and the resin layer which consists of the said curable resin composition formed on this support film.
  • the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and is applied to a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater.
  • a film can be obtained by applying a uniform thickness on a carrier film with a gravure coater, spray coater or the like, and drying usually at a temperature of 50 to 130 ° C. for 1 to 30 minutes.
  • the coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 1 to 150 ⁇ m, preferably 10 to 60 ⁇ m.
  • a plastic film is used, and it is preferable to use a polyester film such as polyethylene terephthalate (PET), a plastic film such as a polyimide film, a polyamideimide film, a polypropylene film, or a polystyrene film.
  • PET polyethylene terephthalate
  • the thickness of the support film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 ⁇ m.
  • the protective layer (cover) that can be peeled off from the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer.
  • a peelable protective film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, etc. can be used. As long as the adhesive strength between the resin layer and the protective film is smaller.
  • a resin layer may be formed by applying and drying the curable resin composition of the present invention on the protective film, and a support film may be laminated on the surface. That is, as a film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a support film or a protective film may be used.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention or the resin layer of the dry film of the present invention, and has high rigidity and thermal dimensional stability.
  • the printed wiring board of the present invention has a cured product obtained from the curable resin composition of the present invention or the resin layer of the dry film.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using the organic solvent, and a dip coating method is performed on a substrate.
  • the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C.
  • a tack-free resin layer is formed.
  • the resin layer is formed on the substrate by peeling the support film after laminating the substrate so that the resin layer is in contact with the substrate.
  • Examples of the base material include printed wiring boards and flexible printed wiring boards that have been previously formed with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy.
  • copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin / polyethylene / polyphenylene ether, polyphenylene oxide / cyanate, etc., all grades (FR-4 etc.) copper-clad laminates examples thereof include a plate, a metal substrate, a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, and a wafer plate.
  • Volatile drying performed after the application of the curable resin composition of the present invention is performed in a dryer using a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like (equipped with a heat source of an air heating method using steam).
  • the method can be carried out using a method in which hot air is brought into countercurrent contact and a method in which the hot air is blown onto the support.
  • the resin layer is formed on the substrate, it is selectively exposed with active energy rays through a photomask having a predetermined pattern, and the unexposed portion is diluted with a dilute alkaline aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution).
  • a dilute alkaline aqueous solution for example, 0.3 to 3 mass% sodium carbonate aqueous solution.
  • the cured product is irradiated with active energy rays and then heat-cured (for example, 100 to 220 ° C.), irradiated with active energy rays after heat-curing, or subjected to final finish curing (main curing) only by heat-curing.
  • a cured film having excellent properties such as properties and hardness is formed.
  • the exposure apparatus used for the active energy ray irradiation may be any apparatus that irradiates ultraviolet rays in the range of 350 to 450 nm, equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc.
  • a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and as a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
  • the curable resin composition of the present invention may be used not only for the purpose of forming a cured film pattern with the developer as described above, but also for a purpose of not forming a pattern, such as a mold application (sealing application).
  • Preparation Example 1 Preparation of surface-treated spherical silica B-1) 70 parts by mass of spherical silica (SFP-30M manufactured by Denka Co., Ltd., average particle size: 600 nm), 28 parts by mass of PMA (propylene glycol monomethyl ether acetate) as a solvent, and a silane coupling agent having a methacryl group (Shin-Etsu Chemical Co., Ltd.) 2 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane) manufactured by the same was uniformly dispersed to obtain a silica solvent-dispersed product having a nonvolatile content of 70% by mass.
  • SFP-30M manufactured by Denka Co., Ltd., average particle size: 600 nm
  • PMA propylene glycol monomethyl ether acetate
  • KBM-503 3-methacryloxypropyltrimethoxysilane
  • a ring agent KBM-503 (3-methacryloxypropyltrimethoxysilane
  • substrate obtained by the above was peeled off from copper foil, and evaluation was implemented.
  • the measurement was performed using a TMA measuring apparatus (TMA / SS6000 manufactured by Shimadzu Corporation) to obtain CTE ⁇ 1 (0-50 ° C.).
  • Judgment criteria are as follows. ⁇ ... less than 30ppm ⁇ ... 30ppm or more
  • the evaluation substrate obtained as described above was placed in a thermal cycle machine in which a temperature cycle was performed between ⁇ 65 ° C. and 150 ° C., and TCT (Thermal Cycle Test) was performed. Then, the surface of the cured film at 600 cycles, 800 cycles, and 1000 cycles was observed. Judgment criteria are as follows. A: No abnormality after 1000 cycles ⁇ : No abnormality at 800 cycles, cracks occurred at 1000 cycles ⁇ : No abnormality at 600 cycles, cracks occurred at 800 cycles ⁇ : Crack generated in 600 cycles
  • the obtained evaluation substrate was subjected to PCT (Pressure Cooker Test) for 168 hours under the conditions of 121 ° C., saturation, and 0.2 MPa using a PCT apparatus (HAST SYSTEM TPC-412MD manufactured by Espec Corp.). And the state of the coating film after PCT was evaluated. Judgment criteria are as follows. ⁇ : No swelling, peeling, discoloration, or elution ⁇ : Swelling, peeling, discoloration and elution are often observed

Abstract

高剛性や優れたTCT耐性などの硬化物としての優れた信頼性を確保しつつ、B-HAST耐性およびPCT耐性に優れる硬化性樹脂組成物、これを用いたドライフィルム、硬化物およびプリント配線板を提供する。(A)カルボキシル基含有樹脂と、(B)ジシクロペンタジエン骨格を有するエポキシ樹脂と、(C)光重合開始剤と、(D)球状シリカと、を含み、(D)球状シリカの含有量が、組成物の不揮発成分中に50質量%以上である硬化性樹脂組成物、これを用いたドライフィルム、硬化物およびプリント配線板である。

