WO2019187885A1 - リーン車両 - Google Patents
リーン車両 Download PDFInfo
- Publication number
- WO2019187885A1 WO2019187885A1 PCT/JP2019/007168 JP2019007168W WO2019187885A1 WO 2019187885 A1 WO2019187885 A1 WO 2019187885A1 JP 2019007168 W JP2019007168 W JP 2019007168W WO 2019187885 A1 WO2019187885 A1 WO 2019187885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- swing arm
- lean vehicle
- shaft
- support member
- support shaft
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K25/00—Axle suspensions
- B62K25/04—Axle suspensions for mounting axles resiliently on cycle frame or fork
- B62K25/28—Axle suspensions for mounting axles resiliently on cycle frame or fork with pivoted chain-stay
- B62K25/283—Axle suspensions for mounting axles resiliently on cycle frame or fork with pivoted chain-stay for cycles without a pedal crank, e.g. motorcycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K2201/00—Springs used in cycle frames or parts thereof
- B62K2201/02—Rubber springs
Definitions
- the present invention relates to a lean vehicle including a vehicle body that leans to the left in the lean vehicle when the lean vehicle turns to the left and leans to the right in the lean vehicle when the lean vehicle turns to the right.
- the motorcycle described in Patent Document 1 includes a rear swing arm described below.
- the rear swing arm includes a left arm portion, a right arm portion, a cross member, a left reinforcing member, and a right reinforcing member.
- the left arm portion and the right arm portion extend in the front-rear direction.
- the cross member extends in the left-right direction.
- the cross member connects the left arm portion and the right arm portion.
- the left reinforcing member is provided at a joint portion between the left arm portion and the cross member.
- the left reinforcing member includes an upper left plate part and a left hanging part.
- the upper left plate portion has a right-angled isosceles triangle shape when viewed downward.
- the left hanging part is bent with respect to the upper left plate part downward from one side that does not form the right angle of the upper left plate part.
- the left-handed lower part has a structure in which a part of a rectangular outer edge is cut out.
- the right reinforcing member has a symmetrical structure with the left reinforcing member, and thus the description thereof is omitted.
- the joint between the left arm and the cross member is reinforced by the left reinforcing member
- the joint between the right arm and the cross member is reinforced by the right reinforcing member.
- the rigidity of the entire swing arm is increased.
- a notch is provided in the left hanging part of the left reinforcing member
- a notch is provided in the right hanging part of the right reinforcing member.
- an object of the present invention is to provide a new lean vehicle that can obtain the same effects as those obtained when the swing arm is provided with appropriate bending characteristics and torsion characteristics.
- the inventor of the present application considered the operation of a lean vehicle including a swing arm provided with appropriate bending characteristics and torsional characteristics. Then, the inventor of the present application tilts to the left in the lean vehicle when the lean vehicle turns left, and leans to the right in the lean vehicle when the lean vehicle turns right by the deformation of the swing arm. On the other hand, it was noticed that the rear wheel was slightly rotated around the roll axis and / or the yaw axis.
- the inventor of the present application is a lean vehicle in which a drive vehicle can slightly rotate a drive wheel around a roll axis and / or a yaw axis with respect to a vehicle body, and a moderate bending characteristic and torsion characteristic are given to a swing arm. I noticed that the effect is equivalent.
- the inventor of the present application has studied a method of slightly rotating the drive wheel around the roll axis and / or the yaw axis with respect to the vehicle body.
- the inventor of the present application paid attention to the support structure of the swing arm in the vehicle body that leans to the left in the lean vehicle when the lean vehicle turns to the left and leans to the right in the lean vehicle when the lean vehicle turns to the right.
- the lean vehicle includes a vehicle body, a swing arm support shaft, and a swing arm. The vehicle body tilts to the left in the lean vehicle when the lean vehicle turns to the left, and leans to the right in the lean vehicle when the lean vehicle turns to the right.
- the swing arm support shaft is supported by the vehicle body and extends in the left-right direction of the vehicle body.
- the swing arm is supported by the swing arm support shaft at the front portion of the swing arm so that the swing arm can swing relative to the vehicle body about the central axis of the swing arm support shaft.
- the swing arm is attached to the vehicle body so as not to rotate with respect to the vehicle body around an axis (for example, a roll axis or a yaw axis) other than the central axis of the swing arm support shaft extending in the left-right direction of the vehicle body. It is supported.
- a support member that can be elastically deformed is disposed between the swing arm support shaft and the vehicle body, for example.
- the support member is elastically deformed, and the swing arm support shaft can rotate about the roll axis and the yaw axis with respect to the vehicle body. Therefore, the swing arm can rotate about the roll axis and the yaw axis with respect to the vehicle body, and the rear wheel can rotate slightly about the roll axis and / or the yaw axis with respect to the vehicle body.
- the inventor of the present application has made it easy to elastically deform the support member when the swing arm support shaft rotates around the roll axis and the elastic deformation of the support member when the swing arm support shaft rotates around the yaw axis. It has been found that if the easiness can be made different, it is possible to arbitrarily set the easiness of rotation of the rear wheel around the roll axis and the easiness of rotation of the rear wheel around the yaw axis. Thereby, the inventor of the present application can easily elastically deform the support member when the swing arm support shaft rotates about the roll axis and elastic deformation of the support member when the swing arm support shaft rotates about the yaw axis. I noticed that by placing a support member that has a different property of ease of use between the vehicle body and the swing arm, it is possible to obtain the same effect as when the swing arm is given appropriate bending characteristics and torsional characteristics. .
- the present invention adopts the following configuration in order to solve the above-described problems.
- the lean vehicle of (1) A vehicle body that leans to the left in the lean vehicle when the lean vehicle turns to the left and leans to the right in the lean vehicle when the lean vehicle turns to the right, and a driving source that generates driving force;
- a vehicle body including a drive source support frame that supports the drive source; and
- a swing arm support shaft supported by the vehicle body and extending in the left-right direction of the vehicle body;
- the swing arm supported by the swing arm support shaft at the front portion of the swing arm so that the swing arm support shaft can swing with respect to the vehicle body about the central axis of the swing arm support shaft;
- a driving wheel supported by the driving wheel axle shaft so as to be able to rotate around a central axis of the driving wheel axle shaft, and can be elastically deformed with a driving wheel rotated by a driving force generated by the driving source; and
- a support member having at least one of the
- the support member is provided between the swing arm support shaft and the vehicle body, and rotates the swing arm support shaft by a unit angle with respect to the vehicle body around a roll axis of the lean vehicle.
- the support member is provided between the swing arm support shaft and the swing arm, and the unit angle of the swing arm with respect to the swing arm support shaft about the roll axis of the lean vehicle.
- the support member is provided between the drive wheel axle shaft and the swing arm, and the unit angle of the drive wheel axle shaft with respect to the swing arm about the roll axis of the lean vehicle.
- the magnitude of the moment of force required to rotate the drive wheel axle shaft by the unit angle about the yaw axis of the lean vehicle with respect to the swing arm Have a different structure.
- the support member is provided between the drive wheel axle shaft and the drive wheel, and the unit angle of the drive wheel with respect to the drive wheel axle shaft is centered on a roll axis of the lean vehicle. And the magnitude of the moment of force required to rotate the drive wheel by the unit angle about the yaw axis of the lean vehicle with respect to the drive wheel axle shaft. Have a different structure.
- the support member has at least one of the structures (A) to (D).
- the support member has the structure (A)
- the magnitude of the moment of force required to rotate the swing arm support shaft relative to the vehicle body by a unit angle around the roll axis of the lean vehicle, and the swing arm support The magnitude of the moment of force required to rotate the shaft by a unit angle about the yaw axis of the lean vehicle with respect to the vehicle body is different.
- the support member has the structure of (B)
- the magnitude of the moment of force required to rotate the swing arm by a unit angle about the roll axis of the lean vehicle with respect to the swing arm support shaft, and the swing arm The magnitude of the moment of force necessary to rotate the swing arm support shaft by a unit angle about the yaw axis of the lean vehicle differs from the swing arm support shaft.
- the support member has the structure of (C)
- the magnitude of the moment of force required to rotate the axle shaft by a unit angle about the yaw axis of the lean vehicle with respect to the swing arm is different.
- the support member has the structure of (D)
- the moment of force required to rotate the vehicle wheel by a unit angle about the yaw axis of the lean vehicle with respect to the drive wheel axle shaft is different.
- the ease of rotation of the drive wheel around the roll axis is different from the ease of rotation of the drive wheel around the yaw axis. Therefore, the ease of rotation of the drive wheel around the roll axis and the ease of rotation of the drive wheel around the yaw axis can be arbitrarily set by the design of the support member.
- the lean vehicle (1) only needs to have at least one of the structures (A) to (D). Accordingly, the lean vehicle (1) may have two structures among the structures (A) to (D). The lean vehicle (1) may have three structures among the structures (A) to (D). The lean vehicle (1) may have all of the structures (A) to (D).
- the support member has the structure (A) and is provided between the swing arm support shaft and the vehicle body so as to be in contact with the swing arm support shaft and the vehicle body.
- the lean vehicle of (3) is the lean vehicle of (1)
- the support member has the structure (B) and is provided between the swing arm support shaft and the swing arm so as to be in contact with the swing arm support shaft and the swing arm.
- the lean vehicle of (4) is the lean vehicle of (1)
- the support member has the structure (C) and is provided between the drive wheel axle shaft and the swing arm so as to be in contact with the drive wheel axle shaft and the swing arm.
- the lean vehicle of (5) is the lean vehicle of (1),
- the support member has a structure (D),
- the lean vehicle is A bearing provided between the drive wheel and the drive wheel axle shaft;
- the drive wheel axle shaft passes through the bearing in the left-right direction in the vehicle body,
- the support member is provided between the bearing and the drive wheel so as to contact the bearing and the drive wheel.
- the lean vehicle of (6) is the lean vehicle of (1),
- the support member has the structure (A),
- the lean vehicle is A swing arm support shaft support member supported by the vehicle body and supporting the swing arm support shaft;
- the support member is provided between the vehicle body and the swing arm support shaft support member.
- the lean vehicle of (7) is the lean vehicle of (1),
- the support member has the structure (A),
- the lean vehicle is A swing arm support shaft support member supported by the vehicle body and supporting the swing arm support shaft;
- the support member is provided between the swing arm support shaft and the swing arm support shaft support member so as to contact the swing arm support shaft and the swing arm support shaft support member.
- the present invention can obtain the same effects as those obtained when giving appropriate swing characteristics and torsional characteristics to the swing arm.
- FIG. 1 is a view of the lean vehicles 1, 1a to 1f as viewed to the right in the lean vehicles 1, 1a to 1f, and a cross-sectional view of a portion surrounded by a circle C.
- FIG. 2 is a view of the support members 21, 21a to 21f, 22, 22a, 22b, 22f, and 22g as viewed to the right r.
- 3 is a cross-sectional view of a portion surrounded by a circle C in FIG. 4 is a cross-sectional view of a portion surrounded by a circle D in FIG.
- FIG. 5 is a cross-sectional view of a portion surrounded by a circle D in FIG.
- FIG. 1 is a view of the lean vehicles 1, 1a to 1f as viewed to the right in the lean vehicles 1, 1a to 1f, and a cross-sectional view of a portion surrounded by a circle C.
- FIG. 2 is a view of the support members 21, 21a to 21f, 22, 22a
- FIG. 6 is an enlarged view of the connecting portion of the drive source support frame 2, the swing arm support shaft support member 100, and the swing arm 8 in the lean vehicles 1d to 1f.
- FIG. 7 is a cross-sectional view of a connecting portion between the drive source support frame 2 and the swing arm support shaft support member 100.
- FIG. 8 is a cross-sectional view of a connecting portion between the drive source support frame 2 and the swing arm support shaft support member 100.
- 9 is a cross-sectional view of a portion surrounded by a circle C in FIG.
- FIG. 10 is a view of the lean vehicle 1g as viewed to the right r.
- FIG. 11 is a view of the support members 21g and 22g as viewed to the right r.
- FIG. 1 is a view of the lean vehicles 1, 1a to 1f as viewed to the right in the lean vehicles 1, 1a to 1f, and a cross-sectional view of a portion surrounded by a circle C.
- FIG. 1 illustrates a cross-sectional view of the lean vehicle 1 in a plane that is parallel to the front-rear direction and the left-right direction of the lean vehicle 1 and includes the central axis of the swing arm support shaft Sh3.
- the front of the lean vehicle 1 is referred to as the front F.
- the rear of the lean vehicle 1 is referred to as rear B.
- the left side of the lean vehicle 1 is referred to as the left side L.
- the right side of the lean vehicle 1 is called right side R.
- the upper direction in the lean vehicle 1 is referred to as the upper U.
- the lower part of the lean vehicle 1 is referred to as a lower part D.
- the front-rear direction in the lean vehicle 1 is referred to as the front-rear direction FB.
- the left-right direction in the lean vehicle 1 is referred to as the left-right direction LR.
- the vertical direction in the lean vehicle 1 is referred to as the vertical direction UD.
- the front in the lean vehicle 1 is the front with reference to the rider straddling the lean vehicle 1.
- the rear in the lean vehicle 1 is the rear based on the rider straddling the lean vehicle 1.
- the left side in the lean vehicle 1 is the left side based on the rider straddling the lean vehicle 1.
- the right side in the lean vehicle 1 is the right side based on the rider straddling the lean vehicle 1.
- the upper direction in the lean vehicle 1 is an upper direction based on the rider straddling the lean vehicle 1.
- the downward direction in the lean vehicle 1 is a downward direction based on the rider straddling the lean vehicle 1.
- the vehicle body 5 can tilt left L or right R.
- the vertical direction and the horizontal direction in the vehicle body 5 do not coincide with the vertical direction UD and the horizontal direction LR in the lean vehicle 1, respectively.
- the up-down direction and the left-right direction in the upright vehicle body 5 coincide with the up-down direction UD and the left-right direction LR in the lean vehicle 1, respectively.
- the front in the vehicle body 5 is called the front f.
- the rear side of the vehicle body 5 is referred to as a rear side b.
- the left side of the vehicle body 5 is called a left side l.
- the right side in the vehicle body 5 is called right side r.
- the upper part in the vehicle body 5 is referred to as an upper u.
- a lower part in the vehicle body 5 is referred to as a lower part d.
- the front-rear direction in the vehicle body 5 is referred to as the front-rear direction fb.
- the left-right direction in the vehicle body 5 is referred to as the left-right direction lr.
- a vertical direction in the vehicle body 5 is referred to as a vertical direction ud.
- the upright state of the vehicle body 5 means a state in which the front wheels are neither steered nor tilted when the rider is not in the vehicle and the lean vehicle 1 is not loaded with fuel.
- a shaft or member extending in the front-rear direction does not necessarily indicate only a shaft or member that is parallel to the front-rear direction.
- a shaft or member extending in the front-rear direction is a shaft or member that is inclined within a range of ⁇ 45 ° with respect to the front-rear direction.
- the shaft or member extending in the vertical direction is a shaft or member that is inclined within a range of ⁇ 45 ° with respect to the vertical direction.
- a shaft or member extending in the left-right direction is a shaft or member that is inclined within a range of ⁇ 45 ° with respect to the left-right direction.
- the fact that the first member is supported by the second member means that the first member is attached to the second member so that it cannot move relative to the second member (that is, fixed). And the case where the first member is attached to the second member so as to be movable with respect to the second member.
- the first member is supported by the second member when the first member is directly attached to the second member and when the first member is attached to the second member via the third member. Including both.
- the first member and the second member arranged in the front-rear direction indicate the following states.
- both the first member and the second member are arranged on an arbitrary straight line indicating the front-rear direction.
- the first member and the second member arranged in the front-rear direction when viewed in the up-down direction indicate the following states.
- both the first member and the second member are arranged on an arbitrary straight line indicating the front-rear direction.
- first member and the second member when the first member and the second member are viewed from the left-right direction different from the up-down direction, one of the first member and the second member may not be arranged on any straight line indicating the front-rear direction. .
- the first member and the second member may be in contact with each other.
- the first member and the second member may be separated.
- a third member may exist between the first member and the second member. This definition also applies to directions other than the front-rear direction.
- the first member being arranged in front of the second member indicates the following state. At least a portion of the first member is disposed in a region through which the second member passes when moving forward. Therefore, the 1st member may be settled in the field which passes when the 2nd member translates ahead, and may protrude from the field which passes when the 2nd member translates ahead. . In this case, the first member and the second member are arranged in the front-rear direction. This definition also applies to directions other than the front-rear direction.
- the first member being arranged in front of the second member indicates the following state.
- the first member is disposed in front of a plane that passes through the front end of the second member and is orthogonal to the front-rear direction.
- the first member and the second member may be aligned in the front-rear direction or may not be aligned. This definition also applies to directions other than the front-rear direction.
- the first member when the first member is disposed in front of the second member when viewed in the left-right direction, the following state is indicated.
- the first member and the second member When viewed in the left-right direction, the first member and the second member are aligned in the front-rear direction, and the front end of the first member is disposed forward of the front end of the second member.
- the first member and the second member do not have to be arranged in the front-rear direction in three dimensions. This definition also applies to directions other than the front-rear direction.
- each part of the first member is defined as follows.
- the front part of the first member means the front half of the first member.
- the rear part of the first member means the rear half of the first member.
- the left part of the first member means the left half of the first member.
- the right part of the first member means the right half of the first member.
- the upper part of the first member means the upper half of the first member.
- the lower part of the first member means the lower half of the first member.
- the upper end of the first member means the upper end of the first member.
- the lower end of the first member means the lower end of the first member.
- the front end of the first member means the front end of the first member.
- the rear end of the first member means the rear end of the first member.
- the right end of the first member means the right end of the first member.
- the left end of the first member means the left end of the first member.
- the upper end portion of the first member means the upper end of the first member and its vicinity.
- the lower end portion of the first member means the lower end of the first member and its vicinity.
- the front end portion of the first member means the front end of the first member and the vicinity thereof.
- the rear end portion of the first member means the rear end of the first member and the vicinity thereof.
- the right end portion of the first member means the right end of the first member and the vicinity thereof.
- the left end portion of the first member means the left end of the first member and its vicinity.
- the first member means a member constituting the lean vehicle 1.
- the lean vehicle 1 includes a steering wheel 3, a driving wheel 4, a vehicle body 5, a steering mechanism 7, a swing arm 8, a seat 10, a steering wheel axle shaft Sh1, a driving wheel axle shaft Sh2, and a swing arm support shaft. Sh3 is provided.
- the vehicle body 5 is tilted to the left L when the lean vehicle 1 turns left.
- the vehicle body 5 tilts to the right R when the lean vehicle 1 turns to the right.
