WO2019188244A1 - 光検出器 - Google Patents

光検出器 Download PDF

Info

Publication number
WO2019188244A1
WO2019188244A1 PCT/JP2019/009959 JP2019009959W WO2019188244A1 WO 2019188244 A1 WO2019188244 A1 WO 2019188244A1 JP 2019009959 W JP2019009959 W JP 2019009959W WO 2019188244 A1 WO2019188244 A1 WO 2019188244A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
semiconductor substrate
region
semiconductor
impurity concentration
Prior art date
Application number
PCT/JP2019/009959
Other languages
English (en)
French (fr)
Inventor
裕樹 杉浦
暁登 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020509846A priority Critical patent/JP7038332B2/ja
Priority to CN201980021327.8A priority patent/CN111902949B/zh
Publication of WO2019188244A1 publication Critical patent/WO2019188244A1/ja
Priority to US17/026,864 priority patent/US20210005646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Definitions

  • the present disclosure relates to a photodetector, and particularly to a photodetector capable of detecting weak light.
  • An avalanche photodiode (APD: Avalanche Photodiode) is known as one of highly sensitive photodetectors.
  • the APD is a photodiode whose light detection sensitivity is increased by multiplying signal charges generated by photoelectric conversion using avalanche breakdown (breakdown).
  • the present disclosure provides a photodetector that can alleviate the electric field at the end.
  • a photodetector includes a first conductivity type semiconductor substrate and a second conductivity type first semiconductor layer different from the first conductivity type located above the semiconductor substrate.
  • a first semiconductor layer bonded to the semiconductor substrate in one region, and a second semiconductor layer located between the semiconductor substrate and the first semiconductor layer in a second region outside the first region, A second semiconductor layer of the second conductivity type having an impurity concentration lower than that of the first semiconductor layer, wherein the semiconductor substrate and the first semiconductor layer have a charge multiplication in which charges are multiplied by avalanche multiplication.
  • a photoelectric conversion part including a double region is formed, and the second semiconductor layer reaches a position below the boundary between the semiconductor substrate and the first semiconductor layer in the thickness direction of the semiconductor substrate.
  • a photodetector capable of relaxing the electric field at the end is realized.
  • FIG. 1 is a plan view of the entire solid-state imaging device according to the first embodiment.
  • FIG. 2 is a plan view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the comparative example.
  • FIG. 5 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the second embodiment.
  • FIG. 6 is a plan view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the third embodiment.
  • FIG. 7 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the third embodiment.
  • FIG. 8 is a plan view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the modification of the third embodiment.
  • CMOS complementary metal-oxide-semiconductor
  • APD avalanche photodiode
  • Patent Document 1 a solid-state imaging device has been proposed that can arrange APDs in an array and generate a high-resolution image from minute incident light (see, for example, Patent Document 2).
  • Patent Document 2 is disadvantageous for high sensitivity because an APD is formed under the pixel circuit.
  • the APD In order to make the APD pixel array highly sensitive, the APD needs to be formed in a shallow portion of the solid-state imaging device. Normally, the end of the APD pixel array is designed to have a low electric field, but a high impurity density PN junction is unintentionally formed between the elements constituting the peripheral circuit, resulting in a high electric field. May end up.
  • the APD is formed in a shallow region, the region where the depletion layer can be expanded is reduced, and it may be difficult to reduce the electric field. That is, at the end of the APD pixel array, it is necessary to improve the breakdown voltage and reduce the leakage current by relaxing the electric field.
  • the Z-axis direction in the coordinate axes is, for example, the vertical direction, the Z-axis + side is expressed as an upper side (upper), and the Z-axis-side is expressed as a lower side (lower).
  • the Z-axis direction is a direction perpendicular to the upper surface or the lower surface of the semiconductor substrate, and is the thickness direction of the semiconductor substrate.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction.
  • the X-axis direction is expressed as a horizontal direction
  • the Y-axis direction is expressed as a vertical direction.
  • “plan view” means viewing from the Z-axis direction. Further, the present disclosure does not exclude a structure in which the P-type and the N-type are reversed in the following embodiments.
  • FIG. 1 is a plan view of the entire solid-state imaging device according to the first embodiment.
  • the solid-state imaging device 100 includes a substrate 101, a pixel array unit 102 mounted on the substrate 101, and a peripheral circuit 103 mounted around the pixel array unit 102 on the substrate 101.
  • a plurality of APDs (Avalanche Photodiodes) are arranged in an array. In other words, the plurality of APDs are arranged in a matrix.
  • FIG. 2 is a plan view of the outer peripheral portion of the pixel array portion 102 (portion surrounded by a broken line in FIG. 1).
  • FIG. 3 is a cross-sectional view of the outer periphery of the pixel array unit 102.
  • 3 is a cross-sectional view of the pixel array unit 102 taken along the line III-III in FIG.
  • the solid-state imaging device 100 includes a semiconductor substrate 10, a first semiconductor layer 11, and a second semiconductor layer 12.
  • a region inside (that is, the X axis + side) of the pixel array unit 102 (that is, the solid-state imaging device 100) is illustrated as a first region A1, and the region outside the pixel array unit 102 (that is, the X axis).
  • the ⁇ side region is illustrated as the second region A2.
  • the P-type depletion layer end L P1 and the N-type depletion layer end L N1 are shown by broken lines.
  • the semiconductor substrate 10 is formed of a P-type semiconductor. Specifically, the semiconductor substrate 10 includes a main body portion 10 a and a bonding portion 10 b that is located on the main body portion 10 a and is in contact with the first semiconductor layer 11.
  • the impurity concentration of the main body 10a is, for example, 1 ⁇ 10 14 to 1 ⁇ 10 15 cm ⁇ 3
  • the impurity concentration of the junction 10b is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 . Within such a range of impurity concentration, the impurity concentration of the junction 10b is higher than the impurity concentration of the main body 10a.
  • the first semiconductor layer 11 is formed of an N-type semiconductor.
  • the first semiconductor layer 11 is located above the semiconductor substrate 10.
  • the first semiconductor layer 11 includes a main body portion 11a and a joint portion 11b formed under the main body portion 11a and in contact with (in other words, joined to) the semiconductor substrate 10.
  • the joint portion 11b is located in the first region A1 of the pixel array portion 102. That is, the first semiconductor layer 11 is in contact with the semiconductor substrate 10 in the first region A1.
  • the impurity concentration of the main body portion 11a is, for example, 5 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the junction portion 11b is, for example, 5 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the impurity concentration of the junction 10b is higher than the impurity concentration of the main body 10a.
  • the semiconductor substrate 10 and the first semiconductor layer 11 form an APD 1 including a charge multiplication region where charge is multiplied by avalanche multiplication.
  • APD 1 is an example of a photoelectric conversion unit. Specifically, the APD 1 is formed by a PN junction of a P-type junction 10b and an N-type junction 11b.
  • the shape of the APD or the like may not be good at the outer periphery of the pixel array unit 102. Therefore, the APD 1 formed on the outer peripheral portion of the pixel array unit 102 is masked and not used, unlike the APD 2 positioned inside the APD 1 shown in FIG. The actually used APD 2 is surrounded by the separation region 15 in plan view.
  • the isolation region 15 is formed of a P-type semiconductor. The impurity concentration of the isolation region 15 is 1 ⁇ 10 16 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the second semiconductor layer 12 is formed of an N-type semiconductor.
  • the second semiconductor layer 12 is located between the semiconductor substrate 10 and the first semiconductor layer 11 in the second region A2 outside the first region A1.
  • the impurity concentration of the second semiconductor layer 12 is 1 ⁇ 10 16 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the second semiconductor layer 12 is in contact with the first semiconductor layer 11 from the outside and covers the outer side surface of the first semiconductor layer 11. As shown in FIG. 3, the outer side surface of the second semiconductor layer 12 is an inclined surface.
  • the second semiconductor layer 12 is formed by impurity implantation, for example.
  • FIG. 4 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the comparative example.
  • the second semiconductor layer 12 a included in the solid-state image sensor 100 a according to the comparative example is thinner than the second semiconductor layer 12 included in the solid-state image sensor 100.
  • the P-type depletion layer end L P2 and the N-type depletion layer end L N2 are shown by broken lines.
  • the distance D2 from the P-type depletion layer end L P2 to the N-type depletion layer end L N2 is short, and there is a concern that a high electric field is generated and the breakdown voltage decreases. There is also a concern that leakage current may occur.