Description

硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
 本発明は、硬化性樹脂組成物(以下、単に「組成物」とも称する)、ドライフィルム、硬化物およびプリント配線板に関する。
 従来、プリント配線板におけるソルダーレジスト等の永久被膜を露光、現像により形成する材料として、アルカリ水溶液により現像可能な硬化性樹脂組成物が用いられている。
 一方で、電子機器の軽薄短小化に伴うプリント配線板の高密度化に対応して、半導体パッケージの小型化や多ピン化が実用化され量産化が進み、最近では、QFP(クワッド・フラット・パッケージ)やSOP(スモール・アウトライン・パッケージ)と呼ばれる半導体パッケージに代わり、パッケージ基板を用いたBGA(ボール・グリッド・アレイ)やCSP(チップ・スケール・パッケージ)などの半導体パッケージが採用されるようになってきている。
 このようなパッケージ基板では、配線パターンがより高密度に、互いに近接して形成されるため、かかるパッケージ基板に用いられるソルダーレジスト等の永久被膜には、高い信頼性(絶縁信頼性(B-HAST耐性)、高温加湿耐性(PCT耐性)、冷熱サイクル耐性(TCT耐性)、耐熱性等)が求められるようになってきた。
 このようなパッケージ基板用ソルダーレジストに対し、高い信頼性を付与する方法として、例えば硬化性樹脂組成物中に無機フィラーを高充填することにより、剛性などの特性を向上させることが一般的に行われている。この無機フィラーの中でも特に球状シリカは、充填性に優れ、熱膨張係数(CTE)が低いことから、ソルダーレジストの高剛性化やTCT耐性等の向上に広く用いられている(特許文献1参照)。
特開2014-81611号公報
 しかしながら、硬化性樹脂組成物中に球状シリカのような無機フィラーを高充填とすると、硬化物のB-HAST耐性やPCT耐性が悪化するという新たな問題があった。
 そこで本発明の目的は、硬化性樹脂組成物中に球状シリカのような無機フィラーを高充填しても、高剛性や優れたTCT耐性などの硬化物としての優れた信頼性を確保しつつ、B-HAST耐性およびPCT耐性に優れる硬化性樹脂組成物、これを用いたドライフィルム、硬化物およびプリント配線板を提供することにある。
 発明者らは、高充填性に優れる球状シリカに着目し、上記目的実現に向け鋭意検討を行った。その結果、発明者らは、硬化性樹脂組成物中に球状シリカを高充填すると、樹脂成分の配合量が減少した分、硬化物としての吸水性が低下する一方で、B-HAST耐性やPCT耐性は逆に悪化する傾向にあることに気付いた。発明者らは、その原因について鋭意検討したところ、硬化性樹脂組成物中に球状シリカを高充填すると、無機フィラーと樹脂との界面を介して硬化物表面から樹脂中へ水分が浸透しやすくなり、硬化物中の樹脂のエステル結合等が加水分解を引き起こすことが新たに分かった。
 そこで、かかる原因に基づき、組成物の硬化性成分であるエポキシ樹脂の化学構造に着目し、さらに鋭意検討した。その結果、硬化性成分として分子構造が嵩高いジシクロペンタジエン骨格を有するエポキシ樹脂を用いれば、意外にも水分子による樹脂の加水分解を抑制し、ひいてはB-HAST耐性やPCT耐性が向上できることを見出し、本発明を完成するに至った。
 すなわち、本発明の硬化性樹脂組成物は、(A)カルボキシル基含有樹脂と、(B)ジシクロペンタジエン骨格を有するエポキシ樹脂と、(C)光重合開始剤と、(D)球状シリカと、を含み、前記(D)球状シリカは、その含有量が、組成物の不揮発成分中に50質量%以上であることを特徴とするものである。
 本発明の硬化性樹脂組成物において、前記(B)ジシクロペンタジエン骨格を有するエポキシ樹脂は、前記(A)カルボキシル基含有樹脂中のカルボキシル基1molに対し、エポキシ基の割合が0.5~2.5molとなるように配合することが好ましい。
 また、本発明のドライフィルムは、上記硬化性樹脂組成物から得られる樹脂層を有することを特徴とするものである。
 さらに、本発明の硬化物は、上記硬化性樹脂組成物、または、上記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。
 さらにまた、本発明のプリント配線板は、上記硬化物を有することを特徴とするものである。
 本発明の硬化性樹脂組成物によれば、硬化物の吸水性を低下させつつ、エステル結合等の加水分解の進行を抑制し、絶縁性や密着性の悪化を防止することができる。その結果、硬化性樹脂組成物中に球状シリカのような無機フィラーを高充填しても、高剛性や優れたTCT耐性などの硬化物としての優れた信頼性を確保しつつ、B-HAST耐性およびPCT耐性に優れる硬化性樹脂組成物、これを用いたドライフィルム、硬化物およびプリント配線板を得ることができる。
 以下、本発明の実施の形態について詳述する。
(硬化性樹脂組成物)
 本発明の硬化性樹脂組成物は、(A)カルボキシル基含有樹脂と、(B)ジシクロペンタジエン骨格を有するエポキシ樹脂と、(C)光重合開始剤と、(D)球状シリカと、を含み、(D)球状シリカは、その含有量が、組成物の不揮発成分中に50質量%以上であるものである。
 このように、組成物中に(B)ジシクロペンタジエン骨格を有するエポキシ樹脂を含有する構成としたことにより、嵩高い分子構造を有するジシクロペンタジエン骨格が硬化物の架橋構造における自由空間を塞ぎ、水分子の樹脂中への浸透を抑制し、水分子による樹脂硬化物の加水分解を抑制することができるものと考える。その結果、硬化性樹脂組成物中に球状シリカのような無機フィラーを高充填しても、高剛性や優れたTCT耐性などの硬化物としての優れた信頼性を確保しつつ、優れたB-HAST耐性およびPCT耐性を維持することができる。
[(A)カルボキシル基含有樹脂]
 カルボキシル基含有樹脂としては、分子中にカルボキシル基を有している従来公知の各種カルボキシル基含有樹脂を使用できる。特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂が、光硬化性や耐現像性の面から好ましい。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸又はそれらの誘導体由来であることが好ましい。エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いる場合、組成物を光硬化性とするためには、後述する分子中に複数のエチレン性不飽和基を有する化合物、即ち光反応性モノマーを併用する必要がある。
 カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマー及びポリマーのいずれでもよい)を挙げることができる。
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物及びポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
 (3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物及びジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。
 (4)前記(2)又は(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (5)前記(2)又は(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (6)2官能又はそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
 (9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
 (12)前記(1)~(11)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
