WO2019188599A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2019188599A1
WO2019188599A1 PCT/JP2019/011505 JP2019011505W WO2019188599A1 WO 2019188599 A1 WO2019188599 A1 WO 2019188599A1 JP 2019011505 W JP2019011505 W JP 2019011505W WO 2019188599 A1 WO2019188599 A1 WO 2019188599A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sample
unit
analysis
suction
Prior art date
Application number
PCT/JP2019/011505
Other languages
English (en)
French (fr)
Inventor
沙耶佳 サルワル
正治 西田
井上 陽子
賢史 島田
八木 賢一
直彦 深谷
アンドリュー マッコイ
Original Assignee
株式会社日立ハイテクノロジーズ
ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング
エフ・ホフマン・ラ・ロッシュ・アー・ゲー
ロッシュ ディアグノスティクス オペレーションズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ, ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング, エフ・ホフマン・ラ・ロッシュ・アー・ゲー, ロッシュ ディアグノスティクス オペレーションズ インコーポレーテッド filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP19778131.3A priority Critical patent/EP3779467B1/en
Priority to US16/645,583 priority patent/US11719714B2/en
Priority to CN201980004534.2A priority patent/CN111108396B/zh
Priority to JP2020510750A priority patent/JP7182614B2/ja
Publication of WO2019188599A1 publication Critical patent/WO2019188599A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots

Definitions

  • the present invention relates to an automatic analyzer equipped with a dispensing mechanism that sucks a predetermined amount of a solution such as a reagent or a specimen and discharges the solution to a reaction container.
  • Automatic analyzers for clinical tests measure specific components in biological samples such as blood and urine.
  • a sample specimen
  • the reagent is dispensed from the reagent container to the reaction container containing the sample by a dedicated nozzle.
  • stirring it is made to react for a fixed time and it measures with the detection means according to the light absorbency obtained from the reaction liquid, the light-emission quantity, etc.
  • the dispensing mechanism of the automatic analyzer is generally provided with a liquid level detection mechanism that detects that the nozzle is in contact with the liquid level.
  • Bubbles may be generated.
  • Patent Documents 1 and 2 There are techniques described in Patent Documents 1 and 2 as a method for avoiding such erroneous detection of bubbles that causes a shortage of the suction amount of the solution.
  • Patent Document 1 describes a technique for detecting a suction abnormality by comparing pressure data during suction with reference data during normal suction using a pressure sensor provided in a dispensing flow path.
  • Patent Document 2 the presence / absence of bubbles at the suction position is determined by means of photographing the liquid surface to be sucked, and if there is bubbles, the ultrasonic wave generated by the ultrasonic wave generation mechanism is used before suction. A technique for extinguishing bubbles is described.
  • Patent Document 3 describes a technique for performing dispensing again on the specimen after washing the sample probe when it is determined in the dispensing abnormality determination that empty suction is performed. It is described that in the dispensing that is performed again, the descending amount is increased from the previous descending amount, and the dispensing amount is increased, and when it is determined to be normal, the dispensing is continued.
  • the foam may disappear after the first suction due to the characteristics of the foam. In some cases, re-input to the analyzer was not actually required.
  • Patent Document 2 requires an ultrasonic generation mechanism, an installation space for the ultrasonic generation mechanism in addition to the liquid level imaging means, and an enormous amount of data related to image analysis. Therefore, the price has been increased, and it has been difficult to realize at a low cost.
  • Patent Document 3 assumes a case where predetermined abnormal suction is continuously determined, and when empty suction continues more than a predetermined number of times, the analysis of the remaining analysis items is canceled, It is described to move to the next sample dispensing.
  • FIG. 17 of this document after normal determination is made once before the predetermined number of times is reached, it is considered that the predetermined number of counts are reset and a new sample is dispensed.
  • the predetermined number of counts are reset and a new sample is dispensed.
  • the suction operation is repeated up to the number of times.
  • the sample in the case of a sample that is continuously discontinuously idle, the sample should be returned to the user from the device once and the aspiration is performed up to a predetermined number of times each time empty suction occurs, although it is better to remove bubbles by hand. There is a possibility of delay in returning the specimen to the user because of repetition.
  • an object of the present invention is to provide an automatic analyzer that is required to accurately dispense a predetermined amount of a sample or a reagent. Paying attention to the fact that it may disappear and bubbles moving, and if the cumulative number of air suction abnormalities is less than the predetermined allowable number of times, reintroducing the suction operation for the liquid will increase the price. It is to realize an automatic analyzer that can reduce the work burden on the user. Even if the air suction abnormality does not continue, if the cumulative number of air suction abnormalities reaches the predetermined allowable number of times, the request for the measurement item scheduled for the liquid is canceled and then scheduled. It is to realize an automatic analyzer capable of performing a reliable treatment as soon as possible by performing a suction operation from another liquid and returning the liquid whose measurement item is canceled to the user as soon as possible.
  • the present invention is configured as follows.
  • a liquid dispensing mechanism that sucks a sample or reagent that is a liquid contained in a container, a pressure sensor that measures a pressure change in a probe included in the liquid dispensing mechanism, and the pressure sensor
  • a determination unit that determines whether the liquid suction with the probe is normal or abnormal air suction based on a change in pressure
  • an analysis unit that analyzes the sample, and a cumulative number of air suction abnormalities for each liquid determined by the determination unit
  • a storage unit that stores a cumulative allowable number (2 or more) of the number of abnormal air suctions, and a controller that controls operations of the liquid dispensing mechanism, the determination unit, and the analysis unit, Even if the air suction abnormality does not continue during the suction operation in which the probe sucks the liquid according to the number of measurement items for the same liquid, the accumulated number of air suction abnormalities is updated and stored in the storage unit.
  • the suction operation scheduled for the liquid is continued until the accumulated number of times reaches the allowable accumulation number, and when the updated cumulative number reaches the allowable number of accumulations, the liquid is scheduled. Cancel the request for the measurement item, and perform the next suction operation from another liquid.
  • a liquid dispensing mechanism that sucks a sample or reagent that is a liquid contained in a container and discharges it to a reaction container, and whether bubbles exist on the liquid surface of the liquid contained in the container.
  • a bubble determination unit that determines whether or not the bubble determination unit stores the number of bubble determinations determined that bubbles are present on the liquid level of the liquid contained in the same container, and the reaction container.
  • An analysis unit that measures and analyzes the stored sample; and a controller that controls the operation of the liquid dispensing mechanism, the bubble determination unit, and the analysis unit, wherein the bubble determination unit includes the liquid When it is determined that bubbles are present on the liquid surface, the liquid dispensing mechanism is repeatedly executed to suck the liquid, and it is determined again whether bubbles are present on the liquid surface, and the storage unit
  • the number of bubble judgments stored in is greater than the cumulative allowable number When it becomes prohibits the suction operation of the liquid.
  • the present invention even if bubbles are detected on the liquid surface, if the cumulative number of air suction abnormalities is less than the predetermined allowable cumulative number, the suction operation for the sample is re-executed, resulting in a high price.
  • an automatic analyzer capable of improving the user's business efficiency and reducing the user's work load while preventing a decrease in throughput without being changed.
  • the cumulative number of air suction abnormalities reaches a predetermined cumulative allowable number, the user can quickly and reliably ensure that the liquid is returned to the user as soon as possible.
  • An automatic analyzer that enables treatment can be realized.
  • FIG. 6 is a flowchart of abnormal suction check and sample processing according to the first embodiment of the present invention, and is a diagram illustrating an example in a case where automatic retest setting is valid.
  • Example 1 of this invention it is a figure which shows an example of the display screen which displays the result of having measured the sample. It is a flowchart which shows an example of the abnormal aspiration check and sample processing flow which concern on Example 2 of this invention. It is a figure which shows the imaging part which images the sample liquid level accommodated in the sample container. It is an operation
  • movement flowchart which shows an example of the handling of the sample in the composite system which concerns on Example 3 of this invention. It is an operation
  • FIG. 1 is a schematic configuration diagram of an automatic analyzer 100 to which Embodiment 1 of the present invention is applied.
  • the automatic analyzer 100 includes a sample disk 12, a first reagent disk 41, a second reagent disk 42, and a reaction disk 36.
  • the sample disk 12 can be loaded with a sample container 10 that holds a sample.
  • the first reagent disk 41 and the second reagent disk 42 can be loaded with a reagent container 40 for storing a reagent.
  • a reaction vessel 35 is disposed on the periphery of the reaction disk 36.
  • the automatic analyzer 100 further includes a sample dispensing mechanism (sample dispensing mechanism) 15, a first reagent dispensing mechanism 20, a second reagent dispensing mechanism 21, a stirring device 30, a container washing mechanism 45, a light source 50, and spectral detection.
  • a sample dispensing mechanism sample dispensing mechanism
  • first reagent dispensing mechanism 20 a second reagent dispensing mechanism 21, a stirring device 30, a container washing mechanism 45, a light source 50, and spectral detection.
  • Device 51, computer 62, controller 60, and timing detector 61 for a sample dispensing mechanism 15, a first reagent dispensing mechanism 20, a second reagent dispensing mechanism 21, a stirring device 30, a container washing mechanism 45, a light source 50, and spectral detection.
  • the sample dispensing mechanism 15 includes a sample probe (dispensing probe) 16 (shown in FIG. 2), and dispenses a sample sucked from the sample container 10 into the reaction container 35 using the sample probe 16.
  • the first reagent dispensing mechanism 20 includes a reagent dispensing probe, and dispenses the reagent sucked from the reagent container 40 in the first reagent disk 41 into the reaction container 35.
  • the second reagent dispensing mechanism 21 also includes a reagent dispensing probe, and dispenses the reagent sucked from the reagent container 40 in the second reagent disk 42 into the reaction container 35.
  • the stirring device 30 stirs the liquid in the reaction vessel 35.
  • the container cleaning mechanism 45 cleans the reaction container 35.
  • the light source 50 is installed near the inner periphery of the reaction disk 36 and irradiates the reaction vessel 35 with light.
  • the spectroscopic detector 51 is installed on the opposite side of the light source 50 with the reaction vessel 35 interposed therebetween, and detects the light emitted from the light source 50 to the sample.
  • the computer 62 is connected to the spectroscopic detector 51 and analyzes the sample using the detection result of the spectroscopic detector 51.
  • the light source 50, the spectroscopic detector 51, and the computer 62 constitute an analysis unit that measures and analyzes the sample stored in the reaction container 35.
  • the controller 60 controls the overall operation of the automatic analyzer 100.
  • the timing detector 61 detects the operation start / stop timing of each drive mechanism and monitors the passage of time from the operation start / stop.
  • the sample probe 16 of the sample dispensing mechanism 15 is connected to a metering pump 25 by a dispensing channel 24.
  • a pressure sensor 26 is provided in the middle of the dispensing flow path 24.
  • the reagent dispensing probe of the first reagent dispensing mechanism 20 and the reagent dispensing probe of the second reagent dispensing mechanism 21 are also similar to the sample probe 16 in the dispensing flow path, the metering pump.
  • the pressure sensor is connected.
  • Sample to be examined such as blood is put in the sample container 10 and set on the sample disk 12.
  • the type of analysis to be performed on each sample is input to the controller 60.
  • a sample collected from the sample container 10 by the sample probe 16 of the sample dispensing mechanism 15 is dispensed into the reaction container 35 arranged on the reaction disk 36 in a certain amount.
  • a certain amount of reagent is dispensed from the reagent container 40 installed on the first reagent disk 41 or the second reagent disk 42 to the reaction container 35 by the first reagent dispensing mechanism 20 or the second reagent dispensing mechanism 21, and the stirring device 30 to stir.
  • the sample and reagent dispensing amounts are preset in the controller 60 for each type of analysis.
  • the reaction disk 36 repeats rotation stop periodically.
  • the spectroscopic detector 51 measures light at the timing when the reaction vessel 35 passes in front of the light source 50. Repeat photometry during 10 minutes reaction time. Thereafter, the container cleaning mechanism 45 discharges and cleans the reaction solution in the reaction container 35. Between them, another reaction vessel 35 operates in parallel using another sample and reagent.
  • the computer 62 calculates the concentration of the component according to the type of analysis using the data measured by the spectroscopic detector 51, and displays the result on the display (output unit) of the computer 62.
  • FIG. 2 is a view showing a peripheral configuration of the sample dispensing mechanism 15. Since the first reagent dispensing mechanism 20 and the second reagent dispensing mechanism 21 have the same configuration, the peripheral configuration of the sample dispensing mechanism 15 will be described below.
  • the metering pump 25 has a drive mechanism 67 and a plunger 66, and is connected to the pump 69 through a valve 68.
  • the metering pump 25 is controlled by the controller 60 and sucks and discharges the sample.
  • the metering pump 25 and the sample probe 16 are connected via a dispensing channel 24.
  • the pressure sensor 26 is disposed between the plunger 66 and the sample probe 16 via the dispensing channel 24 and detects the pressure in the sample probe 16.
  • the sample dispensing mechanism 15 is provided with a liquid level detection mechanism that detects that the sample probe 16 is in contact with the liquid level.
  • the pressure sensor 26 detects the pressure change in the sample probe 16 and compares it with the pressure change in the sample probe 16 when normally sucked to determine whether the suction is normal suction or abnormal suction such as idle suction. be able to.
  • the pressure sensor 26 is connected to the AD converter 621.
  • the timing detection unit 61 instructs the AD converter 621 to perform digital conversion (and outputs a clock signal) when a time to be described later elapses after the metering pump 25 stops.
  • the AD converter 621 digitally converts the analog voltage data output from the pressure sensor 26 according to the instruction.
  • the data extraction unit 622 receives the digital data of the pressure waveform from the AD converter 621 and passes it to the abnormality determination unit 623.
  • the abnormality determination unit 623 determines whether idle suction has occurred using the data. That is, the abnormality determination unit 623 determines whether the liquid suction with the probe is normal or the air suction abnormality based on the change in pressure measured by the pressure sensor.
  • the determination result (the number of bubble determinations) of the abnormality determination unit 623 is stored in the storage unit 624.
  • the AD converter 621, the data extraction unit 622, the abnormality determination unit 623, and the storage unit 624 can be configured as a part of the computer 62, for example.
  • the pressure sensor 26, the AD converter 621, the data extraction unit 622, and the abnormality determination unit 623 constitute a bubble determination unit.
  • the abnormality determination unit 623 of the bubble determination unit can determine whether or not bubbles are present on the liquid level of the liquid stored in the sample container 10.
  • the sample dispensing mechanism 15 has a moving mechanism (not shown). By this moving mechanism moving the sample probe 16 up and down and rotating, the sample probe 16 can move from the sample container 10 to a position where the sample is sucked, and can move to a position where the sample is discharged from the reaction container 35. .
  • the controller 60 Before sucking the sample, the controller 60 opens the valve 68 and fills the inside of the dispensing flow path 24 and the sample probe 16 with the system liquid 79 supplied from the pump 69. Next, the controller 60 lowers the plunger 66 by the drive mechanism 67 while the tip of the sample probe 16 is in the air, and sucks the segment air 80.
  • the controller 60 lowers the sample probe 16 into the sample container 10 and lowers the plunger 66 by a predetermined amount with the tip immersed in the sample to suck the sample into the sample probe 16. Thereby, the sample is sucked into the sample probe 16 as the suction liquid 81.
  • the dispensing probe of the first reagent dispensing mechanism 20 and the dispensing probe of the second reagent dispensing mechanism 21 perform the same operation, but the suction liquid 81 in these cases is a reagent.
  • sample dispensing mechanism 15 and the reagent dispensing mechanisms 20, 21 are It can be generically called a liquid dispensing mechanism for aspirating a liquid specimen or reagent.
  • FIG. 3 shows a combination of a plurality of analysis units (including a liquid dispensing mechanism, a bubble determination unit, a storage unit that stores the number of bubble determinations, an analysis unit, and a controller that controls these liquid dispensing mechanisms, the bubble determination unit, and the analysis unit). It is the upper surface layout schematic diagram of an example of another automatic analyzer (automatic analysis system).
  • the automatic analyzer can be configured by combining analysis units that measure and analyze different or the same measurement items in one system.
  • the requested items refer to all items requested for measurement, and the measured items are one or more items of the requested items.
  • the number of analysis units constituting the system may be one, or a plurality may be combined.
  • the same specimen can be transported to and analyzed by either one of the first unit 110 and the second unit 111 or both of the analysis units 110 and 111. .
  • the sample loading unit 101 is a portion for loading a plurality of sample racks 102.
  • the sample rack 102 loaded from the sample loading unit 101 holds at least one sample container (sample container) 10, and passes through the sample identification unit 106, the transport line 103, and the lead-in line 107 according to the measurement item request status. Then, it is transported to one or both of the analysis units 110 and 111.