- the vehicle body 5 includes a drive source support frame 2 and a drive source 11.
- the drive source support frame 2 supports the steering wheel 3, the drive wheel 4, the steering mechanism 7, the swing arm 8, the seat 10, the drive source 11, the steering wheel axle shaft Sh1, the drive wheel axle shaft Sh2, and the swing arm support shaft Sh3. .
- the drive source support frame 2 is inclined to the left L when the lean vehicle 1 turns left.
- the drive source support frame 2 is inclined to the right R when the lean vehicle 1 turns right.
- a part of the drive source support frame 2 is not visually recognized because it is covered with a cowl. Therefore, for easy understanding, the drive source support frame 2 is shown by a bold line in FIG.
- the drive source support frame 2 extends in the front-rear direction fb.
- the drive source support frame 2 is bent downward d from the rear end of the drive source support frame 2.
- the steering mechanism 7 is supported by the vehicle body 5.
- the steering mechanism 7 is supported by the front end portion of the drive source support frame 2.
- the steering mechanism 7 steers the steering wheel 3 by the rider's operation.
- the steering mechanism 7 includes a handle, a steering shaft, and a front fork.
- the structure of the handle, the steering shaft, and the front fork is the same as the structure of the general handle, the steering shaft, and the front fork, and therefore description thereof is omitted.
- the steering wheel axle shaft Sh1 is supported by the vehicle body 5.
- the steering wheel axle shaft Sh1 is supported by the lower end portion of the front fork of the steering mechanism 7.
- the steered wheel axle shaft Sh1 extends in the left-right direction lr in the lean vehicle 1 in an upright state.
- the upright state is a state in which the steered wheels 3 are not steered leftward L or rightward R and the drive source support frame 2 is not inclined leftward L or rightward R.
- Steering wheel 3 is a front wheel of lean vehicle 1. Accordingly, the steered wheels 3 are disposed at the front portion of the lean vehicle 1.
- the steered wheel 3 is supported by the steered wheel axle shaft Sh1 so that it can rotate around the central axis of the steered wheel axle shaft Sh1.
- the steered wheels 3 are supported by the drive source support frame 2 via the steering mechanism 7. That is, the steering wheel 3 is supported by the vehicle body 5. Also, the rider can steer the steered wheels 3 by operating the handle of the steering mechanism 7.
- the swing arm support shaft Sh3 is supported by the vehicle body 5.
- the swing arm support shaft Sh3 is supported by the rear and lower portions of the drive source support frame 2.
- the swing arm support shaft Sh3 extends in the left-right direction lr.
- the swing arm 8 extends rearward b from the rear and lower part of the drive source support frame 2 when viewed to the right r.
- the front portion of the swing arm 8 (more precisely, the front end portion of the swing arm 8) is supported by the swing arm support shaft Sh3.
- the swing arm 8 can swing with respect to the vehicle body 5 (more strictly speaking, the drive source support frame 2) around the central axis of the swing arm support shaft Sh3. Therefore, the rear part of the swing arm 8 can move up and down with respect to the drive source support frame 2.
- the drive wheel axle shaft Sh2 is supported by the rear part of the swing arm 8 (more precisely, the rear end part of the swing arm 8).
- the drive wheel axle shaft Sh2 extends in the left-right direction lr.
- the driving wheel 4 is a rear wheel of the lean vehicle 1. Accordingly, the drive wheels 4 are disposed at the rear part of the lean vehicle 1.
- the drive wheel 4 is supported by the drive wheel axle shaft Sh2 so that the drive wheel 4 can rotate around the central axis of the drive wheel axle shaft Sh2. Thereby, the drive wheel 4 is supported by the drive source support frame 2 via the swing arm 8.
- the driving wheel 4 is rotated by a driving force generated by a driving source 11 described later.
- the rider sits on the seat 10.
- the seat 10 is supported by the drive source support frame 2.
- the driving source 11 generates a driving force for rotating the driving wheel 4.
- the drive source 11 is inclined to the left L when the lean vehicle 1 makes a left turn.
- the drive source 11 is inclined to the right R when the lean vehicle 1 turns right.
- the drive source 11 is an engine, an electric motor, or the like. Further, the drive source 11 may be a combination of an engine and an electric motor.
- the drive source 11 is supported by the drive source support frame 2. More specifically, the drive source 11 is disposed in front f and below d of the drive source support frame 2 when viewed to the right r. Thereby, the upper part of the drive source 11 and the rear part of the drive source 11 are fixed to the drive source support frame 2.
- the driving force generated by the drive source 11 is transmitted to the drive wheels 4 via a transmission mechanism such as a transmission. Thereby, the driving wheel 4 is rotated by the driving force generated by the driving source 11.
- FIG. 2 is a view of the support members 21, 21a to 21f, 22, 22a, 22b, 22f, and 22g as viewed to the right r.
- the roll axis Ax1 is a straight line that passes through the contact point between the drive wheel 4 and the ground and is orthogonal to the steering shaft.
- Roll axis Ax1 is located in the center of lean vehicle 1 in the left-right direction LR.
- the yaw axis Ax2 is a straight line that passes through the center of gravity of the lean vehicle 1 and extends in the vertical direction UD.
- the swing arm 8 includes a swing arm left part 8a, a swing arm right part 8b, and a swing arm connecting part 8c.
- the swing arm left portion 8a is disposed on the left side l from the center of the drive source support frame 2 in the left-right direction lr.
- the swing arm left portion 8 a extends in the front-rear direction fb on the left side l of the drive wheel 4.
- the swing arm left portion 8a supports the left end portion of the drive wheel axle shaft Sh2. Further, the through hole H2 penetrates the front end portion of the swing arm left portion 8a in the left-right direction lr.
- the swing arm right part 8b is arranged on the right r from the center of the drive source support frame 2 in the left-right direction lr.
- the swing arm right portion 8 b extends in the front-rear direction fb on the right side r of the drive wheel 4.
- the swing arm right portion 8b supports the right end portion of the drive wheel axle shaft Sh2. Further, the through hole H3 penetrates the front end portion of the swing arm right portion 8b in the left-right direction lr.
- the swing arm connecting portion 8 c is disposed in front f of the drive wheel 4.
- the swing arm connecting portion 8c extends in the left-right direction lr.
- the swing arm connecting portion 8c connects the swing arm left portion 8a and the swing arm right portion 8b.
- the rear end portion of the drive source support frame 2 is disposed between the front end portion of the swing arm left portion 8a and the front end portion of the swing arm right portion 8b. Further, the through hole H1 penetrates the rear end portion of the drive source support frame 2 in the left-right direction lr.
- the through holes H1 to H3 are connected to each other to form one through hole.
- the lean vehicle 1 includes support members 21 and 22, a collar 23, bearings 24 to 27, and a nut 30.
- the support member 21 has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21 in the left-right direction lr.
- the support member 21 is disposed on the left side of the through hole H1.
- the outer peripheral surface of the support member 21 is in close contact with the inner peripheral surface of the through hole H1.
- the central axis of the support member 21 and the central axis of the through hole H1 coincide.
- the support member 22 has a cylindrical shape having a central axis extending in the left-right direction lr.
- the through hole H21 penetrates the support member 22 in the left-right direction lr.
- the support member 22 is disposed on the right part of the through hole H1.
- the outer peripheral surface of the support member 22 is in close contact with the inner peripheral surface of the through hole H1.
- the central axis of the support member 22 coincides with the central axis of the through hole H1.
- the support members 21 and 22 are made of an elastic material such as rubber. Therefore, the support members 21 and 22 can be elastically deformed.
- the collar 23 has a cylindrical shape having a central axis extending in the left-right direction lr.
- the collar 23 is provided between the support member 21 and the support member 22 in the through hole H1.
- the collar 23 is a member for keeping the distance between the support member 21 and the support member 22 in the left-right direction lr constant.
- the collar 23 is made of metal, for example.
- the bearing 24 is provided in the left part of the through hole H2.
- the bearing 25 is provided in the right part of the through hole H2.
- the bearing 26 is provided in the right part of the through hole H3.
- the bearing 27 is provided on the left part of the through hole H3.
- the swing arm support shaft Sh3 is a bolt.
- the swing arm support shaft Sh3 is supported by the vehicle body 5.
- the swing arm support shaft Sh3 is supported by the drive source support frame 2. More specifically, the swing arm support shaft Sh3 passes through the through holes H1 to H3 in the left-right direction lr. Therefore, the swing arm support shaft Sh3 passes through the support members 21 and 22, the collar 23, and the bearings 24 to 27 in the left-right direction lr.
- the support members 21 and 22 are provided between the swing arm support shaft Sh3 and the vehicle body 5.
- the support members 21 and 22 are provided between the swing arm support shaft Sh3 and the drive source support frame 2.
- the outer peripheral surfaces of the support members 21 and 22 are in contact with the vehicle body 5.
- the outer peripheral surfaces of the support members 21 and 22 are in contact with the drive source support frame 2.
- the inner peripheral surfaces of the support members 21 and 22 are in contact with the swing arm support shaft Sh3.
- the right end portion of the swing arm support shaft Sh3 protrudes to the right r from the through hole H3.
- the nut 30 is fixed to the right end portion of the swing arm support shaft Sh3.
- the amount of deformation of the support members 21 and 22 when a force in the up-and-down direction ud is applied to the support members 21 and 22 is the amount of deformation of the support members 21 and 22 when a force in the front-rear direction fb is applied to the support members 21 and 22.
- the magnitude of the force in the up-down direction ud is the same as the magnitude of the force in the front-back direction fb.
- the amount of deformation of the support members 21 and 22 when the force in the vertical direction ud is applied to the support members 21 and 22 is the support member 21 when the force in the front-rear direction fb is applied to the support members 21 and 22.
- 22 is larger than the deformation amount.
- the through holes 210 and 212 are provided in the support member 21 as shown in FIG.
- the through hole 210 is formed above the through hole H20 of the support member 21 when viewed to the right r.
- the through hole 212 is formed below the through hole H20 of the support member 21 when viewed to the right r.
- the through holes 210 and 212 have an arc shape when viewed to the right r.
- the through holes 210 and 212 penetrate the support member 21 in the left-right direction lr.
- the through-holes 220 and 222 are provided in the support member 22 as shown in FIG.
- the through hole 220 is formed above the through hole H21 of the support member 22 when viewed to the right r.
- the through hole 222 is formed below the through hole H21 of the support member 22 when viewed to the right r.
- the through holes 220 and 222 have an arc shape when viewed to the right r.
- the through holes 220 and 222 penetrate the support member 22 in the left-right direction lr.
- the swing arm support shaft Sh3 When the swing arm support shaft Sh3 receives a force upward u, the support members 21 and 22 are relatively greatly deformed so that the size of the through holes 210 and 220 in the vertical direction ud is reduced. Similarly, when the swing arm support shaft Sh3 receives a force in the downward direction d, the support members 21 and 22 are relatively greatly deformed so that the size of the through holes 212 and 222 in the vertical direction ud is reduced. Therefore, the swing arm support shaft Sh3 can be relatively displaced in the vertical direction ud.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force in the forward direction f, the support members 21 and 22 are relatively deformed. Similarly, when the swing arm support shaft Sh3 receives a force in the backward direction b, the support members 21 and 22 are relatively deformed. Therefore, the swing arm support shaft Sh3 can be displaced relatively small in the front-rear direction fb.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is the swing arm support shaft.
- the unit angle is a predetermined angle.
- the size of the unit angle is 1 °, for example. However, the unit angle is not limited to 1 °. This will be described in detail below.
- Rotating the swing arm support shaft Sh3 about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is the following two operations ((a) and (b)) in FIG. .
- the swing arm support shaft Sh3 applies an upward u or downward d force to the support members 21 and 22. Therefore, the support members 21 and 22 are relatively greatly deformed, and the swing arm support shaft Sh3 is rotated relatively large around the roll axis Ax1.
- the swing arm support shaft Sh3 applies a front f or rear b force to the support members 21 and 22. Therefore, the support members 21 and 22 are deformed relatively small, and the swing arm support shaft Sh3 rotates relatively small around the yaw axis Ax2.
- the swing arm support shaft Sh3 is easy to rotate around the roll axis Ax1, and is difficult to rotate around the yaw axis Ax2.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is as follows. It is smaller than the magnitude of the moment of force required to rotate the vehicle body 5 (drive source support frame 2) by a unit angle about the yaw axis Ax2.
- the ease of rotation of the drive wheel 4 around the roll axis Ax1 is different from the ease of rotation of the drive wheel 4 around the yaw axis Ax2. Therefore, the ease of rotation of the drive wheel 4 about the roll axis Ax1 and the ease of rotation of the drive wheel 4 about the yaw axis Ax2 are arbitrarily set by the design of the support members 21 and 22. Is possible. As a result, according to the lean vehicle 1, it is possible to obtain the same effect as when the moderate deflection characteristics and torsion characteristics are given to the swing arm 8.
- FIG. 3 is a cross-sectional view of a portion surrounded by a circle C in FIG.
- FIG. 3 shows a cross-sectional view of the lean vehicle 1a in a plane that is parallel to the front-rear direction FB and the left-right direction LR in the lean vehicle 1a and includes the central axis of the swing arm support shaft Sh3.
- the lean vehicle 1a differs from the lean vehicle 1 in the positions where the support members 21a and 22a are provided. Below, the lean vehicle 1a is demonstrated centering on this difference.
- the lean vehicle 1a includes support members 21a and 22a and bearings 24a and 25a as shown in FIG.
- the support member 21a has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21a in the left-right direction lr.
- the support member 21a is disposed in the through hole H2.
- the outer peripheral surface of the support member 21a is in close contact with the inner peripheral surface of the through hole H2.
- the central axis of the support member 21a coincides with the central axis of the through hole H2.
- the support member 22a has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H21 (see FIG.
- the support member 22a penetrates the support member 22a in the left-right direction lr.
- the support member 22a is disposed in the through hole H3.
- the outer peripheral surface of the support member 22a is in close contact with the inner peripheral surface of the through hole H3.
- the central axis of the support member 22a coincides with the central axis of the through hole H3.
- the support members 21a and 22a are made of an elastic material such as rubber. Therefore, the support members 21a and 22a can be elastically deformed.
- the bearing 24a is provided in the left part of the through-hole H1.
- the bearing 25a is provided in the right part of the through hole H1.
- the swing arm support shaft Sh3 is a bolt.
- the swing arm support shaft Sh3 passes through the through holes H1 to H3 in the left-right direction lr. Accordingly, the swing arm support shaft Sh3 passes through the support members 21a and 22a and the bearings 24a and 25a in the left-right direction lr.
- the support members 21a and 22a are provided between the swing arm support shaft Sh3 and the swing arm 8.
- the outer peripheral surfaces of the support members 21 a and 22 a are in contact with the swing arm 8.
- the inner peripheral surfaces of the support members 21a and 22a are in contact with the swing arm support shaft Sh3. Since the structure of the support members 21a and 22a is the same as the structure of the support members 21 and 22, description thereof will be omitted.
- the right end portion of the swing arm support shaft Sh3 protrudes to the right r from the through hole H3.
- the nut 30 is fixed to the right end portion of the swing arm support shaft Sh3. Since the other structure of the lean vehicle 1a is the same as that of the lean vehicle 1, description is abbreviate
- the support members 21a and 22a are relatively greatly deformed so that the size of the through holes 210 and 212 in the vertical direction ud is reduced. .
- the support members 21a and 22a are relatively greatly deformed so that the size of the through holes 212 and 222 in the vertical direction ud is reduced. Therefore, the swing arm 8 can be displaced relatively greatly in the vertical direction ud.
- the swing arm 8 when the swing arm 8 receives a force in the forward direction f, the support members 21a and 22a are relatively deformed. Similarly, when the swing arm 8 receives a force in the backward direction b, the support members 21a and 22a are relatively deformed. Therefore, the swing arm 8 can be displaced relatively small in the front-rear direction fb.
- the magnitude of the moment of force necessary to rotate the swing arm 8 by the unit angle about the roll axis Ax1 with respect to the swing arm support shaft Sh3 is different.
- the magnitude of the moment of force necessary to rotate the swing arm 8 by a unit angle about the roll axis Ax1 with respect to the swing arm support shaft Sh3 is the swing arm 8 is changed to the swing arm support shaft Sh3.
- rotating the swing arm 8 about the roll axis Ax1 with respect to the swing arm support shaft Sh3 is the following two operations ((e) and (f)) in FIG.
- the swing arm 8 applies an upward u or downward d force to the support members 21a and 22a. Therefore, the support members 21a and 22a are deformed relatively large, and the swing arm 8 rotates relatively large around the roll axis Ax1.
- the swing arm 8 applies a front f or rear b force to the support members 21a and 22a. Therefore, the support members 21a and 22a are deformed relatively small, and the swing arm 8 rotates relatively small around the yaw axis Ax2.
- the swing arm 8 is easy to rotate around the roll axis Ax1, and is difficult to rotate around the yaw axis Ax2.
- the magnitude of the moment of force required to rotate the swing arm 8 with respect to the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 is as follows. This is smaller than the magnitude of the moment of force necessary to rotate the unit angle about the yaw axis Ax2.
- the support members 21a and 22a have the magnitude of the moment of force necessary to rotate the swing arm 8 by a unit angle about the roll axis Ax1 with respect to the swing arm support shaft Sh3.
- the swing arm 8 has a structure that differs from the magnitude of the moment of force required to rotate the swing arm 8 by a unit angle about the yaw axis Ax2 with respect to the swing arm support shaft Sh3.
- the ease of rotation of the drive wheel 4 around the roll axis Ax1 is different from the ease of rotation of the drive wheel 4 around the yaw axis Ax2. Therefore, the ease of rotation of the drive wheel 4 about the roll axis Ax1 and the ease of rotation of the drive wheel 4 about the yaw axis Ax2 are arbitrarily set by the design of the support members 21a and 22a. Is possible. As a result, according to the lean vehicle 1a, it is possible to obtain the same effect as that obtained when the swing arm 8 is provided with appropriate bending characteristics and torsion characteristics.
- FIG. 4 is a cross-sectional view of a portion surrounded by a circle D in FIG.
- FIG. 4 shows a cross-sectional view of the lean vehicle 1b in a plane that is parallel to the front-rear direction FB and the left-right direction LR in the lean vehicle 1b and includes the central axis of the drive wheel axle shaft Sh2.
- the lean vehicle 1b differs from the lean vehicle 1 in the positions where the support members 21b and 22b are provided. Below, the lean vehicle 1b is demonstrated centering on this difference.
- the through hole H5 penetrates the rear end portion of the swing arm left portion 8a in the left-right direction lr.
- the through hole H6 penetrates the rear end portion of the swing arm right portion 8b in the left-right direction lr.
- a through hole H4 penetrates the center of the drive wheel 4 in the left-right direction lr.