 前記カルボキシル基含有樹脂の酸価は、30~150mgKOH/gの範囲が適当であり、より好ましくは50~120mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が、30mgKOH/g以上であるとアルカリ現像が容易となり、一方、150mgKOH/g以下であると、露光部の現像液への耐性が十分に得られ、正常なレジストパターンを確実に描画できるものとなるので好ましい。
 また、前記カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、さらには5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上であると、露光部の被膜の耐現像性が向上し、解像性に優れる。一方、重量平均分子量が150,000以下であると、未露光部の溶解性が良好で解像性に優れるとともに、貯蔵安定性においても向上することがある。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。
 これらカルボキシル基含有樹脂は、前記列挙したものに限らず使用することができ、1種類を単独で用いてもよく、複数種を混合して用いてもよい。中でも、前記カルボキシル基含有樹脂(10)、(11)のごときフェノール化合物を出発原料と使用して合成されるカルボキシル基含有樹脂はB-HAST耐性、PCT耐性に優れるため好適に用いることが出来る。
[(B)ジシクロペンタジエン骨格を有するエポキシ樹脂]
 (B)ジシクロペンタジエン骨格を有するエポキシ樹脂としては、例えば、市販品として、DIC(株)製のエピクロンHP-7200、(株)ADEKA製のアデカレジンEP-4088L等を好適に用いることができる。(B)ジシクロペンタジエン骨格を有するエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いることができる。
 この(B)ジシクロペンタジエン骨格を有するエポキシ樹脂は、(A)カルボキシル基含有樹脂中のカルボキシル基1molに対し、エポキシ基の割合が0.5~2.5mol、より好ましくは0.8~2.0molとなるように配合することが好ましい。(B)成分の配合量を0.5mol以上とすることで、硬化物のB-HAST耐性やPCT耐性の向上効果を良好に得ることができる。また、(B)成分の配合量を2.5mol以下とすることで、良好な現像性が得られる。
 硬化性樹脂組成物においては、本発明特有の効果を損なわない範囲で、(B)ジシクロペンタジエン骨格を有するエポキシ樹脂に加えて、これ以外の他のエポキシ樹脂をさらに配合することもできる。このような他のエポキシ樹脂としては、例えば、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等などが挙げられるが、これらに限られるものではない。本発明の硬化性樹脂組成物において、(B)ジシクロペンタジエン骨格を有するエポキシ樹脂と他のエポキシ樹脂とを併用する場合には、エポキシ樹脂の全量に対し、不揮発成分換算で、(B)成分である上記ジシクロペンタジエン骨格を有するエポキシ樹脂を10質量%以上含むことが好ましく、より好ましくは、20~80質量%含むものとする。
[(C)光重合開始剤]
 (C)光重合開始剤としては、公知のものをいずれも用いることができる。(B)光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (C)光重合開始剤としては、具体的には例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(IGM社製 Omnirad TPO)等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。
 上記のうちでも、モノアシルフォスフィンオキサイド系光重合開始剤やビスアシルフォスフィンオキサイド系光重合開始剤などが、フォトブリーチング(photobleaching)性を有することから好ましい。ここで、フォトブリーチングとは、光退色または光脱色ともいい、励起状態にある蛍光物質が基底状態に比べて化学的に活性化されて不安定な状態になるために起こる反応である。具体的には、光重合開始剤として作用する化合物が、特定の波長領域において光を吸収してラジカルを発生させた際に、ラジカルの発生により化合物の構造が変化して、その波長領域において光を吸収しなくなることをいう。これにより、その波長領域における光を通しやすくなるために、深部まで光硬化しやすくなる。特には、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド(IGM社製 Omnirad TPO)、ビス(2,4,6‐トリメチルベンゾイル)フェニルホスフィンオキサイド(BASFジャパン(株)製 IRGACURE819)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸エチル(BASFジャパン(株)製 IRGACURE TPO-L)等を好適に使用することができる。
 オキシムエステル系光重合開始剤を除く光重合開始剤の配合量は、不揮発成分換算で、(A)カルボキシル基含有樹脂100質量部に対して、0.1~30質量部であることが好ましい。0.1質量部以上の場合、樹脂組成物の光硬化性が良好となり、塗膜が剥離しにくく、耐薬品性等の塗膜特性も良好となる。一方、30質量部以下の場合、アウトガスの低減効果が得られ、さらにソルダーレジスト塗膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは0.5~15質量部である。またオキシムエステル系光重合開始剤の配合量は、不揮発成分換算で、(A)カルボキシル基含有樹脂100質量部に対して、0.01~5質量部とすることが好ましい。0.01質量部以上の場合、樹脂組成物の光硬化性が良好となり、耐熱性、耐薬品性等の塗膜特性も良好となる。一方、5質量部以下の場合、ソルダーレジスト塗膜の光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは、0.5~3質量部である。
[(D)球状シリカ]
 (D)球状シリカとしては、電子材料用途のフィラーとして使用可能な球状シリカであればいずれでも用いることができ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、(C)球状シリカの形状は、球状であればよく、真球のものに限定されるものではない。好適な(C)球状シリカとしては、例えば、以下のように測定される真球度が0.8以上のものが挙げられるが、これに限定されるものではない。
 真球度は以下のように測定される。すなわち、まず、走査型電子顕微鏡(SEM)で球状シリカの写真を撮影し、その写真上で観察される粒子の面積および周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値として算出する。具体的には、画像処理装置を用いて、100個の粒子について測定した平均値を採用することができる。
 本発明において、(D)球状シリカとしては、平均粒子径が300nm~1000nmの球状シリカ(D1)を用いることが好ましく、より好ましくは、平均粒子径を500nm~900nmとする。
 ここで、本明細書において、(D)球状シリカの平均粒子径とは、一次粒子の粒子径だけでなく、二次粒子(凝集体)の粒子径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、日機装社製のMicrotrac MT3300EXIIが挙げられる。なお、最大粒子径(D100)および粒子径(D10)についても、上記の装置にて同様に測定することができる。
 本発明において、(D)球状シリカとして、平均粒子径の異なる2種類の球状シリカを用いることができる。即ち、平均粒子径が300nm~1000nmの球状シリカ(D1)に加えて、平均粒子径が1nm以上300nm未満である球状シリカ(D2)を併用することができる。併用することで、球状シリカ(D1)間の隙間に球状シリカ(D2)が充填されるので、隙間量を少なくすることができる。これにより、組成物中に(D)球状シリカを高充填することができ、樹脂含有量の少ない、即ち、総質量中のフィラー質量の比率が高い硬化性樹脂組成物を得ることができる。