  • the sample rack 102 transported to the analysis unit 110 is transported by the sample transport unit 120 in the analysis unit 110, and the sample is analyzed from the sample container 10 held in the sample rack 102 by a mechanism similar to the sample dispensing mechanism 15. Dispensed to the analysis unit in the unit 110.
  • the analysis unit 110 includes the reagent disks 41 and 42, the reaction disk 36, the spectroscopic detector 51, the controller 60, the timing detection unit 61, the computer 62, and the like shown in FIG. However, the controller 60, the timing detection unit 61, and the computer 62 can be shared by the plurality of analysis units 110 and 111.
  • the sample rack 102 for which the sample has been dispensed is transferred to the sample standby unit 104 by the sample transfer unit 120.
  • the sample rack 102 transported to the analysis unit 111 is transported by the sample transport unit 121 in the analysis unit 111, and the sample is transferred from the sample container 10 to the analysis unit in the analysis unit 111 by a mechanism similar to the sample dispensing mechanism 15. It is dispensed.
  • the analysis unit 111 includes reagent disks 41 and 42 and the like.
  • the sample rack 102 for which the sample has been dispensed is transported to the sample standby unit 104 by the sample transport unit 121.
  • the sample rack 102 that has been analyzed and is transported to the sample standby unit 104 is transported to the sample recovery unit 105 via the return transport line 108.
  • the sample waiting unit 104 is a part that temporarily waits the sample rack 102 until a determination result indicating whether or not to perform an automatic reexamination described later is obtained after dispensing ends in the respective analysis units 110 and 111. Note that whether or not to perform the automatic reexamination can be set by the user through an input operation from the computer 62.
  • the sample standby unit 104 waits until the measurement result is output.
  • FIG. 3 is an example of a general automatic analysis system, and the system according to the first embodiment of the present invention is an example in which only one analysis unit 110 is provided as an analysis unit.
  • FIG. 4 is a flowchart illustrating an example of the abnormal suction check and the sample processing flow according to the first embodiment of the present invention, and is a flow in which operation is controlled by the controller 60.
  • the first embodiment is an automatic analyzer having a system configuration having one analysis unit 110 as described above.
  • the sample rack 102 installed in the input unit 101 is recognized by the sample identification unit 106 (steps S401 and S402). Then, it is confirmed whether or not there is a measurement request for the measurement item in the first unit 110 with respect to the sample rack 102 (step S403). If there is a measurement request for a measurement item in step S403, it is transferred to the first unit 110 (step S404).
  • step S403 if there is no measurement request for the measurement item, it is transported to the sample collection unit 105, and the process ends (step S411).
  • step S404 the abnormal suction cumulative number is set to 0 for the sample transported to the first unit 110 (step S405). Then, a sample dispensing operation and a suction abnormality check process (B ′) are performed (step S406).
  • step S406 the sample dispensing operation and the suction abnormality check process (B ′) in step S406 will be described in detail below.
  • FIG. 5 is a detailed flowchart of step S406 shown in FIG.
  • a dispensing operation is started for the measurement item requested for the sample transported to the first unit 110 (step S421). And it is confirmed by the abnormality determination part 623 whether it is abnormal suction by bubble or empty suction (step S422).
  • the abnormality determination unit 623 determines whether or not the abnormal suction due to bubbles or air suction (also referred to as air suction abnormality) from the pressure change in the sample probe 16 detected by the pressure sensor 26. Since the liquid level detection mechanism performs an error dispensing operation (suction operation) with the liquid level, it is possible to determine whether the suction is normal or abnormal based on a pressure change.
  • step S422 If it is determined in step S422 that the aspiration is not abnormal, it is confirmed whether dispensing of all measurement items requested for the sample has been completed (step S428). In step S428, if there is an incomplete measurement item among all the requested measurement items, the dispensing operation for the next requested measurement item is repeated (step S421).
  • step S422 If it is determined in step S422 that the suction is abnormal, the sample that was originally scheduled for the dispensing item that has been determined to be abnormal suction (because it is a dispensing operation for the target measurement item). All the analysis operations such as discharge into the reaction container 35 and subsequent reagent dispensing are canceled (step S423). Then, the abnormal suction accumulation count + 1 is set (step S424). The controller thus updates the cumulative number of abnormal suctions and stores it in the storage unit.
  • a data alarm indicating abnormal suction due to bubbles or empty suction is set for the dispensing item determined to be abnormal suction (step S425).
  • measurement data is not output because it is abnormal suction and the normal analysis operation flow is not completed.
  • the predetermined cumulative allowable number of times is the cumulative number of abnormal suctions that are allowed by the bubble or empty suction for the sample, and is set in advance (stored in the storage unit 624). That is, the storage unit stores in advance the cumulative allowable number (2 or more) of the number of abnormal air suctions. In addition, the cumulative number of air suction abnormalities for each sample determined by the abnormality determination unit is also stored in this storage unit.
  • the cumulative allowable number is desirably a value of 2 or more.
  • the cumulative allowable number may be unchanged as an initial set value, or the user may be able to set an arbitrary value in consideration of the characteristics and experimental results of the specimen handled for each facility.
  • sample contained in the sample container is classified into types such as patient specimen (patient-derived body fluid, etc.), quality control sample, standard solution, etc., but it may be possible to set differently depending on each type. .
  • the reason for accumulating the number of abnormal suctions is that the state of bubbles present on the liquid surface is assumed to change due to the disappearance or movement of bubbles. Accumulation corresponds to the number of times of abnormality determination regardless of whether or not abnormal suction (abnormal suction abnormality) continues.
  • idle suction is limited to the continuous number of times as in Patent Document 3, it is not possible to cope with an abnormal suction due to bubble movement.
  • Abnormalities that occur in discontinuities that are determined to be abnormal after being determined to be normal once in the same sample by comparing with the number of determinations of abnormalities in the case of abnormalities that occur discontinuously as well as abnormalities that occur continuously. Can be treated appropriately. That is, even when the air suction abnormality does not continue, the cumulative number of air suction abnormalities is updated, and the cumulative number is the number of times that the count is added without being reset even when the air suction abnormality continuously occurs.
  • FIG. 14 is a diagram illustrating a case where abnormal suction occurs continuously and discontinuously under conditions where the cumulative allowable number of times is 2.
  • Case A is a case where the determination of abnormal suction is continued
  • Case B is a case where the determination of abnormal suction is discontinuous and a normal suction determination is made in the meantime.
  • case B where it is assumed that the number of bubbles on the liquid surface has changed by managing the number of times by accumulation, there is a possibility that the number of accumulations reaches 2 in measurement item 3 and abnormal suction is again performed on the sample. The dispensing operation of measurement item 4 with no is not performed.
  • step S428 When it is determined that the dispensing item is abnormal suction and the number is less than the predetermined cumulative allowable number, it is confirmed whether dispensing of all the requested items for the sample is completed (step S428). If the requested item for the sample is incomplete, the dispensing operation and subsequent steps are repeated for the next requested item (steps S421 to S428). That is, when the abnormality determination unit 623 determines that bubbles are present on the liquid level of the specimen that is a liquid, the controller 60 causes the sample dispensing mechanism 15 to repeatedly perform the sample aspirating operation again, thereby To determine if bubbles are present.
  • step S426 when the abnormal suction cumulative number is equal to or greater than the cumulative allowable number, the process is also terminated.
  • step S407 if the cumulative number of abnormal suctions is equal to or greater than the predetermined allowable cumulative number, all analysis requests for the sample are canceled (step S409), and the sample is transported to the sample collection unit 105 (step S411). If there is another sample scheduled next, an aspiration operation from the other sample is performed.
  • step S407 when the abnormal suction cumulative number is equal to or larger than the predetermined allowable cumulative number, the suction operation for the sample can be prohibited in step S409 (steps S509, S614, S715, and S815 described later). Is the same).
  • step S407 when the abnormal suction cumulative number is less than the predetermined allowable cumulative number, the process proceeds to step S411, and the sample is transported to the sample recovery unit 105.
  • Automatic re-examination is when abnormalities such as abnormal liquid suction are detected for the dispensing item of the liquid dispensing mechanism that aspirates a liquid specimen or reagent, but the cumulative number of abnormal suction is less than the cumulative allowable number Means to automatically set a re-inspection request (re-inspection request).
  • FIG. 6 is a flowchart of abnormal suction check and sample processing according to the first embodiment of the present invention, and shows an example in which the setting of automatic retest is valid.
  • the operation shown in FIG. 6 is controlled by the controller 60.
  • steps S401 to S407, S409, and S411 in FIG. 4 are the same as steps S501 to S507, S509, and S511 in FIG. 6, and steps S508 and S510 are added to the flowchart in FIG.
  • the accumulated abnormal suction count is set to 0 for the sample transported to the first unit 110 (step S505).
  • the abnormal suction accumulation count is set to 0 for the sample only when the sample is transported to the first unit 110 for analysis for the first time. For example, if the sample is transported to the first unit 110 for the second time due to automatic retesting or the like, resetting of the abnormal suction cumulative number for the sample is not performed (set to 0).
  • step S506 a sample dispensing operation and a suction abnormality check process (B) are performed (step S506).
  • FIG. 7 is a flowchart of the sample dispensing operation and the suction abnormality check process (B).
  • the basic flow shown in FIG. 7 is the same as the flow of FIG. 5 and is the same as the sample dispensing operation and the suction abnormality check process (B ′). That is, steps S421 to S426 and S428 in FIG. 5 are the same as steps S521 to S526 and S528 in FIG. 7, and step S527 is added to the flowchart in FIG.
  • the flowchart of FIG. 7 is different from the example of FIG. 5 only in the part related to the setting with automatic re-examination.
  • step S521 the dispensing operation is started for the item requested for the sample.
  • step S522 it is confirmed whether or not the abnormal suction is caused by bubbles or empty suction. If it is determined that the suction is not abnormal suction, it is confirmed whether or not dispensing of all items requested for the sample has been completed (step S528). In step S528, all of the request items are not dispensed, and if not completed, the process returns to step S521 to repeat the dispensing operation for the next request item.
  • step S522 If it is determined in step S522 that abnormal suction has occurred, all analysis operations such as ejection of the sample originally scheduled for the dispensing item to the reaction container 35 and subsequent reagent dispensing are canceled (step S523). Then, the abnormal suction accumulation count + 1 is set (step S524). In this way, the controller updates the cumulative number of abnormal suctions and stores it in the storage unit. Further, a data alarm indicating abnormal suction due to bubbles or empty suction is set for the dispensing item (step S525). In this case, measurement data is not output because it is abnormal suction and the normal analysis operation flow is not completed. Next, it is confirmed whether the abnormal suction cumulative number is equal to or greater than a predetermined cumulative allowable number. (Step S526). The data alarm set in step S525 is displayed on the display unit (output unit) of the computer 62, as will be described later. The data alarm can also be output from the computer 62 by voice.
  • step S526 if the dispensing item is determined to be abnormal suction and the number is less than the predetermined allowable number of times, an automatic retest setting request is set for the dispensing item (step S527). Thereafter, it is confirmed whether dispensing of all requested items for the sample has been completed (step S528). If the requested item is not completed in step S528, the process returns to step S521 for the next requested item, and the dispensing operation and subsequent steps are repeated (steps S521 to S528). In step S526, when the predetermined cumulative allowable number is reached, the process is terminated.
  • step S507 the abnormal suction cumulative number of times for the sample is compared with the cumulative allowable number of times. When the cumulative allowable number is reached, all items requested for the sample are canceled (step S509). And it is conveyed to the sample collection part 105 (step S511). If there is another sample scheduled next, an aspiration operation from the other sample is performed.
  • step S507 if the cumulative number of abnormal aspirations for the sample is less than the allowable number of accumulations, the sample standby unit 104 outputs the measurement results for the items to be analyzed for the sample and subjected to automatic reexamination. Wait (step S508).
  • items subject to automatic reexamination items that are determined to be abnormal suction due to bubbles or empty suction for the first time are analyzed during automatic reexamination analysis because the automatic reexamination request is set as described above.
  • the abnormal suction determination item in the first time and the automatic retest.
  • step S527 of FIG. 7 When an automatic reexamination request for dispensing items is set in step S527 of FIG. 7, it is determined that an automatic reexamination request is made in step S510 via steps S507 and S508, and steps S503 to S506 are repeated. However, if there is no abnormal suction in the dispensing item in step S522 in FIG. 7, the automatic reexamination request continues as it is without accumulating the abnormal suction accumulation count. Then, the process proceeds from step S510 to step S510 via steps S503 to S508, it is determined that there is an automatic retest request, and the flow of FIG. 7 is further executed. In this case, there is a possibility that the useless flow may be repeated. Therefore, when it is determined that the abnormal suction is not performed continuously for a predetermined number of times in step S522 in FIG. 7, the setting of the automatic retest request is canceled. Thus, it is possible to avoid unnecessary loop repetition.
  • FIG. 8 is a diagram showing an example of a display screen that displays the result of measuring the sample in Example 1 of the present invention.
  • This display screen is displayed on the display unit of the computer 62, and the controller 60 causes the display unit of the computer 62, which is an output unit, to display the data alarm and the analysis result for each measurement count for each measurement item. .
  • the sample list display unit 901 displays the sample ID, rack number, type, comment, and date / time.
  • the measurement result display unit 902 displays an item name display unit 931, an initial measurement result display unit 932, an initial measurement result data alarm display unit 933, a retest measurement result display unit 934, and a retest measurement result data alarm display unit 935. ing.
  • the measurement result for the sample with the cursor is displayed on the measurement result display unit 902.
  • the example shown in FIG. 8 is a display example when the cursor is placed on the sample ID 10281235.
  • the first measurement result display unit 932 displays no measurement result, and the first measurement result data alarm display unit.
  • “933” “Samp. B” indicating abnormal suction of the sample is displayed.
  • the retest measurement result 160 is displayed on the retest measurement result display unit 934, and no alarm is displayed on the retest measurement result data alarm display unit 935. This is because no abnormality occurred in the retest.
  • the measurement result can be displayed on the display screen of the computer 62, and the measurer determines whether or not an abnormality has occurred in the first time, whether or not an abnormality has occurred in the retest, and if no abnormality has occurred. Can be recognized.
  • the first embodiment of the present invention there is an abnormality in the pressure waveform in the sample probe 16 at the time of sample dispensing, and dispensing is performed until the cumulative allowable number of times is reached even if it is determined as abnormal suction. If the operation is performed and it is not determined that the suction is abnormal, a measurement result can be obtained.
  • the measurement can be performed again, the analysis canceled for the sample, and the sample This eliminates the need to perform the discharge operation, the confirmation work by the user, and the countermeasure against defoaming, thereby realizing an automatic analyzer capable of reducing the work burden on the user. Further, even if it is determined that the normal suction is once performed and then the abnormal suction is performed, the determination is made based on the cumulative number of abnormal suctions, so that it is possible to appropriately cope with the air suction abnormality caused by the movement of the bubbles.
  • the controller updates the accumulated number of air suction abnormalities even when the air suction abnormality does not continue in the course of the operation in which the probe sucks liquid according to the number of measurement items for the same sample, and stores the storage unit. Until the updated cumulative number reaches the allowable cumulative number, continue the aspirating operation scheduled for the same sample, and when the updated cumulative number reaches the cumulative allowable number, the same sample It is desirable to cancel the request for the measurement item that has been scheduled, and then perform a suction operation from another liquid that is scheduled next.