  • the second semiconductor layer 12 reaches a position below the boundary portion 14 between the semiconductor substrate 10 and the first semiconductor layer 11 in the thickness direction of the semiconductor substrate 10. Then, since the boundary portion 16 between the second semiconductor layer 12 and the semiconductor substrate 10 approaches the lower surface of the semiconductor substrate 10, the depletion layer spreads on the upper surface side of the semiconductor substrate 10. As a result, the distance D1 from the P-type depletion layer end L P1 to the N-type depletion layer end L N1 is longer than the distance D2. Therefore, the electric field at the outer peripheral portion (that is, the end portion) of the pixel array portion 102 is relaxed. As a result, the breakdown voltage is improved and the leakage current is suppressed.
  • the solid-state imaging device 100 includes the first conductivity type semiconductor substrate 10 and the second conductivity type first semiconductor layer 11 different from the first conductivity type located above the semiconductor substrate 10.
  • the first semiconductor layer 11 bonded to the semiconductor substrate 10 in the first region A1 and the second semiconductor layer located between the semiconductor substrate 10 and the first semiconductor layer 11 in the second region A2 outside the first region A1.
  • a second conductivity type second semiconductor layer 12 having an impurity concentration lower than that of the first semiconductor layer 11.
  • the solid-state image sensor 100 is an example of a photodetector.
  • the first conductivity type is, for example, P type
  • the second conductivity type is, for example, N type.
  • the semiconductor substrate 10 and the first semiconductor layer 11 form an APD 1 including a charge multiplication region where charges are multiplied by avalanche multiplication.
  • the second semiconductor layer 12 is a semiconductor It reaches a position below the boundary portion 14 between the substrate 10 and the first semiconductor layer 11.
  • APD 1 is an example of a photoelectric conversion unit.
  • the boundary 16 between the second semiconductor layer 12 and the semiconductor substrate 10 approaches the lower surface of the semiconductor substrate 10, so that a depletion layer spreads on the upper surface side of the semiconductor substrate 10.
  • the distance D1 from the P-type depletion layer end L P1 to the N-type depletion layer end L N1 becomes relatively long, and the electric field is relaxed.
  • the breakdown voltage is improved and the leakage current is suppressed.
  • the semiconductor substrate 10 includes a main body portion 10 a and a joint portion 11 b that is located on the main body portion 10 a and is in contact with the first semiconductor layer 11.
  • the main body portion 10a is an example of a third portion
  • the joint portion 11b is an example of a fourth portion.
  • FIG. 5 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the second embodiment.
  • the description will be focused on the differences from the first embodiment, and description of the matters already described will be omitted.
  • the solid-state imaging device 200 includes a semiconductor substrate 20, a first semiconductor layer 11, and a second semiconductor layer 12.
  • the semiconductor substrate 20 is formed of a P-type semiconductor. Specifically, the semiconductor substrate 20 includes a substrate body 20a and an upper portion 20b located outside the second semiconductor layer 12 on the substrate body 20a.
  • the impurity concentration of the substrate body 20a is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 , which is higher than the impurity concentration of the body 10a of the semiconductor substrate 10 described in the first embodiment.
  • the impurity concentration of the upper portion 20b is, for example, 1 ⁇ 10 14 to 1 ⁇ 10 15 cm ⁇ 3 , which is substantially the same as the impurity concentration of the main body portion 10a of the semiconductor substrate 10 described in the first embodiment.
  • the impurity concentration of the upper part 20b is lower than the impurity concentration of the substrate body 20a.
  • the impurity concentration of the substrate body 20a of the semiconductor substrate 20 is equal to the impurity concentration of the junction 10b of the semiconductor substrate 10, and the substrate body 20a has a high impurity concentration as a whole.
  • a concentration gradient in which the impurity concentration decreases toward the upper side is formed in the substrate main body portion 20a, and the substrate main body portion 20a is bonded to the bonding portion 11b of the first semiconductor layer 11 at the portion where the impurity concentration is lowest. Good. Thereby, the drift speed of the charge generated in the deep part (lower part) of the semiconductor substrate 20 to the APD 1 is increased.
  • the depletion layer hardly extends from the boundary portion 26 of the second semiconductor layer 12 and the substrate main body portion 20a to the substrate main body portion 20a side. It becomes difficult to ensure a withstand voltage only by the depletion layer spreading toward the substrate body 20a.
  • a depletion layer can be expanded from the boundary portion 26 to the second semiconductor layer 12 side. For this reason, the effect which improves a proof pressure is acquired.
  • the impurity concentration of the second semiconductor layer 12 is approximately the same as the impurity concentration of the substrate main body portion 20a, the impurities are offset and the first semiconductor layer 11 and the substrate main body portion 20a of the second semiconductor layer 12 are offset.
  • the effective impurity concentration of the overlap region 12b (a portion surrounded by a broken line in the second semiconductor layer 12) positioned therebetween becomes low.
  • a part of the second semiconductor layer 12 is located outside the first semiconductor layer 11, and the outer side surface of the first semiconductor layer 11 is covered with the second semiconductor layer 12. This suppresses a decrease in breakdown voltage due to the rounding effect at the corners of the pixel array section and a decrease in breakdown voltage due to lithography misalignment.
  • the impurity concentration of the upper portion 20b is low, it becomes difficult to form a region with a high impurity concentration unintentionally due to manufacturing variations, and generation of a high electric field is suppressed.
  • the semiconductor substrate 20 includes the substrate main body portion 20a and the upper portion 20b positioned outside the second semiconductor layer 12 on the substrate main body portion 20a.
  • the solid-state image sensor 200 is an example of a photodetector.
  • the impurity concentration of the upper part 20b is lower than the impurity concentration of the substrate body 20a.
  • the substrate body 20a is an example of a third part, and the upper part 20b is an example of a fourth part.
  • the impurity concentration of the upper portion 20b is low, it becomes difficult to form a region with a high impurity concentration unintentionally due to manufacturing variations, and generation of a high electric field is suppressed.
  • FIG. 6 is a plan view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the third embodiment.
  • FIG. 7 is a cross-sectional view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the third embodiment.
  • FIG. 7 is a cross-sectional view of the solid-state imaging device 300 according to Embodiment 3 taken along the line VII-VII in FIG.
  • description will be made mainly on differences from the first embodiment and the second embodiment, and description of matters already described will be omitted.
  • the solid-state imaging device 300 includes a semiconductor substrate 30, a first semiconductor layer 31, a second semiconductor layer 32, an isolation region 35, a well 37, and STI (Shallow Trench Isolation). 39).
  • the first area A1 shown in FIG. 7 is a dummy pixel area
  • the second area A2 outside the first area A1 is an electric field relaxation area
  • A3 is an effective pixel area.
  • the P-type depletion layer end L P3 is indicated by a broken line.
  • the semiconductor substrate 30 is formed of a P-type semiconductor. Specifically, the semiconductor substrate 30 is positioned outside the main body 30a, the outer peripheral portion 30b positioned outside the second semiconductor layer 32 on the main body 30a, and the outer peripheral portion 30b on the main body 30a.
  • the outermost peripheral part 30c is included.
  • the impurity concentration of the main body 30a is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the outer peripheral portion 30b is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3
  • the impurity concentration of the outermost peripheral portion 30c is 5 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the impurity concentration in the outer peripheral portion 30b is lower than the impurity concentration in the main body portion 30a.
  • the impurity concentration of the outermost peripheral part 30c is higher than the impurity concentration of the outer peripheral part 30b.
  • a concentration gradient is formed such that the impurity concentration decreases toward the upper side.
  • the impurity concentration in the portion of the main body 30a located immediately below the first semiconductor layer 31 and in contact with the first semiconductor layer 31 is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the outermost peripheral portion 30 c is disposed in a region separated from the outer end of the second semiconductor layer 32 by the same extent as the depletion layer width in the thickness direction of the semiconductor substrate 30.
  • the lateral width of the outer peripheral portion 30b is wider than the minimum width of the depletion layer at the end of the pixel array portion.
  • the impurity concentration in the outer peripheral portion 30b is low, it becomes difficult to form a region with a high impurity concentration that is not intended due to manufacturing variations and the like, and generation of a high electric field is suppressed.