- the lean vehicle 1b includes a sprocket 40.
- the sprocket 40 is disposed on the left side l of the drive wheel 4.
- the sprocket 40 is fixed to the drive wheel 4. Thereby, the sprocket 40 can rotate around the central axis of the drive wheel axle shaft Sh2 together with the drive wheel 4.
- the sprocket 40 is rotated by the driving force generated by the driving source 11 (see FIG. 1) to rotate the driving wheel 4.
- the through hole H7 penetrates the center of the sprocket 40 in the left-right direction.
- the through holes H4 to H7 are connected to each other to form one through hole.
- the lean vehicle 1b includes support members 21b and 22b, a collar 23b, bearings 24b and 25b, and a nut 50.
- the support member 21b has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21b in the left-right direction lr.
- the support member 21b is disposed in the through hole H5.
- the outer peripheral surface of the support member 21b is in close contact with the inner peripheral surface of the through hole H5.
- the central axis of the support member 21b coincides with the central axis of the through hole H5.
- the support member 22b has a cylindrical shape having a central axis extending in the left-right direction lr.
- the through hole H21 penetrates the support member 22b in the left-right direction lr.
- the support member 22b is disposed in the through hole H6.
- the outer peripheral surface of the support member 22b is in close contact with the inner peripheral surface of the through hole H6.
- the central axis of the support member 22b coincides with the central axis of the through hole H6.
- the support members 21b and 22b are made of an elastic material such as rubber. Therefore, the support members 21b and 22b can be elastically deformed.
- the bearing 24b is provided in the left part of the through-hole H4.
- the bearing 25b is provided in the right part of the through hole H4.
- the collar 23b has a cylindrical shape having a central axis extending in the left-right direction lr.
- the collar 23b is provided between the bearing 24b and the bearing 25b in the through hole H4.
- the collar 23b is a member for keeping the distance in the left-right direction lr between the bearing 24b and the bearing 25b constant.
- the collar 23b is made of metal, for example.
- the drive wheel axle shaft Sh2 is a bolt.
- the drive wheel axle shaft Sh2 passes through the through holes H4 to H7 in the left-right direction lr. Accordingly, the drive wheel axle shaft Sh2 passes through the support members 21b and 22b, the collar 23b, and the bearings 24b and 25b in the left-right direction lr.
- the support members 21b and 22b are provided between the drive wheel axle shaft Sh2 and the swing arm 8.
- the outer peripheral surfaces of the support members 21 b and 22 b are in contact with the swing arm 8.
- the inner peripheral surfaces of the support members 21b and 22b are in contact with the drive wheel axle shaft Sh2. Since the structure of the support members 21b and 22b is the same as the structure of the support members 21 and 22, description thereof will be omitted.
- the right end of the drive wheel axle shaft Sh2 protrudes to the right r from the through hole H6.
- the nut 50 is fixed to the right end portion of the drive wheel axle shaft Sh2. Since the other structure of the lean vehicle 1b is the same as that of the lean vehicle 1, description is abbreviate
- the support members 21b and 22b are relatively large so that the size of the through holes 210 and 212 in the vertical direction ud becomes small. Deform.
- the drive wheel axle shaft Sh2 receives a force in the downward direction d, the support members 21b and 22b are relatively greatly deformed so that the size of the through holes 212 and 222 in the vertical direction ud is reduced. Therefore, the drive wheel axle shaft Sh2 can be relatively displaced in the vertical direction ud.
- the drive wheel axle shaft Sh2 can be displaced relatively small in the front-rear direction fb.
- the magnitude of the moment of force required to rotate the drive wheel axle shaft Sh2 by a unit angle about the yaw axis Ax2 with respect to the swing arm 8 is different.
- the magnitude of the moment of force required to rotate the drive wheel axle shaft Sh2 by a unit angle about the roll axis Ax1 with respect to the swing arm 8 is as follows. On the other hand, it is smaller than the magnitude of the moment of force required to rotate the yaw axis Ax2 by a unit angle.
- rotating the drive wheel axle shaft Sh2 about the roll axis Ax1 with respect to the swing arm 8 is the following two operations ((i), (j)) in FIG.
- the drive wheel axle shaft Sh2 applies an upward u or downward d force to the support members 21b and 22b. Therefore, the support members 21b and 22b are relatively greatly deformed, and the drive wheel axle shaft Sh2 rotates relatively largely around the roll axis Ax1.
- the drive wheel axle shaft Sh2 applies a front f or rear b force to the support members 21b and 22b. Therefore, the support members 21b and 22b are deformed relatively small, and the drive wheel axle shaft Sh2 rotates relatively small around the yaw axis Ax2.
- the drive wheel axle shaft Sh2 is easy to rotate around the roll axis Ax1, and is difficult to rotate around the yaw axis Ax2.
- the magnitude of the moment of force required to rotate the drive wheel axle shaft Sh2 by a unit angle about the roll axis Ax1 with respect to the swing arm 8 is as follows. This is smaller than the magnitude of the moment of force necessary to rotate the unit angle about the yaw axis Ax2.
- the support members 21b and 22b have the magnitude of the moment of force required to rotate the drive wheel axle shaft Sh2 by the unit angle about the roll axis Ax1 with respect to the swing arm 8.
- the driving wheel axle shaft Sh2 has a structure different from the magnitude of the moment of force required to rotate the driving arm axle shaft Sh2 by a unit angle about the yaw axis Ax2 with respect to the swing arm 8.
- the ease of rotation of the drive wheel 4 around the roll axis Ax1 is different from the ease of rotation of the drive wheel 4 around the yaw axis Ax2. Therefore, the ease of rotation of the drive wheel 4 about the roll axis Ax1 and the ease of rotation of the drive wheel 4 about the yaw axis Ax2 are arbitrarily set by the design of the support members 21b and 22b. Is possible. As a result, according to the lean vehicle 1b, it is possible to obtain an effect equivalent to that obtained when the swing arm 8 is given appropriate bending characteristics and torsion characteristics.
- FIG. 5 is a cross-sectional view of a portion surrounded by a circle D in FIG.
- FIG. 5 shows a cross-sectional view of the lean vehicle 1c in a plane parallel to the front-rear direction FB and the left-right direction LR in the lean vehicle 1c and including the central axis of the drive wheel axle shaft Sh2.
- the lean vehicle 1c is different from the lean vehicle 1b at the position where the support member 21c is provided. Below, the lean vehicle 1c is demonstrated centering on this difference.
- the lean vehicle 1c includes a support member 21c, a collar 23c, bearings 24c and 25c, and a nut 50, as shown in FIG.
- the support member 21c has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21c in the left-right direction lr.
- the support member 21c is disposed in the through hole H4.
- the outer peripheral surface of the support member 21c is in close contact with the inner peripheral surface of the through hole H4.
- the central axis of the support member 21c coincides with the central axis of the through hole H4.
- the support member 21c is made of an elastic material such as rubber. Therefore, the support member 21c can be elastically deformed.
- the bearing 24c is provided in the left part of the through hole H4. However, the bearing 24c is provided in the support member 21c. Therefore, the outer peripheral surface of the bearing 24c is in close contact with the inner peripheral surface of the support member 21c. The center axis of the bearing 24c coincides with the center axis of the support member 21c.
- the bearing 25c is provided in the right part of the through hole H4. However, the bearing 25c is provided in the support member 21c. Therefore, the outer peripheral surface of the bearing 25c is in close contact with the inner peripheral surface of the support member 21c. The center axis of the bearing 25c coincides with the center axis of the support member 21c.
- the collar 23c has a cylindrical shape having a central axis extending in the left-right direction lr.
- the collar 23c is provided between the bearing 24c and the bearing 25c in the through hole H4.
- the collar 23c is a member for keeping the distance in the left-right direction lr between the bearing 24c and the bearing 25c constant.
- the collar 23c is made of metal, for example.
- the drive wheel axle shaft Sh2 is a bolt.
- the drive wheel axle shaft Sh2 passes through the through holes H4 to H7 in the left-right direction lr. Accordingly, the drive wheel axle shaft Sh2 penetrates the support member 21c, the collar 23c, and the bearings 24c and 25c in the left-right direction lr. Thereby, the support member 21c is provided between the drive wheel axle shaft Sh2 and the drive wheel 4.
- the outer peripheral surface of the support member 21 c is in contact with the drive wheel 4.
- the inner peripheral surface of the support member 21c is in contact with the collar 23c and the bearings 24c and 25c. Since the structure of the support member 21c is the same as the structure of the support member 21b, description thereof is omitted.
- the right end of the drive wheel axle shaft Sh2 protrudes to the right r from the through hole H6.
- the nut 50 is fixed to the right end portion of the drive wheel axle shaft Sh2. Since the other structure of the lean vehicle 1c is the same as that of the lean vehicle 1b, description is abbreviate
- the support member 21c is relatively greatly deformed so that the size of the through hole 210 in the vertical direction ud is reduced.
- the support member 21c is relatively largely deformed so that the size of the through hole 212 in the vertical direction ud is reduced. Therefore, the drive wheel 4 can be displaced relatively large in the vertical direction ud.
- the drive wheel 4 can be displaced relatively small in the front-rear direction fb.
- the magnitude of the moment of force required to rotate 4 with respect to the drive wheel axle shaft Sh2 by a unit angle about the yaw axis Ax2 is different.
- the magnitude of the moment of force required to rotate the drive wheel 4 with respect to the drive wheel axle shaft Sh2 by a unit angle about the roll axis Ax1 is as follows. On the other hand, it is smaller than the magnitude of the moment of force required to rotate the yaw axis Ax2 by a unit angle.
- the drive wheel 4 applies an upward u or downward d force to the support member 21c. Therefore, the support member 21c is relatively greatly deformed, and the drive wheel 4 rotates relatively largely around the roll axis Ax1.
- the driving wheel 4 applies a front f or rear b force to the support member 21c. Therefore, the support member 21c is deformed relatively small, and the drive wheel 4 rotates relatively small around the yaw axis Ax2.
- the drive wheel 4 is easy to rotate around the roll axis Ax1 and is difficult to rotate around the yaw axis Ax2.
- the magnitude of the moment of force required to rotate the drive wheel 4 with respect to the drive wheel axle shaft Sh2 by a unit angle about the roll axis Ax1 is as follows. This is smaller than the magnitude of the moment of force necessary to rotate the unit angle about the yaw axis Ax2.
- the support member 21c determines the magnitude of the moment of force required to rotate the drive wheel 4 by a unit angle around the roll axis Ax1 with respect to the drive wheel axle shaft Sh2, and the drive. It has a structure in which the magnitude of the moment of force required to rotate the wheel 4 by a unit angle about the yaw axis Ax2 with respect to the drive wheel axle shaft Sh2 is different.
- the ease of rotation of the drive wheel 4 around the roll axis Ax1 is different from the ease of rotation of the drive wheel 4 around the yaw axis Ax2. Therefore, the ease of rotation of the drive wheel 4 around the roll axis Ax1 and the ease of rotation of the drive wheel 4 around the yaw axis Ax2 can be arbitrarily set by the design of the support member 21c. It becomes. As a result, according to the lean vehicle 1c, it is possible to obtain the same effect as when the swing arm 8 is provided with appropriate bending characteristics and torsion characteristics.
- FIG. 6 is an enlarged view of the connecting portion of the drive source support frame 2, the swing arm support shaft support member 100, and the swing arm 8 in the lean vehicles 1d to 1f.
- FIG. 6 is a view of the lean vehicle 1d as viewed to the right r.
- FIG. 7 is a cross-sectional view of a connecting portion between the drive source support frame 2 and the swing arm support shaft support member 100.
- FIG. 7 shows a cross-sectional view of the lean vehicle 1d in a plane parallel to the front-rear direction FB and the left-right direction LR in the lean vehicle 1d and including the central axis of the mounting member 102a.
- the lean vehicle 1 d is different from the lean vehicle 1 in the support structure of the swing arm 8.
- the lean vehicle 1d will be described focusing on the difference.
- the lean vehicle 1d further includes a swing arm support shaft support member 100 and attachment members 102a to 102c, as shown in FIG.
- the swing arm support shaft support member 100 is supported by the drive source support frame 2 (vehicle body 5) and supports the swing arm support shaft Sh3.
- the swing arm support shaft support member 100 is a triangular plate member.
- the swing arm support shaft support member 100 is disposed on the left side l of the drive source support frame 2 (vehicle body 5).
- the attachment members 102a to 102c attach the swing arm support shaft support member 100 to the drive source support frame 2 (vehicle body 5).
- Each of the attachment members 102a to 102c is disposed in the vicinity of the apex of the swing arm support shaft support member 100 having a triangular shape.
- the front end of the swing arm left portion 8a is supported by the swing arm support shaft support member 100 via the swing arm support shaft Sh3.
- the swing arm support shaft Sh3 passes through a through hole H2 (see FIG. 1) provided at the front end of the swing arm left portion 8a and a through hole provided in the swing arm support shaft support member 100 in the left-right direction lr. .
- the swing arm left portion 8a can rotate around the central axis of the swing arm support shaft Sh3.
- the support structure for the drive source support frame 2 (vehicle body 5) of the swing arm right portion 8b is the same as the support structure for the drive source support frame 2 (vehicle body 5) of the swing arm left portion 8a, and thus the description thereof is omitted. .
- a through hole H8 penetrates the drive source support frame 2 in the left-right direction lr.
- the through hole H9 penetrates the swing arm support shaft support member 100 in the left-right direction lr.
- the through holes H8 and H9 are connected to each other to form one through hole.
- the lean vehicle 1d includes a support member 21d and a nut 104a as shown in FIG.
- the support member 21d has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21d in the left-right direction lr.
- the support member 21d is disposed in the through hole H8.
- the outer peripheral surface of the support member 21d is in close contact with the inner peripheral surface of the through hole H8.
- the central axis of the support member 21d coincides with the central axis of the through hole H8.
- the support member 21d is made of an elastic material such as rubber. Therefore, the support member 21d can be elastically deformed.
- the mounting member 102a is a bolt.
- the attachment member 102a penetrates the through holes H8 and H9 in the left-right direction lr. Therefore, the attachment member 102a penetrates the support member 21d in the left-right direction lr.
- the support member 21d is provided between the attachment member 102a and the drive source support frame 2 (vehicle body 5).
- the attachment member 102 a is supported by the swing arm support shaft support member 100.
- the swing arm support shaft support member 100 supports the swing arm support shaft Sh3.
- the support member 21d is provided between the drive source support frame 2 (vehicle body 5) and the swing arm support shaft Sh3.
- the inner peripheral surface of the support member 21d is in contact with the attachment member 102a.
- the outer peripheral surface of the support member 21d is in contact with the drive source support frame 2 (the vehicle body 5). Since the structure of the support member 21d is the same as the structure of the support member 21, description thereof is omitted.
- the right end portion of the mounting member 102a protrudes from the through hole H8 to the right r.
- the nut 104a is fixed to the right end portion of the attachment member 102a.
- the swing arm support shaft support member 100 is attached to the drive source support frame 2 (vehicle body 5) by the support member 21d, the attachment member 102a, and the nut 104a.
- the swing arm support shaft support member 100 is attached to the drive source support frame 2 (vehicle body 5) by a support member (not shown), attachment members 102b and 102c, and nuts (not shown).
- the structure of the support member, the attachment members 102b and 102c, and the nut is the same as the structure of the support member 21d, the attachment member 102a, and the nut 104a, and thus description thereof is omitted. Further, since the other structure of the lean vehicle 1d is the same as that of the lean vehicle 1, description thereof is omitted.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force upward u, the swing arm support shaft support member 100 and the attachment member 102a receive a force upward u. As a result, the support member 21d is relatively greatly deformed so that the size of the through hole 210 of the support member 21d is reduced in the vertical direction ud. A phenomenon similar to the phenomenon in the support member 21d also occurs in the support members of the attachment members 102b and 102c. Similarly, when the swing arm support shaft Sh3 receives a force in the downward direction d, the swing arm support shaft support member 100 and the attachment member 102a receive the force in the downward direction d.
- the support member 21d is relatively greatly deformed so that the size of the through hole 212 of the support member 21d in the vertical direction ud is reduced.
- a phenomenon similar to the phenomenon in the support member 21d also occurs in the support members of the attachment members 102b and 102c. Therefore, the swing arm support shaft Sh3 can be relatively displaced in the vertical direction ud.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force in the forward direction f, the swing arm support shaft support member 100 and the attachment member 102a receive the force in the forward direction f. Thereby, the support member 21d is deformed relatively small. A phenomenon similar to the phenomenon in the support member 21d also occurs in the support members of the attachment members 102b and 102c. Similarly, when the swing arm support shaft Sh3 receives a force in the rear b, the swing arm support shaft support member 100 and the attachment member 102a receive a force in the rear b. Thereby, the support member 21d is deformed relatively small. A phenomenon similar to the phenomenon in the support member 21d also occurs in the support members of the attachment members 102b and 102c. Therefore, the swing arm support shaft Sh3 can be displaced relatively small in the front-rear direction fb.
- the swing arm support shaft Sh3 is rotated by a unit angle with respect to the drive source support frame 2 about the roll axis Ax1 as in the support member 21 of the lean vehicle 1.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by the unit angle about the yaw axis Ax2 with respect to the drive source support frame 2 is different.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is the swing arm support shaft.
- FIG. 8 is a cross-sectional view of a connecting portion between the drive source support frame 2 and the swing arm support shaft support member 100.
- FIG. 8 shows a cross-sectional view of the lean vehicle 1e on a plane that is parallel to the front-rear direction FB and the left-right direction LR of the lean vehicle 1e and includes the central axis of the mounting member 102a.
- the lean vehicle 1e is different from the lean vehicle 1d at the position where the support member 21e is provided.
- the support member 21d is provided between the attachment member 102a and the vehicle body 5 (drive source support frame 2) as shown in FIG.
- the support member 21e is provided between the attachment member 102a and the swing arm support shaft support member 100, as shown in FIG.
- the attachment member 102a is supported by the vehicle body 5 (drive source support frame 2).
- the swing arm support shaft support member 100 supports the swing arm support shaft Sh3. Accordingly, the support member 21e is provided between the vehicle body 5 (drive source support frame 2) and the swing arm support shaft Sh3.
- the structure of the support member 21e is the same as the structure of the support members 21 and 21d, description thereof is omitted. Further, since the other structure of the lean vehicle 1e is the same as that of the lean vehicles 1 and 1d, description thereof is omitted.
- the swing arm support shaft support member 100 receives a force upward u.
- the support member 21e is relatively greatly deformed so that the size of the through hole 210 of the support member 21e is reduced in the vertical direction ud.
- the swing arm support shaft support member 100 receives a force in the downward direction d.