  • the controller cancels the request for the measurement item scheduled for the sample and transports the sample to the sample collection unit, so that the user can quickly A reliable treatment is possible.
  • the second embodiment of the present invention includes a first unit 110 and a second unit 111 (composite system) which are analysis units of the automatic analysis system shown in FIG. 3, and the first unit 110 and the second unit are of the same type.
  • a bubble detection method a bubble detection method based on a pressure change in the sample probe 16 using the pressure sensor 26 as in the first embodiment. That is, each of the first and second units determines that bubbles are present on the liquid surface based on a change in pressure in the probe after the probe contacts the bubbles.
  • the dispensing mechanism of each probe is equipped with a liquid level detection mechanism.
  • the first and second units are both biochemical analysis units, or one is a biochemical analysis unit and the other is an electrolyte analysis unit.
  • Example 2 the case where automatic reexamination setting is effective is demonstrated as an example.
  • the first unit 110 and the second unit 111 include the sample dispensing mechanism 15, the reagent disks 41 and 42, the reaction disk 36, the light source 50, the spectroscopic detector 51, the controller 60, the timing detection unit 61, and the like shown in FIG. A computer 62 and the like are provided. However, the controller 60, the timing detection unit 61, and the computer 62 may be common to the first unit 110 and the second unit 111.
  • FIG. 9 is a flowchart showing an example of an abnormal suction check and sample processing flow according to the second embodiment of the present invention, and the operation of the controller 60 is controlled. Since the basic flow of the flowchart shown in FIG. 9 is the same as that of the first embodiment, the same parts will be described in a simplified manner. Here, the flow when analysis items are requested to both the first unit 110 and the second unit 111 for the same sample will be described.
  • the sample rack 102 is installed in the sample input unit 101, identified by the sample identification unit 106, the abnormal suction cumulative number is set to 0, and it is determined whether there is an analysis request of the first unit 110. If there is an analysis request, the sample rack 102 is transported to the first unit 110 (steps S601 to S605).
  • step S606 a sample dispensing operation and an abnormal suction check process (B) are performed. Since the sample dispensing operation and the abnormal suction check process (B) are the same as the process flow of the first embodiment (the process flow of FIG. 7), the description thereof is omitted.
  • step S607 After the sample dispensing operation and the abnormal suction check process (B) in step S606, the abnormal suction cumulative number is compared with the cumulative allowable number (step S607).
  • step S607 when the abnormal suction cumulative number has reached the cumulative allowable number, the request for all the measurement items in the first unit 110 and the second unit 111 for the sample is canceled (step S614).
  • This is also likely to be the same abnormal suction determination in the second unit 111, which is the other analysis unit that uses the same bubble detection method, and avoids consuming unnecessary samples, reagents, time, and the like. Because. Therefore, the cumulative number of abnormal suctions is managed by adding the first unit 110 and the second unit 111 together.
  • the abnormal suction accumulation count is reset in step S603 before transport to the analysis unit (the first unit 110, the second unit 111), but the abnormal suction cumulative count in the first unit 110 and the second unit 111 is reset.
  • the timing for resetting is not limited as long as it can be managed in total.
  • the cumulative number of air suction abnormalities determined as air suction abnormalities by the respective determination units of the first unit and the second unit are added together and updated for the same sample, and are stored in the storage unit. It is desirable to continue the aspirating operation scheduled for the sample until the total number of accumulated times reaches the permitted number of accumulated times.
  • step S614 the specimen is transported to the specimen collection unit 105 (step S615).
  • step S607 after dispensing all the initial request items in the first unit 110, the abnormal suction cumulative number is compared with the cumulative allowable number, and if the cumulative allowable number is not reached, the second unit 111 is requested for the measurement item. It is confirmed whether or not there is (step S608). If there is a request for a measurement item in the second unit 111 in step S608, the sample is transported to the second unit 111 (step S609). In this case, since the abnormal suction cumulative number in the first unit 110 is taken over, the abnormal suction cumulative number is not reset (set to 0). Next, the specimen dispensing operation and the abnormal suction check process (B) are performed in the second unit 111 (step S610).
  • step S611 After the completion of the process (B), if the cumulative number of abnormal suctions is equal to or greater than the allowable cumulative number in step S611, all the initial and retest requests are canceled and the specimen is transported to the specimen collection unit 105 (steps S614 and S615).
  • step S611 when the cumulative number of abnormal aspirations for the sample is less than the allowable number of accumulations and all of the first dispensing items for the first unit 110 and the second unit 111 are completed, the sample is dispensed.
  • the sample waiting unit 104 waits for the output of the measurement result for the item to be subject to automatic retest (step S612).
  • the first unit 110 confirms whether there is an analysis request (steps S613 and S604).
  • the sample is transported again to the first unit 110 (step S605), and the sample dispensing operation and the abnormal suction check process (B) are performed (step S606).
  • the sample dispensing operation and the abnormal suction check process (B) are performed (step S606).
  • measurement is performed as an automatic retest request item during this period.
  • the abnormal suction cumulative number is compared with less than the cumulative allowable number (step S607).
  • the sample is subsequently transported to the second unit 111 (step S609).
  • step S610 a sample dispensing operation and an abnormal suction check process (B) are performed.
  • the second unit 111 if there is an item that becomes abnormal suction due to bubbles or empty suction at the time of initial dispensing, measurement is performed as an automatic retest request item during this time.
  • step S611 it is determined whether or not the abnormal suction cumulative number is equal to or greater than the allowable cumulative number. If the abnormal suction cumulative number is less than the cumulative allowable number, steps S612 and S613 are executed.
  • the sample is transported to the sample collection unit (step S615).
  • the same effect as that of the first embodiment can be obtained even in an example in which the two analysis units 110 and 111 are provided and the same kind of bubble detection method is used.
  • the third embodiment of the present invention includes a first unit 110 and a second unit 111 which are analysis units of the automatic analysis system shown in FIG. 3 (complex system), and the first unit 110 and the second unit are different from each other.
  • It is an example using the bubble detection method The bubble detection method by the pressure change in the sample probe 16 using the pressure sensor 26 similarly to Example 1, and the method of imaging a liquid level with an imaging part, and detecting a bubble). That is, the second unit determines that bubbles are present on the liquid surface without contacting the liquid.
  • the first and second units are cases where one is a biochemical analysis unit and the other is an immune analysis unit.
  • Example 3 it demonstrates as an example when the automatic reexamination setting is effective.
  • FIG. 10 is a diagram showing an imaging device (non-contact detection device) 70 that images the sample liquid level stored in the sample container 10 mounted on the sample rack 102 conveyed by the sample conveyance unit 121 of the second unit 111. It is.
  • the imaging device 70 is disposed at a position close to the sample transport unit 121.
  • the illumination light 112 generated from the illumination unit 118 is reflected by the sample liquid surface accommodated in the sample container 10, enters the imaging unit 117, and the sample liquid surface is imaged.
  • the operation of the imaging unit 117 is controlled by the imaging controller 114, and the presence or absence of bubbles on the liquid level is determined by the image analysis unit 115.
  • the device control unit (controller) 60 notifies the computer 62 to display a data alarm in the measurement result of the sample. Instead of the data alarm or together with the data alarm, a system alarm can be generated to notify the user of the occurrence of bubbles.
  • the imaging of the liquid level by the imaging device 70 is performed for each sample container mounted on the rack 102, and it is determined whether or not bubbles are generated on each liquid level.
  • the brightness of the illumination light 112 generated from the illumination unit 118 can be adjusted using the reflected light from the brightness correction structure 113.
  • FIG. 11 is an operation flowchart illustrating an example of sample handling in the complex system according to the third embodiment of the present invention, and the operation is controlled by the controller 60.
  • the first unit 110 uses a bubble detection method for determining abnormal suction of bubbles and air suction based on a pressure waveform during suction.
  • the second unit 111 uses a bubble detection method that determines the liquid level without contacting the object to be aspirated by an image of the liquid level before the sample is aspirated.
  • the sample rack 102 When the same sample held in the sample rack 102 includes both the items measured by the first unit 110 and the items measured by the second unit 111, the sample rack 102 includes the first unit 110 and the first unit. Measurement may be started from any of the two units 111. Considering the effect of sample carryover, it may be transported first to an analysis unit that measures highly sensitive measurement items, or considering the reduction of throughput, comparing the load of each analysis unit, an analysis unit with a lighter load You may convey ahead.
  • the operation flow shown in FIG. 11 shows an example in which after the analysis in the second unit 111, the analysis is carried to the first unit 110.
  • step S701 to S704 when there is an analysis request in the second unit 111, the sample rack 102 installed in the sample insertion unit 101 is transported to a predetermined suction position in the second unit 111 (steps S701 to S704). Then, no bubble detection is set for the sample (step S705), and the sample dispensing operation and the bubble detection process (A) are performed.
  • the sample dispensing operation and the bubble detection process (A) will be described in detail.
  • FIG. 12 is an operation flowchart of the sample dispensing operation and the bubble detection process (A).
  • Step S711 is similar to the sample dispensing operation and abnormal suction check process (B) shown in FIG.
  • step S711 and S715 when it is determined as abnormal suction and the cumulative allowable number is reached, all request items for the sample are canceled (steps S711 and S715).
  • the data alarm to be set when it is determined that the abnormal suction of bubbles or empty suction may be distinguished from the data alarm set in the second unit 111 and the data alarm in the first unit 110, or may be the same. However, when it is determined as abnormal suction due to bubbles or empty suction, it is desirable to distinguish from clogging.
  • the measurement results are output for the items to be dispensed for the sample and subjected to automatic reexamination. Wait in the sample waiting section (step S713). If there is an automatic retest request according to the output result, the second unit 111 checks whether there is an analysis request (step S714). If there is an automatic reexamination request, analysis is performed in the second unit 111 (steps S703 to S707).
  • step S708 All dispensing for the automatic reexamination request item in the second unit 111 is completed, and it is confirmed whether there is an analysis request in the first unit 110 (step S708).
  • analysis is performed in the first unit 110 (steps S709 to S712).
  • the sample is transported to the sample collection unit (steps S713 to S716).
  • FIG. 11 The example shown in FIG. 11 described above is an example in the case where the analysis is started from the second unit 111, but the example shown below is an example in which the analysis is started from the first unit 110, and other conditions are as follows. This is the same as the example shown in FIG. 11 described above.
  • FIG. 13 is an operation flowchart in an example in which analysis is started from the first unit 110, and the operation is controlled by the controller 60.
  • FIG. 13 The basic flow in FIG. 13 is the same as the flow shown in FIG.
  • the sample rack 102 installed in the sample loading unit 101 transports a sample to the first unit 110 if the first unit 110 has an analysis request (steps S801 to S804).
  • the cumulative number of abnormal suctions for the sample is reset (step S805), and the sample dispensing operation and abnormal suction check process (B) are performed (step S806).
  • the contents of the sputum sample dispensing operation and the abnormal suction check process (B) are the same as those in the flowchart shown in FIG.
  • Step S807 it is confirmed whether there is a measurement request (analysis request) in the second unit 111 regardless of the cumulative number of abnormal suctions in the first unit 110.
  • Step S807 if there is a measurement request, the sample is transported to the second unit 111 (Step S808). That is, when there is an analysis request in the second unit 111, the determination result of the bubble detection method at the time of aspiration in the first unit 110 in the sample is not considered. This is because the bubble detection method in the second unit 111 includes a non-contact detection device that is non-contact with the sample and can determine the presence or absence of bubbles in a relatively short time by imaging the sample liquid surface.
  • a sample dispensing operation is performed, and a bubble detection process is performed (steps S808 to S810).
  • step S811 If it is determined by the bubble discrimination method in the second unit 111 that bubbles are detected (step S811), all requests for the sample are canceled and collected in the sample collection unit 105 (steps S815 and S816). That is, when it is determined that bubbles are present, the second unit cancels the request for the measurement item scheduled in the second unit regardless of the cumulative number of air suction abnormalities in the first unit.
  • step S811 If it is determined by the determination method in the second unit 111 that there is no bubble detection (step S811), it is confirmed whether there is a request for an initial measurement item in the first unit 110 (step S812). At this time, if the first unit 110 has reached the cumulative allowable number of times and there is an undispensed initial request, the sample is transported to the first unit 110 (steps S803 and S804). This is because, after the dispensing operation in the first unit 110, it was determined that the second unit 111 had no bubble detection, and it is assumed that the bubbles disappeared.
  • the abnormal suction cumulative number of times is set to 0 again for the sample transported to the first unit 110 (step S805). That is, the abnormal suction cumulative number in the first unit 110 before the bubble detection determination by the second unit 111 is not taken over.
  • the sample waiting unit 104 waits for the result output (step S813).
  • the output result if there is an automatic retest request item, it is confirmed whether there is an analysis request in the first unit 110 (step S803). If there is an analysis request in the first unit 110, it is transported again to the first unit 110 (step S804). Thereafter, a sample dispensing operation and an abnormal suction check process (B) are performed (step S806). At this time, in the processing flow at the time of automatic reexamination, the resetting of the abnormal suction cumulative number is not performed before the execution of step S806.
  • step S806 and S807 After the dispensing operation for the automatic reexamination request in the first unit 110 is performed, it is confirmed whether there is an analysis request in the second unit 111 (steps S806 and S807). If there is an automatic re-examination request, analysis is performed in the second unit 111 (S809, S810). The flow at the time of automatic reexamination is the same as that at the first measurement.
  • the same effect as that of the first embodiment can be obtained even in an example in which two analysis units 110 and 111 are provided and different bubble detection methods are used.
  • the analysis units are the first unit 110 and the second unit 111, but the present invention can be applied to an analysis system in which three or more analysis units are combined. .
  • the bubble detection method in the first embodiment is a detection method based on the pressure change of the sample probe 16, but the method of detecting the bubbles by imaging the liquid surface with the imaging unit is used instead of the detection method based on the pressure change. It is also possible.
  • the reagent dispensing mechanism has the same configuration as the sample dispensing mechanism shown in FIG.
  • the sample (specimen) and the reagent can be collectively referred to as a liquid
  • the liquid dispensing mechanism that sucks and discharges the liquid includes both the sample dispensing mechanism and the reagent dispensing mechanism.
  • the sample recovery unit 105 may include a reagent recovery unit, and the sample recovery unit and the reagent recovery unit can be collectively referred to as a liquid recovery unit. In the case where there is no reagent recovery unit for the reagent, dispensing from the reagent container may be canceled while the reagent container is installed on the reagent disk without recovering the reagent container.
  • sample list display unit 902 ... measurement result display unit, 931 ... item name display unit, 932 ... first measurement result display Part, 933 ... first measurement result data Taaramu display unit, 934 ... review measurement result display unit, 935 ... review measurement result data alarm display unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