  • the first semiconductor layer 31 is formed of an N-type semiconductor.
  • the first semiconductor layer 31 is located above the semiconductor substrate 30.
  • the first semiconductor layer 31 is formed to be finely separated. Thereby, the shape of the resist used in the implantation of impurities for forming the first semiconductor layer 31 can be stabilized.
  • the first semiconductor layer 31 is divided into an outer portion 31a located in the second region A2 and an inner portion 31b located in the first region A1.
  • the inner portion 31 b includes a main body portion 31 b 1 and a bonding portion 31 b 2 that is formed under the main body portion 31 b 1 and is bonded to the semiconductor substrate 30.
  • the impurity concentration of the outer portion 31a and the main body portion 31b1 is, for example, 5 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the junction portion 31b2 is, for example, 5 ⁇ 10 16 to 1 ⁇ 10 19. cm ⁇ 3 .
  • the impurity concentration of the junction portion 31b2 is higher than the impurity concentration of the outer portion 31a and the main body portion 31b1.
  • the semiconductor substrate 30 and the inner portion 31b form an APD 1 including a charge multiplication region where charges are multiplied by avalanche multiplication.
  • APD 1 is an example of a photoelectric conversion unit.
  • a charge multiplying region capable of multiplying one signal charge to a large number is provided in the vicinity of the boundary 34 between the semiconductor substrate 30 and the inner portion 31b. It is formed. According to the charge multiplication region, it is possible to detect a weak light of one photon. The multiplied signal charge is accumulated in the main body 31b1.
  • the APD shape and the like may not be good at the outer periphery of the pixel array portion. Therefore, the APD 1 formed on the outer peripheral portion of the pixel array portion is masked and not used, unlike the APD 2 located inside the APD 1 shown in FIGS. 6 and 7, for example. That is, APD1 is a dummy pixel.
  • the actually used APD 2 is surrounded by the separation region 15 in plan view.
  • the isolation region 35 is formed of a P-type semiconductor.
  • the impurity concentration of the isolation region 35 is 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the P-type separation region 35 for electrically separating the outer portion 31a and the inner portion 31b is not provided between the outer portion 31a and the inner portion 31b.
  • the outer portion 31a and the inner portion 31b are electrically connected by, for example, a wiring M (schematically illustrated in FIG. 7).
  • the potential of the wiring M is controlled to an arbitrary potential, the outer portion 31a and the inner portion 31b are surely at the same potential.
  • the potential of the wiring M is fixed to a potential lower than the reset potential of the APD 1.
  • the second semiconductor layer 32 is formed of an N-type semiconductor.
  • the second semiconductor layer 32 is located between the semiconductor substrate 30 and the outer portion 31a of the first semiconductor layer 31 in the second region A2 outside the first region A1.
  • the impurity concentration of the second semiconductor layer 12 is 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the second semiconductor layer 32 is in contact with the outer portion 31a from the outside and covers the outer side surface of the outer portion 31a. Further, the outer side surface of the second semiconductor layer 32 is an inclined surface. The effect obtained by the second semiconductor layer 32 is the same as the effect obtained by the second semiconductor layer 12.
  • a pixel circuit for reading out signal charges output from the APD 2 is arranged. Specifically, a transistor TR for reading signal charges output from the APD 2 is disposed on the upper surface of the well 37.
  • the well 37 is located above the semiconductor substrate 30 and in the third region A3 inside the first region A1.
  • a P-type isolation region 35 is located between the well 37 and the first semiconductor layer 31 of the APD 2.
  • the well 37 includes a P-type first well 37a and an N-type second well 37b that covers a side surface and a lower surface of the first well 37a.
  • the second well 37b includes a joint portion 37b1 in contact with the semiconductor substrate 30 and a main body portion 37b2 on the joint portion 37b1.
  • the first well 37a (joint portion 37b1 and main body portion 37b2) can expand a depletion layer between the second well 37b and the semiconductor substrate 30. Therefore, punch-through of charges can be suppressed.
  • the well 37 reaches a position below the first semiconductor layer 31 in the thickness direction of the semiconductor substrate 30.
  • the junction part 37b1 and the 2nd semiconductor layer 32 can be formed simultaneously in the same process. That is, the number of steps in manufacturing the solid-state imaging device 300 can be reduced.
  • the alignment margin can be reduced, the area of the end region of the pixel array portion can be reduced.
  • the impurity concentration of the first well 37a is 5 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3
  • the impurity concentration of the junction 37b1 is 1 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3.
  • the impurity concentration of the portion 37b2 is 5 ⁇ 10 16 to 1 ⁇ 10 18 cm ⁇ 3 . Within such an impurity concentration range, the impurity concentration of the junction portion 37b1 is lower than the impurity concentration of the main body portion 37b2.
  • the STI 39 covers a portion of the upper surface of the semiconductor substrate 30 outside the first semiconductor layer 31.
  • the STI 39 has a rectangular ring shape (in other words, a frame shape). According to STI39, the volume of the depletion layer can be reduced and the leakage current can be suppressed.
  • FIG. 8 is a plan view of the outer peripheral portion of the pixel array portion of the solid-state imaging device according to the modification of the third embodiment.
  • the second semiconductor layer 42 included in the solid-state imaging device 400 according to the modification of the third embodiment is formed to be finely separated. Thereby, the shape of the resist used in the implantation of impurities for forming the second semiconductor layer 42 can be stabilized.
  • the solid-state imaging device 300 further includes the well 37 located in the third region A3 above the semiconductor substrate 30 and inside the first region A1, the well 37, and the first semiconductor layer 31. And a first conductivity type separation region located between the two.
  • the solid-state image sensor 300 is an example of a photodetector.
  • the well 37 includes a first well 37a of the first conductivity type and a second well 37b of the second conductivity type that covers the side surface and the lower surface of the first well 37a.
  • the first conductivity type is, for example, P type
  • the second conductivity type is, for example, N type.
  • the transistor TR is disposed on the upper surface of the well 37, and the well 37 reaches a position below the first semiconductor layer 31 in the thickness direction of the semiconductor substrate 30.
  • the joint portion 37b1 of the well 37 and the second semiconductor layer 32 can be simultaneously formed in the same process. That is, the number of steps in manufacturing the solid-state imaging device 300 can be reduced.
  • the semiconductor substrate 30 further includes an outermost peripheral part 30c located outside the outer peripheral part 30b on the main body part 30a.
  • the main body 30a is an example of a third part
  • the outer peripheral part 30b is an example of a fourth part
  • the outermost peripheral part 30c is an example of a fifth part.
  • the impurity concentration of the outermost peripheral part 30c is higher than the impurity concentration of the outer peripheral part 30b.
  • the outermost peripheral portion 30c having such a relatively high impurity concentration can stop the extension of the lateral depletion layer. Therefore, generation of leakage current is suppressed.
  • the first semiconductor layer 31 is divided into an outer portion 31a located in the second region A2 and an inner portion 32a located in the first region A1. Between the outer portion 31a and the inner portion 32a, there is not provided a first conductivity type separation region for electrically separating the outer portion 31a and the inner portion 32a, and the outer portion 31a and the inner portion 32a M is electrically connected.
  • the solid-state imaging device 300 further includes an STI 39 that covers a portion of the upper surface of the semiconductor substrate 30 outside the first semiconductor layer 31.
  • This can reduce the volume of the depletion layer and suppress the leakage current.
  • the STI 39 has a rectangular ring shape.
  • This can reduce the volume of the depletion layer and suppress the leakage current.
  • the present disclosure may be realized as a photodetector (in other words, an optical sensor) other than the solid-state imaging device that does not capture an image.
  • each layer of the stacked structure of the solid-state image sensor has the same structure as the stacked structure of the above embodiment.
  • Other materials may be included as long as these functions can be realized.
  • the corners and sides of each component are linearly described, but the present disclosure also includes those in which the corners and sides are rounded due to manufacturing reasons.
  • this indication may be realized as a manufacturing method of a solid-state image sensing device.
  • the solid-state imaging device of the present disclosure can be used for a solid-state imaging device that requires a large-scale pixel circuit. Since the solid-state imaging device of the present disclosure can be applied to a distance image sensor or the like, it is industrially useful.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