- the support member 21e is relatively largely deformed so that the size of the through hole 212 of the support member 21e in the vertical direction ud is reduced. Therefore, the swing arm support shaft Sh3 can be relatively displaced in the vertical direction ud.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force in the forward direction f, the swing arm support shaft support member 100 receives a force in the forward direction f. Thereby, the support member 21e is deformed relatively small.
- the swing arm support shaft Sh3 receives a force in the rear b
- the swing arm support shaft support member 100 receives a force in the rear b.
- the support member 21d is deformed relatively small. Therefore, the swing arm support shaft Sh3 can be displaced relatively small in the front-rear direction fb.
- the swing arm support shaft Sh3 is set to the vehicle body 5 (drive source support frame 2) by a unit angle about the roll axis Ax1 as in the lean vehicles 1 and 1d.
- the size is different.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is the swing arm support shaft.
- FIG. 9 is a cross-sectional view of a portion surrounded by a circle C in FIG.
- FIG. 9 shows a cross-sectional view of the lean vehicle 1f in a plane that is parallel to the front-rear direction FB and the left-right direction LR in the lean vehicle 1f and includes the central axis of the swing arm support shaft Sh3.
- the swing arm support shaft Sh3 is supported by the drive source support frame 2 (vehicle body 5).
- the swing arm support shaft Sh3 is supported by the swing arm support shaft support members 100 and 101.
- the lean vehicle 1f includes support members 21f and 22f and swing arm support shaft support members 100 and 101.
- the swing arm support shaft support member 100 is arranged on the left side l from the center in the left-right direction lr of the lean vehicle 1f.
- the through hole H10 penetrates the swing arm support shaft support member 100 in the left-right direction lr.
- the through holes H2 and H10 are connected to each other to form one through hole.
- the swing arm support shaft support member 101 is disposed on the right r from the center in the left-right direction lr of the lean vehicle 1f.
- the through hole H11 penetrates the swing arm support shaft support member 101 in the left-right direction lr.
- the through holes H3 and H11 are connected to each other to form one through hole. Since the swing arm support shaft support members 100 and 101 of the lean vehicle 1f have the same structure as the swing arm support shaft support member 100 of the lean vehicle 1d, further description is omitted.
- the support member 21f has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H20 (see FIG. 2) penetrates the support member 21f in the left-right direction lr.
- the support member 21f is disposed in the through hole H10.
- the outer peripheral surface of the support member 21f is in close contact with the inner peripheral surface of the through hole H10.
- the central axis of the support member 21f and the central axis of the through hole H10 coincide.
- the support member 22f has a cylindrical shape having a central axis extending in the left-right direction lr. Accordingly, the through hole H21 (see FIG. 2) passes through the support member 22f in the left-right direction lr.
- the support member 22f is disposed in the through hole H11.
- the outer peripheral surface of the support member 22f is in close contact with the inner peripheral surface of the through hole H11.
- the central axis of the support member 22f and the central axis of the through hole H11 are coincident.
- the support members 21f and 22f are made of an elastic material such as rubber. Therefore, the support members 21f and 22f can be elastically deformed. Since the structure of the support members 21f and 22f is the same as the structure of the support members 21 and 22, the description thereof is omitted.
- the swing arm support shaft Sh3 is a bolt.
- the swing arm support shaft Sh3 passes through the through holes H2, H3, H10, and H11 in the left-right direction lr. Accordingly, the swing arm support shaft Sh3 passes through the support members 21f and 22f and the bearings 24 to 27 in the left-right direction lr. Accordingly, the support members 21f and 22f are provided between the swing arm support shaft Sh3 and the swing arm support shaft support members 100 and 101.
- the outer peripheral surface of the support member 21 f is in contact with the swing arm support shaft support member 100.
- the outer peripheral surface of the support member 22f is in contact with the swing arm support shaft support member 101.
- the inner peripheral surfaces of the support members 21f and 22f are in contact with the swing arm support shaft Sh3.
- the right end portion of the swing arm support shaft Sh3 protrudes to the right r from the through hole H3.
- the nut 30 is fixed to the right end portion of the swing arm support shaft Sh3. Since the other structure of the lean vehicle 1f is the same as that of the lean vehicle 1, description thereof is omitted.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force in the upward direction u, the support member 21f, the size of the through holes 210, 220 of the support members 21f, 22f in the vertical direction ud is reduced. 22f is relatively greatly deformed.
- the support members 21f and 22f when the swing arm support shaft Sh3 receives a force in the downward direction d, the support members 21f and 22f are relatively large so that the size of the through holes 212 and 222 of the support members 21f and 22f in the vertical direction ud is reduced. Deform. Therefore, the swing arm support shaft Sh3 can be relatively displaced in the vertical direction ud.
- the swing arm support shaft Sh3 when the swing arm support shaft Sh3 receives a force in the forward direction f, the support members 21f and 22f are deformed relatively small. Similarly, when the swing arm support shaft Sh3 receives a force in the backward direction b, the support members 21f and 22f are deformed relatively small. Therefore, the swing arm support shaft Sh3 can be displaced relatively small in the front-rear direction fb.
- the swing arm support shaft Sh3 is set to the vehicle body 5 (drive source support frame 2) by a unit angle about the roll axis Ax1.
- the size is different.
- the magnitude of the moment of force required to rotate the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2) is the swing arm support shaft.
- FIG. 10 is a view of the lean vehicle 1g as viewed to the right r.
- the drive source support frame 2 the drive source, and the swing arm 8 are shown.
- the swing arm support shaft Sh3 is supported by the drive source support frame 2.
- the swing arm support shaft Sh3 is supported by the drive source 11.
- the support members 21 and 22 are provided between the swing arm support shaft Sh3 and the drive source 11.
- FIG. 11 is a view of the support members 21g and 22g as viewed to the right r.
- the support members 21g and 22g are different from the support members 21 and 22 in the positions of the through holes 210, 220, 212, and 222.
- the through holes 210 and 220 are formed above the through holes H 20 and H 21 of the support members 21 and 22 when viewed to the right r, as shown in FIG. .
- the through holes 212 and 222 are respectively formed below the through holes H20 and H21 of the support members 21 and 22 when viewed to the right r as shown in FIG. ing.
- the deformation amount of the support members 21 and 22 when a force in the up-and-down direction ud is applied to the support members 21 and 22 is the support members 21 and 22 when a force in the front-rear direction fb is applied to the support members 21 and 22. Greater than the amount of deformation.
- the through holes 210 and 220 are respectively formed in front f of the through holes H20 and H21 of the support members 21g and 22g when viewed to the right r as shown in FIG. ing.
- the through holes 212 and 222 are formed in the rear b of the through holes H20 and H21 of the support members 21g and 22g, respectively, when viewed to the right r, as shown in FIG. ing.
- the deformation amount of the support members 21g and 22g when the force in the front-rear direction fb is applied to the support members 21g and 22g is the same as that when the force in the vertical direction ud is applied to the support members 21g and 22g. Greater than the amount of deformation.
- the swing arm support shaft Sh3 is rotated by a unit angle about the yaw axis Ax2 with respect to the vehicle body 5 (drive source support frame 2).
- the magnitude of the moment of force necessary for this is the magnitude of the moment of force necessary for rotating the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2). Smaller than this.
- the magnitude of the moment is smaller than the magnitude of the moment of force necessary to rotate the swing arm 8 by a unit angle about the roll axis Ax1 with respect to the swing arm support shaft Sh3.
- the magnitude of the moment is smaller than the magnitude of the moment of force required to rotate the drive wheel axle shaft Sh2 by a unit angle with respect to the swing arm 8 about the roll axis Ax1.
- the moment of force necessary to rotate the drive wheel 4 by the unit angle about the yaw axis Ax2 with respect to the drive wheel axle shaft Sh2 is reduced.
- the magnitude is smaller than the magnitude of the moment of force required to rotate the drive wheel 4 by a unit angle about the roll axis Ax1 with respect to the drive wheel axle shaft Sh2.
- the swing arm support shaft Sh3 When the support member 21g as described above is applied to the lean vehicles 1d and 1e, the swing arm support shaft Sh3 is rotated by a unit angle about the yaw axis Ax2 with respect to the vehicle body 5 (drive source support frame 2).
- the magnitude of the moment of force necessary for this is the magnitude of the moment of force necessary for rotating the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2). Smaller than this.
- the swing arm support shaft Sh3 is rotated by a unit angle about the yaw axis Ax2 with respect to the vehicle body 5 (drive source support frame 2).
- the magnitude of the moment of force necessary for this is the magnitude of the moment of force necessary for rotating the swing arm support shaft Sh3 by a unit angle about the roll axis Ax1 with respect to the vehicle body 5 (drive source support frame 2). Smaller than this.
- the lean vehicles 1, 1 a to 1 g are provided with one steered wheel 3. However, the lean vehicles 1, 1a to 1g may include two or more steered wheels. The lean vehicles 1, 1a to 1g are provided with one drive wheel 4. However, the lean vehicles 1, 1a to 1g may include two or more drive wheels.
- the support members 21 and 22 are provided with through holes 210, 220, 212, and 222.
- the deformation amount of the support members 21 and 22 when a force in the up-and-down direction ud is applied to the support members 21 and 22 corresponds to the support members 21 and 22 when the force in the front-rear direction fb is applied to the support members 21 and 22.
- the amount of deformation is different.
- the amount of deformation of the support members 21 and 22 when a force in the vertical direction ud is applied to the support members 21 and 22 and the amount of deformation of the support members 21 and 22 when a force in the front-rear direction fb is applied to the support members 21 and 22.
- the method of making the amount of deformation different is not limited to this.
- Cutouts may be provided on the outer peripheral surfaces or inner peripheral surfaces of the support members 21 and 22.