 通常の市販品の同一製品内でも、粒子径にはもともと2~3倍のばらつきがあるが、その比率では、細かい粒子が有効に隙間に入らないことから、球状シリカ(D1)と球状シリカ(D2)との平均粒子径には、5倍以上の差があることが好ましい。球状シリカ(D1)と球状シリカ(D2)との平均粒子径比は、大きければ大きいほどよい。球状シリカ(D1)の平均粒子径は、球状シリカ(D2)の平均粒子径の8倍以上であることがより好ましく、10倍以上であることがさらに好ましい。
 また、球状シリカ(D1)の最大粒子径(D100)は、5μm以下であることが好ましい。この最大粒子径は、硬化性樹脂組成物の用途によって異なり、例えばパッケージ基板に硬化膜を形成する用途では5μm以下であることが好ましい。さらに、球状シリカ(D1)の粒子径(D10)は、球状シリカ(D2)の平均粒子径(D50)の5倍以上であることが好ましい。この比率が5倍以上であると、球状シリカ(D1)の隙間への球状シリカ(D2)の充填効率が向上し、硬化物の強度とドライフィルムのラミネート性とのバランスに優れるものとなる。
 なお、球状シリカ(D1)と球状シリカ(D2)とを併用する場合の配合比は、体積比で球状シリカ(D1):球状シリカ(D2)=5:5~9:1であることが好ましく、6:4~8:2であることがさらに好ましい。上記範囲内であると、硬化物の強度およびドライフィルムのラミネート性の両立がより一層図れるので、好ましい。
 球状シリカの製造方法は、特に限定されるものではなく、当業者に知られた方法を適用することができる。例えば、VMC(Vaporized Metal Combustion)法により、シリコン粉末を燃焼して製造することができる。VMC法とは、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物粒子を得る方法である。
 なお、市販されている球状シリカとしては、球状シリカ(D1)については、例えば、(株)アドマテックス製のアドマファインSO-C2、SO-E2、デンカ(株)製のSFP-20M、SFP-30M等が挙げられ、球状シリカ(D2)については、例えば、(株)アドマテックス製のアドマナノ、デンカ(株)製のUFP-30、日本触媒(株)製のシーホスターシリーズ、堺化学工業(株)製のSciqasシリーズ、共立マテリアル(株)製のSG-SO100等が挙げられる。
 (D)球状シリカの表面処理の有無は特に限定されないが、本発明の硬化性樹脂組成物は(D)球状シリカが高充填であって相対的に樹脂含有量が少ないので、(D)球状シリカには、分散性を高めるための表面処理がされていることが好ましい。表面処理がされているフィラーを使用することで、凝集を抑制することができる。なお、(D)球状シリカとして球状シリカ(D1)と球状シリカ(D2)とを併用する場合には、いずれか一方のみを表面処理してもよく、双方を表面処理して用いてもよい。
 (D)球状シリカの表面処理方法は特に限定されず、公知慣用の方法を用いればよいが、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理することが好ましい。
 カップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。中でもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは併用して使用することができる。これらのシラン系カップリング剤は、あらかじめ球状シリカの表面に吸着あるいは反応により固定化されていることが好ましい。ここで、(D)球状シリカ100質量部に対するカップリング剤の処理量は、0.5~10質量部であることが好ましい。なお、本発明において、(D)球状シリカに施されたカップリング由来の反応性官能基は、光硬化性反応基、熱硬化性官能基を有する化合物には含まれないものとする。
 光硬化性反応基としては、ビニル基、スチリル基、メタクリル基、アクリル基等のエチレン性不飽和基が挙げられる。中でも、ビニル基および(メタ)アクリル基のいずれか少なくとも1種が好ましい。
 熱硬化性反応基としては、水酸基、カルボキシル基、イソシアネート基、アミノ基、イミノ基、エポキシ基、オキセタニル基、メルカプト基、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、オキサゾリン基等が挙げられる。中でも、アミノ基およびエポキシ基のいずれか少なくとも1種が好ましい。
 なお、表面処理がされた(D)球状シリカは、表面処理された状態で本発明の硬化性樹脂組成物に含有されていればよく、表面未処理の(D)球状シリカと表面処理剤とを別々に配合して組成物中で(D)球状シリカが表面処理されてもよいが、あらかじめ表面処理した(D)球状シリカを配合することが好ましい。あらかじめ表面処理した(D)球状シリカを配合することによって、別々に配合した場合に残存しうる表面処理で消費されなかった表面処理剤によるクラック耐性等の低下を抑制することができる。あらかじめ表面処理する場合は、溶剤や硬化性成分に(D)球状シリカを予備分散した予備分散液を配合することが好ましく、表面処理した(D)球状シリカを溶剤に予備分散し、この予備分散液を組成物に配合するか、表面未処理の(D)球状シリカを溶剤に予備分散する際に十分に表面処理した後、この予備分散液を組成物に配合することがより好ましい。
 (D)球状シリカは、本発明の硬化性樹脂組成物の使用態様により、粉体または固体状態で(A)成分等と配合してもよく、溶剤や分散剤と混合してスラリーとした後で(A)成分等と配合してもよい。
 (D)球状シリカの含有量は、組成物の不揮発成分中に50質量%以上であることが必要であり、好ましくは50質量%~85質量%、より好ましくは70質量%~85質量%、さらに好ましくは80質量%超~85質量%である。(D)球状シリカの含有量を組成物の不揮発成分中に50質量%以上とすることで、硬化物を高強度かつ高剛性として、線膨張係数(CTE)を低くすることができ、好ましい。
[光重合性モノマー]
 本発明の硬化性樹脂組成物には、光重合性モノマーを配合することができる。光重合性モノマーは、エチレン性不飽和二重結合を有する化合物である。このような光重合性モノマーとしては、例えば、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキシド誘導体のモノまたはジ(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのエチレンオキシドあるいはプロピレンオキシド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリジジルエーテルの(メタ)アクリレート類;およびメラミン(メタ)アクリレートが挙げられる。
 光重合性モノマーは、1種を単独で、または2種以上を組み合わせて用いることができる。光重合性モノマーの含有量は、不揮発成分換算で、(A)カルボキシル基含有樹脂100質量部に対して、好ましくは0.5~20質量部の割合である。配合量が、0.5質量部以上の場合、光硬化性が良好であり、活性エネルギー線照射後のアルカリ現像において、パターン形成がしやすい。一方、20質量部以下の場合、ハレーションが生じにくく良好な解像性が得られる。
[熱硬化触媒]
 本発明の硬化性樹脂組成物には、熱硬化触媒を配合することができる。熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を熱硬化触媒と併用する。
 熱硬化触媒は、1種を単独で、または2種以上を組み合わせて用いることができる。熱硬化触媒の配合量は、不揮発成分換算で、(A)カルボキシル基含有樹脂100質量部に対して0.5~10質量部であることが好ましく、1~8質量部であることがより好ましい。0.5質量部以上の場合、耐熱性に優れる。10質量部以下の場合、保存安定性向上につながる。
[着色剤]