固体撮像素子(100)は、P型の半導体基板(10)と、半導体基板(10)の上方に位置するN型の第一半導体層(11)であって、第一領域(A1)において半導体基板(10)と接合する第一半導体層(11)と、第一領域(A1)よりも外側の第二領域(A2)において、半導体基板(10)及び第一半導体層(11)の間に位置する第二半導体層(12)であって、不純物濃度が第一半導体層(11)よりも低いN型の第二半導体層(12)とを備える。半導体基板(10)、及び、第一半導体層(11)は、APD1を形成し、半導体基板(10)の厚み方向において、第二半導体層(12)は、半導体基板(10)及び第一半導体層(11)の境界部(14)よりも下方の位置まで達する。

Description

光検出器
 本開示は、光検出器に関し、特に微弱な光を検出することが可能な光検出器に関する。
 近年、医療、通信、バイオ、化学、監視、車載、及び、放射線検出など多岐に渡る分野において、高感度な光検出器が利用されている。高感度な光検出器の一つとして、アバランシェフォトダイオード(APD:Avalanche Photodiode)が知られている。APDは、光電変換によって発生した信号電荷を、アバランシェ降伏(ブレークダウン)を用いて増倍することで光の検出感度が高められたフォトダイオードである。
米国特許第9178100号明細書 国際公開第2017/043068号
 本開示は、端部における電界を緩和することができる光検出器を提供する。
 本開示の一態様に係る光検出器は、第一導電型の半導体基板と、前記半導体基板の上方に位置する前記第一導電型と異なる第二導電型の第一半導体層であって、第一領域において前記半導体基板と接合する第一半導体層と、前記第一領域よりも外側の第二領域において、前記半導体基板及び前記第一半導体層の間に位置する第二半導体層であって、不純物濃度が前記第一半導体層よりも低い前記第二導電型の第二半導体層とを備え、前記半導体基板、及び、前記第一半導体層は、アバランシェ増倍によって電荷が増倍される電荷増倍領域を含む光電変換部を形成し、前記半導体基板の厚み方向において、第二半導体層は、前記半導体基板及び前記第一半導体層の境界部よりも下方の位置まで達する。
 本開示によれば、端部における電界を緩和することができる光検出器が実現される。
図1は、実施の形態1に係る固体撮像素子の全体の平面図である。 図2は、実施の形態1に係る固体撮像素子の画素アレイ部の外周部の平面図である。 図3は、実施の形態1に係る固体撮像素子の画素アレイ部の外周部の断面図である。 図4は、比較例に係る固体撮像素子の画素アレイ部の外周部の断面図である。 図5は、実施の形態2に係る固体撮像素子の画素アレイ部の外周部の断面図である。 図6は、実施の形態3に係る固体撮像素子の画素アレイ部の外周部の平面図である。 図7は、実施の形態3に係る固体撮像素子の画素アレイ部の外周部の断面図である。 図8は、実施の形態3の変形例に係る固体撮像素子の画素アレイ部の外周部の平面図である。
 (本開示の基礎となった知見)
 CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサなどの固体撮像素子を高感度化するための素子として、高電界が発生するPN接合を有し、アバランシェ増倍を利用したアバランシェフォトダイオード(APD)が知られている(例えば、特許文献1参照)。また、APDをアレイ状に配置し、微小な入射光から高解像度な画像を生成することができる固体撮像素子が提案されている(例えば、特許文献2参照)。
 特許文献2の構造は、画素回路の下にAPDが形成されるため高感度化に対して不利である。APD画素アレイを高感度にするためにはAPDが固体撮像素子の浅い部分に形成される必要がある。通常、APD画素アレイの端部は低電界になるように設計されるが、周辺回路を構成する素子との間に意図せずに高不純物密度PN接合が形成されてしまい、高電界となってしまう場合がある。また、APDが浅い領域に形成されることで空乏層を拡大できる領域が縮小し、低電界化が困難になる場合もある。つまり、APD画素アレイの端部においては、電界を緩和することにより、耐圧の向上、及び、リーク電流の低減を図る必要がある。
 以下の実施の形態では、画素アレイの外周側の端部における電界を緩和することができる固体撮像素子について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。
 また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。座標軸におけるZ軸方向は、例えば、鉛直方向であり、Z軸+側は、上側(上方)と表現され、Z軸-側は、下側(下方)と表現される。Z軸方向は、言い換えれば、半導体基板の上面または下面に垂直な方向であり、半導体基板の厚み方向である。また、X軸方向及びY軸方向は、Z軸方向に垂直な平面(水平面)上において、互いに直交する方向である。X軸方向は、横方向と表現され、Y軸方向は、縦方向と表現される。以下の実施の形態において、「平面視」とは、Z軸方向から見ることを意味する。また、本開示は、以下の実施の形態において、P型とN型とを逆転させた構造を排除するものではない。
 (実施の形態1)
 [構造]
 以下、実施の形態1に係る固体撮像素子の構造について説明する。図1は、実施の形態1に係る固体撮像素子の全体の平面図である。
 図1に示されるように、固体撮像素子100は、基板101と、基板101上に実装された画素アレイ部102と、基板101上の画素アレイ部102の周囲に実装された周辺回路103とを備える。画素アレイ部102においては、複数のAPD(Avalanche Photodiode)がアレイ状に配置されている。複数のAPDは、言い換えれば、マトリクス状に配置される。
 図2は、画素アレイ部102の外周部(図1の破線で囲まれた部分)の平面図である。図3は、画素アレイ部102の外周部の断面図である。図3は、画素アレイ部102を図2のIII-III線において切断した場合の断面図である。
 図2及び図3に示されるように、固体撮像素子100は、半導体基板10と、第一半導体層11と、第二半導体層12とを備える。なお、図3では、画素アレイ部102(つまり、固体撮像素子100)の内側(つまり、X軸+側)の領域は第一領域A1として図示され、画素アレイ部102の外側(つまり、X軸-側)の領域が第二領域A2として図示されている。図3では、P型の空乏層端LP1及びN型の空乏層端LN1が破線で図示されている。
 半導体基板10は、P型の半導体によって形成される。半導体基板10は、具体的には、本体部10aと、本体部10a上に位置し、第一半導体層11と接する接合部10bとを含む。本体部10aの不純物濃度は、例えば、1×1014~1×1015cm-3であり、接合部10bの不純物濃度は、例えば、1×1016~1×1018cm-3である。このような不純物濃度の範囲内で、接合部10bの不純物濃度は、本体部10aの不純物濃度よりも高い。