液面に泡が検知された場合でも泡の検知を再実行して高価格化を伴うことなくユーザの作業負担低減可能な自動分析装置が実現される。液体を吸引する液体分注機構15と、液体分注機構15が有するプローブ16内の圧力変化を測定する圧力センサ26と、測定した圧力変化によりプローブ16の液体吸引が正常か空吸異常かを判定する判定部623と、分析部と、液体毎の空吸異常の累積回数と空吸異常回数累積許容回数とを記憶する記憶部624と、液体分注機構15、判定部623及び分析部の動作を制御するコントローラ60とを備える。コントローラ60は同一液体に対し測定項目数に応じてプローブ16の液体吸引動作過程で空吸異常が不連続でも空吸異常の累積回数を更新して記憶部624に記憶させ累積回数が累積許容回数に達するまで予定吸引動作を継続し、更新累積回数が累積許容回数に達したときは予定測定項目依頼をキャンセルし次の予定の別液体の吸引動作を行う。

Description

自動分析装置
 本発明は、試薬や検体等の溶液を所定量吸引し、反応容器に吐出する分注機構を備えた自動分析装置に関する。
 臨床検査用の自動分析装置では、血液や尿など、生体試料中の特定成分の測定を行っている。その一般的な動きとしては、試料(検体)を専用ノズルによって試料容器から反応容器へ分注した後、試薬を専用ノズルによって試薬容器から試薬を、試料が収容された反応容器に分注する。そして、攪拌を行った後に、一定時間反応させ、反応液から得られる吸光度や発光量などに応じた検出手段により測定する。
 そのため、試薬や検体等の溶液が所定の量の通りに正しく分注されていないと、分析結果が正しく得られなくなる可能性がある。このため、自動分析装置においては、検体および試薬等の溶液を所定の量だけ正しく分注することが重要である。
 所定量の溶液を正確に分注するための方法として、液面の位置を検知して、液面から所定の深さだけノズルを溶液内に浸入させ、溶液の吸引を行う方式がある。この方式では確実に液面より下から溶液の吸引を開始するため、空気の吸引等による空吸いによる吸引量のばらつきを防ぐことができる。この機能を実現するため、自動分析装置の分注機構には、ノズルが液面に接したことを検知する液面検知機構が備えられていることが一般的である。
 しかし、この場合、溶液の表面に泡が存在すると、この泡の表面を液面検知機構が液面と誤って検知してしまうことがある。そうすると、真の液面でない位置から溶液の吸引を開始してしまうため、空吸いが生じて分注量がばらつき、分析結果に影響する可能性がある。
 そのため、一般的に自動分析装置においては、自動分析装置に搭載する前に試料における泡等を目視確認し、このような試料に対する分析を回避している。
 しかし、取り扱う試料数の多い施設など、ユーザによる十分な確認ができない場合や、十分な確認を行った後においても、自動前処理システムを用いて、確認を終了した試料を子分注する際に泡を発生する場合もある。
 このような溶液の吸引量不足を引き起こす泡の誤検知を回避するための方式として、特許文献1、2に記載された技術がある。
 特許文献1には、分注流路内に設けた圧力センサにより吸引時の圧力データと正常吸引時の基準データとを比較し、吸引の異常を検出する技術が記載されている。
 また、特許文献2には、吸引対象となる液面を撮影する手段により、吸引位置の泡の有無を判定し、泡がある場合には吸引前に、超音波発生機構が発生する超音波により泡を消滅させる技術が記載されている。
 また、特許文献3には、分注異常判定において、空吸引であると判断された場合は、サンプルプローブに対する洗浄を行った後、再度当該検体に対し、分注を行う技術が記載されている。再度行う分注では下降量を前回下降量よりも増やし、多めに突込み、正常と判定された場合には分注を継続することが記載されている。
特許5865633号公報 特開2014-145621号公報 特開2004-125780号公報
 特許文献1に記載の技術においては、泡等の異常と判断された検体は、以降のこの検体に対する分析がキャンセルされ、自動分析装置から排出された後、ユーザによる確認作業および消泡対処が施される。その後、再度、自動分析装置に再投入し再検査する必要があった。
 しかし、吸引時にノズルが液面と接触しているため、泡という特性上、1度目の吸引後に泡が消滅されている可能性もあり、上述した自動分析装置からの排出、確認作業、及び自動分析装置への再投入が実際には不要であった場合が発生していた。
 また、特許文献2に記載の技術は、液面の撮影手段の他に、超音波発生機構、超音波発生機構の設置スペースが必要であり、かつ、画像解析に関わる膨大なデータ量が必要となり、高価格化となり、安価に実現することが困難であった。
 また、特許文献3に記載の技術は、所定の異常吸引が連続で判定された場合を想定しており、所定回数以上の空吸引が連続して続いた場合、残分析項目の分析を取り消し、次の検体分注に移ることが記載されている。当該文献の図17においては、所定回数に到達する前に一度正常判定がなされた後は、所定回数のカウントをリセットし新たに試料分注するものと考えられる。このような制御の場合には、正常判定がなされた後に泡が検体表面を移動しサンプルプローブがこの泡に接触し空吸引となる場合でも再度1からカウントし直し空吸引が続く場合には所定回数まで吸引動作を繰り返すこととなる。このため、不連続で空吸引が続く試料においては、一度装置からユーザに検体を早めに戻し手業により泡を除去する方がよいにも係わらず空吸引が生じる度に所定回数まで吸引動作を繰り返すためユーザに検体を戻すのが遅れる可能性がある。
 そこで、本発明の目的は、正確に試料や試薬を所定の量分注することが求められる自動分析装置において、液面に泡が検知された場合であっても、その後、短時間で泡が消滅する場合があることや泡が移動することに着目し、空吸異常の累積回数が所定の累積許容回数未満であれば当該液体に対する吸引動作を再実行することにより、高価格化を伴うことなくユーザの作業負担の低減が可能な自動分析装置を実現することである。また、空吸異常が連続しない場合であっても空吸異常の累積回数が所定の累積許容回数に達したのであれば当該液体に対し予定されていた測定項目の依頼をキャンセルし次に予定されている別の液体から吸引動作を行い、ユーザに測定項目の依頼をキャンセルした液体を可能な限り早く戻すことで早急に確実な処置が可能な自動分析装置を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 自動分析装置において、容器に収容された液体である試料又は試薬を吸引する液体分注機構と、前記液体分注機構が有するプローブ内の圧力変化を測定する圧力センサと、前記圧力センサが測定した圧力の変化に基づいてプローブでの液体吸引が正常か空吸異常かを判定する判定部と、試料を分析する分析部と、前記判定部によって判定された液体毎の空吸異常の累積回数と、前記空吸異常回数の累積許容回数(2以上)とを記憶する記憶部と、前記液体分注機構、前記判定部及び前記分析部の動作を制御するコントローラと、を備え、前記コントローラは、同一液体に対し測定項目数の数に応じてプローブが液体を吸引する吸引動作の過程で空吸異常が連続しない場合であっても空吸異常の累積回数を更新して前記記憶部に記憶させ、更新された累積回数が前記累積許容回数に達するまでは、当該液体に対し予定されている吸引動作を継続し、更新された累積回数が前記累積許容回数に達したときは、当該液体に対し予定されていた測定項目の依頼をキャンセルし、次に予定されている別の液体からの吸引動作を行う。
 また、自動分析装置において、容器に収容された液体である試料又は試薬を吸引し、反応容器に吐出する液体分注機構と、上記容器に収容された液体の液面上に泡が存在するか否かを判定する泡判定部と、上記泡判定部が、同一の上記容器に収容された液体の液面上に泡が存在すると判定した泡判定回数を記憶する記憶部と、上記反応容器に収容された試料を測定し、分析する分析部と、上記液体分注機構、上記泡判定部及び上記分析部の動作を制御するコントローラと、を備え、上記コントローラは、上記泡判定部が上記液体の液面上に泡が存在すると判定したとき、上記液体分注機構に上記液体の吸引動作を繰り返し実行させ、再度、上記液面上に泡が存在するか否かを判定し、上記記憶部に記憶された泡判定回数が累積許容回数以上となったときには、上記液体の吸引動作を禁止する。
 本発明によれば、液面に泡が検知された場合であっても、空吸異常の累積回数が所定の累積許容回数未満であれば当該検体に対する吸引動作を再実行することにより、高価格化を伴うことなく、スループット低下を防ぎつつ、ユーザの業務効率向上及びユーザの作業負担の低減が可能な自動分析装置を実現することができる。また、空吸異常が連続しない場合であっても空吸異常の累積回数が所定の累積許容回数に達したのであれば可能な限り早くユーザに当該液体を戻すことで、ユーザが早急に確実な処置が可能となる自動分析装置を実現することができる。
本発明の実施例が適用される自動分析装置の概略構成図である。 サンプル分注機構の周辺構成を示す図である。 複数の分析ユニットを組み合わせた自動分析装置の一例の上面レイアウト概略図である。 本発明の実施例1に係る異常吸引チェックと検体の処理フローの一例を示すフローチャートである。 図4に示したステップS406の詳細フローチャートである。 本発明の実施例1による異常吸引チェックと検体の処理フローチャートであり、自動再検の設定が有効な場合の例を示す図である。 検体分注動作および吸引異常チェック処理(B)のフローチャートである。 本発明の実施例1において、検体を測定した結果を表示する表示画面の一例を示す図である。 本発明の実施例2に係る異常吸引チェックと検体の処理フローの一例を示すフローチャートである。 検体容器内に収容された試料液面を撮像する撮像部を示す図である。 本発明の実施例3に係る複合システムにおける検体の取り扱いの一例を示す動作フローチャートである。 検体分注動作および泡検出処理(A)の動作フローチャートである。 第1ユニットから分析を開始する例における動作フローチャートである。 累積許容回数を2とした条件において異常吸引が連続/不連続で発生したケースを示す図である。
 以下、本発明の実施形態について添付図面を参照して詳細に説明する。
 (実施例1)
 まず、本発明の実施例1が適用される自動分析装置の一例について、図1を例に説明する。
 図1は、本発明の実施例1が適用される自動分析装置100の概略構成図である。図1において、自動分析装置100は、サンプルディスク12、第1試薬ディスク41、第2試薬ディスク42、反応ディスク36を備える。サンプルディスク12は、試料を保持するサンプル容器10を搭載することができる。第1試薬ディスク41と第2試薬ディスク42は、試薬を収容する試薬容器40を搭載することができる。反応ディスク36の周上には、反応容器35が配置されている。
 自動分析装置100は、さらに、サンプル分注機構(試料分注機構)15、第1試薬分注機構20、第2試薬分注機構21、攪拌装置30、容器洗浄機構45、光源50、分光検出器51、コンピュータ62、コントローラ60、タイミング検出部61を備える。
 サンプル分注機構15は、サンプルプローブ(分注プローブ)16(図2に示す)を備え、サンプルプローブ16を用いてサンプル容器10から吸引した試料を反応容器35に分注する。
 第1試薬分注機構20は、試薬分注プローブを備え、第1試薬ディスク41内の試薬容器40から吸引した試薬を反応容器35に分注する。第2試薬分注機構21も、試薬分注プローブを備え、第2試薬ディスク42内の試薬容器40から吸引した試薬を反応容器35に分注する。
 攪拌装置30は、反応容器35内の液体を撹拌する。容器洗浄機構45は、反応容器35を洗浄する。
 また、光源50は、反応ディスク36の内周付近に設置されており、反応容器35に対して光を照射する。分光検出器51は、反応容器35を挟んで光源50の対面に設置されており、光源50が試料に対して照射した光を検出する。
 コンピュータ62は、分光検出器51に接続されており、分光検出器51による検出結果を用いて試料を分析する。光源50、分光検出器51およびコンピュータ62は、反応容器35に収容された試料を測定し、分析する分析部を構成する。
 コントローラ60は、自動分析装置100の全体動作を制御する。タイミング検出部61は、各駆動機構の動作開始/停止タイミングの検出し、動作開始/停止からの時間経過を監視する。
 サンプル分注機構15のサンプルプローブ16は、分注流路24により定量ポンプ25と接続されている。分注流路24の途中には圧力センサ26が設けられている。図1には示していないが、第1試薬分注機構20の試薬分注プローブと第2試薬分注機構21の試薬分注プローブも、サンプルプローブ16と同様に、分注流路、定量ポンプ、圧力センサが接続されている。
 サンプル容器10には血液などの検査対象の試料が入れられ、サンプルディスク12にセットされる。それぞれの試料に対して実施する分析の種類は、コントローラ60に入力される。サンプル分注機構15のサンプルプローブ16によってサンプル容器10から採取された試料は、反応ディスク36に並べられている反応容器35に対して一定量分注される。一定量の試薬が第1試薬ディスク41または第2試薬ディスク42に設置された試薬容器40から第1試薬分注機構20または第2試薬分注機構21により反応容器35に分注され、攪拌装置30によって攪拌される。この試料および試薬の分注量は、分析の種類毎にあらかじめコントローラ60に対して設定されている。
 反応ディスク36は、周期的に回転停止を繰り返す。反応容器35が光源50の前を通過するタイミングで分光検出器51が光を測定する。10分間の反応時間の間に測光を繰り返す。その後、容器洗浄機構45は反応容器35内の反応液を排出して洗浄する。それらの間に別の反応容器35は、別の試料と試薬を用いて並行動作する。コンピュータ62は、分光検出器51が計測したデータを用いて分析の種類に応じた成分の濃度を算出し、その結果をコンピュータ62のディスプレイ(出力部)に表示する。
 図2は、サンプル分注機構15の周辺構成を示す図である。第1試薬分注機構20と第2試薬分注機構21も同様の構成を備えるので、以下ではサンプル分注機構15の周辺構成について説明する。
 図2において、定量ポンプ25は、駆動機構67とプランジャ66とを有し、バルブ68を通してポンプ69に接続されている。また、定量ポンプ25はコントローラ60によって制御され、試料を吸引吐出する。定量ポンプ25とサンプルプローブ16とは、分注流路24を介して接続されている。圧力センサ26は、プランジャ66とサンプルプローブ16の間に分注流路24を介して配置され、サンプルプローブ16内の圧力を検出する。サンプル分注機構15には、サンプルプローブ16が液面に接したことを検知する液面検知機構が備わっている。試料容器10内の試料液面に泡が存在し、その泡を液面と誤判断して、サンプルプローブ16が吸引動作を行うと、いわゆる空吸いとなり、正しく液面を判断し液体を吸引した場合とは、サンプルプローブ16内の圧力変化が異なるものとなる。よって、圧力センサ26により、サンプルプローブ16内の圧力変化を検出し、正常に吸引した場合のサンプルプローブ16内の圧力変化と比較することにより、正常吸引か空吸い等の異常吸引かを判断することができる。
 圧力センサ26は、AD変換器621に接続されている。タイミング検出部61は、定量ポンプ25が停止した後、後述する時間が経過した時点で、AD変換器621に対してデジタル変換を実施するよう指示する(併せてクロック信号を出力する)。AD変換器621は、その指示に応じて、圧力センサ26から出力されるアナログ電圧データをデジタル変換する。
 データ抽出部622は、AD変換器621から圧力波形のデジタルデータを受け取り、異常判定部623に引き渡す。異常判定部623は、そのデータを用いて空吸引が発生しているか否かを判定する。すなわち、異常判定部623は、圧力センサが測定した圧力の変化に基づいてプローブでの液体吸引が正常か空吸異常かを判定する。異常判定部623の判定結果(泡判定回数)は記憶部624に格納される。AD変換器621、データ抽出部622、異常判定部623、記憶部624は、例えばコンピュータ62の一部として構成することができる。また、圧力センサ26、AD変換器621、データ抽出部622および異常判定部623は、泡判定部を構成している。泡判定部の異常判定部623によりサンプル容器10に収容された液体の液面上に泡が存在するか否かを判定することができる。
 サンプル分注機構15は、図示していない移動機構を有している。この移動機構がサンプルプローブ16を上下移動および回転させることにより、サンプルプローブ16はサンプル容器10から試料を吸引する位置に移動し、反応容器35に対して試料を吐出する位置に移動することができる。
 試料を吸引する前に、コントローラ60は、バルブ68を開いて分注流路24とサンプルプローブ16の内部をポンプ69から供給されるシステム液79で満たす。次に、コントローラ60は、サンプルプローブ16の先端が空中にある状態で、駆動機構67によりプランジャ66を下降動作させ、分節空気80を吸引する。
 次に、コントローラ60は、サンプルプローブ16をサンプル容器10の中に下降させ、その先端が試料内に浸かった状態でプランジャ66を所定量下降して試料をサンプルプローブ16内に吸引する。これにより、吸引液81として当該試料がサンプルプローブ16内に吸引される。第1試薬分注機構20の分注プローブと第2試薬分注機構21の分注プローブも同様の動作を実施するが、これらの場合における吸引液81は試薬である。
 なお、サンプル分注機構(試料分注機構)15及び試薬分注機構20、21は、
液体である検体又は試薬を吸引する液体分注機構と総称することができる。
 図3は、分析ユニット(液体分注機構、泡判定部、泡判定回数を記憶する記憶部、分析部、これら液体分注機構、泡判定部及び分析部を制御するコントローラを備える)を複数組み合わせた自動分析装置(自動分析システム)の一例の上面レイアウト概略図である。
 図3において、自動分析装置は、異なる、もしくは同一の測定項目を測定し、分析する分析ユニットを1つのシステムに組み合わせて構成することも可能である。
 なお、依頼項目は、測定依頼された項目すべてをいい、測定項目とは、依頼項目のうちの一つ又は複数の項目である。
 システムを構成する分析ユニットは、1つでもよいし、複数組み合わせることも可能である。
 さらに、1つのシステムにおいて、同一の検体に対し、第1のユニット110、および第2のユニット111のうちのいずれか一方、または分析ユニット110および111の両方へ搬送し分析することも可能である。
 検体投入部101は、複数の検体ラック102を投入する部分である。検体投入部101から投入された検体ラック102は少なくとも1つ以上のサンプル容器(検体容器)10を保持し、検体識別部106、搬送ライン103、引込線107を経由し、測定項目の依頼状況に応じて、いずれか一方、もしくは両方の分析ユニット110、111へと搬送される。
 分析ユニット110に搬送された検体ラック102は、分析ユニット110内の検体搬送部120により搬送され、試料分注機構15と同様な機構により、検体ラック102に保持された検体容器10から検体が分析ユニット110内の分析部に分注される。分析ユニット110は、図1に示した試薬ディスク41、42、反応ディスク36、分光検出器51、コントローラ60、タイミング検出部61、コンピュータ62等を備えている。ただし、コントローラ60、タイミング検出部61、コンピュータ62は、複数の分析ユニット110及び111に共通とすることができる。
 検体の分注が終了した検体ラック102は検体搬送部120により、検体待機部104に搬送される。
 分析ユニット111に搬送された検体ラック102は、分析ユニット111内の検体搬送部121により搬送され、試料分注機構15と同様な機構により、検体容器10から検体が分析ユニット111内の分析部に分注される。分析ユニット111は、分析ユニット110と同様に、試薬ディスク41、42等を備えている。
 検体の分注が終了した検体ラック102は検体搬送部121により、検体待機部104に搬送される。
 分析が終了し、検体待機部104に搬送された検体ラック102は、戻り搬送ライン108により、検体回収部105へと搬送される。