 本発明の硬化性樹脂組成物は、着色剤を含んでいてもよい。着色剤としては、赤、青、緑、黄、白、黒などの慣用公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。
 具体的には、カラーインデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyers and Colourists)発行)番号が付されているものを挙げることができる。
 赤色着色剤としては、モノアゾ系、ジズアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系などがある。青色着色剤としては、フタロシアニン系、アントラキノン系などがあり、顔料系はピグメント(Pigment)に分類されている化合物を使用することができる。これら以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。緑色着色剤としては、同様にフタロシアニン系、アントラキノン系、ペリレン系がある。これら以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等がある。白色着色剤としては、ルチル型またはアナターゼ型酸化チタンなどが挙げられる。黒色着色剤としては、カーボンブラック系、黒鉛系、酸化鉄系、チタンブラック、アンスラキノン系、酸化コバルト系、酸化銅系、マンガン系、酸化アンチモン系、酸化ニッケル系、ペリレン系、アニリン系、硫化モリブデン、硫化ビスマスなどがある。その他、色調を調整する目的で紫、オレンジ、茶色などの着色剤を加えてもよい。
 着色剤の含有量は、硬化物の隠蔽性を向上させる観点から、硬化性樹脂組成物全量あたり、不揮発成分換算で、0.18~0.50質量%含有することが好ましい。不揮発成分換算で0.18質量%以上の場合、回路隠蔽性に優れ、0.50質量%以下の場合、より解像性に優れる。より好ましくは、0.20質量%~0.40質量%である。
[有機溶剤]
 本発明の硬化性樹脂組成物には、組成物の調製や、基板やフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独または2種以上を組み合わせて用いることができる。
[その他の添加成分]
 本発明の硬化性樹脂組成物には、必要に応じてさらに、光開始助剤、シアネート化合物、エラストマー、メルカプト化合物、ウレタン化触媒、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、重合禁止剤、銅害防止剤、酸化防止剤、防錆剤、微粉シリカ、有機ベントナイト、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤および/またはレベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、ホスフィン酸塩、燐酸エステル誘導体、フォスファゼン化合物等のリン化合物等の難燃剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。また、液状として用いる場合は、1液性でも2液性以上でもよい。
 本発明の硬化性樹脂組成物は、ソルダーレジストやカバーレイ、層間絶縁層等のプリント配線板の永久被膜としてのパターン層を形成するために有用であり、特にソルダーレジストの形成に有用である。また、本発明の硬化性樹脂組成物は、薄膜でも膜強度に優れた硬化物を形成できることから、薄膜化が要求されるプリント配線板、例えばパッケージ基板(半導体パッケージに用いられるプリント配線板)におけるパターン層の形成にも好適に用いることができる。さらに、本発明の硬化性樹脂組成物から得られる硬化物は、高弾性率で低CTEとなる点においても、総厚みが薄く剛性の不足するパッケージ基板におけるパターン層の形成に好適に用いることができるものである。
[ドライフィルム]
 本発明の硬化性樹脂組成物は、支持(キャリア)フィルムと、この支持フィルム上に形成された上記硬化性樹脂組成物からなる樹脂層とを備えたドライフィルムの形態とすることもできる。ドライフィルム化に際しては、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等でキャリアフィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥して膜を得ることができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、1~150μm、好ましくは10~60μmの範囲で適宜選択される。
 支持フィルムとしては、プラスチックフィルムが用いられ、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等のプラスチックフィルムを用いることが好ましい。支持フィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。
 支持フィルム上に本発明の硬化性樹脂組成物の樹脂層を形成した後、さらに、樹脂層の表面に塵が付着するのを防ぐなどの目的で、樹脂層の表面に剥離可能な保護(カバー)フィルムを積層することが好ましい。剥離可能な保護フィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、保護フィルムを剥離するときに樹脂層と支持フィルムとの接着力よりも樹脂層と保護フィルムとの接着力がより小さいものであればよい。
 なお、本発明においては、上記保護フィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面に支持フィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、支持フィルムおよび保護フィルムのいずれを用いてもよい。
[硬化物]
 本発明の硬化物は、上記本発明の硬化性樹脂組成物、または、上記本発明のドライフィルムの樹脂層を硬化して得られるものであり、高い剛性と熱寸法安定性を有する。
[プリント配線板]
 本発明のプリント配線板は、本発明の硬化性樹脂組成物またはドライフィルムの樹脂層から得られる硬化物を有するものである。本発明のプリント配線板の製造方法としては、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、支持フィルムを剥がすことにより、基材上に樹脂層を形成する。
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル、ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。
 基材上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後に加熱硬化(例えば、100~220℃)、もしくは加熱硬化後に活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化膜を形成する。
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。
 本発明の硬化性樹脂組成物は、上記のような現像液により硬化膜のパターンを形成する用途だけでなく、パターンを形成しない用途、例えばモールド用途(封止用途)に使用してもよい。
 以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明は、これら実施例、比較例によって制限されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
(合成例1)
(カルボキシル基含有感光性樹脂A-1の合成)