 第一半導体層11は、N型の半導体によって形成される。第一半導体層11は、半導体基板10の上方に位置する。第一半導体層11は、具体的には、本体部11aと、本体部11aの下に形成され、半導体基板10と接する(言い換えれば、接合する)接合部11bとを備える。接合部11bは、画素アレイ部102の第一領域A1内に位置する。つまり、第一半導体層11は、第一領域A1において半導体基板10と接する。
 本体部11aの不純物濃度は、例えば、5×1016~1×1019cm-3であり、接合部11bの不純物濃度は、例えば、5×1016~1×1018cm-3である。このような不純物濃度の範囲内で、接合部10bの不純物濃度は、本体部10aの不純物濃度よりも高い。
 半導体基板10、及び、第一半導体層11は、アバランシェ増倍によって電荷が増倍される電荷増倍領域を含むAPD1を形成する。APD1は、光電変換部の一例である。具体的には、APD1は、P型の接合部10b及びN型の接合部11bのPN接合により形成される。
 半導体基板10の下面に逆バイアスの電圧が印加されると、半導体基板10及び第一半導体層11の境界部14の近傍に、1個の信号電荷を多数に増倍させることができる電荷増倍領域が形成される。電荷増倍領域によれば、1フォトンの微弱な光を検出することが可能になる。増倍された信号電荷は、本体部11aに蓄積される。
 なお、画素アレイ部102の外周部においては、APDの形状などが良好でない場合がある。そこで、画素アレイ部102の外周部に形成されたAPD1は、例えば、図2に示される、APD1よりも内側に位置するAPD2と異なり、マスクされて使用されない。なお、実使用されるAPD2は、平面視において分離領域15に囲まれている。分離領域15は、P型の半導体によって形成される。分離領域15の不純物濃度は、1×1016~1×1017cm-3である。
 第二半導体層12は、N型の半導体によって形成される。第二半導体層12は、第一領域A1よりも外側の第二領域A2において、半導体基板10及び第一半導体層11の間に位置する。第二半導体層12の不純物濃度は、1×1016~1×1017cm-3である。また、第二半導体層12は、第一半導体層11に外側から接し、第一半導体層11の外側の側面を覆う。図3に示されるように、第二半導体層12の外側の側面は、傾斜面である。第二半導体層12は、例えば、不純物の注入によって形成される。
 以下、第二半導体層12によって得られる効果について比較例に係る固体撮像素子の断面図を参照しながら説明する。図4は、比較例に係る固体撮像素子の画素アレイ部の外周部の断面図である。
 図4に示されるように、比較例に係る固体撮像素子100aが備える第二半導体層12aは、固体撮像素子100が備える第二半導体層12よりも厚みが薄い。また、図4においては、P型の空乏層端LP2、及び、N型の空乏層端LN2が破線で図示されている。固体撮像素子100aにおいては、P型の空乏層端LP2からN型の空乏層端LN2までの距離D2は短く、高電界が発生して耐圧が低下する懸念がある。また、リーク電流が生じる懸念もある。
 これに対し、固体撮像素子100においては、半導体基板10の厚み方向において、第二半導体層12は、半導体基板10及び第一半導体層11の境界部14よりも下方の位置まで達している。そうすると、第二半導体層12及び半導体基板10の境界部16が、半導体基板10の下面に近づくため、半導体基板10の上面側に空乏層が広がる。この結果、P型の空乏層端LP1からN型の空乏層端LN1までの距離D1は、距離D2に比べて長くなる。したがって、画素アレイ部102の外周部(つまり、端部)における電界が緩和される。この結果、耐圧が向上し、リーク電流が抑制される。
 [効果等]
 以上説明したように、固体撮像素子100は、第一導電型の半導体基板10と、半導体基板10の上方に位置する第一導電型と異なる第二導電型の第一半導体層11であって、第一領域A1において半導体基板10と接合する第一半導体層11と、第一領域A1よりも外側の第二領域A2において、半導体基板10及び第一半導体層11の間に位置する第二半導体層12であって、不純物濃度が第一半導体層11よりも低い第二導電型の第二半導体層12とを備える。固体撮像素子100は、光検出器の一例である。第一導電型は、例えば、P型であり、第二導電型は、例えば、N型である。半導体基板10、及び、第一半導体層11は、アバランシェ増倍によって電荷が増倍される電荷増倍領域を含むAPD1を形成し、半導体基板10の厚み方向において、第二半導体層12は、半導体基板10及び第一半導体層11の境界部14よりも下方の位置まで達する。APD1は、光電変換部の一例である。
 これにより、第二半導体層12及び半導体基板10の境界部16が半導体基板10の下面に近づくため、半導体基板10の上面側に空乏層が広がる。この結果、P型の空乏層端LP1からN型の空乏層端LN1までの距離D1が比較的長くなり、電界が緩和される。この結果、耐圧が向上し、リーク電流が抑制される。
 また、半導体基板10は、本体部10aと、本体部10aの上に位置し第一半導体層11と接する接合部11bとを含む。本体部10aは、第三部分の一例であり、接合部11bは、第四部分の一例である。
 これにより、電荷増倍領域を形成しやすい効果が得られる。
 (実施の形態2)
 [構造]
 以下、実施の形態2に係る固体撮像素子の構造について説明する。図5は、実施の形態2に係る固体撮像素子の画素アレイ部の外周部の断面図である。以下の実施の形態2では、実施の形態1との相違点を中心に説明が行われ、既出事項についての説明は省略される。
 図5に示されるように、固体撮像素子200は、半導体基板20と、第一半導体層11と、第二半導体層12とを備える。
 半導体基板20は、P型の半導体によって形成される。半導体基板20は、具体的には、基板本体部20aと、基板本体部20a上の第二半導体層12の外側に位置する上部20bとを含む。基板本体部20aの不純物濃度は、例えば、1×1016~1×1018cm-3であり、実施の形態1で説明された半導体基板10の本体部10aの不純物濃度よりも高い。上部20bの不純物濃度は、例えば、1×1014~1×1015cm-3であり、実施の形態1で説明された半導体基板10の本体部10aの不純物濃度とほぼ同程度である。上部20bの不純物濃度は、基板本体部20aの不純物濃度よりも低い。
 このように、半導体基板20の基板本体部20aの不純物濃度は、半導体基板10の接合部10bの不純物濃度と同等であり、基板本体部20aは、全体的に不純物濃度が高い。また、基板本体部20aには、上側ほど不純物濃度が低くなる濃度勾配が形成され、基板本体部20aは、最も不純物濃度が低くなる部分で第一半導体層11の接合部11bと接合してもよい。これにより、半導体基板20の深部(下部)で発生した電荷のAPD1へのドリフト速度が速まる。このような構成では、半導体基板20の不純物濃度が比較的高いため、第二半導体層12及び基板本体部20aの境界部26から基板本体部20a側に空乏層が伸びにくくなり、境界部26から基板本体部20a側に広がる空乏層だけで耐圧を確保することが困難になる。