- the support members 21 and 22 may be manufactured by combining two or more kinds of materials having different hardnesses. Note that the same method as that of the support members 21 and 22 may be applied to the support members 21a to 21g, 22a, 22b, 22f, and 22g.
- the rear end portion of the drive source support frame 2 is located between the front end portion of the swing arm left portion 8a and the front end portion of the swing arm right portion 8b.
- the rear end portion of the drive source support frame 2 may have a structure branched into a drive source support frame left portion and a drive source support frame right portion that are aligned in the left-right direction lr.
- the front end of the swing arm 8 is located between the left part of the drive source support frame and the right part of the drive source support frame.
- the front end portion of the swing arm 8 may be positioned between the swing arm support shaft support member 100 and the swing arm support shaft support member 101.
- the rear end portion of the drive source 11 is located between the front end portion of the swing arm left portion 8a and the front end portion of the swing arm right portion 8b.
- the rear end portion of the drive source 11 may have a structure branched into a drive source left portion and a drive source right portion that are aligned in the left-right direction lr.
- the front end of the swing arm 8 is located between the left side of the drive source and the right side of the drive source.
- the swing arm 8 is located on the left side of the driving wheel 4 on the driving wheel axle shaft Sh2 and on the right side r of the driving wheel 4 on the driving wheel axle shaft Sh2. Supported in two places on the part. However, the swing arm 8 may be supported by either the portion of the driving wheel axle shaft Sh2 that is positioned to the left of the driving wheel 4 or the portion of the driving wheel axle shaft Sh2 that is positioned to the right of the driving wheel r. Good.
- the swing arm support shaft Sh3 is directly supported by the drive source support frame 2 or supported by the drive source support frame 2 via the swing arm support shaft support members 100 and 102.
- the swing arm support shaft Sh3 may be supported by the drive source 11, for example.
- the swing arm support shaft Sh3 is supported by the drive source support frame 2 via the drive source 11.
- the lean vehicles 1, 1a to 1g have a chain drive type transmission mechanism.
- the lean vehicles 1, 1a to 1g may be provided with a belt drive transmission mechanism or a shaft drive transmission mechanism.
- the swing arm support shaft Sh3 may be supported by the drive source 11 as in the lean vehicle 1g.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Axle Suspensions And Sidecars For Cycles (AREA)
- Automatic Cycles, And Cycles In General (AREA)
Abstract
本発明の目的は、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得ることができる新たなリーン車両を提供することである。 本発明に係るリーン車両は、スイングアーム支持シャフトと車体との間に設けられており、スイングアーム支持シャフトを車体に対してリーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトを車体に対してリーン車両のヨー軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する支持部材を備えている。
Description
本発明は、リーン車両が左旋回するときにリーン車両における左方に傾斜し、リーン車両が右旋回するときにリーン車両における右方に傾斜する車体を備えるリーン車両に関する。
特許文献1に記載のように、自動二輪車のリアスイングアームの剛性が高いほど自動二輪車の乗り心地等の快適性が優れるわけではないことが分かっている。すなわち、リアスイングアームが自動二輪車毎の特性に合わせた適度な上下方向及び左右方向の撓み特性及び捩り特性を備えることにより、自動二輪車の乗り心地等の快適性が向上することが分かっている。
そこで、特許文献1に記載の自動二輪車は、以下に説明するリアスイングアームを備えている。リアスイングアームは、左アーム部、右アーム部、クロスメンバ、左補強部材及び右補強部材を備えている。左アーム部及び右アーム部は、前後方向に延びている。クロスメンバは、左右方向に延びている。クロスメンバは、左アーム部と右アーム部とを連結している。左補強部材は、左アーム部とクロスメンバとの接合部に設けられている。左補強部材は、左上板部及び左垂下部を含んでいる。左上板部は、下方に見たときに、直角二等辺三角形状をなしている。左上板部の直角を形成する二辺はそれぞれ、左アーム部及びクロスメンバに接合されている。左垂下部は、左上板部の直角を形成しない一辺から下方に左上板部に対して折り曲げられている。更に、左垂下部は、長方形状の外縁の一部が切り欠かれた構造を有している。なお、右補強部材は、左補強部材と左右対称な構造を有しているので、説明を省略する。
以上のようなリアスイングアームは、左アーム部とクロスメンバとの接合部が左補強部材により補強され、かつ、右アーム部とクロスメンバとの接合部が右補強部材により補強されるので、リアスイングアーム全体の剛性が高くなる。ただし、左補強部材の左垂下部に切り欠きが設けられ、右補強部材の右垂下部に切り欠きが設けられている。これにより、リアスイングアームが適度な撓み特性及び捩り特性を有するようになる。その結果、自動二輪車の乗り心地が向上する。
そこで、本発明の目的は、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得ることができる新たなリーン車両を提供することである。
本願発明者は、適度な撓み特性及び捩り特性が与えられたスイングアームを備えるリーン車両の動作について考察した。すると、本願発明者は、スイングアームが変形することにより、リーン車両が左旋回するときにリーン車両における左方に傾斜し、リーン車両が右旋回するときにリーン車両における右方に傾斜する車体に対して後輪がロール軸及び/又はヨー軸を中心に僅かに回転していることに気が付いた。すなわち、本願発明者は、車体に対してロール軸及び/又はヨー軸を中心に駆動輪を僅かに回転させることができるリーン車両が、適度な撓み特性及び捩り特性をスイングアームに与えたリーン車両と同等の効果を発揮することに気が付いた。
そこで、本願発明者は、車体に対してロール軸及び/又はヨー軸を中心に駆動輪を僅かに回転させる手法について検討を行った。本願発明者は、リーン車両が左旋回するときにリーン車両における左方に傾斜し、リーン車両が右旋回するときにリーン車両における右方に傾斜する車体におけるスイングアームの支持構造に着目した。リーン車両は、車体、スイングアーム支持シャフト及びスイングアームを備えている。車体は、リーン車両が左旋回するときにリーン車両における左方に傾斜し、リーン車両が右旋回するときにリーン車両における右方に傾斜する。スイングアーム支持シャフトは、車体に支持され、かつ、車体における左右方向に延びている。スイングアームは、スイングアーム支持シャフトの中心軸を中心に車体に対して揺動できるように、スイングアームの前部においてスイングアーム支持シャフトに支持されている。一般的なリーン車両では、スイングアームは、車体における左右方向に延びるスイングアーム支持シャフトの中心軸以外の軸(例えば、ロール軸やヨー軸)を中心に車体に対して回転しないように、車体に支持されている。
これに対して、本願発明者は、例えば、スイングアーム支持シャフトと車体との間に弾性変形できる支持部材を配置すればよいと考えた。これにより、支持部材が弾性変形するようになって、スイングアーム支持シャフトが車体に対してロール軸やヨー軸を中心に回転できるようになる。よって、スイングアームが車体に対してロール軸やヨー軸を中心に回転でき、後輪が車体に対してロール軸及び/又はヨー軸を中心に僅かに回転できる。
更に、本願発明者は、スイングアーム支持シャフトがロール軸を中心に回転するときの支持部材の弾性変形のしやすさとスイングアーム支持シャフトがヨー軸を中心に回転するときの支持部材の弾性変形のしやすさとを異ならせることができれば、ロール軸を中心とする後輪の回転しやすさとヨー軸を中心とする後輪の回転しやすさとを任意に設定できることに気がついた。これにより、本願発明者は、スイングアーム支持シャフトがロール軸を中心に回転するときの支持部材の弾性変形のしやすさとスイングアーム支持シャフトがヨー軸を中心に回転するときの支持部材の弾性変形のしやすさとが異なる性質を有する支持部材を車体とスイングアームとの間に配置することにより、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得られることに気が付いた。
本発明は、上述した課題を解決するために、以下の構成を採用する。
(1)のリーン車両は、
リーン車両が左旋回するときに前記リーン車両における左方に傾斜し、前記リーン車両が右旋回するときに前記リーン車両における右方に傾斜する車体であって、駆動力を発生する駆動源と、前記駆動源を支持する駆動源支持フレームと、を含む前記車体と、
前記車体に支持され、かつ、前記車体における左右方向に延びるスイングアーム支持シャフトと、
前記スイングアーム支持シャフトの中心軸を中心に前記車体に対して揺動できるように、スイングアームの前部において前記スイングアーム支持シャフトに支持されている前記スイングアームと、
前記スイングアームの後部に支持され、かつ、前記車体における左右方向に延びる駆動輪アクスルシャフトと、
前記駆動輪アクスルシャフトの中心軸を中心に回転できるように前記駆動輪アクスルシャフトに支持されており、前記駆動源が発生した駆動力により回転させられる駆動輪と、 弾性変形することができ、かつ、(A)ないし(D)の構造の少なくとも1つを有する支持部材と、
を備えている。
(A)前記支持部材は、前記スイングアーム支持シャフトと前記車体との間に設けられており、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(B)前記支持部材は、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられており、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(C)前記支持部材は、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられており、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(D)前記支持部材は、前記駆動輪アクスルシャフトと前記駆動輪との間に設けられており、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
リーン車両が左旋回するときに前記リーン車両における左方に傾斜し、前記リーン車両が右旋回するときに前記リーン車両における右方に傾斜する車体であって、駆動力を発生する駆動源と、前記駆動源を支持する駆動源支持フレームと、を含む前記車体と、
前記車体に支持され、かつ、前記車体における左右方向に延びるスイングアーム支持シャフトと、
前記スイングアーム支持シャフトの中心軸を中心に前記車体に対して揺動できるように、スイングアームの前部において前記スイングアーム支持シャフトに支持されている前記スイングアームと、
前記スイングアームの後部に支持され、かつ、前記車体における左右方向に延びる駆動輪アクスルシャフトと、
前記駆動輪アクスルシャフトの中心軸を中心に回転できるように前記駆動輪アクスルシャフトに支持されており、前記駆動源が発生した駆動力により回転させられる駆動輪と、 弾性変形することができ、かつ、(A)ないし(D)の構造の少なくとも1つを有する支持部材と、
を備えている。
(A)前記支持部材は、前記スイングアーム支持シャフトと前記車体との間に設けられており、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(B)前記支持部材は、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられており、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(C)前記支持部材は、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられており、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(D)前記支持部材は、前記駆動輪アクスルシャフトと前記駆動輪との間に設けられており、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(1)のリーン車両によれば、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得ることができる。より詳細には、(1)のリーン車両では、支持部材は、(A)ないし(D)の構造の少なくとも1つを有している。支持部材が(A)の構造を有する場合には、スイングアーム支持シャフトを車体に対してリーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトを車体に対してリーン車両のヨー軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。支持部材が(B)の構造を有する場合には、スイングアームをスイングアーム支持シャフトに対してリーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアームをスイングアーム支持シャフトに対してリーン車両のヨー軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。支持部材が(C)の構造を有する場合には、駆動輪アクスルシャフトをスイングアームに対してリーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪アクスルシャフトをスイングアームに対してリーン車両のヨー軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。支持部材が(D)の構造を有する場合には、駆動輪を駆動輪アクスルシャフトに対してリーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪を駆動輪アクスルシャフトに対してリーン車両のヨー軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。これにより、ロール軸を中心とする駆動輪の回転のしやすさと、ヨー軸を中心とする駆動輪の回転のしやすさとが異なる。従って、ロール軸を中心とする駆動輪の回転のしやすさと、ヨー軸を中心とする駆動輪の回転のしやすさとを、支持部材の設計により任意に設定することが可能となる。その結果、(1)のリーン車両によれば、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得ることができる。なお、(1)のリーン車両は、(A)ないし(D)の構造の少なくとも1つを有していればよい。従って、(1)のリーン車両は、(A)ないし(D)の構造の内の2つの構造を有していてもよい。(1)のリーン車両は、(A)ないし(D)の構造の内の3つの構造を有していてもよい。(1)のリーン車両は、(A)ないし(D)の構造の全てを有していてもよい。
(2)のリーン車両によれば、(1)のリーン車両において、
前記支持部材は、(A)の構造を有しており、前記スイングアーム支持シャフト及び前記車体に接するように、前記スイングアーム支持シャフトと前記車体との間に設けられている。
前記支持部材は、(A)の構造を有しており、前記スイングアーム支持シャフト及び前記車体に接するように、前記スイングアーム支持シャフトと前記車体との間に設けられている。
(3)のリーン車両は、(1)のリーン車両において、
前記支持部材は、(B)の構造を有しており、前記スイングアーム支持シャフト及び前記スイングアームに接するように、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられている。
前記支持部材は、(B)の構造を有しており、前記スイングアーム支持シャフト及び前記スイングアームに接するように、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられている。
(4)のリーン車両は、(1)のリーン車両において、
前記支持部材は、(C)の構造を有しており、前記駆動輪アクスルシャフト及び前記スイングアームに接するように、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられている。
前記支持部材は、(C)の構造を有しており、前記駆動輪アクスルシャフト及び前記スイングアームに接するように、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられている。
(5)のリーン車両は、(1)のリーン車両において、
前記支持部材は、(D)の構造を有しており、
前記リーン車両は、
前記駆動輪と前記駆動輪アクスルシャフトとの間に設けられているベアリングを、
更に備えており、
前記駆動輪アクスルシャフトは、前記ベアリングを前記車体における左右方向に貫通しており、
前記支持部材は、前記ベアリング及び前記駆動輪に接するように、前記ベアリングと前記駆動輪との間に設けられている。
前記支持部材は、(D)の構造を有しており、
前記リーン車両は、
前記駆動輪と前記駆動輪アクスルシャフトとの間に設けられているベアリングを、
更に備えており、
前記駆動輪アクスルシャフトは、前記ベアリングを前記車体における左右方向に貫通しており、
前記支持部材は、前記ベアリング及び前記駆動輪に接するように、前記ベアリングと前記駆動輪との間に設けられている。
(6)のリーン車両は、(1)のリーン車両において、
前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記車体と前記スイングアーム支持シャフト支持部材との間に設けられている。
前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記車体と前記スイングアーム支持シャフト支持部材との間に設けられている。
(7)のリーン車両は、(1)のリーン車両において、
前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記スイングアーム支持シャフト及び前記スイングアーム支持シャフト支持部材に接するように、前記スイングアーム支持シャフトと前記スイングアーム支持シャフト支持部材との間に設けられている。
前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記スイングアーム支持シャフト及び前記スイングアーム支持シャフト支持部材に接するように、前記スイングアーム支持シャフトと前記スイングアーム支持シャフト支持部材との間に設けられている。
この発明の上述の目的及びその他の目的、特徴、局面及び利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。
本明細書にて使用される場合、用語「及び/又は(and/or)」は1つの、又は複数の関連した列挙されたアイテム(items)のあらゆる又は全ての組み合わせを含む。
本明細書中で使用される場合、用語「含む、備える(including)」、「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。
他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。
本発明の説明においては、技術及び工程の数が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせの全てを繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び特許請求の範囲内にあることを理解して読まれるべきである。
以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。
本発明は、適度な撓み特性及び捩り特性をスイングアームに与えた場合と同等の効果を得ることができる。
(実施形態)
[全体構成]
以下、実施形態に係るリーン車両1の全体構成について図面を参照しながら説明する。本実施形態では、リーン車両の一例として、傾斜可能な車体フレームと1つの前輪と1つの後輪とを有する二輪リーン車両(以下、リーン車両と称する)を例示する。図1は、リーン車両1,1a~1fをリーン車両1,1a~1fにおける右方に見た図、及び、円Cで囲まれた部分の断面図である。図1では、リーン車両1における前後方向及び左右方向に平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1の断面図を示した。
[全体構成]
以下、実施形態に係るリーン車両1の全体構成について図面を参照しながら説明する。本実施形態では、リーン車両の一例として、傾斜可能な車体フレームと1つの前輪と1つの後輪とを有する二輪リーン車両(以下、リーン車両と称する)を例示する。図1は、リーン車両1,1a~1fをリーン車両1,1a~1fにおける右方に見た図、及び、円Cで囲まれた部分の断面図である。図1では、リーン車両1における前後方向及び左右方向に平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1の断面図を示した。
以下では、リーン車両1における前方を前方Fと呼ぶ。リーン車両1における後方を後方Bと呼ぶ。リーン車両1における左方を左方Lと呼ぶ。リーン車両1における右方を右方Rと呼ぶ。リーン車両1における上方を上方Uと呼ぶ。リーン車両1における下方を下方Dと呼ぶ。リーン車両1における前後方向を前後方向FBと呼ぶ。リーン車両1における左右方向を左右方向LRと呼ぶ。リーン車両1における上下方向を上下方向UDと呼ぶ。リーン車両1における前方とは、リーン車両1に跨ったライダーを基準として前方である。リーン車両1における後方とは、リーン車両1に跨ったライダーを基準として後方である。リーン車両1における左方とは、リーン車両1に跨ったライダーを基準として左方である。リーン車両1における右方とは、リーン車両1に跨ったライダーを基準として右方である。リーン車両1における上方とは、リーン車両1に跨ったライダーを基準として上方である。リーン車両1における下方とは、リーン車両1に跨ったライダーを基準として下方である。
また、リーン車両1では、車体5が左方L又は右方Rに傾斜できる。車体5が左方L又は右方Rに傾斜した場合には、車体5における上下方向及び左右方向はそれぞれ、リーン車両1における上下方向UD及び左右方向LRと一致しない。一方、直立状態の車体5における上下方向及び左右方向はそれぞれ、リーン車両1における上下方向UD及び左右方向LRと一致する。以下では、車体5における前方を前方fと呼ぶ。車体5における後方を後方bと呼ぶ。車体5における左方を左方lと呼ぶ。車体5における右方を右方rと呼ぶ。車体5における上方を上方uと呼ぶ。車体5における下方を下方dと呼ぶ。車体5における前後方向を前後方向fbと呼ぶ。車体5における左右方向を左右方向lrと呼ぶ。車体5における上下方向を上下方向udと呼ぶ。また、車体5の直立状態とは、ライダーが乗車せず、リーン車両1に燃料を搭載していない状態における、前輪が操向も傾斜もしていない状態を意味する。