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(商品名「ショウノールCRG951」、昭和電工(株)製、OH当量:119.4)119.4質量部、水酸化カリウム1.19質量部およびトルエン119.4質量部を導入し、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8質量部を徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56質量部を添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2mgKOH/g(307.9g/eq.)であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1.08モル付加しているものであった。
 得られたノボラック型クレゾール樹脂のプロピレンオキシド反応溶液293.0質量部、アクリル酸43.2質量部、メタンスルホン酸11.53質量部、メチルハイドロキノン0.18質量部およびトルエン252.9質量部を、撹拌機、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6質量部の水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35質量部で中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1質量部で置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5質量部およびトリフェニルホスフィン1.22質量部を、撹拌器、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8質量部を徐々に加え、95~101℃で6時間反応させ、冷却後、取り出した。このようにして、不揮発成分70.6質量%、固形分の酸価87.7mgKOH/gの感光性のカルボキシル基含有樹脂の溶液を得た。
(調製例1)
(表面処理された球状シリカB-1の調製)
 球状シリカ(デンカ社製SFP-30M、平均粒径:600nm)70質量部と、溶剤としてのPMA(プロピレングリコールモノメチルエーテルアセテート)28質量部と、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503(3-メタクリロキシプロピルトリメトキシシラン))2質量部とを均一分散させて、不揮発成分70質量%のシリカ溶剤分散品を得た。
(調製例2)
(表面処理された球状シリカB-2の調製)
 球状シリカ(共立マテリアル(株)製のSG-SO100、平均粒径d50=100nm)を70質量部と、溶剤としてのPMA(プロピレングリコールモノメチルエーテルアセテート)を28質量部と、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503(3-メタクリロキシプロピルトリメトキシシラン))2質量部とを均一分散させて、不揮発成分70質量%のシリカ溶剤分散品を得た。
<硬化性樹脂組成物の調製>
 下記の表1中に示す配合に従い、各成分を配合し、攪拌機にて予備混合した後、3本ロールミルで分散させ、混練して、それぞれ硬化性樹脂組成物を調製した。表中の配合量は、質量部を示す。得られた実施例および比較例の硬化性樹脂組成物を用いて、下記のように評価を行った。
<CTEの評価> 
 銅箔基板上に、各実施例および比較例の硬化性樹脂組成物を全面塗布した。これを乾燥し、室温まで放冷することにより、硬化性樹脂組成物からなる樹脂層を形成した。これに対して、最適露光量にて、50mm×3mmの短冊状のネガマスクを通して露光を行った。その後、30℃の1質量%炭酸ナトリウム水溶液を噴射することにより現像を行い、硬化被膜のパターンを得た。更に既定の条件で加熱して硬化し、評価基板を得た。 
 上記により得られた評価基板の硬化被膜を銅箔より剥離し、評価を実施した。測定は、TMA測定装置(島津製作所社製TMA/SS6000)を用いて行い、CTEα1(0-50℃)を求めた。判定基準は以下の通りである。 
 ○…30ppm未満 
 ×…30ppm以上 
<B-HAST耐性の評価>
 クシ型電極(ライン/スペース=20μm/15μm)が形成されたBT基板に、各実施例および比較例の硬化性樹脂組成物の硬化被膜を形成し、評価基板を作製した。この評価基板を、130℃、湿度85%の雰囲気下の高温高湿槽に入れ、電圧5Vをかけて、槽内HAST試験を行った。槽内絶縁抵抗値が10Ω未満になった際の経過時間を、下記の判断基準に従い評価した。 
 ◎:400時間超 
 〇:200~400時間 
 ×:200時間未満
<TCT耐性の評価> 
 パッケージ基板上に、各実施例および比較例の硬化性樹脂組成物を全面塗布した。これを乾燥し、室温まで放冷することにより、硬化性樹脂組成物からなる樹脂層を形成した。これに対して、最適露光量にて、銅パッド上にSRO(Solder Resist Opening)80μmの開口サイズでダイレクトイメージング露光を行った。その後、30℃の1質量%炭酸ナトリウム水溶液を噴射することにより現像を行い、硬化被膜のパターンを得た。更に既定の条件で加熱して硬化した。その後、Auめっき処理およびはんだバンプ形成を行い、Siチップを実装して、評価基板を得た。 
 上記により得られた評価基板を、-65℃と150℃の間で温度サイクルが行われる冷熱サイクル機に入れ、TCT(Thermal Cycle Test)を行った。そして、600サイクル時、800サイクル時および1000サイクル時の硬化被膜の表面を観察した。判定基準は以下の通りである。 
 ◎:1000サイクルで異常なし 
 ○:800サイクルで異常なし、1000サイクルでクラック発生 
 △:600サイクルで異常なし、800サイクルでクラック発生 
 ×:600サイクルでクラック発生 
<PCT耐性の評価> 
 パッケージ基板上に、各実施例および比較例の硬化性樹脂組成物を全面塗布した。これを乾燥し、室温まで放冷することにより、硬化性樹脂組成物からなる樹脂層を形成した。これに対して、最適露光量にて、銅パッド上にSRO80μmの開口サイズでダイレクトイメージング露光を行った。その後、30℃の1質量%炭酸ナトリウム水溶液を噴射することにより現像を行い、硬化被膜のパターンを得た。更に既定の条件で加熱して硬化し、評価基板を得た。 
 得られた評価基板について、PCT装置(エスペック社製HAST SYSTEM TPC-412MD)を用いて、121℃、飽和、0.2MPaの条件で168時間PCT(Pressure Cooker Test)を行った。そして、PCT後の塗膜の状態を評価した。判定基準は以下の通りである。 
 ○:膨れ、剥がれ、変色、溶出のないもの 
 ×:膨れ、剥がれ、変色、溶出が多く見られるもの
 これらの評価結果を、下記の表中に併せて示す。
Figure JPOXMLDOC01-appb-T000001
*1)合成例1で得られたカルボキシル基含有感光性樹脂A-1
*2)HP-7200(ジシクロペンタジエン型エポキシ樹脂、DIC(株)製、エポキシ当量260g/eq)
*3)jER834(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製、エポキシ当量250g/eq)
*4)N-730(フェノールノボラック型エポキシ樹脂、DIC(株)製、エポキシ当量175g/eq)
*5)EOCN1020(クレゾールノボラック型エポキシ樹脂、日本化薬(株)製、エポキシ当量200g/eq)
*6)TPO(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、Omnirad TPO、IGM社製)
*7)調製例1で得られた表面処理された球状シリカB-1(メタクリルシラン処理、平均粒子径600nm、不揮発成分70質量%)
*8)調製例2で得られた表面処理された球状シリカB-2(メタクリルシラン処理、平均粒子径100nm、不揮発成分70質量%)
*9)DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)
 上記表中に示す評価結果から明らかなように、各実施例においては、硬化物とした際における剛性、TCT耐性等の優れた信頼性を確保しつつ、B-HAST耐性やPCT耐性についても向上した硬化性樹脂組成物が得られていることが確かめられた。