 検体待機部104は、それぞれの分析ユニット110、111で分注終了後、後述する自動再検を実施すべきかどうかの判断結果が出るまで検体ラック102を一時的に待機させる部分である。なお、自動再検を実施するかどうかの設定は、コンピュータ62からの入力操作により、ユーザが設定可能である。
 自動再検有りの設定で、自動再検の対象となる測定項目が依頼されている場合、初回の測定結果に応じて自動再検を実施するかどうかを所定の条件に応じて判断する必要がある。そのため、全ての初回依頼に対する分析動作完了後、検体待機部104にて測定結果が出力されるまで待機する。
 一方、自動再検なしの設定もしくは、自動再検の対象となる測定項目が依頼されていない場合、全ての初回依頼に対する分析動作完了後、測定結果の出力を待つことなく、検体回収部105に搬送される。
 図3に示した例は、一般的な自動分析システムの例であり、本発明の実施例1のシステムは、一つの分析ユニット110のみが分析ユニットとして備えられている例である。
 (自動再検の設定が無効の場合)
 図4は、本発明の実施例1に係る異常吸引チェックと検体の処理フローの一例を示すフローチャートであり、コントローラ60によって動作制御されるフローである。
 本実施例1は、上述したように、1つの分析ユニット110を有するシステム構成の自動分析装置である。
 システムの設定として自動再検を実施する設定が無効の場合について説明する。
 図4において、投入部101に設置された検体ラック102は、検体識別部106により認識される(ステップS401、S402)。そして、当該検体ラック102に対し、第1ユニット110における測定項目の測定依頼があるかどうかを確認する(ステップS403)。ステップS403において、測定項目の測定依頼がある場合、第1ユニット110に搬送する(ステップS404)。
 ステップS403において、測定項目の測定依頼がなければ、検体回収部105へ搬送され、終了となる(ステップS411)。
 ステップS404において、第1ユニット110に搬送された当該検体に対して異常吸引累積回数を0と設定する(ステップS405)。そして、検体分注動作および吸引異常チェック処理(B’)を実施する(ステップS406)。
 ここで、ステップS406の検体分注動作および吸引異常チェック処理(B’)について、以下に詳細に説明する。
 図5は、図4に示したステップS406の詳細フローチャートである。
 図5において、第1ユニット110に搬送された検体に対して依頼された測定項目について分注動作を開始する(ステップS421)。そして、異常判定部623により、泡や空吸いによる異常吸引かどうかを確認する(ステップS422)。
 異常判定部623は、上述したように、圧力センサ26が検出したサンプルプローブ16内の圧力変化から、泡や空吸いによる異常吸引(空吸異常とも言う)かどうかを判定する。液面検知機構により泡を液面と誤り分注動作(吸引動作)を行うため圧力変化により正常か異常吸引かの判定が可能である。
 ステップS422において、異常吸引でないと判定された場合、当該検体に依頼された測定項目全て分注完了したか確認する(ステップS428)。ステップS428において、依頼された全ての測定項目のうち、未完了の測定項目があれば次の依頼測定項目に対する分注動作を繰り返す(ステップS421)。
 ステップS422において、異常吸引と判定された場合、異常吸引と判定された分注項目(対象とする測定項目に対する分注動作であることから分注項目とする)に対し、本来予定されていた試料の反応容器35への吐出、それに続く試薬分注等すべての分析動作をキャンセルする(ステップS423)。そして、異常吸引累積回数+1を設定する(ステップS424)。コントローラはこのように異常吸引の累積回数を更新して記憶部に記憶させる。
 さらに、異常吸引と判定された分注項目に対し、泡や空吸いによる異常吸引を示すデータアラームを設定する(ステップS425)。この場合、異常吸引であり正常な分析動作フローを完了していないため、測定データは出力しない。
 次に、更新された異常吸引の累積回数(空吸異常の累積回数)が所定の累積許容回数以上かどうかを確認する(ステップS426)。所定の累積許容回数とは、当該検体に対し、許容できる泡や空吸いによる異常吸引の累積回数であり、予め設定しておく(記憶部624に格納しておく)。すなわち、記憶部には、空吸異常回数の累積許容回数(2以上)が予め記憶されている。また、異常判定部によって判定された試料毎の空吸異常の累積回数もこの記憶部に記憶されている。累積許容回数は、2以上の値が望ましい。なぜなら、サンプルプローブ16の吸引動作時の泡との接触により、泡が消滅している可能性があるからである。ただし、累積許容回数が大きすぎる場合、著しいスループットの低下につながる可能性があるため、適宜設定が必要である。累積許容回数は、初期設定値として不変としてもよいし、施設ごとに取り扱う検体の特性や実験結果を考慮し、ユーザが任意の値を設定することを可能としてもよい。
 また、試料容器に含まれる試料は、患者検体(患者由来の体液等)、および精度管理試料、標準液などの種類に分けられるが、それぞれの種類に応じて異なる設定することを可能としてもよい。
 また、異常吸引回数を累積とするのは、液面上に存在する泡の状態は泡の消失もしくは移動などにより変化することが想定されるためである。累積とは、異常吸引(空吸異常)が連続するか否かに係らず異常の判定回数に相当する。特許文献3のように空吸引が連続回数に限定した場合には泡の移動を起因とする空吸異常に対応できない。許容回数を連続で発生する異常に限らず不連続で発生する異常の場合でも異常の判定回数と比較することで同一試料において一度正常と判定された後に異常と判定される不連続で発生する異常に対しても適切に処置できる。すなわち、空吸異常が連続しない場合であっても空吸異常の累積回数は更新され、累積回数は空吸異常が連続で発生する場合にもカウントがリセットされずに加算される回数である。
 図14は、累積許容回数を2とした条件において異常吸引が連続で発生した場合と不連続で発生した場合について説明した図である。ケースAは、異常吸引となる判定が連続した場合となり、ケースBは、異常吸引となる判定が不連続となり間に正常吸引の判定がなされた場合である。累積にて回数を管理することにより、液面上の泡が多く状態が変化したことが想定されるケースBにおいて、測定項目3で累積回数2に達し当該検体に対し再度異常吸引となる可能性のある測定項目4の分注動作を行わない。仮に連続の異常吸引に場合に限って回数を管理する場合、ケースBのように一度正常吸引と判定され、その後に異常吸引となる場合には一旦カウントがリセットされるため測定項目4まで分注を継続する、液面上に泡が多い状態の場合でも吸引動作を繰り返してしまい、ユーザの処置が好ましい場合であってもユーザに試料を戻すのが遅れる等非効率である可能性がある。累積許容回数が2の場合を説明したが、累積許容回数が多ければ多い程、遅れも大きくなる。
 当該分注項目が異常吸引と判定され、所定の累積許容回数未満の場合、当該検体に対する依頼項目すべてを分注完了したか確認する(ステップS428)。当該検体に対する依頼項目が未完了であれば、次の依頼項目に対し、分注動作以降を繰り返す(ステップS421~ステップS428)。つまり、コントローラ60は、異常判定部623が液体である検体の液面上に泡が存在すると判定したとき、試料分注機構15に、再度、試料の吸引動作を繰り返し実行させ、試料液面上に泡が存在するか否かを判定させる。
 ステップS428において、所定の累積許容回数に達した場合は終了する。
 ステップS426において、異常吸引累積回数が累積許容回数以上の場合も、処理は終了する。
 検体分注動作および吸引異常チェック処理(B’)の処理後についてのフローを以下説明する。
 図5に示した処理ステップS421~S426、S428が終了すると、図4のステップS407に進む。
 ステップS407において、異常吸引累積回数が所定の累積許容回数以上の場合、当該検体に対する分析依頼をすべてキャンセルし(ステップS409)、当該検体を検体回収部105へ搬送する(ステップS411)。次に予定されている別の検体があれば当該別の検体からの吸引動作が行われる。なお、ステップS407において、異常吸引累積回数が所定の累積許容回数以上の場合、ステップS409にて当該検体に対する吸引動作を禁止するように構成することもできる(後述するステップS509、S614、S715及びS815も同様である)。
 ステップS407において、異常吸引累積回数が所定の累積許容回数未満の場合、ステップS411に進み、検体回収部105へ検体を搬送する。
 (自動再検の設定が有効の場合)
 次に、自動再検の設定が有効な場合について説明する。
 自動再検とは、液体である検体又は試薬を吸引する液体分注機構の分注項目に対して液体吸引異常などの異常が検出されたが、異常吸引累積回数が累積許容回数未満の検体の場合は、自動的に再検査依頼(再度検査依頼)を設定することをいう。
 図6は、本発明の実施例1による異常吸引チェックと検体の処理フローチャートであり、自動再検の設定が有効な場合の例である。図6に示す動作はコントローラ60によって制御される。
 図6のフローチャートは図4のフローチャートと基本的な流れは同様である。つまり、図4のステップS401~S407、S409、及びS411は、図6のステップS501~S507、S509、及びS511と同様であり、図6のフローチャートは、ステップS508、S510が追加されている。
 以下、図6のステップについて、抜粋して説明する。
 第1ユニット110に搬送された検体に対して異常吸引累積回数を0と設定する(ステップS505)。ここで、当該検体に対し異常吸引累積回数を0と設定するのは当該検体が初めて第1のユニット110に搬送され分析をする場合に限る。例えば、自動再検の実施等により2回目に第1ユニット110に搬送された場合は、当該検体に対する異常吸引累積回数のリセット(0と設定)を実施しない。
 ステップS505に続いて、検体分注動作および吸引異常チェック処理(B)を実施する(ステップS506)。
 ここで、検体分注動作および吸引異常チェック処理(B)について、詳細説明する。図7は、検体分注動作および吸引異常チェック処理(B)のフローチャートである。図7に示した基本的なフローは、図5のフローと同様であり、検体分注動作および吸引異常チェック処理(B’)と同じである。つまり、図5のステップS421~S426、及びS428は、図7のステップS521~S526、及びS528と同様であり、図7のフローチャートは、ステップS527が追加されている。図7のフローチャートは、自動再検有りの設定のため、それに関わる部分のみが図5の例と異なる。
 図7において、当該検体に対し依頼された項目について分注動作を開始する。(ステップS521)。次に、泡や空吸いによる異常吸引かどうかを確認し(ステップS522)、異常吸引でないと判定された場合、当該検体に依頼された項目すべて分注完了したかを確認する(ステップS528)。ステップS528において、依頼項目の全ては分注されておらず、未完了であればステップS521に戻り、次の依頼項目に対する分注動作を繰り返す。
 ステップS522において、異常吸引と判定された場合、当該分注項目に対し本来予定されていた試料の反応容器35への吐出、それに続く試薬分注等すべての分析動作をキャンセルする(ステップS523)。そして、異常吸引累積回数+1を設定する(ステップS524)。コントローラはこのように異常吸引の累積回数を更新して記憶部に記憶する。さらに、当該分注項目に対し、泡や空吸いによる異常吸引を示すデータアラームを設定する(ステップS525)。この場合、異常吸引であり正常な分析動作フローを完了していないため、測定データは出力しない。次に、異常吸引累積回数が所定の累積許容回数以上かどうかを確認する。(ステップS526)。ステップS525で設定されたデータアラームは、後述するように、コンピュータ62の表示部(出力部)に表示される。データアラームは、コンピュータ62から音声により出力することもできる。
 ステップS526において、当該分注項目が異常吸引と判定され、所定の累積許容回数未満の場合、当該分注項目に対し、自動再検の設定依頼を設定する(ステップS527)。その後、当該検体に対する依頼項目すべてを分注完了したか確認する(ステップS528)。ステップS528において、依頼項目が未完了であれば次の依頼項目に対し、ステップS521に戻り、分注動作以降を繰り返す(ステップS521~ステップS528)。ステップS526において、所定の累積許容回数に達した場合は、処理を終了する。
 検体分注動作および吸引異常チェック処理(B)の処理後は、図6のステップS507に進む。そして、ステップS507において、当該検体に対する異常吸引累積回数と累積許容回数とを比較する。累積許容回数に達した場合、当該検体に対し依頼されている全ての項目をキャンセルする(ステップS509)。そして、検体回収部105へと搬送される(ステップS511)。次に予定されている別の検体があれば当該別の検体からの吸引動作が行われる。
 一方、ステップS507において、当該検体に対する異常吸引累積回数が累積許容回数未満の場合、 当該検体に対して分析を実施し自動再検の対象となる項目について、測定結果の出力を検体待機部104にて待つ(ステップS508)。
 その後、自動再検の対象となる測定項目があるか否かを判断し(ステップS510)、自動再検の対象となる測定項目がある場合、検体待機部104から再び第1の分析ユニット110へ搬送され、検体吸引動作を行い、分析を実施する。基本的にはステップS503からステップS510までの繰り返しとなるが、初回時とは異なる点は、自動再検時はステップS505において、異常吸引累積回数=0を設定しない点である。当該検体はシステムから搬出されておらず、ユーザによる手作業の泡の確認および消泡作業は実際されていない。そのため、システムから搬出されない限り、初回依頼ではないことから、当該検体に対する異常吸引累積回数の情報は継続して累積し管理する。
 また、自動再検の対象となる項目として、初回で泡や空吸いによる異常吸引と判定された項目は、前述の通り自動再検依頼が設定されているため、自動再検分析時に分析される。
 ここで、当該異常吸引判定項目に対し、初回と自動再検において異なる分注動作は用いないことが望ましい。例えば、再検において初回よりサンプルプローブ16がより深く試料に浸漬するよう突っ込むということは行わないことが望ましい。なぜなら、サンプルプローブ16の汚染範囲が広がれば広がるほど、洗浄範囲、洗浄時間、あるいは洗浄条件の追加、変更等が必要となり、処理の複雑化、処理時間の増加につながる可能性があるためである。
 自動再検もすべて終わり、当該検体に対する依頼項目の分注がすべて完了すれば検体回収部へと搬送する(ステップS511)。
 なお、図7のステップS527にて分注項目の自動再検依頼が設定されると、その後、ステップS507およびS508を介して、ステップS510において、自動再検依頼と判断され、ステップS503~S506が繰り返されるが、図7のステップS522において、分注項目に異常吸引が無い場合は、異常吸引累積回数が累積されることなく、自動再検依頼がそのまま存続する。そして、ステップS510から、さらに、ステップS503~S508を介してステップS510に進み、自動再検依頼ありと判断され、さらに、図7のフローが実行される。この場合、無駄なフローの繰り返しとなる可能性があるため、図7のステップS522にて異常吸引ではないとの判断が所定回数だけ連続して行われた場合は自動再検依頼の設定をキャンセルする等の処理を行い、無駄なループの繰り返しを回避することが可能である。
 図8は、本発明の実施例1において、検体を測定した結果を表示する表示画面の一例を示す図である。この表示画面は、コンピュータ62の表示部に表示されるものであり、コントローラ60は、測定項目毎に、データアラーム、及び測定回数ごとの分析結果を出力部であるコンピュータ62の表示部に表示させる。
 図8において、検体一覧表示部901には、サンプルID、ラックナンバー、タイプ、コメント、日付時刻が表示されている。また、測定結果表示部902には、項目名表示部931、初回測定結果表示部932、初回測定結果データアラーム表示部933、再検測定結果表示部934、再検測定結果データアラーム表示部935が表示されている。
 検体一覧表示部901にて、カーソルを合わせた検体についての測定結果が測定結果表示部902に表示されている。図8に示した例は、サンプルID10281235にカーソルを合わせた場合の表示例である。
 測定結果表示部902の例えば、項目名がLDHの場合、初回の測定結果が得られなかったため、初回測定結果表示部932には、測定結果は表示されておらず、初回測定結果データアラーム表示部933に、検体の異常吸引を示す「Samp.B」が表示されている。そして、再検測定結果表示部934に再検測定結果160が表示され、再検測定結果データアラーム表示部935にはアラームは表示されていない。再検において、異常が発生していなかったためである。
 このように、測定結果はコンピュータ62の表示画面に表示することができ、測定者は、初回で異常が発生したか否か、再検で異常が発生したか否か、異常が発生しなかった場合の測定値を認識することができる。
 以上のように、本発明の実施例1によれば、試料の分注時に、サンプルプローブ16内の圧力波形に異常があり、異常吸引と判断されても、累積許容回数となるまで、分注動作が行われ、異常吸引と判断されない場合は測定結果を得ることができる。
 よって、本発明の実施例1によれば、泡が検知された場合であっても、その後短時間で泡が消滅した場合には、再度の測定が可能となり、検体に対する分析のキャンセル、その検体の排出、ユーザによる確認作業および消泡対処を行うことの必要性が無くなり、ユーザの作業負担低減を可能な自動分析装置を実現することができる。また、一度正常吸引と判定され、その後に異常吸引となる場合であっても累積異常吸引回数で判定するため、泡の移動を起因とする空吸異常にも適切に対処できる。すなわち、異常吸引が連続しない場合であっても空吸異常の累積回数を更新するため、一度正常吸引と判定された場合であっても吸引動作を不必要に連続して繰り返してしまい、ユーザの処置が好ましい場合であってもユーザに試料を戻すのが遅れる等の非効率性を抑制可能な自動分析装置を実現することができる。
 このように、コントローラは、同一試料に対し測定項目数に応じてプローブが液体を吸引する動作の過程で空吸異常が連続しない場合であっても空吸異常の累積回数を更新して記憶部に記憶させ、更新された累積回数が累積許容回数に達するまでは、同一試料に対して予定されている吸引動作を継続し、更新された累積回数が累積許容回数に達したときは、同一試料に対し予定されていた測定項目の依頼をキャンセルし、次に予定されている別の液体からの吸引動作を行うことが望ましい。
 また、自動再検の設定を行うことができるので、設定された項目について、吸引異常と判断された場合であって、再検により、吸引異常と判断されなかったときは、再検査が自動的に行われるので、設定された項目についての検査(分析)の信頼性を向上することができる。
 このため、自動再検が有に設定されている場合には、更新された累積回数が累積許容回数に達するまでに空吸異常と判定された測定項目に対し自動再検依頼を設定することが望ましい。
 また、コントローラは、更新された累積回数が累積許容回数に達したとき、当該検体に対し予定されていた測定項目の依頼をキャンセルし、当該検体を検体回収部に搬送することで、ユーザは早急に確実な処置が可能となる。
 (実施例2)
 次に、本発明の実施例2について説明する。
 本発明の実施例2は、図3に示した自動分析システムの分析部である第1ユニット110および第2ユニット111を備え(複合システム)、これら第1ユニット110および第2ユニットは、同種の泡検知方法(実施例1と同様に圧力センサ26を用いたサンプルプローブ16内の圧力変化による泡検知方法)を用いる例である。すなわち、第1、第2ユニットの夫々は、液体の液面上に泡が存在することをプローブが泡に接触した後のプローブ内の圧力の変化に基づいて判定する。各プローブの分注機構には液面検知機構が備わっている。例えば、第1、第2ユニットは、両方共に生化学分析ユニットの場合や、一方が生化学分析ユニットで他方が電解質分析ユニットの場合である。
 なお、実施例2については、自動再検設定が有効の場合を例として説明する。