 ここで、第二半導体層12によれば、境界部26から第二半導体層12側に空乏層を広げることができる。このため、耐圧を向上する効果が得られる。
 なお、第二半導体層12の不純物濃度が基板本体部20aの不純物濃度と同程度であれば、不純物が相殺されて第二半導体層12のうち、第一半導体層11と基板本体部20aとの間に位置するオーバーラップ領域12b(第二半導体層12のうち破線で囲まれた部分)の実効的な不純物濃度は低くなる。また、第二半導体層12の一部は、第一半導体層11よりも外側に位置しており、第一半導体層11の外側の側面は、第二半導体層12によって覆われている。これにより、画素アレイ部のコーナー部のラウンディング効果による耐圧の低下と、リソグラフィの合わせずれによる耐圧の低下が抑制される。
 また、上部20bの不純物濃度が低いことにより、製造ばらつきによって意図せず不純物濃度が高い領域が形成されにくくなり、高電界発生が抑制される。
 [効果等]
 以上説明したように、固体撮像素子200において、半導体基板20は、基板本体部20aと、基板本体部20aの上の第二半導体層12よりも外側に位置する上部20bを含む。固体撮像素子200は、光検出器の一例である。上部20bの不純物濃度は、基板本体部20aの不純物濃度よりも低い。基板本体部20aは、第三部分の一例であり、上部20bは、第四部分の一例である。
 このように上部20bの不純物濃度が低いことにより、製造ばらつきによって意図せず不純物濃度が高い領域が形成されにくくなり、高電界発生が抑制される。
 (実施の形態3)
 [構造]
 以下、実施の形態3に係る固体撮像素子の構造について説明する。図6は、実施の形態3に係る固体撮像素子の画素アレイ部の外周部の平面図である。図7は、実施の形態3に係る固体撮像素子の画素アレイ部の外周部の断面図である。図7は、実施の形態3に係る固体撮像素子300を図6のVII-VII線において切断した場合の断面図である。以下の実施の形態3では、実施の形態1及び実施の形態2との相違点を中心に説明が行われ、既出事項についての説明は省略される。
 図6及び図7に示されるように、固体撮像素子300は、半導体基板30と、第一半導体層31と、第二半導体層32と、分離領域35と、ウェル37と、STI(Shallow Trench Isolation)39とを備える。なお、図7に示される第一領域A1は、ダミー画素領域であり、第一領域A1よりも外側の第二領域A2は、電界緩和領域であり、第一領域A1よりも内側の第三領域A3は、有効画素領域である。図7では、P型の空乏層端LP3が破線で図示されている。
 半導体基板30は、P型の半導体によって形成される。半導体基板30は、具体的には、本体部30aと、本体部30a上の第二半導体層32よりも外側に位置する外周部30bと、本体部30a上の外周部30bよりも外側に位置する最外周部30cを含む。本体部30aの不純物濃度は、例えば、1×1016~1×1019cm-3であり、外周部30bの不純物濃度は、例えば、1×1016~1×1018cm-3であり、最外周部30cの不純物濃度は、5×1016~1×1018cm-3である。外周部30bの不純物濃度は、本体部30aにおける不純物濃度よりも低い。最外周部30cの不純物濃度は、外周部30bの不純物濃度よりも高い。なお、本体部30aには、上側ほど不純物濃度が低くなる濃度勾配が形成されている。また、本体部30aのうち、第一半導体層31の直下に位置し第一半導体層31に接する部分の不純物濃度は、例えば、1×1016~1×1018cm-3である。
 このように、最外周部30cの不純物濃度が比較的高いことにより、横方向(図中のX軸方向)の空乏層の延伸を止めることができる。これにより、リーク電流の発生が抑制される。なお、最外周部30cは、第二半導体層32の外側の端から、半導体基板30の厚み方向における空乏層幅と同じ程度離した領域に配置される。外周部30bの横幅は、画素アレイ部の端部における空乏層の最小幅より広くなる。
 また、外周部30bの不純物濃度が低いことにより、製造ばらつき等によって意図しない不純物濃度が高い領域が形成されにくくなり、高電界発生が抑制される。
 第一半導体層31は、N型の半導体によって形成される。第一半導体層31は、半導体基板30の上方に位置する。
 第一半導体層11と異なり、第一半導体層31は、細かく分離して形成されている。これにより、第一半導体層31を形成するための不純物の注入の際に用いられるレジストの形状を安定させることができる。
 第一半導体層31は、具体的には、第二領域A2内に位置する外側部31aと、第一領域A1内に位置する内側部31bとに分割されている。内側部31bは、本体部31b1と、本体部31b1の下に形成され、半導体基板30と接合する接合部31b2とを備える。
 外側部31a、及び、本体部31b1の不純物濃度は、例えば、5×1016~1×1019cm-3であり、接合部31b2の不純物濃度は、例えば、5×1016~1×1019cm-3である。このような不純物濃度の範囲内で、接合部31b2の不純物濃度は、外側部31a及び本体部31b1の不純物濃度よりも高い。
 半導体基板30、及び、内側部31bは、アバランシェ増倍によって電荷が増倍される電荷増倍領域を含むAPD1を形成する。APD1は、光電変換部の一例である。
 半導体基板30の下面に逆バイアスの電圧が印加されると、半導体基板30及び内側部31bの境界部34の近傍に、1個の信号電荷を多数に増倍させることができる電荷増倍領域が形成される。電荷増倍領域によれば、1フォトンの微弱な光を検出することが可能になる。増倍された信号電荷は、本体部31b1に蓄積される。
 なお、画素アレイ部の外周部においては、APDの形状などが良好でない場合がある。そこで、画素アレイ部の外周部に形成されたAPD1は、例えば、図6及び図7に示される、APD1よりも内側に位置するAPD2と異なり、マスクされて使用されない。つまり、APD1は、ダミー画素である。
 実使用されるAPD2は、平面視において分離領域15に囲まれている。分離領域35は、P型の半導体によって形成される。分離領域35の不純物濃度は、1×1015~1×1018cm-3である。これに対し、外側部31aと内側部31bとの間には、外側部31a及び内側部31bを電気的に分離するためのP型の分離領域35が設けられない。外側部31a及び内側部31bは、例えば、配線M(図7において模式的に図示)によって電気的に接続される。
 これにより、外側部31aと内側部31bとの間に高い電界が発生することが抑制される。配線Mの電位が任意の電位に制御されれば、外側部31a及び内側部31bが確実に同じ電位となる。配線Mの電位は、例えば、APD1のリセット電位よりも低い電位に固定される。
 第二半導体層32は、N型の半導体によって形成される。第二半導体層32は、第一領域A1よりも外側の第二領域A2において、半導体基板30及び第一半導体層31の外側部31a間に位置する。第二半導体層12の不純物濃度は、1×1016~1×1018cm-3である。図7に示されるように、第二半導体層32は、外側部31aに外側から接し、外側部31aの外側の側面を覆う。また、第二半導体層32の外側の側面は、傾斜面である。第二半導体層32によって得られる効果は、第二半導体層12によって得られる効果と同様である。