Claims (4)

  1.  (A)カルボキシル基含有樹脂と、
     (B)ジシクロペンタジエン骨格を有するエポキシ樹脂と、
     (C)光重合開始剤と、
     (D)球状シリカと、
    を含み、前記(D)球状シリカの含有量が、組成物の不揮発成分中に50質量%以上であることを特徴とする硬化性樹脂組成物。
  2.  請求項1記載の硬化性樹脂組成物から得られる樹脂層を有することを特徴とするドライフィルム。
  3.  請求項1記載の硬化性樹脂組成物、または、請求項2記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。
  4.  請求項3記載の硬化物を有することを特徴とするプリント配線板。
PCT/JP2019/012933 2018-03-30 2019-03-26 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 WO2019189219A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-070146 2018-03-30
JP2018070146A JP2019178304A (ja) 2018-03-30 2018-03-30 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板

Publications (1)

Publication Number Publication Date
WO2019189219A1 true WO2019189219A1 (ja) 2019-10-03

Family

ID=68059069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012933 WO2019189219A1 (ja) 2018-03-30 2019-03-26 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板

Country Status (3)

Country Link
JP (1) JP2019178304A (ja)
TW (1) TW202004336A (ja)
WO (1) WO2019189219A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604182A (zh) * 2021-08-16 2021-11-05 广东生益科技股份有限公司 一种树脂组合物及其应用
WO2023020222A1 (zh) * 2021-08-16 2023-02-23 广东生益科技股份有限公司 一种树脂组合物及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070592A (ja) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 シリカ粒子、樹脂組成物、樹脂フィルム及び金属張積層板

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022641A (ja) * 1996-07-03 1998-01-23 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JPH11189712A (ja) * 1997-12-26 1999-07-13 Showa Highpolymer Co Ltd オプトデバイスの製造方法
JP2001015934A (ja) * 1999-06-30 2001-01-19 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JP2003252960A (ja) * 2002-03-05 2003-09-10 Toray Ind Inc エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置
JP2005191069A (ja) * 2003-12-24 2005-07-14 Sumitomo Bakelite Co Ltd 半導体用接着フィルムおよび半導体装置
JP2006073982A (ja) * 2004-09-02 2006-03-16 Sumitomo Bakelite Co Ltd 半導体用接着フィルム及びこれを用いた半導体装置
JP2006251007A (ja) * 2005-03-08 2006-09-21 Dainippon Ink & Chem Inc アルカリ現像型感光性樹脂組成物及びプリント配線基板。
JP2007258508A (ja) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
JP2009235217A (ja) * 2008-03-27 2009-10-15 Toshiba Corp エポキシ樹脂シール剤およびx線検出器
JP2010028087A (ja) * 2008-06-18 2010-02-04 Sekisui Chem Co Ltd 接着フィルム、ダイシング−ダイボンディングテープ及び半導体装置の製造方法
US20100056671A1 (en) * 2007-04-12 2010-03-04 Designer Molecules, Inc. Polyfunctional epoxy oligomers
US20110048776A1 (en) * 2009-08-28 2011-03-03 Park Electrochemical Corporation Thermosetting resin compositions and articles
JP2012158653A (ja) * 2011-01-31 2012-08-23 Lintec Corp チップ用保護膜形成用シート、半導体チップの製造方法および半導体装置
JP2012190924A (ja) * 2011-03-09 2012-10-04 Sekisui Chem Co Ltd フリップチップ実装用接着剤、フリップチップ実装用接着フィルム及び半導体チップの実装方法
WO2013172433A1 (ja) * 2012-05-17 2013-11-21 太陽インキ製造株式会社 アルカリ現像型の熱硬化性樹脂組成物、プリント配線板
JP2014156514A (ja) * 2013-02-14 2014-08-28 Ajinomoto Co Inc 硬化性樹脂組成物
WO2015190210A1 (ja) * 2014-06-12 2015-12-17 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641293B2 (ja) * 2010-05-28 2014-12-17 日立化成株式会社 感光性樹脂組成物及び感光性フィルム、永久レジスト
JP5635655B1 (ja) * 2013-06-28 2014-12-03 太陽インキ製造株式会社 熱硬化性組成物、ドライフィルムおよびプリント配線板
CN109073969B (zh) * 2016-03-31 2022-09-13 太阳油墨制造株式会社 固化性树脂组合物、干膜、固化物和印刷电路板