 また、第1ユニット110および第2ユニット111は、図1に示した試料分注機構15、試薬ディスク41、42、反応ディスク36、光源50、分光検出器51、コントローラ60、タイミング検出部61、コンピュータ62等を備えている。ただし、コントローラ60、タイミング検出部61、コンピュータ62は、第1ユニット110および第2ユニット111に、共通するものとしてもよい。
 図9は、本発明の実施例2に係る異常吸引チェックと検体の処理フローの一例を示すフローチャートであり、コントローラ60によって動作制御される。図9に示したフローチャートの基本的な流れは、実施例1と同様であるため、同様な部分は簡略化して説明する。ここでは、同一検体に対し、第1ユニット110および第2ユニット111の両方に、それぞれ分析項目が依頼されていた際の流れについて説明する。
 図9において、検体ラック102が検体投入部101に設置され、検体識別部106により識別され、異常吸引累積回数が0に設定され、第1ユニット110の分析依頼が有るか否かが判定されて、分析依頼が有れば、検体ラック102を第1ユニット110に搬送する(ステップS601~ステップS605)。
 次に、検体分注動作および異常吸引チェック処理(B)を実施する(ステップS606)。検体分注動作および異常吸引チェック処理(B)は、実施例1の処理フロー(図7の処理フロー)と同様であるため、説明は省略する。
 ステップS606の検体分注動作および異常吸引チェック処理(B)の後、異常吸引累積回数と累積許容回数とを比較する(ステップS607)。ステップS607において、異常吸引累積回数が、累積許容回数に達している場合、当該検体に対する第1ユニット110および第2ユニット111における全ての測定項目の依頼をキャンセルする(ステップS614)。これは、同様の泡検知方法を用いるもう一方の分析ユニットである第2ユニット111においても、同様の異常吸引判定となる可能性が高く、無駄な試料、試薬、時間等を消費するのを避けるためである。よって、異常吸引累積回数は、第1ユニット110と第2ユニット111との合算で管理する。
 さらに、分析ユニット(第1ユニット110、第2ユニット111)への搬送前に異常吸引累積回数をステップS603にてリセットしているが、第1ユニット110および第2ユニット111における異常吸引累積回数を合算して管理することができれば、リセットするタイミングはこの限りでない。
 この場合には、第1ユニットと第2ユニットの夫々の判定部で空吸異常と判定された空吸異常の累積回数を同一検体に対し合算して更新して記憶部に記憶させ、更新された合算の累積回数が累積許容回数に達するまでは、当該検体に対し予定されている吸引動作を継続することが望ましい。
 ステップS614の処理の後、検体は検体回収部105に搬送される(ステップS615)。
 ステップS607において、第1ユニット110における初回依頼項目を全て分注したあと、異常吸引累積回数を累積許容回数と比較し、累積許容回数に達していなければ、第2ユニット111に測定項目の依頼があるか否かを確認する(ステップS608)。ステップS608において、第2のユニット111における測定項目の依頼がある場合、第2ユニット111に検体を搬送する(ステップS609)。この場合、第1ユニット110における異常吸引累積回数が引継がれるため、異常吸引累積回数のリセット(0に設定)はしない。次に、第2ユニット111において検体分注動作および異常吸引チェック処理(B)を実施する(ステップS610)。
 処理(B)の終了後、ステップS611にて異常吸引累積回数が累積許容回数以上であれば、初回及び再検依頼全てキャンセルして、検体回収部105に検体を搬送する(ステップS614、S615)。
 ステップS611において、当該検体に対する異常吸引累積回数が累積許容回数未満であり、第1ユニット110と第2ユニット111における初回の依頼項目に対する分注がすべて完了すると、当該検体に対して分注実施し自動再検の対象となる項目について、測定結果の出力を検体待機部104にて待つ(ステップS612)。
 次に、出力された結果に応じて自動再検依頼がある場合、第1ユニット110で分析依頼があるか確認する(ステップS613、S604)。第1ユニット110で自動再検依頼がある場合は、第1ユニット110へ再び検体を搬送し(ステップS605)、検体分注動作および異常吸引チェック処理(B)を実施する(ステップS606)。なお、第1ユニット110において初回分注時に泡や空吸いによる異常吸引となった項目があればこの間に自動再検依頼項目として測定を実施する。
 第1ユニット110における自動再検依頼の項目の分注完了後、異常吸引累積回数を累積許容回数未満と比較する(ステップS607)。異常吸引累積回数が累積許容回数未満、かつ、第2ユニット111における自動再検依頼がある場合は、続いて第2ユニット111へ検体を搬送する(ステップS609)。
 そして、第2ユニット111において、検体分注動作および異常吸引チェック処理(B)を実施する(ステップS610)。
 なお、第2ユニット111において、初回分注時に泡や空吸いによる異常吸引となった項目があればこの間に自動再検依頼項目として測定を実施する。
 次に、ステップS611にて異常吸引累積回数が累積許容回数以上か否かが判断され、異常吸引累積回数が累積許容回数未満であれば、ステップS612及びS613が実行される。
 第1ユニット110および第2ユニット111における自動再検依頼項目に対する分注がすべて完了すれば、当該検体は検体回収部へ搬送される(ステップS615)。
 本発明の実施例2によれば、2つの分析ユニット110および111を備え、同種の泡検知方法を用いる例においても、実施例1と同様な効果を得ることができる。
 (実施例3)
 次に、本発明の実施例3について説明する。
 本発明の実施例3は、図3に示した自動分析システムの分析部である第1ユニット110および第2ユニット111を備え(複合システム)、これら第1ユニット110および第2ユニットは、互いに異なる泡検知方法(実施例1と同様に圧力センサ26を用いたサンプルプローブ16内の圧力変化による泡検知方法と、液面を撮像部により撮像し、泡を検知する方法)を用いる例である。すなわち、第2ユニットは、液体の液面上に泡が存在することを液体に対して非接触で判定する。例えば、第1、第2ユニットは、一方が生化学分析ユニットで他方が免疫分析ユニットの場合である。
 なお、実施例3については、自動再検設定が有効の場合を例として説明する。
 図10は、第2ユニット111の検体搬送部121により搬送された検体ラック102に搭載された検体容器10内に収容された試料液面を撮像する撮像装置(非接触検出装置)70を示す図である。この撮像装置70は、検体搬送部121に近接した位置に配置される。
 照明部118から発生された照明光112が検体容器10に収容された試料液面により反射され、撮像部117に入射し、試料液面が撮像される。撮像部117は撮像コントローラ114により動作制御され、画像解析部115により、液面の泡の有無が判定される。装置制御部(コントローラ)60は、画像解析部115により泡が検出されると、その検体の測定結果にデータアラームを表示するように、コンピュータ62に通知する。データアラームに代えて、又はデータアラームと共に、システムアラームを発生させて、ユーザに泡の発生を報知することができる。撮像装置70による液面の撮像は、ラック102に搭載された検体容器ごとに行われ、それぞれの液面に泡が発生しているか否かが判定される。
 照明部118から発生される照明光112の輝度は、輝度補正用構造物113からの反射光を用いて調整可能となっている。
 図11は、本発明の実施例3に係る複合システムにおける検体の取り扱いの一例を示す動作フローチャートであり、コントローラ60によって動作制御される。
 ここでは、同一検体に対し、第1ユニット110および第2ユニット111の両方にそれぞれ分析項目が依頼された場合の流れについて説明する。また、本実施例3では、第1ユニット110は、吸引時の圧力波形により泡、空吸いの異常吸引を判定する泡検知方法を使用する。一方、第2ユニット111は、検体に対し吸引前に液面の画像等により吸引対象に接触することなく液面を判定する泡検知方法を使用する。
 また、検体ラック102に保持される同一の検体に対し、第1ユニット110にて測定する項目と第2ユニット111にて測定する項目が混在する場合、検体ラック102は、第1ユニット110及び第2ユニット111のうちの、どの分析ユニットから測定を開始してもよい。検体キャリーオーバーの影響を考慮し感度の高い測定項目を測定する分析ユニットへ先に搬送してもよいし、スループット低減を考慮し、それぞれの分析ユニットの負荷を比較し、より負荷の軽い分析ユニットへ先に搬送してもよい。
 図11に示した動作フローでは、第2ユニット111における分析後、第1ユニット110に搬送し分析を実施する例を示す。
 図11において、検体投入部101に設置された検体ラック102は、第2ユニット111における分析依頼がある場合、第2ユニット111における所定の吸引位置に搬送される(ステップS701~S704)。そして、当該検体に対し泡検出なしを設定し(ステップS705)、検体分注動作および泡検出処理(A)を実施する。ここで、検体分注動作および泡検出処理(A)について、詳細に説明する。
 図12は、検体分注動作および泡検出処理(A)の動作フローチャートである。
 図12において、撮像部117により、検体吸引前に検体液面を撮像し、検体の液面における泡検出処理を実施する(ステップS721)。ステップS721において、検体に泡があると判定した場合、泡検出有り(泡検出=1)と設定する(ステップS727)。また、当該検体に対する全ての項目に対しデータアラームを設定する(ステップS728、ステップS729)。
 ステップS722において、泡検出なし(泡検出=0)の場合、分注動作を実施する(ステップS723)。そして、当該検体に対し第2ユニット111に対し依頼された分析項目を全て分注するまで繰り返す(ステップS723、ステップS724)。
 検体分注動作および泡検出処理(A)処理後のフローを以下説明する。
 図11において、泡検出無しかを確認する(ステップS707)。ステップS707において、泡検出有り(泡検出=1)の場合、当該検体に対する全ての測定項目の依頼をキャンセルする(ステップS715)。これは、検体液面の画像により泡の有無を判定された場合、第1ユニット110において吸引した際もおそらく異常吸引となることを想定しているためである。ただし、第2ユニット111における液面画像において、泡が少ない、液膜がうすい等の画像種別に応じ、第1ユニット110へ搬送し、分析を継続するかどうかを判定してもよい。
 ステップS707において、泡検出なし(泡検出=0)と判定された場合、第2ユニット111での分析を終了し、続いて第1ユニット110における分析依頼の有無を確認する(ステップS708)。ステップS708において、第1ユニット110の分析依頼がある場合、第1ユニット110における所定の吸引位置に検体を搬送する(ステップS709)。そして、異常吸引累積回数=0とする(ステップS710)。ただし、ステップS710において、異常吸引累積回数を0と設定するのは、初回依頼の場合のみである。
 次に、検体分注動作及び異常吸引チェック処理(B)を実行する(ステップS711)。ステップS711は、図7に示した検体分注動作及び異常吸引チェック処理(B)と同様であるので、詳細な説明は省略する。
 次に、異常吸引と判定され、かつ累積許容回数に達した場合、当該検体に対する全ての依頼項目をキャンセルする(ステップS711、S715)。泡や空吸いの異常吸引と判定された際に設定するデータアラームについては、第2ユニット111において設定するデータアラームと第1ユニット110におけるデータアラームと区別してもよいし、同一でもよい。ただし、泡や空吸いによる異常吸引と判定した場合、詰まりとは区別されることが望ましい。
 当該検体に対し、第1ユニット110と第2ユニット111における初回の依頼項目に対する分注がすべて完了すると、当該検体に対して分注実施し自動再検の対象となる項目について、測定結果の出力を検体待機部にて待つ(ステップS713)。出力された結果に応じて自動再検依頼がある場合、第2ユニット111において分析依頼があるか確認する(ステップS714)。自動再検依頼がある場合、 第2ユニット111において分析を実施する(ステップS703~S707)。
 第2ユニット111における自動再検依頼項目に対する分注がすべて完了し、第1ユニット110において分析依頼があるか確認する(ステップS708)。自動再検依頼がある場合、 第1ユニット110において分析を実施する(ステップS709~S712)。第1ユニット110における自動再検依頼に対する分注動作実施後、当該検体は検体回収部へ搬送する(ステップS713~S716)。
 上述した図11に示した例は、第2ユニット111から分析を開始する場合の例であるが、以下に示す例は、第1ユニット110から分析を開始する例であり、その他の条件は、図11に示した例と同様である。
 図13は、第1ユニット110から分析を開始する例における動作フローチャートであり、コントローラ60によって動作制御される。
 図13の基本的なフローは、図11に示したフローと同様であるため、抜粋して説明する。
 図13において、検体投入部101に設置された検体ラック102は、第1ユニット110に分析依頼があれば、第1ユニット110に検体を搬送する(ステップS801~S804)。初回依頼実施時、当該検体に対する異常吸引累積回数をリセットし(ステップS805)、検体分注動作および異常吸引チェック処理(B)を実施する(ステップS806)。 検体分注動作および異常吸引チェック処理(B)の内容は、図7に示したフローチャートと全く同じため説明は省略する。
 検体分注動作および吸引異常チェック処理(B)の処理後のフローを以下説明する。
 第1ユニット110における初回依頼項目を全て分注完了、および、異常吸引累積回数が所定の累積許容回数以上となった場合でも、第2ユニット111に測定項目の依頼があるか否かを確認する(ステップS807)。すなわち、第1ユニット110における異常吸引累積回数に関わらず、第2ユニット111における測定依頼(分析依頼)があるか否かを確認する。
 ステップS807において、測定依頼があれば第2ユニット111に検体を搬送する(ステップS808)。つまり、第2ユニット111に分析依頼がある場合、当該検体における第1ユニット110での吸引時の泡検知方法の判定結果は考慮しない。これは、第2ユニット111における泡検知方法が、検体に対し非接触かつ、検体液面の撮像により比較的短時間で泡の有無を判別できる非接触検出装置を備えるからである。
 第2ユニット111において、検体分注動作が行われ、泡の検出処理が行われる(ステップS808~S810)。
 第2ユニット111における泡判別方法により泡検出ありと判定された場合(ステップS811)、当該検体に対するすべての依頼をキャンセルし、検体回収部105に回収する(ステップS815、S816)。すなわち、第2ユニットは、泡が存在すると判定した場合には、第1ユニットでの空吸異常の累積回数に係らず第2ユニットで予定されていた測定項目の依頼をキャンセルする。
 第2ユニット111における判別方法により、泡検出なしと判定された場合(ステップS811)、第1ユニット110における初回測定項目の依頼があるかを確認する(ステップS812)。このとき、第1ユニット110にて累積許容回数に達したため未分注の初回の依頼がある場合、検体を第1ユニット110に搬送する(ステップS803、S804)。これは、第1ユニット110における分注動作後、第2ユニット111にて泡検出なしと判定されたため、泡が消失したことが想定されるからである。
 さらに、第2ユニット111における泡検知方法にて泡検出なしと判定されたため、再び第1ユニット110に搬送された当該検体に対し、異常吸引累積回数=0とする(ステップS805)。つまり、第2ユニット111による泡検知判定前の第1ユニット110における異常吸引累積回数は引き継がない。
 第1ユニット110および第2ユニット111における初回測定項目の依頼に対する分注動作が全て完了すれば、検体待機部104にて結果出力を待つ(ステップS813)。出力された結果に応じて、自動再検依頼項目があれば第1ユニット110に分析依頼があるか確認する(ステップS803)。第1ユニット110に分析依頼があれば、第1ユニット110に再び搬送する(ステップS804)。その後、検体分注動作および異常吸引チェック処理(B)を実施する(ステップS806)。このとき、自動再検時の処理フローにおいては、ステップS806の実施前に異常吸引累積回数のリセットは実施しない。
 第1ユニット110における自動再検依頼に対する分注動作実施後、第2ユニット111において分析依頼があるか確認する(ステップS806、S807)。 自動再検依頼がある場合、 第2ユニット111において分析を実施する(S809、S810)。自動再検時のフローは初回測定時と同様である。
 第2ユニット111における自動再検依頼に対する分注動作実施後、検体回収部へ搬送する(ステップS811~S816)。
 本発明の実施例3によれば、2つの分析ユニット110および111を備え、互いに異なる泡検知方法を用いる例においても、実施例1と同様な効果を得ることができる。
 なお、実施例2及び3に示す実施例は、分析ユニットが第1ユニット110と第2ユニット111としているが、3つ以上の分析ユニットを組み合わせた分析システムについても、本発明は適用可能である。
 また、実施例1における泡検知方法は、サンプルプローブ16の圧力変化による検知方法であるが、液面を撮像部により撮像し、泡を検知する方法を、圧力変化による検知方法に代えて使用することも可能である。
 さらに、圧力変化による検知方法に代えてサンプルプローブ16と反応容器35との間の静電容量変化により液面上の泡の存在を検知することも可能である。
 また、上述した例は、試料容器に収容された試料の液面の泡検知に関する例であるが、試料のみならず、試薬容器に収容された試薬の液面の泡検知についても、適用可能であり、試薬分注機構は、図2に示した試料分注機構と同様の構成を有するものである。
 このため、本願においては、試料(検体)と試薬とを液体と総称することができ、液体を吸引吐出する液体分注機構は、試料分注機構及び試薬分注機構の両者を含むものである。また、検体回収部105は試薬回収部を含むものでよく、検体回収部と試薬回収部とを液体回収部と総称することができる。また、試薬については試薬回収部がない場合等、試薬容器を回収することなく試薬ディスクに試薬容器を設置したまま当該試薬容器からの分注をキャンセルしてもよい。
 10・・・サンプル容器、12・・・サンプルディスク、15・・・試料分注機構、16・・・サンプルプローブ、20・・・第1試薬分注機構、21・・・第2試薬分注機構、24・・・分注流路、25・・・定量ポンプ、26・・・圧力センサ、30・・・攪拌装置、35・・・反応容器、36・・・反応ディスク、40・・・試薬容器、41・・・第1試薬ディスク、42・・・第2試薬ディスク、45・・・容器洗浄機構、50・・・光源、51・・・分光検出器、60・・・コントローラ、61・・・タイミング検出部、62・・・コンピュータ、66・・・プランジャ、67・・・駆動機構、68・・・バルブ、69・・・ポンプ、70・・・撮像装置、79・・・システム液、80・・・分節空気、8・・・吸引液、100・・・自動分析装置、101・・・検体投入部、102・・・検体ラック、103・・・搬送ライン、104・・・検体待機部、105・・・検体回収部、106・・・検体識別部、107・・・引込線、108・・・戻り搬送ライン、110・・・第1ユニット、111・・・第2ユニット、112・・・照明光、113・・・輝度補正用構造物、114・・・撮像コントローラ、115・・・画像解析部、117・・・撮像部、118・・・照明部、120、121・・・検体搬送部、621・・・AD変換器、622:データ抽出部、623:異常判定部、624・・・記憶部、901・・・検体一覧表示部、902・・・測定結果表示部、931・・・項目名表示部、932・・・初回測定結果表示部、933・・・初回測定結果データアラーム表示部、934・・・再検測定結果表示部、935・・・再検測定結果データアラーム表示部