 ウェル37には、APD2から出力される信号電荷を読み出すための画素回路が配置される。具体的には、ウェル37の上面には、APD2から出力される信号電荷を読み出すためのトランジスタTRが配置される。ウェル37は、半導体基板30の上方であって、第一領域A1よりも内側の第三領域A3に位置する。ウェル37及びAPD2の第一半導体層31の間には、P型の分離領域35が位置する。
 ウェル37は、具体的には、P型の第一ウェル37aと、第一ウェル37aの側面及び下面を覆う、N型の第二ウェル37bとを含む。第二ウェル37bは、半導体基板30と接する接合部37b1と、接合部37b1上の本体部37b2とを含む。
 第一ウェル37a(接合部37b1及び本体部37b2)は、第二半導体層32と同様に、第二ウェル37bと半導体基板30の間の空乏層を広げることができる。したがって、電荷のパンチスルーを抑制することができる。
 また、ウェル37は、半導体基板30の厚み方向において第一半導体層31よりも下方の位置まで達する。これにより、固体撮像素子300の製造において、接合部37b1、及び、第二半導体層32を、同一工程で同時に形成することができる。つまり、固体撮像素子300の製造における工程数を削減することができる。また、合わせマージンを緊縮できるため、画素アレイ部の端部の領域の面積を縮小することが可能である。
 なお、第一ウェル37aの不純物濃度は、5×1016~1×1018cm-3であり、接合部37b1の不純物濃度は、1×1016~1×1018cm-3であり、本体部37b2の不純物濃度は、5×1016~1×1018cm-3である。このような不純物濃度の範囲内で、接合部37b1の不純物濃度は、本体部37b2の不純物濃度よりも低い。
 STI39は、半導体基板30の上面のうち第一半導体層31よりも外側の部分を覆う。平面視において、STI39は、矩形環状(言い換えれば、額縁状)である。STI39によれば、空乏層の体積を削減してリーク電流を抑制することができる。
 [変形例]
 図8は、実施の形態3の変形例に係る固体撮像素子の画素アレイ部の外周部の平面図である。実施の形態3の変形例に係る固体撮像素子400が備える第二半導体層42は、第二半導体層32と異なり、細かく分離して形成されている。これにより、第二半導体層42を形成するための不純物の注入の際に用いられるレジストの形状を安定させることができる。
 [効果等]
 以上説明したように、固体撮像素子300は、さらに、半導体基板30の上方であって、第一領域A1よりも内側の第三領域A3に位置するウェル37と、ウェル37及び第一半導体層31の間に位置する第一導電型の分離領域とを備える。固体撮像素子300は、光検出器の一例である。ウェル37は、第一導電型の第一ウェル37aと、第一ウェル37aの側面及び下面を覆う、第二導電型の第二ウェル37bとを含む。第一導電型は、例えば、P型であり、第二導電型は、例えば、N型である。ウェル37の上面には、トランジスタTRが配置され、ウェル37は、半導体基板30の厚み方向において第一半導体層31よりも下方の位置まで達する。
 これにより、固体撮像素子300の製造において、ウェル37の接合部37b1、及び、第二半導体層32を、同一工程で同時に形成することができる。つまり、固体撮像素子300の製造における工程数を削減することができる。
 また、半導体基板30は、さらに、本体部30aの上の外周部30bよりも外側に位置する最外周部30cを含む。本体部30aは、第三部分の一例であり、外周部30bは、第四部分の一例であり、最外周部30cは、第五部分の一例である。最外周部30cの不純物濃度は、外周部30bの不純物濃度よりも高い。
 このような不純物濃度が比較的高い最外周部30cは、横方向の空乏層の延伸を止めることができる。したがって、リーク電流の発生が抑制される。
 また、第一半導体層31は、第二領域A2内に位置する外側部31aと、第一領域A1内に位置する内側部32aとに分割される。外側部31aと内側部32aとの間には、外側部31a及び内側部32aを電気的に分離するための第一導電型の分離領域が設けられず、外側部31a及び内側部32aは、配線Mによって電気的に接続される。
 これにより、外側部31aと内側部31bとの間に高い電界が発生することが抑制される。
 また、固体撮像素子300は、さらに、半導体基板30の上面のうち第一半導体層31よりも外側の部分を覆うSTI39を備える。
 これにより、空乏層の体積を削減してリーク電流を抑制することができる。
 また、平面視において、STI39は、矩形環状である。
 これにより、空乏層の体積を削減してリーク電流を抑制することができる。
 (その他の実施の形態)
 以上、実施の形態に係る固体撮像素子について説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、固体撮像素子について説明されたが、本開示は、画像を撮像しない固体撮像素子以外の光検出器(言い換えれば、光センサ)として実現されてもよい。
 例えば、上記実施の形態において説明に用いられ数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。
 また、上記実施の形態では、固体撮像素子が有する積層構造の各層を構成する主たる材料について例示しているが、固体撮像素子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。また、図面においては、各構成要素の角部及び辺は直線的に記載されているが、製造上の理由などにより、角部及び辺が丸みを帯びたものも本開示に含まれる。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。例えば、本開示は、固体撮像素子の製造方法として実現されてもよい。
 本開示の固体撮像素子は、大規模な画素回路が必要な固体撮像装置に利用できる。本開示発明の固体撮像素子は、距離画像センサなどに応用できるため、産業上有用である。
 10、30 半導体基板
 10a、11a、30a、31b1、37b2 本体部
 10b、11b、31b2、37b1 接合部
 11、31 第一半導体層
 12、12a、32、42 第二半導体層
 12b オーバーラップ領域
 14、16、26、34 境界部
 15 分離領域
 20 半導体基板
 20a 基板本体部
 20b 上部
 30b 外周部
 30c 最外周部
 31a 外側部
 31b、32a 内側部
 35 分離領域
 37 ウェル
 37a 第一ウェル
 37b 第二ウェル
 39 STI
 100、100a、200、300、400 固体撮像素子
 101 基板
 102 画素アレイ部
 103 周辺回路
 A1 第一領域
 A2 第二領域
 A3 第三領域
 D1、D2 距離
 M 配線
 TR トランジスタ