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022641A (ja) * 1996-07-03 1998-01-23 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JPH11189712A (ja) * 1997-12-26 1999-07-13 Showa Highpolymer Co Ltd オプトデバイスの製造方法
JP2001015934A (ja) * 1999-06-30 2001-01-19 Toppan Printing Co Ltd 多層プリント配線板及びその製造方法
JP2003252960A (ja) * 2002-03-05 2003-09-10 Toray Ind Inc エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置
JP2005191069A (ja) * 2003-12-24 2005-07-14 Sumitomo Bakelite Co Ltd 半導体用接着フィルムおよび半導体装置
JP2006073982A (ja) * 2004-09-02 2006-03-16 Sumitomo Bakelite Co Ltd 半導体用接着フィルム及びこれを用いた半導体装置
JP2006251007A (ja) * 2005-03-08 2006-09-21 Dainippon Ink & Chem Inc アルカリ現像型感光性樹脂組成物及びプリント配線基板。
JP2007258508A (ja) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd 半導体用接着剤、これを用いた半導体装置および半導体装置の製造方法
US20100056671A1 (en) * 2007-04-12 2010-03-04 Designer Molecules, Inc. Polyfunctional epoxy oligomers
JP2009235217A (ja) * 2008-03-27 2009-10-15 Toshiba Corp エポキシ樹脂シール剤およびx線検出器
JP2010028087A (ja) * 2008-06-18 2010-02-04 Sekisui Chem Co Ltd 接着フィルム、ダイシング−ダイボンディングテープ及び半導体装置の製造方法
US20110048776A1 (en) * 2009-08-28 2011-03-03 Park Electrochemical Corporation Thermosetting resin compositions and articles
JP2012158653A (ja) * 2011-01-31 2012-08-23 Lintec Corp チップ用保護膜形成用シート、半導体チップの製造方法および半導体装置
JP2012190924A (ja) * 2011-03-09 2012-10-04 Sekisui Chem Co Ltd フリップチップ実装用接着剤、フリップチップ実装用接着フィルム及び半導体チップの実装方法
WO2013172433A1 (ja) * 2012-05-17 2013-11-21 太陽インキ製造株式会社 アルカリ現像型の熱硬化性樹脂組成物、プリント配線板
JP2014156514A (ja) * 2013-02-14 2014-08-28 Ajinomoto Co Inc 硬化性樹脂組成物
WO2015190210A1 (ja) * 2014-06-12 2015-12-17 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604182A (zh) * 2021-08-16 2021-11-05 广东生益科技股份有限公司 一种树脂组合物及其应用
WO2023020222A1 (zh) * 2021-08-16 2023-02-23 广东生益科技股份有限公司 一种树脂组合物及其应用

Also Published As

Publication number Publication date
JP2019178304A (ja) 2019-10-17
TW202004336A (zh) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI745366B (zh) 硬化性樹脂組成物、乾膜、硬化物及印刷配線板
JP7053345B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
KR101256553B1 (ko) 감광성 수지 조성물, 드라이 필름 솔더 레지스트 및 회로 기판
JP6770131B2 (ja) 硬化性組成物、ドライフィルム、硬化物およびプリント配線板
WO2019189219A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JPWO2018143220A1 (ja) 光硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP2019179222A (ja) 硬化性樹脂組成物、硬化物およびプリント配線板
TWI775993B (zh) 硬化性樹脂組成物、乾膜、硬化物及印刷配線板
JPWO2020066601A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電子部品
JP7066634B2 (ja) 硬化性組成物、主剤および硬化剤、ドライフィルム、硬化物、および、プリント配線板
JP2020166207A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2018173609A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
KR20190114827A (ko) 경화성 수지 조성물, 해당 조성물을 포함하는 드라이 필름, 경화물 및 해당 경화물을 갖는 프린트 배선판
JP7216483B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP7191609B2 (ja) 硬化性樹脂組成物、硬化物およびプリント配線板
JP7316071B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物および電子部品
WO2021157282A1 (ja) 硬化性組成物、そのドライフィルムおよび硬化物
JP2019179221A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
WO2019189220A1 (ja) ドライフィルム、硬化物およびプリント配線板
JP7339103B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP2022155116A (ja) 感光性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2023190455A1 (ja) 感光性樹脂組成物、硬化物、プリント配線板およびプリント配線板の製造方法
KR101746788B1 (ko) 다관능성 화합물, 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
WO2023190393A1 (ja) 硬化物およびプリント配線板
JP2023062784A (ja) 感光性樹脂組成物、その積層体および硬化物、ならびにその硬化物を有する透明材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776500

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776500

Country of ref document: EP

Kind code of ref document: A1