本明細書において、前後方向に延びる軸や部材は、必ずしも前後方向と平行である軸や部材だけを示すものではない。前後方向に延びる軸や部材とは、前後方向に対して±45°の範囲で傾斜している軸や部材のことである。同様に、上下方向に延びる軸や部材とは、上下方向に対して±45°の範囲で傾斜している軸や部材のことである。左右方向に延びる軸や部材とは、左右方向に対して±45°の範囲で傾斜している軸や部材のことである。
本明細書において、第1部材が第2部材に支持されているとは、第1部材が第2部材に対して移動不可能に第2部材に取り付けられている(すなわち、固定されている)場合、及び、第1部材が第2部材に対して移動可能に第2部材に取り付けられている場合を含む。また、第1部材が第2部材に支持されているとは、第1部材が第2部材に直接に取り付けられている場合、及び、第1部材が第3部材を介して第2部材に取り付けられている場合の両方を含む。
本明細書において、前後方向に並ぶ第1部材及び第2部材とは、以下の状態を示す。前後方向に垂直な方向から第1部材及び第2部材を見たときに、第1部材及び第2部材の両方が前後方向を示す任意の直線上に配置されている状態である。本明細書において、上下方向に見て前後方向に並ぶ第1部材及び第2部材とは、以下の状態を示す。上下方向から第1部材及び第2部材を見たときに、第1部材及び第2部材の両方が前後方向を示す任意の直線上に配置されている。この場合、上下方向とは異なる左右方向から第1部材及び第2部材を見ると、第1部材及び第2部材のいずれか一方が前後方向を示す任意の直線上に配置されていなくてもよい。なお、第1部材と第2部材とが接触していてもよい。第1部材と第2部材とが離れていてもよい。第1部材と第2部材との間に第3部材が存在していてもよい。この定義は、前後方向以外の方向にも適用される。
本明細書において、第1部材が第2部材の前方に配置されるとは、以下の状態を指す。第1部材の少なくとも一部は、第2部材が前方に平行移動するときに通過する領域内に配置されている。よって、第1部材は、第2部材が前方に平行移動するときに通過する領域内に収まっていてもよいし、第2部材が前方に平行移動するときに通過する領域からはみ出していてもよい。この場合、第1部材及び第2部材は、前後方向に並んでいる。この定義は、前後方向以外の方向にも適用される。
本明細書において、第1部材が第2部材より前方に配置されるとは、以下の状態を指す。第1部材は、第2部材の前端を通り前後方向に直交する平面の前方に配置される。この場合、第1部材及び第2部材は、前後方向に並んでいてもよく、並んでいなくてもよい。この定義は、前後方向以外の方向にも適用される。
本明細書において、左右方向に見て、第1部材が第2部材の前方に配置されるとは、以下の状態を指す。左右方向に見て、第1部材と第2部材が前後方向に並んでおり、かつ、第1部材の前端が、第2部材の前端より前方に配置される。この定義において、第1部材と第2部材は、3次元では、前後方向に並んでいなくてもよい。この定義は、前後方向以外の方向にも適用される。
本明細書において、特に断りのない場合には、第1部材の各部について以下のように定義する。第1部材の前部とは、第1部材の前半分を意味する。第1部材の後部とは、第1部材の後半分を意味する。第1部材の左部とは、第1部材の左半分を意味する。第1部材の右部とは、第1部材の右半分を意味する。第1部材の上部とは、第1部材の上半分を意味する。第1部材の下部とは、第1部材の下半分を意味する。第1部材の上端とは、第1部材の上方の端を意味する。第1部材の下端とは、第1部材の下方の端を意味する。第1部材の前端とは、第1部材の前方の端を意味する。第1部材の後端とは、第1部材の後方の端を意味する。第1部材の右端とは、第1部材の右方の端を意味する。第1部材の左端とは、第1部材の左方の端を意味する。第1部材の上端部とは、第1部材の上端及びその近傍を意味する。第1部材の下端部とは、第1部材の下端及びその近傍を意味する。第1部材の前端部とは、第1部材の前端及びその近傍を意味する。第1部材の後端部とは、第1部材の後端及びその近傍を意味する。第1部材の右端部とは、第1部材の右端及びその近傍を意味する。第1部材の左端部とは、第1部材の左端及びその近傍を意味する。第1部材とは、リーン車両1を構成する部材を意味する。
図1に示すように、リーン車両1は、操舵輪3、駆動輪4、車体5、操舵機構7、スイングアーム8、シート10、操舵輪アクスルシャフトSh1、駆動輪アクスルシャフトSh2及びスイングアーム支持シャフトSh3を備えている。
車体5は、リーン車両1が左旋回するときに左方Lに傾斜する。車体5は、リーン車両1が右旋回するときに右方Rに傾斜する。車体5は、駆動源支持フレーム2及び駆動源11を含んでいる。
駆動源支持フレーム2は、操舵輪3、駆動輪4、操舵機構7、スイングアーム8、シート10、駆動源11、操舵輪アクスルシャフトSh1、駆動輪アクスルシャフトSh2及びスイングアーム支持シャフトSh3を支持する。駆動源支持フレーム2は、リーン車両1が左旋回するときに左方Lに傾斜する。駆動源支持フレーム2は、リーン車両1が右旋回するときに右方Rに傾斜する。図1では、駆動源支持フレーム2の一部は、カウルに覆われているため、視認されない。そこで、理解の容易のために、図1において、駆動源支持フレーム2を太線で図示した。駆動源支持フレーム2は、前後方向fbに延びている。また、駆動源支持フレーム2は、駆動源支持フレーム2の後端部から下方dに折れ曲がっている。
操舵機構7は、車体5に支持されている。本実施形態では、操舵機構7は、駆動源支持フレーム2の前端部に支持されている。操舵機構7は、ライダーの操作により操舵輪3を操舵する。操舵機構7は、ハンドル、ステアリングシャフト及びフロントフォークを含んでいる。ただし、ハンドル、ステアリングシャフト及びフロントフォークの構造は、一般的なハンドル、ステアリングシャフト及びフロントフォークの構造と同じであるので説明を省略する。
操舵輪アクスルシャフトSh1は、車体5に支持されている。本実施形態では、操舵輪アクスルシャフトSh1は、操舵機構7のフロントフォークの下端部に支持されている。操舵輪アクスルシャフトSh1は、直立状態のリーン車両1において、左右方向lrに延びている。直立状態とは、操舵輪3が左方L又は右方Rに操舵されておらず、かつ、駆動源支持フレーム2が左方L又は右方Rに傾斜していない状態である。
操舵輪3は、リーン車両1の前輪である。従って、操舵輪3は、リーン車両1の前部に配置されている。操舵輪3は、操舵輪アクスルシャフトSh1の中心軸を中心に回転できるように、操舵輪アクスルシャフトSh1に支持されている。これにより、操舵輪3は、操舵機構7を介して駆動源支持フレーム2に支持されている。すなわち、操舵輪3は、車体5に支持されている。また、ライダーは、操舵機構7のハンドルを操作することにより、操舵輪3を操舵することができる。
スイングアーム支持シャフトSh3は、車体5に支持されている。本実施形態では、スイングアーム支持シャフトSh3は、駆動源支持フレーム2の後部かつ下部に支持されている。スイングアーム支持シャフトSh3は、左右方向lrに延びている。
スイングアーム8は、右方rに見たときに、駆動源支持フレーム2の後部かつ下部から後方bに延びている。スイングアーム8の前部(より厳密には、スイングアーム8の前端部)は、スイングアーム支持シャフトSh3に支持されている。これにより、スイングアーム8は、スイングアーム支持シャフトSh3の中心軸を中心に車体5(より厳密には、駆動源支持フレーム2)に対して揺動できる。そのため、スイングアーム8の後部は、駆動源支持フレーム2に対して上下動することができる。
駆動輪アクスルシャフトSh2は、スイングアーム8の後部(より厳密には、スイングアーム8の後端部)に支持されている。駆動輪アクスルシャフトSh2は、左右方向lrに延びている。
駆動輪4は、リーン車両1の後輪である。従って、駆動輪4は、リーン車両1の後部に配置されている。駆動輪4は、駆動輪アクスルシャフトSh2の中心軸を中心に回転できるように、駆動輪アクスルシャフトSh2に支持されている。これにより、駆動輪4は、スイングアーム8を介して駆動源支持フレーム2に支持されている。駆動輪4は、後述する駆動源11が発生した駆動力により回転させられる。
シート10には、ライダーが着座する。シート10は、駆動源支持フレーム2に支持されている。
駆動源11は、駆動輪4を回転させる駆動力を発生する。駆動源11は、リーン車両1が左旋回するときに左方Lに傾斜する。駆動源11は、リーン車両1が右旋回するときに右方Rに傾斜する。駆動源11は、エンジン、電気モータ等である。また、駆動源11は、エンジン及び電気モータの組み合わせでもよい。駆動源11は、駆動源支持フレーム2に支持されている。より詳細には、駆動源11は、右方rに見たときに、駆動源支持フレーム2の前方fかつ下方dに配置されている。これにより、駆動源11の上部及び駆動源11の後部は、駆動源支持フレーム2に固定されている。駆動源11が発生した駆動力は、変速機等の伝達機構を介して駆動輪4に伝達される。これにより、駆動輪4は、駆動源11が発生した駆動力により回転させられる。
[スイングアームの支持構造]
次に、スイングアーム8の支持構造について図面を参照しながら説明する。図2は、支持部材21,21a~21f,22,22a,22b,22f,22gを右方rに見た図である。
次に、スイングアーム8の支持構造について図面を参照しながら説明する。図2は、支持部材21,21a~21f,22,22a,22b,22f,22gを右方rに見た図である。
まず、リーン車両1のロール軸Ax1及びリーン車両1のヨー軸Ax2について、図1を参照しながら説明する。ロール軸Ax1は、駆動輪4と地面との接点を通過し、かつ、ステアリングシャフトに直交する直線である。ロール軸Ax1は、リーン車両1の左右方向LRの中央に位置する。ヨー軸Ax2は、リーン車両1の重心を通過し、かつ、上下方向UDに延びる直線である。
スイングアーム8は、図1に示すように、スイングアーム左部8a、スイングアーム右部8b及びスイングアーム連結部8cを含んでいる。スイングアーム左部8aは、駆動源支持フレーム2の左右方向lrの中央より左方lに配置されている。スイングアーム左部8aは、駆動輪4の左方lにおいて前後方向fbに延びている。スイングアーム左部8aは、駆動輪アクスルシャフトSh2の左端部を支持している。また、貫通孔H2が、スイングアーム左部8aの前端部を左右方向lrに貫通している。
スイングアーム右部8bは、駆動源支持フレーム2の左右方向lrの中央より右方rに配置されている。スイングアーム右部8bは、駆動輪4の右方rにおいて前後方向fbに延びている。スイングアーム右部8bは、駆動輪アクスルシャフトSh2の右端部を支持している。また、貫通孔H3が、スイングアーム右部8bの前端部を左右方向lrに貫通している。
スイングアーム連結部8cは、駆動輪4の前方fに配置されている。スイングアーム連結部8cは、左右方向lrに延びている。スイングアーム連結部8cは、スイングアーム左部8aとスイングアーム右部8bとを連結している。
駆動源支持フレーム2の後端部は、図1に示すように、スイングアーム左部8aの前端部とスイングアーム右部8bの前端部との間に配置されている。また、貫通孔H1が、駆動源支持フレーム2の後端部を左右方向lrに貫通している。貫通孔H1~H3は、互いに繋がることにより、一つの貫通孔を形成している。
リーン車両1は、図1に示すように、支持部材21,22、カラー23、ベアリング24~27及びナット30を備えている。支持部材21は、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21を左右方向lrに貫通している。支持部材21は、貫通孔H1の左部に配置されている。支持部材21の外周面は、貫通孔H1の内周面に密着している。支持部材21の中心軸と貫通孔H1の中心軸とは、一致している。支持部材22は、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H21(図2参照)が、支持部材22を左右方向lrに貫通している。支持部材22は、貫通孔H1の右部に配置されている。支持部材22の外周面は、貫通孔H1の内周面に密着している。支持部材22の中心軸と貫通孔H1の中心軸とは、一致している。支持部材21,22は、ゴム等の弾性材料により作製される。従って、支持部材21,22は、弾性変形することができる。
カラー23は、左右方向lrに延びる中心軸を有する円筒形状を有する。カラー23は、貫通孔H1において、支持部材21と支持部材22との間に設けられている。カラー23は、支持部材21と支持部材22との左右方向lrの間隔を一定に保つための部材である。カラー23は、例えば、金属により作製される。
ベアリング24は、貫通孔H2の左部に設けられている。ベアリング25は、貫通孔H2の右部に設けられている。ベアリング26は、貫通孔H3の右部に設けられている。ベアリング27は、貫通孔H3の左部に設けられている。
スイングアーム支持シャフトSh3は、ボルトである。スイングアーム支持シャフトSh3は、車体5に支持されている。本実施形態では、スイングアーム支持シャフトSh3は、駆動源支持フレーム2に支持されている。より詳細には、スイングアーム支持シャフトSh3は、貫通孔H1~H3を左右方向lrに貫通している。従って、スイングアーム支持シャフトSh3は、支持部材21,22、カラー23及びベアリング24~27を左右方向lrに貫通している。これにより、支持部材21,22は、スイングアーム支持シャフトSh3と車体5との間に設けられている。本実施形態では、支持部材21,22は、スイングアーム支持シャフトSh3と駆動源支持フレーム2との間に設けられている。支持部材21,22の外周面は、車体5に接している。本実施形態では、支持部材21,22の外周面は、駆動源支持フレーム2に接している。支持部材21,22の内周面は、スイングアーム支持シャフトSh3に接している。
スイングアーム支持シャフトSh3の右端部は、貫通孔H3から右方rに突出している。ナット30は、スイングアーム支持シャフトSh3の右端部に固定されている。
ところで、支持部材21,22に上下方向udの力が加わったときの支持部材21,22の変形量は、支持部材21,22に前後方向fbの力が加わったときの支持部材21,22の変形量と異なる。上下方向udの力の大きさと前後方向fbの力の大きさとは同じである。本実施形態では、支持部材21,22に上下方向udの力が加わったときの支持部材21,22の変形量は、支持部材21,22に前後方向fbの力が加わったときの支持部材21,22の変形量より大きい。そこで、貫通孔210,212が、図2に示すように、支持部材21に設けられている。貫通孔210は、右方rに見たときに、支持部材21の貫通孔H20の上方uに形成されている。貫通孔212は、右方rに見たときに、支持部材21の貫通孔H20の下方dに形成されている。貫通孔210,212は、右方rに見たときに、円弧形状を有している。貫通孔210,212は、支持部材21を左右方向lrに貫通している。また、貫通孔220,222が、図2に示すように、支持部材22に設けられている。貫通孔220は、右方rに見たときに、支持部材22の貫通孔H21の上方uに形成されている。貫通孔222は、右方rに見たときに、支持部材22の貫通孔H21の下方dに形成されている。貫通孔220,222は、右方rに見たときに、円弧形状を有している。貫通孔220,222は、支持部材22を左右方向lrに貫通している。
スイングアーム支持シャフトSh3が上方uに力を受けると、貫通孔210,220の上下方向udの大きさが小さくなるように、支持部材21,22が相対的に大きく変形する。同様に、スイングアーム支持シャフトSh3が下方dに力を受けると、貫通孔212,222の上下方向udの大きさが小さくなるように支持部材21,22が相対的に大きく変形する。そのため、スイングアーム支持シャフトSh3は、上下方向udに相対的に大きく変位することができる。
一方、スイングアーム支持シャフトSh3が前方fに力を受けると、支持部材21,22が相対的に小さく変形する。同様に、スイングアーム支持シャフトSh3が後方bに力を受けると、支持部材21,22が相対的に小さく変形する。そのため、スイングアーム支持シャフトSh3は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21,22を備えるリーン車両1では、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本実施形態では、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。単位角度とは、予め定められた角度である。単位角度の大きさは、例えば、1°である。ただし、単位角度の大きさは、1°に限らない。以下に、詳細に説明する。
スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に回転させるとは、図2において、以下の2通り((a)、(b))の動作である。
(a)スイングアーム支持シャフトSh3の左端を上方uに変位させ、スイングアーム支持シャフトSh3の右端を下方dに変位させる。
(b)スイングアーム支持シャフトSh3の左端を下方dに変位させ、スイングアーム支持シャフトSh3の右端を上方uに変位させる。
(b)スイングアーム支持シャフトSh3の左端を下方dに変位させ、スイングアーム支持シャフトSh3の右端を上方uに変位させる。
このとき、スイングアーム支持シャフトSh3は、支持部材21,22に対して上方u又は下方dの力を付与する。そのため、支持部材21,22が相対的に大きく変形し、スイングアーム支持シャフトSh3がロール軸Ax1を中心に相対的に大きく回転する。
一方、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に回転させるとは、図2において、以下の2通り((c)、(d))の動作である。
(c)スイングアーム支持シャフトSh3の左端を前方fに変位させ、スイングアーム支持シャフトSh3の右端を後方bに変位させる。
(d)スイングアーム支持シャフトSh3の左端を後方bに変位させ、スイングアーム支持シャフトSh3の右端を前方fに変位させる。
(d)スイングアーム支持シャフトSh3の左端を後方bに変位させ、スイングアーム支持シャフトSh3の右端を前方fに変位させる。
このとき、スイングアーム支持シャフトSh3は、支持部材21,22に対して前方f又は後方bの力を付与する。そのため、支持部材21,22が相対的に小さく変形し、スイングアーム支持シャフトSh3がヨー軸Ax2を中心に相対的に小さく回転する。
以上のように、スイングアーム支持シャフトSh3は、ロール軸Ax1を中心に回転しやすく、ヨー軸Ax2を中心に回転しにくい。その結果、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
[効果]
リーン車両1によれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1では、支持部材21,22は、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21,22の設計により任意に設定することが可能となる。その結果、リーン車両1によれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1によれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1では、支持部材21,22は、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21,22の設計により任意に設定することが可能となる。その結果、リーン車両1によれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第1の変形例)
以下に、第1の変形例に係るリーン車両1aについて図面を参照しながら説明する。図3は、図1の円Cで囲まれた部分の断面図である。図3では、リーン車両1aにおける前後方向FB及び左右方向LRに平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1aの断面図を示した。
以下に、第1の変形例に係るリーン車両1aについて図面を参照しながら説明する。図3は、図1の円Cで囲まれた部分の断面図である。図3では、リーン車両1aにおける前後方向FB及び左右方向LRに平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1aの断面図を示した。
リーン車両1aは、支持部材21a,22aが設けられている位置においてリーン車両1と相違する。以下に、かかる相違点を中心にリーン車両1aについて説明する。
リーン車両1aは、図3に示すように、支持部材21a,22a及びベアリング24a,25aを備えている。支持部材21aは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21aを左右方向lrに貫通している。支持部材21aは、貫通孔H2に配置されている。支持部材21aの外周面は、貫通孔H2の内周面に密着している。支持部材21aの中心軸と貫通孔H2の中心軸とは、一致している。支持部材22aは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H21(図2参照)が、支持部材22aを左右方向lrに貫通している。支持部材22aは、貫通孔H3に配置されている。支持部材22aの外周面は、貫通孔H3の内周面に密着している。支持部材22aの中心軸と貫通孔H3の中心軸とは、一致している。支持部材21a,22aは、ゴム等の弾性材料により作製される。従って、支持部材21a,22aは、弾性変形することができる。
ベアリング24aは、貫通孔H1の左部に設けられている。ベアリング25aは、貫通孔H1の右部に設けられている。
スイングアーム支持シャフトSh3は、ボルトである。スイングアーム支持シャフトSh3は、貫通孔H1~H3を左右方向lrに貫通している。従って、スイングアーム支持シャフトSh3は、支持部材21a,22a及びベアリング24a,25aを左右方向lrに貫通している。これにより、支持部材21a,22aは、スイングアーム支持シャフトSh3とスイングアーム8との間に設けられている。支持部材21a,22aの外周面は、スイングアーム8に接している。支持部材21a,22aの内周面は、スイングアーム支持シャフトSh3に接している。支持部材21a,22aの構造は、支持部材21,22の構造と同じであるので説明を省略する。
スイングアーム支持シャフトSh3の右端部は、貫通孔H3から右方rに突出している。ナット30は、スイングアーム支持シャフトSh3の右端部に固定されている。リーン車両1aのその他の構造は、リーン車両1と同じであるので説明を省略する。
以上のようなリーン車両1aでは、スイングアーム8が上方uに力を受けると、貫通孔210,212の上下方向udの大きさが小さくなるように支持部材21a,22aが相対的に大きく変形する。同様に、スイングアーム8が下方dに力を受けると、貫通孔212,222の上下方向udの大きさが小さくなるように支持部材21a,22aが相対的に大きく変形する。そのため、スイングアーム8は、上下方向udに相対的に大きく変位することができる。
一方、スイングアーム8が前方fに力を受けると、支持部材21a,22aが相対的に小さく変形する。同様に、スイングアーム8が後方bに力を受けると、支持部材21a,22aが相対的に小さく変形する。そのため、スイングアーム8は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21a,22aを備えるリーン車両1aでは、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
より詳細には、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に回転させるとは、図3において、以下の2通り((e)、(f))の動作である。
(e)スイングアーム左部8aを上方uに変位させ、スイングアーム右部8bを下方dに変位させる。
(f)スイングアーム左部8aを下方dに変位させ、スイングアーム右部8bを上方uに変位させる。
(f)スイングアーム左部8aを下方dに変位させ、スイングアーム右部8bを上方uに変位させる。
このとき、スイングアーム8は、支持部材21a,22aに対して上方u又は下方dの力を付与する。そのため、支持部材21a,22aが相対的に大きく変形し、スイングアーム8がロール軸Ax1を中心に相対的に大きく回転する。
一方、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に回転させるとは、図3において、以下の2通り((g)、(h))の動作である。
(g)スイングアーム左部8aを前方fに変位させ、スイングアーム右部8bを後方bに変位させる。
(h)スイングアーム左部8aを後方bに変位させ、スイングアーム右部8bを前方fに変位させる。
(h)スイングアーム左部8aを後方bに変位させ、スイングアーム右部8bを前方fに変位させる。
このとき、スイングアーム8は、支持部材21a,22aに対して前方f又は後方bの力を付与する。そのため、支持部材21a,22aが相対的に小さく変形し、スイングアーム8がヨー軸Ax2を中心に相対的に小さく回転する。
以上のように、スイングアーム8は、ロール軸Ax1を中心に回転しやすく、ヨー軸Ax2を中心に回転しにくい。その結果、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
[効果]
リーン車両1aによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1aでは、支持部材21a,22aは、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21a,22aの設計により任意に設定することが可能となる。その結果、リーン車両1aによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1aによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1aでは、支持部材21a,22aは、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21a,22aの設計により任意に設定することが可能となる。その結果、リーン車両1aによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第2の変形例)