Claims (9)

  1.  第一導電型の半導体基板と、
     前記半導体基板の上方に位置する前記第一導電型と異なる第二導電型の第一半導体層であって、第一領域において前記半導体基板と接合する第一半導体層と、
     前記第一領域よりも外側の第二領域において、前記半導体基板及び前記第一半導体層の間に位置する第二半導体層であって、不純物濃度が前記第一半導体層よりも低い前記第二導電型の第二半導体層とを備え、
     前記半導体基板、及び、前記第一半導体層は、アバランシェ増倍によって電荷が増倍される電荷増倍領域を含む光電変換部を形成し、
     前記半導体基板の厚み方向において、第二半導体層は、前記半導体基板及び前記第一半導体層の境界部よりも下方の位置まで達する
     光検出器。
  2.  前記光検出器は、さらに、
     前記半導体基板の上方であって、前記第一領域よりも内側の第三領域に位置するウェルと、
     前記ウェル及び前記第一半導体層の間に位置する前記第一導電型の分離領域とを備え、
     前記ウェルは、前記第一導電型の第一ウェルと、前記第一ウェルの側面及び下面を覆う、前記第二導電型の第二ウェルとを含み、
     前記ウェルの上面には、トランジスタが配置され、
     前記ウェルは、前記半導体基板の厚み方向において前記第一半導体層よりも下方の位置まで達する
     請求項1に記載の光検出器。
  3.  前記半導体基板は、第三部分と、前記第三部分の上に位置し前記第一半導体層と接する第四部分とを含み、
     前記第四部分の不純物濃度は、前記第三部分の不純物濃度よりも高い
     請求項1または2に記載の光検出器。
  4.  前記半導体基板は、第三部分と、前記第三部分の上の前記第二半導体層よりも外側に位置する第四部分を含む
     請求項1または2に記載の光検出器。
  5.  前記半導体基板は、さらに、前記第三部分の上の前記第四部分よりも外側に位置する第五部分を含み、
     前記第五部分の不純物濃度は、前記第四部分の不純物濃度よりも高い
     請求項4に記載の光検出器。
  6.  前記第一半導体層は、前記第二領域内に位置する外側部と、前記第一領域内に位置する内側部とに分割され、
     前記外側部と前記内側部との間には、前記外側部及び前記内側部を電気的に分離するための前記第一導電型の分離領域が設けられず、
     前記外側部及び前記内側部は、配線によって電気的に接続される
     請求項1~5のいずれか1項に記載の光検出器。
  7.  前記光検出器は、さらに、前記半導体基板の上面のうち前記第一半導体層よりも外側の部分を覆うSTI(Shallow Trench Isolation)を備える
     請求項1~6のいずれか1項に記載の光検出器。
  8.  平面視において、前記STIは、矩形環状である
     請求項7に記載の光検出器。
  9.  前記光検出器は、アレイ状に配置される複数の前記光電変換部を備える
     請求項1~8のいずれか1項に記載の光検出器。
PCT/JP2019/009959 2018-03-27 2019-03-12 光検出器 WO2019188244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509846A JP7038332B2 (ja) 2018-03-27 2019-03-12 光検出器
CN201980021327.8A CN111902949B (zh) 2018-03-27 2019-03-12 光检测器
US17/026,864 US20210005646A1 (en) 2018-03-27 2020-09-21 Photodetector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060929 2018-03-27
JP2018060929 2018-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/026,864 Continuation US20210005646A1 (en) 2018-03-27 2020-09-21 Photodetector

Publications (1)

Publication Number Publication Date
WO2019188244A1 true WO2019188244A1 (ja) 2019-10-03

Family

ID=68061477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009959 WO2019188244A1 (ja) 2018-03-27 2019-03-12 光検出器

Country Status (4)

Country Link
US (1) US20210005646A1 (ja)
JP (1) JP7038332B2 (ja)
CN (1) CN111902949B (ja)
WO (1) WO2019188244A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085484A1 (ja) * 2019-10-30 2021-05-06

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591184A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Photodiode
JPH07221341A (ja) * 1993-12-08 1995-08-18 Nikon Corp 紫外線検出用シリコンアバランシェフォトダイオード
JPH1126803A (ja) * 1997-07-09 1999-01-29 Fujitsu Ltd アバランシェ・フォト・ダイオード
US6359322B1 (en) * 1999-04-15 2002-03-19 Georgia Tech Research Corporation Avalanche photodiode having edge breakdown suppression
WO2017004663A1 (en) * 2015-07-08 2017-01-12 The Commonwealth Of Australia Spad array structures and methods of operation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596186A (en) * 1993-12-08 1997-01-21 Nikon Corporation High sensitivity silicon avalanche photodiode
JP3243952B2 (ja) * 1993-12-16 2002-01-07 株式会社ニコン 多分割アバランシェフォトダイオード
JP3642704B2 (ja) * 1999-09-01 2005-04-27 シャープ株式会社 太陽電池及びその製造方法
JP4642767B2 (ja) * 2004-08-27 2011-03-02 パナソニック株式会社 サージ保護用半導体装置
CN101232057B (zh) * 2004-10-25 2012-05-09 三菱电机株式会社 雪崩光电二极管
US7348651B2 (en) * 2004-12-09 2008-03-25 Taiwan Semiconductor Manufacturing Co., Ltd. Pinned photodiode fabricated with shallow trench isolation
JP5564918B2 (ja) * 2009-12-03 2014-08-06 ソニー株式会社 撮像素子およびカメラシステム
ITTO20130398A1 (it) * 2013-05-16 2014-11-17 St Microelectronics Srl Fotodiodo a valanga operante in modalita' geiger includente una struttura di confinamento elettro-ottico per la riduzione dell'interferenza, e schiera di fotodiodi
JP2015056622A (ja) * 2013-09-13 2015-03-23 株式会社リコー 半導体装置
US10923614B2 (en) * 2014-07-25 2021-02-16 Panasonic Intellectual Property Management Co., Ltd. Photodiode, photodiode array, and solid-state imaging device
US10497818B2 (en) * 2016-07-29 2019-12-03 Canon Kabushiki Kaisha Photodetection device and photodetection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591184A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Photodiode
JPH07221341A (ja) * 1993-12-08 1995-08-18 Nikon Corp 紫外線検出用シリコンアバランシェフォトダイオード
JPH1126803A (ja) * 1997-07-09 1999-01-29 Fujitsu Ltd アバランシェ・フォト・ダイオード
US6359322B1 (en) * 1999-04-15 2002-03-19 Georgia Tech Research Corporation Avalanche photodiode having edge breakdown suppression
WO2017004663A1 (en) * 2015-07-08 2017-01-12 The Commonwealth Of Australia Spad array structures and methods of operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085484A1 (ja) * 2019-10-30 2021-05-06
WO2021085484A1 (ja) * 2019-10-30 2021-05-06 パナソニックIpマネジメント株式会社 光検出器
JP7325067B2 (ja) 2019-10-30 2023-08-14 パナソニックIpマネジメント株式会社 光検出器

Also Published As

Publication number Publication date
CN111902949A (zh) 2020-11-06
JPWO2019188244A1 (ja) 2021-03-25
CN111902949B (zh) 2024-02-23
US20210005646A1 (en) 2021-01-07
JP7038332B2 (ja) 2022-03-18

Similar Documents

Publication Publication Date Title
US20200075645A1 (en) Solid-state image sensor and camera
CN110050348B (zh) 光检测元件及其制造方法
US9806121B2 (en) Solid-state imaging device
JP7174932B2 (ja) 固体撮像素子
JP6351097B2 (ja) 電磁波検出素子及び固体撮像装置
JP6846648B2 (ja) 固体撮像素子及びその製造方法
WO2013118492A1 (ja) 固体撮像装置およびその駆動方法
TW202044572A (zh) 崩潰光二極體感測器及感測裝置
TWI483391B (zh) Solid state camera device
WO2019188244A1 (ja) 光検出器
US20220013550A1 (en) Photodetector
WO2022133660A1 (zh) 单光子雪崩二极管及光电传感装置
TWI666784B (zh) 具有受光元件之光檢測半導體裝置
JP6736315B2 (ja) 受光素子を有する半導体装置
WO2019180898A1 (ja) 固体撮像素子
JP7199013B2 (ja) 光検出器
JP7325067B2 (ja) 光検出器
CN109904272B (zh) 一种高转换增益和低串扰的像素探测器
JP2020161775A (ja) 光検出器
KR20230008752A (ko) 광 센서
JP2020096147A (ja) 光電変換装置、光電変換システム、移動体
KR20130015125A (ko) 이미지 센서 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777254

Country of ref document: EP

Kind code of ref document: A1