Claims (16)

  1.  容器に収容された液体である試料又は試薬を吸引する液体分注機構と、
     前記液体分注機構が有するプローブ内の圧力変化を測定する圧力センサと、
     前記圧力センサが測定した圧力の変化に基づいてプローブでの液体吸引が正常か空吸異常かを判定する判定部と、
     試料を分析する分析部と、
     前記判定部によって判定された液体毎の空吸異常の累積回数と、前記空吸異常回数の累積許容回数(2以上)とを記憶する記憶部と、
     前記液体分注機構、前記判定部及び前記分析部の動作を制御するコントローラと、を備え、
     前記コントローラは、
     同一液体に対し測定項目数の数に応じてプローブが液体を吸引する吸引動作の過程で空吸異常が連続しない場合であっても空吸異常の累積回数を更新して前記記憶部に記憶させ、
     更新された累積回数が前記累積許容回数に達するまでは、当該液体に対し予定されている吸引動作を継続し、
     更新された累積回数が前記累積許容回数に達したときは、当該液体に対し予定されていた測定項目の依頼をキャンセルし、次に予定されている別の液体からの吸引動作を行うことを特徴とする自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記コントローラは、
     自動再検の設定有無に応じて自動再検依頼を設定し、
     自動再検が有に設定されている場合には、更新された累積回数が前記累積許容回数に達するまでに空吸異常と判定された測定項目に対し自動再検依頼を設定することを特徴とする自動分析装置。
  3.  請求項1記載の自動分析装置において、
     前記分析部は、第1分析ユニットと第2分析ユニットとを備え、
     前記コントローラは、
     前記第1分析ユニットと前記第2分析ユニットの夫々の判定部で空吸異常と判定された空吸異常の累積回数を同一液体に対し合算して更新して前記記憶部に記憶させ、
     更新された合算の累積回数が前記累積許容回数に達するまでは、当該液体に対し予定されている吸引動作を継続することを特徴とする自動分析装置。
  4.  請求項3記載の自動分析装置において、
     前記第1分析ユニットと前記第2分析ユニットの夫々は、液体の液面上に泡が存在することをプローブが泡に接触した後のプローブ内の圧力の変化に基づいて判定することを特徴とする自動分析装置。
  5.  請求項1記載の自動分析装置において、
     前記分析部は、前記第1分析ユニットと第2分析ユニットを備え、
     前記第1分析ユニットは、液体の液面上に泡が存在することをプローブが泡に接触した後のプローブ内の圧力の変化に基づいて判定し、
     前記第2分析ユニットは、液体の液面上に泡が存在することを液体に対して非接触で判定し、
     前記第2分析ユニットは、泡が存在すると判定した場合には、前記累積回数に係らず前記第2分析ユニットで予定されていた測定項目の依頼をキャンセルすることを特徴とする自動分析装置。
  6.  請求項1記載の自動分析装置において、
     さらに、液体は検体であって、検体を回収する検体回収部を備え、
     前記コントローラは、
     更新された累積回数が前記累積許容回数に達したとき、当該検体に対し予定されていた測定項目の依頼をキャンセルし、当該検体を前記検体回収部に搬送することを特徴とする自動分析装置。
  7.  容器に収容された液体である試料又は試薬を吸引し、反応容器に吐出する液体分注機構と、
     上記容器に収容された液体の液面上に泡が存在するか否かを判定する泡判定部と、
     上記泡判定部が、同一の上記容器に収容された液体の液面上に泡が存在すると判定した泡判定回数を記憶する記憶部と、
     上記反応容器に収容された試料を測定し、分析する分析部と、
     上記液体分注機構、上記泡判定部及び上記分析部の動作を制御するコントローラと、
     を備え、上記コントローラは、上記泡判定部が上記液体の液面上に泡が存在すると判定したとき、上記液体分注機構に上記液体の吸引動作を繰り返し実行させ、再度、上記液面上に泡が存在するか否かを判定し、上記記憶部に記憶された泡判定回数が累積許容回数以上となったときには、上記液体の吸引動作を禁止することを特徴とする自動分析装置。
  8.  請求項7に記載の自動分析装置において、
     上記試料の分析結果を出力する出力部を備え、
     上記コントローラは、上記泡判定部が上記液体の液面上に泡が存在すると判定したとき、上記分注機構が分注した液体についての測定項目の分析依頼をキャンセルし、上記出力部にデータアラームを出力させ、上記記憶部に記憶された泡判定回数が上記累積許容回数未満のときには、当該測定項目について、再度、上記液体分注機構に上記液体の吸引動作を行わせることを特徴とする自動分析装置。
  9.  請求項8に記載の自動分析装置において、
     上記液体を回収する液体回収部を備え、上記コントローラは、上記液体の吸引動作を禁止した後、上記液体を上記液体回収部に搬送することを特徴とする自動分析装置。
  10.  請求項9に記載の自動分析装置において、
     上記液体分注機構は、液体を吸引し、吐出する分注プローブを有し、上記泡判定部は、上記分注プローブ内の圧力変化を測定する圧力センサを有し、この圧力センサが測定した圧力の変化に基づいて上記容器に収容された液体の液面上に泡が存在するか否かを判定することを特徴とする自動分析装置。
  11.  請求項9に記載の自動分析装置において、
     上記コントローラは、上記泡判定部により泡が存在すると判定され、その判定された回数が累積許容回数未満の場合には、その測定項目に対して自動再検依頼の対象となる測定項目があるか否かを判断し、上記自動再検の対象となる測定項目がある場合、上記液体分注機構に、上記容器に収容された液体を、再度、吸引するように制御することを特徴とする自動分析装置。
  12.  請求項11に記載の自動分析装置において、
     上記コントローラは、上記測定項目毎に、上記データアラーム、及び測定回数ごとの分析結果を上記出力部に表示させることを特徴とする自動分析装置。
  13.  請求項7に記載の自動分析装置において、
     上記液体分注機構、上記泡判定部、上記記憶部、上記分析部、上記コントローラをそれぞれ有する複数の分析ユニットを備えることを特徴とする自動分析装置。
  14.  請求項13に記載の自動分析装置において、
     上記複数の分析ユニットのそれぞれの上記液体分注機構は、液体を吸引し、吐出する分注プローブを有し、上記泡判定部は、上記分注プローブ内の圧力変化を測定する圧力センサを有し、この圧力センサが測定した圧力の変化に基づいて上記容器に収容された液体の液面上に泡が存在するか否かを判定することを特徴とする自動分析装置。
  15.  請求項13に記載の自動分析装置において、
     上記複数の分析ユニットは、2つの分析ユニットであり、
     一方の分析ユニットの上記液体分注機構は、液体を吸引し、吐出する分注プローブを有し、上記泡判定部は、上記分注プローブ内の圧力変化を測定する圧力センサを有し、この圧力センサが測定した圧力の変化に基づいて上記容器に収容された液体の液面上に泡が存在するか否かを判定し、
     他方の分析ユニットの上記液体分注機構は、液体を吸引し、吐出する分注プローブを有し、上記泡判定部は、上記容器に収容された液体の液面を泡の存在を上記液面に接触することなく、検出する非接触検出装置であり、当該非接触検出装置の検出結果に基づいて上記容器に収容された液体の液面上に泡が存在するか否かを判定することを特徴とする自動分析装置。
  16.  請求項15に記載の自動分析装置において、
     上記非接触検出装置は、上記液体の液面を撮像する撮像装置であることを特徴とする自動分析装置。
PCT/JP2019/011505 2018-03-28 2019-03-19 自動分析装置 WO2019188599A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19778131.3A EP3779467B1 (en) 2018-03-28 2019-03-19 Automated analysis device
US16/645,583 US11719714B2 (en) 2018-03-28 2019-03-19 Automatic analyzer
CN201980004534.2A CN111108396B (zh) 2018-03-28 2019-03-19 自动分析装置
JP2020510750A JP7182614B2 (ja) 2018-03-28 2019-03-19 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-061199 2018-03-28
JP2018061199 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188599A1 true WO2019188599A1 (ja) 2019-10-03

Family

ID=68058456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011505 WO2019188599A1 (ja) 2018-03-28 2019-03-19 自動分析装置

Country Status (5)

Country Link
US (1) US11719714B2 (ja)
EP (1) EP3779467B1 (ja)
JP (1) JP7182614B2 (ja)
CN (1) CN111108396B (ja)
WO (1) WO2019188599A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079645A1 (ja) * 2019-10-24 2021-04-29 株式会社日立ハイテク 自動分析装置および試薬の分注方法
WO2023171209A1 (ja) * 2022-03-10 2023-09-14 株式会社日立ハイテク 分注装置及び自動分析装置
WO2024057718A1 (ja) * 2022-09-13 2024-03-21 株式会社日立ハイテク 自動分析装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112641502B (zh) * 2020-12-16 2022-02-15 杭州堃博生物科技有限公司 注射泵气泡排空控制方法、装置、注射泵及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125780A (ja) 1990-09-17 1992-04-27 Fujitsu Ltd 指紋像入力装置
JP2004125780A (ja) 2002-08-07 2004-04-22 Hitachi High-Technologies Corp サンプル分注装置およびそれを用いた自動分析装置
JP2007303937A (ja) * 2006-05-10 2007-11-22 Olympus Corp 自動分析装置
JP2009174911A (ja) * 2008-01-22 2009-08-06 Hitachi High-Technologies Corp 自動分析装置、および自動分析方法
JP2009216455A (ja) * 2008-03-07 2009-09-24 Olympus Corp 気泡有無判定方法および分注装置
JP2012008077A (ja) * 2010-06-28 2012-01-12 Hitachi High-Technologies Corp 自動分析装置
JP2014145621A (ja) 2013-01-28 2014-08-14 Hitachi High-Technologies Corp 自動分析装置
JP2015010985A (ja) * 2013-07-01 2015-01-19 株式会社日立ハイテクノロジーズ 自動分析装置
JP2015114120A (ja) * 2013-12-09 2015-06-22 日立アロカメディカル株式会社 送液装置および送液装置の配管を液体で満たす方法
JP5865633B2 (ja) 2011-09-01 2016-02-17 株式会社日立ハイテクノロジーズ 自動分析装置
JP2016206112A (ja) * 2015-04-27 2016-12-08 東芝メディカルシステムズ株式会社 自動分析装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609945B2 (ja) * 1998-08-28 2005-01-12 株式会社日立製作所 自動分析方法及び装置
US7027935B2 (en) * 2002-08-07 2006-04-11 Hitachi High Technologies Corp. Sample dispensing apparatus and automatic analyzer using the same
US7876935B2 (en) * 2006-01-30 2011-01-25 Protedyne Corporation Sample processing apparatus with a vision system
JP4719622B2 (ja) * 2006-05-29 2011-07-06 株式会社日立ハイテクノロジーズ 自動分析装置
JP5183396B2 (ja) 2008-09-29 2013-04-17 株式会社日立ハイテクノロジーズ 異物検出装置
CN102405414B (zh) * 2009-04-20 2015-09-23 株式会社日立高新技术 自动分析装置
JP5277214B2 (ja) * 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
JP5941692B2 (ja) * 2012-02-13 2016-06-29 株式会社日立ハイテクノロジーズ 自動分析装置
JP6180788B2 (ja) 2013-05-20 2017-08-16 株式会社日立ハイテクノロジーズ 自動分析装置および分析方法
JP6444817B2 (ja) * 2015-06-25 2018-12-26 株式会社日立ハイテクノロジーズ 自動分析装置および撮像方法
JP2018185145A (ja) * 2015-08-25 2018-11-22 株式会社日立ハイテクノロジーズ 自動分析装置および分注方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125780A (ja) 1990-09-17 1992-04-27 Fujitsu Ltd 指紋像入力装置
JP2004125780A (ja) 2002-08-07 2004-04-22 Hitachi High-Technologies Corp サンプル分注装置およびそれを用いた自動分析装置
JP2007303937A (ja) * 2006-05-10 2007-11-22 Olympus Corp 自動分析装置
JP2009174911A (ja) * 2008-01-22 2009-08-06 Hitachi High-Technologies Corp 自動分析装置、および自動分析方法
JP2009216455A (ja) * 2008-03-07 2009-09-24 Olympus Corp 気泡有無判定方法および分注装置
JP2012008077A (ja) * 2010-06-28 2012-01-12 Hitachi High-Technologies Corp 自動分析装置
JP5865633B2 (ja) 2011-09-01 2016-02-17 株式会社日立ハイテクノロジーズ 自動分析装置
JP2014145621A (ja) 2013-01-28 2014-08-14 Hitachi High-Technologies Corp 自動分析装置
JP2015010985A (ja) * 2013-07-01 2015-01-19 株式会社日立ハイテクノロジーズ 自動分析装置
JP2015114120A (ja) * 2013-12-09 2015-06-22 日立アロカメディカル株式会社 送液装置および送液装置の配管を液体で満たす方法
JP2016206112A (ja) * 2015-04-27 2016-12-08 東芝メディカルシステムズ株式会社 自動分析装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079645A1 (ja) * 2019-10-24 2021-04-29 株式会社日立ハイテク 自動分析装置および試薬の分注方法
EP4050342A4 (en) * 2019-10-24 2023-12-20 Hitachi High-Tech Corporation DEVICE AND METHOD FOR AUTOMATICALLY ANALYZING REAGENT DISPENSION
WO2023171209A1 (ja) * 2022-03-10 2023-09-14 株式会社日立ハイテク 分注装置及び自動分析装置
WO2024057718A1 (ja) * 2022-09-13 2024-03-21 株式会社日立ハイテク 自動分析装置

Also Published As

Publication number Publication date
CN111108396B (zh) 2023-10-03
CN111108396A (zh) 2020-05-05
EP3779467A1 (en) 2021-02-17
EP3779467A4 (en) 2022-05-04
JP7182614B2 (ja) 2022-12-02
JPWO2019188599A1 (ja) 2021-07-08
EP3779467B1 (en) 2023-09-06
US11719714B2 (en) 2023-08-08
US20200264206A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2019188599A1 (ja) 自動分析装置
JP5331056B2 (ja) 自動分析装置
EP2857845B1 (en) Automatic analysis device
EP3349013B1 (en) Automated analyzer
JP6268288B2 (ja) 血液凝固検査装置
JP2010175420A (ja) 試料分析装置
JP2004028931A (ja) 自動分析システム
JP6847200B2 (ja) 自動分析装置
JP2006010363A (ja) 自動分析装置
JP2010122124A (ja) 自動分析装置
CN113383238A (zh) 自动分析装置
JP6204087B2 (ja) 自動分析装置
JP2010286324A (ja) 分注装置、自動分析装置、および分注方法
JP6033550B2 (ja) 自動分析装置
US20230341425A1 (en) Automatic analyzer and dispensing method of reagent
WO2010143398A1 (ja) 分注装置、自動分析装置、および液面検知方法
JP2015031586A (ja) 分析装置及び液体吸引装置
JP6224418B2 (ja) 自動分析装置
US8845964B2 (en) Sample analyzer and method for controling a sample analyzer
JP5487275B2 (ja) 自動分析装置
JP2010008372A (ja) 自動分析装置
CN110568209A (zh) 自动分析装置
JP4713629B2 (ja) 自動分析装置
JP5174930B2 (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019778131

Country of ref document: EP

Effective date: 20201028