以下に、第2の変形例に係るリーン車両1bについて図面を参照しながら説明する。図4は、図1の円Dで囲まれた部分の断面図である。図4では、リーン車両1bにおける前後方向FB及び左右方向LRに平行であり、かつ、駆動輪アクスルシャフトSh2の中心軸を含む平面におけるリーン車両1bの断面図を示した。
以下に、第2の変形例に係るリーン車両1bについて図面を参照しながら説明する。図4は、図1の円Dで囲まれた部分の断面図である。図4では、リーン車両1bにおける前後方向FB及び左右方向LRに平行であり、かつ、駆動輪アクスルシャフトSh2の中心軸を含む平面におけるリーン車両1bの断面図を示した。
リーン車両1bは、支持部材21b,22bが設けられている位置においてリーン車両1と相違する。以下に、かかる相違点を中心にリーン車両1bについて説明する。
貫通孔H5が、図4に示すように、スイングアーム左部8aの後端部を左右方向lrに貫通している。貫通孔H6が、スイングアーム右部8bの後端部を左右方向lrに貫通している。貫通孔H4が、駆動輪4の中心を左右方向lrに貫通している。
リーン車両1bは、スプロケット40を備えている。スプロケット40は、駆動輪4の左方lに配置されている。スプロケット40は、駆動輪4に固定されている。これにより、スプロケット40は、駆動輪4と共に駆動輪アクスルシャフトSh2の中心軸を中心に回転することができる。スプロケット40は、駆動源11(図1参照)が発生した駆動力により回転させられて、駆動輪4を回転させる。貫通孔H7が、スプロケット40の中央を左右方向に貫通している。貫通孔H4~H7は、互いに繋がることにより、一つの貫通孔を形成している。
リーン車両1bは、支持部材21b,22b、カラー23b、ベアリング24b,25b及びナット50を備えている。支持部材21bは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21bを左右方向lrに貫通している。支持部材21bは、貫通孔H5に配置されている。支持部材21bの外周面は、貫通孔H5の内周面に密着している。支持部材21bの中心軸と貫通孔H5の中心軸とは、一致している。支持部材22bは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H21(図2参照)が、支持部材22bを左右方向lrに貫通している。支持部材22bは、貫通孔H6に配置されている。支持部材22bの外周面は、貫通孔H6の内周面に密着している。支持部材22bの中心軸と貫通孔H6の中心軸とは、一致している。支持部材21b,22bは、ゴム等の弾性材料により作製される。従って、支持部材21b,22bは、弾性変形することができる。
ベアリング24bは、貫通孔H4の左部に設けられている。ベアリング25bは、貫通孔H4の右部に設けられている。
カラー23bは、左右方向lrに延びる中心軸を有する円筒形状を有する。カラー23bは、貫通孔H4において、ベアリング24bとベアリング25bとの間に設けられている。カラー23bは、ベアリング24bとベアリング25bとの左右方向lrの間隔を一定に保つための部材である。カラー23bは、例えば、金属により作製される。
駆動輪アクスルシャフトSh2は、ボルトである。駆動輪アクスルシャフトSh2は、貫通孔H4~H7を左右方向lrに貫通している。従って、駆動輪アクスルシャフトSh2は、支持部材21b,22b、カラー23b及びベアリング24b,25bを左右方向lrに貫通している。これにより、支持部材21b,22bは、駆動輪アクスルシャフトSh2とスイングアーム8との間に設けられている。支持部材21b,22bの外周面は、スイングアーム8に接している。支持部材21b,22bの内周面は、駆動輪アクスルシャフトSh2に接している。支持部材21b,22bの構造は、支持部材21,22の構造と同じであるので説明を省略する。
駆動輪アクスルシャフトSh2の右端部は、貫通孔H6から右方rに突出している。ナット50は、駆動輪アクスルシャフトSh2の右端部に固定されている。リーン車両1bのその他の構造は、リーン車両1と同じであるので説明を省略する。
以上のようなリーン車両1bでは、駆動輪アクスルシャフトSh2が上方uに力を受けると、貫通孔210,212の上下方向udの大きさが小さくなるように支持部材21b,22bが相対的に大きく変形する。同様に、駆動輪アクスルシャフトSh2が下方dに力を受けると、貫通孔212,222の上下方向udの大きさが小さくなるように支持部材21b,22bが相対的に大きく変形する。そのため、駆動輪アクスルシャフトSh2は、上下方向udに相対的に大きく変位することができる。
一方、駆動輪アクスルシャフトSh2が前方fに力を受けると、支持部材21b,22bが相対的に小さく変形する。同様に、駆動輪アクスルシャフトSh2が後方bに力を受けると、支持部材21b,22bが相対的に小さく変形する。そのため、駆動輪アクスルシャフトSh2は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21b,22bを備えるリーン車両1bでは、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
より詳細には、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に回転させるとは、図4において、以下の2通り((i)、(j))の動作である。
(i)駆動輪アクスルシャフトSh2の左端を上方uに変位させ、駆動輪アクスルシャフトSh2の右端を下方dに変位させる。
(j)駆動輪アクスルシャフトSh2の左端を下方dに変位させ、駆動輪アクスルシャフトSh2の右端を上方uに変位させる。
(j)駆動輪アクスルシャフトSh2の左端を下方dに変位させ、駆動輪アクスルシャフトSh2の右端を上方uに変位させる。
このとき、駆動輪アクスルシャフトSh2は、支持部材21b,22bに対して上方u又は下方dの力を付与する。そのため、支持部材21b,22bが相対的に大きく変形し、駆動輪アクスルシャフトSh2がロール軸Ax1を中心に相対的に大きく回転する。
一方、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に回転させるとは、図4において、以下の2通り((k)、(l))の動作である。
(k)駆動輪アクスルシャフトSh2の左端を前方fに変位させ、駆動輪アクスルシャフトSh2の右端を後方bに変位させる。
(l)駆動輪アクスルシャフトSh2の左端を後方bに変位させ、駆動輪アクスルシャフトSh2の右端を前方fに変位させる。
(l)駆動輪アクスルシャフトSh2の左端を後方bに変位させ、駆動輪アクスルシャフトSh2の右端を前方fに変位させる。
このとき、駆動輪アクスルシャフトSh2は、支持部材21b,22bに対して前方f又は後方bの力を付与する。そのため、支持部材21b,22bが相対的に小さく変形し、駆動輪アクスルシャフトSh2がヨー軸Ax2を中心に相対的に小さく回転する。
以上のように、駆動輪アクスルシャフトSh2は、ロール軸Ax1を中心に回転しやすく、ヨー軸Ax2を中心に回転しにくい。その結果、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
[効果]
リーン車両1bによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1bでは、支持部材21b,22bは、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21b,22bの設計により任意に設定することが可能となる。その結果、リーン車両1bによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1bによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1bでは、支持部材21b,22bは、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21b,22bの設計により任意に設定することが可能となる。その結果、リーン車両1bによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第3の変形例)
以下に、第3の変形例に係るリーン車両1cについて図面を参照しながら説明する。図5は、図1の円Dで囲まれた部分の断面図である。図5では、リーン車両1cにおける前後方向FB及び左右方向LRに平行であり、かつ、駆動輪アクスルシャフトSh2の中心軸を含む平面におけるリーン車両1cの断面図を示した。
以下に、第3の変形例に係るリーン車両1cについて図面を参照しながら説明する。図5は、図1の円Dで囲まれた部分の断面図である。図5では、リーン車両1cにおける前後方向FB及び左右方向LRに平行であり、かつ、駆動輪アクスルシャフトSh2の中心軸を含む平面におけるリーン車両1cの断面図を示した。
リーン車両1cは、支持部材21cが設けられている位置においてリーン車両1bと相違する。以下に、かかる相違点を中心にリーン車両1cについて説明する。
リーン車両1cは、図5に示すように、支持部材21c、カラー23c、ベアリング24c,25c及びナット50を備えている。支持部材21cは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21cを左右方向lrに貫通している。支持部材21cは、貫通孔H4に配置されている。支持部材21cの外周面は、貫通孔H4の内周面に密着している。支持部材21cの中心軸と貫通孔H4の中心軸とは、一致している。支持部材21cは、ゴム等の弾性材料により作製される。従って、支持部材21cは、弾性変形することができる。
ベアリング24cは、貫通孔H4の左部に設けられている。ただし、ベアリング24cは、支持部材21c内に設けられている。そのため、ベアリング24cの外周面は、支持部材21cの内周面に密着している。ベアリング24cの中心軸と支持部材21cの中心軸とは、一致している。
ベアリング25cは、貫通孔H4の右部に設けられている。ただし、ベアリング25cは、支持部材21c内に設けられている。そのため、ベアリング25cの外周面は、支持部材21cの内周面に密着している。ベアリング25cの中心軸と支持部材21cの中心軸とは、一致している。
カラー23cは、左右方向lrに延びる中心軸を有する円筒形状を有する。カラー23cは、貫通孔H4において、ベアリング24cとベアリング25cとの間に設けられている。カラー23cは、ベアリング24cとベアリング25cとの左右方向lrの間隔を一定に保つための部材である。カラー23cは、例えば、金属により作製される。
駆動輪アクスルシャフトSh2は、ボルトである。駆動輪アクスルシャフトSh2は、貫通孔H4~H7を左右方向lrに貫通している。従って、駆動輪アクスルシャフトSh2は、支持部材21c、カラー23c及びベアリング24c,25cを左右方向lrに貫通している。これにより、支持部材21cは、駆動輪アクスルシャフトSh2と駆動輪4との間に設けられている。支持部材21cの外周面は、駆動輪4に接している。支持部材21cの内周面は、カラー23c及びベアリング24c,25cに接している。支持部材21cの構造は、支持部材21bの構造と同じであるので説明を省略する。
駆動輪アクスルシャフトSh2の右端部は、貫通孔H6から右方rに突出している。ナット50は、駆動輪アクスルシャフトSh2の右端部に固定されている。リーン車両1cのその他の構造は、リーン車両1bと同じであるので説明を省略する。
以上のようなリーン車両1cでは、駆動輪4が上方uに力を受けると、貫通孔210の上下方向udの大きさが小さくなるように支持部材21cが相対的に大きく変形する。同様に、駆動輪4が下方dに力を受けると、貫通孔212の上下方向udの大きさが小さくなるように支持部材21cが相対的に大きく変形する。そのため、駆動輪4は、上下方向udに相対的に大きく変位することができる。
一方、駆動輪4が前方fに力を受けると、支持部材21cが相対的に小さく変形する。同様に、駆動輪4が後方bに力を受けると、支持部材21cが相対的に小さく変形する。そのため、駆動輪4は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21cを備えるリーン車両1cでは、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
より詳細には、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に回転させるとは、図5において、以下の2通り((m)、(n))の動作である。
(m)駆動輪4の左端を上方uに変位させ、駆動輪4の右端を下方dに変位させる。
(n)駆動輪4の左端を下方dに変位させ、駆動輪4の右端を上方uに変位させる。
(n)駆動輪4の左端を下方dに変位させ、駆動輪4の右端を上方uに変位させる。
このとき、駆動輪4は、支持部材21cに対して上方u又は下方dの力を付与する。そのため、支持部材21cが相対的に大きく変形し、駆動輪4がロール軸Ax1を中心に相対的に大きく回転する。
一方、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に回転させるとは、図5において、以下の2通り((o)、(p))の動作である。
(o)駆動輪4の左端を前方fに変位させ、駆動輪4の右端を後方bに変位させる。
(p)駆動輪4の左端を後方bに変位させ、駆動輪4の右端を前方fに変位させる。
(p)駆動輪4の左端を後方bに変位させ、駆動輪4の右端を前方fに変位させる。
このとき、駆動輪4は、支持部材21cに対して前方f又は後方bの力を付与する。そのため、支持部材21cが相対的に小さく変形し、駆動輪4がヨー軸Ax2を中心に相対的に小さく回転する。
以上のように、駆動輪4は、ロール軸Ax1を中心に回転しやすく、ヨー軸Ax2を中心に回転しにくい。その結果、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。
[効果]
リーン車両1cによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1cでは、支持部材21cは、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21cの設計により任意に設定することが可能となる。その結果、リーン車両1cによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1cによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。より詳細には、リーン車両1cでは、支持部材21cは、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。これにより、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとが異なる。従って、ロール軸Ax1を中心とする駆動輪4の回転のしやすさと、ヨー軸Ax2を中心とする駆動輪4の回転のしやすさとを、支持部材21cの設計により任意に設定することが可能となる。その結果、リーン車両1cによれば、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第4の変形例)
以下に、第4の変形例に係るリーン車両1dについて図面を参照しながら説明する。図6は、リーン車両1d~1fにおける駆動源支持フレーム2、スイングアーム支持シャフト支持部材100及びスイングアーム8の連結部の拡大図である。図6は、リーン車両1dを右方rに見た図である。図7は、駆動源支持フレーム2とスイングアーム支持シャフト支持部材100との連結部の断面図である。図7では、リーン車両1dにおける前後方向FB及び左右方向LRに平行であり、かつ、取り付け部材102aの中心軸を含む平面におけるリーン車両1dの断面図を示した。
以下に、第4の変形例に係るリーン車両1dについて図面を参照しながら説明する。図6は、リーン車両1d~1fにおける駆動源支持フレーム2、スイングアーム支持シャフト支持部材100及びスイングアーム8の連結部の拡大図である。図6は、リーン車両1dを右方rに見た図である。図7は、駆動源支持フレーム2とスイングアーム支持シャフト支持部材100との連結部の断面図である。図7では、リーン車両1dにおける前後方向FB及び左右方向LRに平行であり、かつ、取り付け部材102aの中心軸を含む平面におけるリーン車両1dの断面図を示した。
リーン車両1dは、スイングアーム8の支持構造においてリーン車両1と相違する。以下に、かかる相違点を中心にリーン車両1dについて説明する。
リーン車両1dは、図6に示すように、スイングアーム支持シャフト支持部材100及び取り付け部材102a~102cを更に備えている。スイングアーム支持シャフト支持部材100は、駆動源支持フレーム2(車体5)に支持され、かつ、スイングアーム支持シャフトSh3を支持している。スイングアーム支持シャフト支持部材100は、三角形状の板状部材である。スイングアーム支持シャフト支持部材100は、駆動源支持フレーム2(車体5)の左方lに配置されている。取り付け部材102a~102cは、スイングアーム支持シャフト支持部材100を駆動源支持フレーム2(車体5)に取り付けている。取り付け部材102a~102cはそれぞれ、三角形状を有するスイングアーム支持シャフト支持部材100の頂点近傍に配置されている。
スイングアーム左部8aの前端部は、スイングアーム支持シャフトSh3を介してスイングアーム支持シャフト支持部材100に支持されている。スイングアーム支持シャフトSh3は、スイングアーム左部8aの前端部に設けられた貫通孔H2(図1参照)及びスイングアーム支持シャフト支持部材100に設けられた貫通孔を左右方向lrに貫通している。これにより、スイングアーム左部8aは、スイングアーム支持シャフトSh3の中心軸を中心に回転することができる。なお、スイングアーム右部8bの駆動源支持フレーム2(車体5)に対する支持構造は、スイングアーム左部8aの駆動源支持フレーム2(車体5)に対する支持構造と同じであるので、説明を省略する。
次に、スイングアーム支持シャフト支持部材100の駆動源支持フレーム2(車体5)に対する支持構造について図7を参照しながらより詳細に説明する。貫通孔H8が、駆動源支持フレーム2を左右方向lrに貫通している。貫通孔H9が、スイングアーム支持シャフト支持部材100を左右方向lrに貫通している。貫通孔H8,H9は、互いに繋がることにより、一つの貫通孔を形成している。
リーン車両1dは、図7に示すように、支持部材21d及びナット104aを備えている。支持部材21dは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21dを左右方向lrに貫通している。支持部材21dは、貫通孔H8に配置されている。支持部材21dの外周面は、貫通孔H8の内周面に密着している。支持部材21dの中心軸と貫通孔H8の中心軸とは、一致している。支持部材21dは、ゴム等の弾性材料により作製される。従って、支持部材21dは、弾性変形することができる。
取り付け部材102aは、ボルトである。取り付け部材102aは、貫通孔H8、H9を左右方向lrに貫通している。従って、取り付け部材102aは、支持部材21dを左右方向lrに貫通している。これにより、支持部材21dは、取り付け部材102aと駆動源支持フレーム2(車体5)との間に設けられている。取り付け部材102aは、スイングアーム支持シャフト支持部材100に支持されている。スイングアーム支持シャフト支持部材100は、スイングアーム支持シャフトSh3を支持している。従って、支持部材21dは、駆動源支持フレーム2(車体5)とスイングアーム支持シャフトSh3との間に設けられている。支持部材21dの内周面は、取り付け部材102aに接している。支持部材21dの外周面は、駆動源支持フレーム2(車体5)に接している。支持部材21dの構造は、支持部材21の構造と同じであるので説明を省略する。
取り付け部材102aの右端部は、貫通孔H8から右方rに突出している。ナット104aは、取り付け部材102aの右端部に固定されている。これにより、スイングアーム支持シャフト支持部材100は、支持部材21d、取り付け部材102a及びナット104aにより駆動源支持フレーム2(車体5)に取り付けられている。なお、スイングアーム支持シャフト支持部材100は、支持部材(図示せず)、取り付け部材102b,102c及びナット(図示せず)により駆動源支持フレーム2(車体5)に対して取り付けられている。ただし、支持部材、取り付け部材102b,102c及びナットの構造は、支持部材21d、取り付け部材102a及びナット104aの構造と同じであるので説明を省略する。また、リーン車両1dのその他の構造は、リーン車両1と同じであるので説明を省略する。
以上のようなリーン車両1dでは、スイングアーム支持シャフトSh3が上方uに力を受けると、スイングアーム支持シャフト支持部材100及び取り付け部材102aが上方uに力を受ける。これにより、支持部材21dの貫通孔210の上下方向udの大きさが小さくなるように支持部材21dが相対的に大きく変形する。支持部材21dでの現象と同様の現象が、取り付け部材102b,102cの支持部材においても発生する。同様に、スイングアーム支持シャフトSh3が下方dに力を受けると、スイングアーム支持シャフト支持部材100及び取り付け部材102aが下方dに力を受ける。これにより、支持部材21dの貫通孔212の上下方向udの大きさが小さくなるように支持部材21dが相対的に大きく変形する。支持部材21dでの現象と同様の現象が、取り付け部材102b,102cの支持部材においても発生する。そのため、スイングアーム支持シャフトSh3は、上下方向udに相対的に大きく変位することができる。
一方、スイングアーム支持シャフトSh3が前方fに力を受けると、スイングアーム支持シャフト支持部材100及び取り付け部材102aが前方fに力を受ける。これにより、支持部材21dが相対的に小さく変形する。支持部材21dでの現象と同様の現象が、取り付け部材102b,102cの支持部材においても発生する。同様に、スイングアーム支持シャフトSh3が後方bに力を受けると、スイングアーム支持シャフト支持部材100及び取り付け部材102aが後方bに力を受ける。これにより、支持部材21dが相対的に小さく変形する。支持部材21dでの現象と同様の現象が、取り付け部材102b,102cの支持部材においても発生する。そのため、スイングアーム支持シャフトSh3は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21dを備えるリーン車両1dでは、リーン車両1の支持部材21と同様に、スイングアーム支持シャフトSh3を駆動源支持フレーム2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を駆動源支持フレーム2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。ただし、リーン車両1dのモーメントの大小関係の説明は、リーン車両1のモーメントの大小関係の説明と同じであるので省略する。
[効果]
リーン車両1dによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1dによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第5の変形例)
以下に、第5の変形例に係るリーン車両1eについて図面を参照しながら説明する。図8は、駆動源支持フレーム2とスイングアーム支持シャフト支持部材100との連結部の断面図である。図8では、リーン車両1eにおける前後方向FB及び左右方向LRに平行であり、かつ、取り付け部材102aの中心軸を含む平面におけるリーン車両1eの断面図を示した。
以下に、第5の変形例に係るリーン車両1eについて図面を参照しながら説明する。図8は、駆動源支持フレーム2とスイングアーム支持シャフト支持部材100との連結部の断面図である。図8では、リーン車両1eにおける前後方向FB及び左右方向LRに平行であり、かつ、取り付け部材102aの中心軸を含む平面におけるリーン車両1eの断面図を示した。
リーン車両1eは、支持部材21eが設けられている位置においてリーン車両1dと相違する。リーン車両1dでは、支持部材21dは、図7に示すように、取り付け部材102aと車体5(駆動源支持フレーム2)との間に設けられている。一方、支持部材21eは、図8に示すように、取り付け部材102aとスイングアーム支持シャフト支持部材100との間に設けられている。取り付け部材102aは、車体5(駆動源支持フレーム2)に支持されている。スイングアーム支持シャフト支持部材100は、スイングアーム支持シャフトSh3を支持している。従って、支持部材21eは、車体5(駆動源支持フレーム2)とスイングアーム支持シャフトSh3との間に設けられている。支持部材21eの構造は、支持部材21,21dの構造と同じであるので説明を省略する。また、リーン車両1eのその他の構造は、リーン車両1,1dと同じであるので説明を省略する。
以上のようなリーン車両1eでは、スイングアーム支持シャフトSh3が上方uに力を受けると、スイングアーム支持シャフト支持部材100が上方uに力を受ける。これにより、支持部材21eの貫通孔210の上下方向udの大きさが小さくなるように支持部材21eが相対的に大きく変形する。同様に、スイングアーム支持シャフトSh3が下方dに力を受けると、スイングアーム支持シャフト支持部材100が下方dに力を受ける。これにより、支持部材21eの貫通孔212の上下方向udの大きさが小さくなるように支持部材21eが相対的に大きく変形する。そのため、スイングアーム支持シャフトSh3は、上下方向udに相対的に大きく変位することができる。
一方、スイングアーム支持シャフトSh3が前方fに力を受けると、スイングアーム支持シャフト支持部材100が前方fに力を受ける。これにより、支持部材21eが相対的に小さく変形する。同様に、スイングアーム支持シャフトSh3が後方bに力を受けると、スイングアーム支持シャフト支持部材100が後方bに力を受ける。これにより、支持部材21dが相対的に小さく変形する。そのため、スイングアーム支持シャフトSh3は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21eを備えるリーン車両1eでは、リーン車両1,1dと同様に、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。ただし、リーン車両1eのモーメントの大小関係の説明は、リーン車両1,1dのモーメントの大小関係の説明と同じであるので省略する。
[効果]
リーン車両1eによれば、リーン車両1,1dと同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1eによれば、リーン車両1,1dと同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第6の変形例)
以下に、第6の変形例に係るリーン車両1fについて図面を参照しながら説明する。図9は、図1の円Cで囲まれた部分の断面図である。図9では、リーン車両1fにおける前後方向FB及び左右方向LRに平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1fの断面図を示した。
以下に、第6の変形例に係るリーン車両1fについて図面を参照しながら説明する。図9は、図1の円Cで囲まれた部分の断面図である。図9では、リーン車両1fにおける前後方向FB及び左右方向LRに平行であり、かつ、スイングアーム支持シャフトSh3の中心軸を含む平面におけるリーン車両1fの断面図を示した。
リーン車両1では、図1に示すように、スイングアーム支持シャフトSh3は、駆動源支持フレーム2(車体5)に支持されている。一方、リーン車両1fでは、図9に示すように、スイングアーム支持シャフトSh3は、スイングアーム支持シャフト支持部材100,101に支持されている。
リーン車両1fは、支持部材21f,22f及びスイングアーム支持シャフト支持部材100,101を備えている。スイングアーム支持シャフト支持部材100は、リーン車両1fの左右方向lrの中央より左方lに配置されている。貫通孔H10が、スイングアーム支持シャフト支持部材100を左右方向lrに貫通している。貫通孔H2,H10は、互いに繋がることにより、一つの貫通孔を形成している。
スイングアーム支持シャフト支持部材101は、リーン車両1fの左右方向lrの中央より右方rに配置されている。貫通孔H11が、スイングアーム支持シャフト支持部材101を左右方向lrに貫通している。貫通孔H3,H11は、互いに繋がることにより、一つの貫通孔を形成している。なお、リーン車両1fのスイングアーム支持シャフト支持部材100,101は、リーン車両1dのスイングアーム支持シャフト支持部材100と同じ構造であるのでこれ以上の説明を省略する。
支持部材21fは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H20(図2参照)が、支持部材21fを左右方向lrに貫通している。支持部材21fは、貫通孔H10に配置されている。支持部材21fの外周面は、貫通孔H10の内周面に密着している。支持部材21fの中心軸と貫通孔H10の中心軸とは、一致している。支持部材22fは、左右方向lrに延びる中心軸を有する円筒形状を有する。従って、貫通孔H21(図2参照)が、支持部材22fを左右方向lrに貫通している。支持部材22fは、貫通孔H11に配置されている。支持部材22fの外周面は、貫通孔H11の内周面に密着している。支持部材22fの中心軸と貫通孔H11の中心軸とは、一致している。支持部材21f,22fは、ゴム等の弾性材料により作製される。従って、支持部材21f,22fは、弾性変形することができる。支持部材21f,22fの構造は、支持部材21,22の構造と同じであるので説明を省略する。
スイングアーム支持シャフトSh3は、ボルトである。スイングアーム支持シャフトSh3は、貫通孔H2,H3,H10,H11を左右方向lrに貫通している。従って、スイングアーム支持シャフトSh3は、支持部材21f,22f及びベアリング24~27を左右方向lrに貫通している。これにより、支持部材21f,22fは、スイングアーム支持シャフトSh3とスイングアーム支持シャフト支持部材100,101との間に設けられている。支持部材21fの外周面は、スイングアーム支持シャフト支持部材100に接している。支持部材22fの外周面は、スイングアーム支持シャフト支持部材101に接している。支持部材21f,22fの内周面は、スイングアーム支持シャフトSh3に接している。
スイングアーム支持シャフトSh3の右端部は、貫通孔H3から右方rに突出している。ナット30は、スイングアーム支持シャフトSh3の右端部に固定されている。なお、リーン車両1fのその他の構造は、リーン車両1と同じであるので説明を省略する。
以上のようなリーン車両1fでは、スイングアーム支持シャフトSh3が上方uに力を受けると、支持部材21f,22fの貫通孔210,220の上下方向udの大きさが小さくなるように支持部材21f,22fが相対的に大きく変形する。同様に、スイングアーム支持シャフトSh3が下方dに力を受けると、支持部材21f,22fの貫通孔212,222の上下方向udの大きさが小さくなるように支持部材21f,22fが相対的に大きく変形する。そのため、スイングアーム支持シャフトSh3は、上下方向udに相対的に大きく変位することができる。
一方、スイングアーム支持シャフトSh3が前方fに力を受けると、支持部材21f,22fが相対的に小さく変形する。同様に、スイングアーム支持シャフトSh3が後方bに力を受けると、支持部材21f,22fが相対的に小さく変形する。そのため、スイングアーム支持シャフトSh3は、前後方向fbに相対的に小さく変位することができる。
以上のような支持部材21f,22fを備えるリーン車両1fでは、リーン車両1と同様に、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる。本変形例では、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さい。ただし、リーン車両1fのモーメントの大小関係の説明は、リーン車両1のモーメントの大小関係の説明と同じであるので省略する。
[効果]
リーン車両1fによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1fによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(第7の変形例)
以下に、第7の変形例に係るリーン車両1fについて図面を参照しながら説明する。図10は、リーン車両1gを右方rに見た図である。図10では、駆動源支持フレーム2、駆動源及びスイングアーム8を示した。
以下に、第7の変形例に係るリーン車両1fについて図面を参照しながら説明する。図10は、リーン車両1gを右方rに見た図である。図10では、駆動源支持フレーム2、駆動源及びスイングアーム8を示した。
リーン車両1では、スイングアーム支持シャフトSh3は、駆動源支持フレーム2に支持されている。一方、リーン車両1gでは、スイングアーム支持シャフトSh3は、駆動源11に支持されている。また、リーン車両1gでは、支持部材21,22(図10には図示せず)は、スイングアーム支持シャフトSh3と駆動源11との間に設けられている。
[効果]
リーン車両1gによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
リーン車両1gによれば、リーン車両1と同じ理由により、適度な撓み特性及び捩り特性をスイングアーム8に与えた場合と同等の効果を得ることができる。
(支持部材)
以下に、変形例に係る支持部材について図面を参照しながら説明する。図11は、支持部材21g,22gを右方rに見た図である。
以下に、変形例に係る支持部材について図面を参照しながら説明する。図11は、支持部材21g,22gを右方rに見た図である。
支持部材21g,22gは、貫通孔210,220,212,222の位置において支持部材21,22と相違する。支持部材21,22では、貫通孔210,220はそれぞれ、図2に示すように、右方rに見たときに、支持部材21,22の貫通孔H20,H21の上方uに形成されている。また、支持部材21,22では、貫通孔212,222はそれぞれ、図2に示すように、右方rに見たときに、支持部材21,22の貫通孔H20,H21の下方dに形成されている。これにより、支持部材21,22に上下方向udの力が加わったときの支持部材21,22の変形量は、支持部材21,22に前後方向fbの力が加わったときの支持部材21,22の変形量より大きい。
一方、支持部材21g,22gでは、貫通孔210,220はそれぞれ、図11に示すように、右方rに見たときに、支持部材21g,22gの貫通孔H20,H21の前方fに形成されている。また、支持部材21g,22gでは、貫通孔212,222はそれぞれ、図11に示すように、右方rに見たときに、支持部材21g,22gの貫通孔H20,H21の後方bに形成されている。これにより、支持部材21g,22gに前後方向fbの力が加わったときの支持部材21g,22gの変形量は、支持部材21g,22gに上下方向udの力が加わったときの支持部材21g,22gの変形量より大きい。
以上のような支持部材21g,22gがリーン車両1,1gに適用されると、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
また、以上のような支持部材21g,22gがリーン車両1aに適用されると、スイングアーム8をスイングアーム支持シャフトSh3に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム8をスイングアーム支持シャフトSh3に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
また、以上のような支持部材21g,22gがリーン車両1bに適用されると、駆動輪アクスルシャフトSh2をスイングアーム8に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪アクスルシャフトSh2をスイングアーム8に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
また、以上のような支持部材21gがリーン車両1cに適用されると、駆動輪4を駆動輪アクスルシャフトSh2に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、駆動輪4を駆動輪アクスルシャフトSh2に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
また、以上のような支持部材21gがリーン車両1d,1eに適用されると、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
また、以上のような支持部材21g,22gがリーン車両1fに適用されると、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してヨー軸Ax2を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさは、スイングアーム支持シャフトSh3を車体5(駆動源支持フレーム2)に対してロール軸Ax1を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさより小さくなる。
(その他の実施形態)
本明細書において記載と図示の少なくとも一方がなされた実施形態及び変形例は、本開示の理解を容易にするためのものであって、本開示の思想を限定するものではない。上記の実施形態及び変形例は、その趣旨を逸脱することなく変更・改良され得る。
本明細書において記載と図示の少なくとも一方がなされた実施形態及び変形例は、本開示の理解を容易にするためのものであって、本開示の思想を限定するものではない。上記の実施形態及び変形例は、その趣旨を逸脱することなく変更・改良され得る。
当該趣旨は、本明細書に開示された実施形態例に基づいて当業者によって認識されうる、均等な要素、修正、削除、組み合わせ(例えば、実施形態及び変形例に跨る特徴の組み合わせ)、改良、変更を包含する。特許請求の範囲における限定事項は当該特許請求の範囲で用いられた用語に基づいて広く解釈されるべきであり、本明細書あるいは本願のプロセキューション中に記載された実施形態及び変形例に限定されるべきではない。そのような実施形態及び変形例は非排他的であると解釈されるべきである。例えば、本明細書において、「好ましくは」、「よい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」、「よいがこれに限定されるものではない」ということを意味する。
なお、リーン車両1,1a~1gは、一つの操舵輪3を備えている。しかしながら、リーン車両1,1a~1gは、二つ以上の操舵輪を備えていてもよい。また、リーン車両1,1a~1gは、一つの駆動輪4を備えている。しかしながら、リーン車両1,1a~1gは、二つ以上の駆動輪を備えていてもよい。
なお、支持部材21,22には、貫通孔210,220,212,222が設けられている。これにより、支持部材21,22に上下方向udの力が加わったときの支持部材21,22の変形量が、支持部材21,22に前後方向fbの力が加わったときの支持部材21,22の変形量と異なっている。しかしながら、支持部材21,22に上下方向udの力が加わったときの支持部材21,22の変形量と、支持部材21,22に前後方向fbの力が加わったときの支持部材21,22の変形量とを異ならせる方法は、これに限らない。支持部材21,22の外周面又は内周面に切り欠きが設けられてもよい。また、支持部材21,22は、硬さの異なる2種類以上の材料が組み合わされることによって作製されてもよい。なお、支持部材21a~21g,22a,22b,22f,22gにも、支持部材21,22と同様の方法が適用されてもよい。
なお、リーン車両1,1a~1cでは、駆動源支持フレーム2の後端部は、スイングアーム左部8aの前端部とスイングアーム右部8bの前端部との間に位置している。しかしながら、駆動源支持フレーム2の後端部は、左右方向lrに並ぶ駆動源支持フレーム左部及び駆動源支持フレーム右部に枝分かれした構造を有していてもよい。この場合、スイングアーム8の前端部は、駆動源支持フレーム左部と駆動源支持フレーム右部との間に位置する。なお、リーン車両1d~1fにおいて、スイングアーム8の前端部は、スイングアーム支持シャフト支持部材100とスイングアーム支持シャフト支持部材101との間に位置してもよい。
なお、リーン車両1gでは、駆動源11の後端部は、スイングアーム左部8aの前端部とスイングアーム右部8bの前端部との間に位置している。しかしながら、駆動源11の後端部は、左右方向lrに並ぶ駆動源左部及び駆動源右部に枝分かれした構造を有していてもよい。この場合、スイングアーム8の前端部は、駆動源左部と駆動源右部との間に位置する。
なお、リーン車両1,1a~1gでは、スイングアーム8は、駆動輪アクスルシャフトSh2における駆動輪4の左方lに位置する部分及び駆動輪アクスルシャフトSh2における駆動輪4の右方rに位置する部分の2か所において支持されている。しかしながら、スイングアーム8は、駆動輪アクスルシャフトSh2における駆動輪4の左方lに位置する部分又は駆動輪アクスルシャフトSh2における駆動輪の右方rに位置する部分のいずれか一方において支持されてもよい。
なお、リーン車両1,1a~1gでは、スイングアーム支持シャフトSh3は、駆動源支持フレーム2に直接に支持されているか、スイングアーム支持シャフト支持部材100,102を介して駆動源支持フレーム2に支持されている。ただし、スイングアーム支持シャフトSh3は、例えば、駆動源11に支持されていてもよい。この場合、スイングアーム支持シャフトSh3は、駆動源11を介して駆動源支持フレーム2に支持されている。
なお、リーン車両1,1a~1gは、チェーンドライブ方式の伝達機構を備えている。ただし、リーン車両1,1a~1gは、ベルトドライブ方式の伝達機構を備えていてもよいし、シャフトドライブ方式の伝達機構を備えていてもよい。
なお、リーン車両1a~1fにおいて、リーン車両1gと同じように、スイングアーム支持シャフトSh3は、駆動源11に支持されてもよい。
1,1a,1b,1c,1d,1e,1f,1g:リーン車両
2:駆動源支持フレーム
3:操舵輪
4:駆動輪
5:車体
7:操舵機構
8:スイングアーム
8a:スイングアーム左部
8b:スイングアーム右部
8c:スイングアーム連結部
10:シート
11:駆動源
21,21a,21b,21c,21d,21e,21f,21g,22,22a,22b,22f,22g:支持部材
23,23b,23c:カラー
24,24a,24b,24c,25,25a,25b,25c,26,27:ベアリング
30,50,104a:ナット
40:スプロケット
100,101:スイングアーム支持シャフト支持部材
102a~102c:取り付け部材
210,212,220,222:貫通孔
Ax1:ロール軸
Ax2:ヨー軸
H1~H11,H20,H21,:貫通孔
Sh1:操舵輪アクスルシャフト
Sh2:駆動輪アクスルシャフト
Sh3:スイングアーム支持シャフト
2:駆動源支持フレーム
3:操舵輪
4:駆動輪
5:車体
7:操舵機構
8:スイングアーム
8a:スイングアーム左部
8b:スイングアーム右部
8c:スイングアーム連結部
10:シート
11:駆動源
21,21a,21b,21c,21d,21e,21f,21g,22,22a,22b,22f,22g:支持部材
23,23b,23c:カラー
24,24a,24b,24c,25,25a,25b,25c,26,27:ベアリング
30,50,104a:ナット
40:スプロケット
100,101:スイングアーム支持シャフト支持部材
102a~102c:取り付け部材
210,212,220,222:貫通孔
Ax1:ロール軸
Ax2:ヨー軸
H1~H11,H20,H21,:貫通孔
Sh1:操舵輪アクスルシャフト
Sh2:駆動輪アクスルシャフト
Sh3:スイングアーム支持シャフト
Claims (7)
- リーン車両が左旋回するときに前記リーン車両における左方に傾斜し、前記リーン車両が右旋回するときに前記リーン車両における右方に傾斜する車体であって、駆動力を発生する駆動源と、前記駆動源を支持する駆動源支持フレームと、を含む前記車体と、
前記車体に支持され、かつ、前記車体における左右方向に延びるスイングアーム支持シャフトと、
前記スイングアーム支持シャフトの中心軸を中心に前記車体に対して揺動できるように、スイングアームの前部において前記スイングアーム支持シャフトに支持されている前記スイングアームと、
前記スイングアームの後部に支持され、かつ、前記車体における左右方向に延びる駆動輪アクスルシャフトと、
前記駆動輪アクスルシャフトの中心軸を中心に回転できるように前記駆動輪アクスルシャフトに支持されており、前記駆動源が発生した駆動力により回転させられる駆動輪と、
弾性変形することができ、かつ、(A)ないし(D)の構造の少なくとも1つを有する支持部材と、
を備えている、
リーン車両。
(A)前記支持部材は、前記スイングアーム支持シャフトと前記車体との間に設けられており、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のロール軸を中心に単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアーム支持シャフトを前記車体に対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(B)前記支持部材は、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられており、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記スイングアームを前記スイングアーム支持シャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(C)前記支持部材は、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられており、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪アクスルシャフトを前記スイングアームに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。
(D)前記支持部材は、前記駆動輪アクスルシャフトと前記駆動輪との間に設けられており、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のロール軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさと、前記駆動輪を前記駆動輪アクスルシャフトに対して前記リーン車両のヨー軸を中心に前記単位角度だけ回転させるのに必要な力のモーメントの大きさとが異なる構造を有する。 - 前記支持部材は、(A)の構造を有しており、前記スイングアーム支持シャフト及び前記車体に接するように、前記スイングアーム支持シャフトと前記車体との間に設けられている、
請求項1に記載のリーン車両。 - 前記支持部材は、(B)の構造を有しており、前記スイングアーム支持シャフト及び前記スイングアームに接するように、前記スイングアーム支持シャフトと前記スイングアームとの間に設けられている、
請求項1に記載のリーン車両。 - 前記支持部材は、(C)の構造を有しており、前記駆動輪アクスルシャフト及び前記スイングアームに接するように、前記駆動輪アクスルシャフトと前記スイングアームとの間に設けられている、
請求項1に記載のリーン車両。 - 前記支持部材は、(D)の構造を有しており、
前記リーン車両は、
前記駆動輪と前記駆動輪アクスルシャフトとの間に設けられているベアリングを、
更に備えており、
前記駆動輪アクスルシャフトは、前記ベアリングを前記車体における左右方向に貫通しており、
前記支持部材は、前記ベアリング及び前記駆動輪に接するように、前記ベアリングと前記駆動輪との間に設けられている、
請求項1に記載のリーン車両。 - 前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記車体と前記スイングアーム支持シャフト支持部材との間に設けられている、
請求項1に記載のリーン車両。 - 前記支持部材は、(A)の構造を有しており、
前記リーン車両は、
前記車体に支持され、かつ、前記スイングアーム支持シャフトを支持するスイングアーム支持シャフト支持部材を、
更に備えており、
前記支持部材は、前記スイングアーム支持シャフト及び前記スイングアーム支持シャフト支持部材に接するように、前記スイングアーム支持シャフトと前記スイングアーム支持シャフト支持部材との間に設けられている、
請求項1に記載のリーン車両。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19776706.4A EP3674196A4 (en) | 2018-03-27 | 2019-02-26 | TILTING VEHICLE |
JP2020510461A JPWO2019187885A1 (ja) | 2018-03-27 | 2019-02-26 | リーン車両 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018059764 | 2018-03-27 | ||
JP2018-059764 | 2018-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187885A1 true WO2019187885A1 (ja) | 2019-10-03 |
Family
ID=68061200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007168 WO2019187885A1 (ja) | 2018-03-27 | 2019-02-26 | リーン車両 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3674196A4 (ja) |
JP (1) | JPWO2019187885A1 (ja) |
WO (1) | WO2019187885A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815170B2 (ja) | 1977-08-24 | 1983-03-24 | イバ−グ・フエルトリ−プ ゲゼルシヤフト ミト ベシユレンクテル ハフツング | 混合機の駆動歯車装置 |
JPS6073695U (ja) * | 1983-10-27 | 1985-05-23 | 川崎重工業株式会社 | 自動2輪車におけるチエ−ン調整用レベル表示装置 |
JP2004276643A (ja) * | 2003-03-12 | 2004-10-07 | Yamaha Motor Co Ltd | スクータ型自動二輪車 |
JP2009083638A (ja) * | 2007-09-28 | 2009-04-23 | Honda Motor Co Ltd | 自動二輪車のパワーユニット懸架構造 |
JP2011148448A (ja) * | 2010-01-22 | 2011-08-04 | Honda Motor Co Ltd | 鞍乗り型車両 |
JP2011152901A (ja) * | 2010-01-28 | 2011-08-11 | Suzuki Motor Corp | 電動式自動二輪車 |
JP2015000616A (ja) * | 2013-06-14 | 2015-01-05 | 川崎重工業株式会社 | 自動二輪車の後部部品の支持構造 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62289408A (ja) * | 1986-06-10 | 1987-12-16 | Fuji Heavy Ind Ltd | 自動車用サスペンシヨン |
US4732407A (en) * | 1986-06-10 | 1988-03-22 | Fuji Jukogyo Kabushiki Kaisha | Suspension system for a motor vehicle |
US20090208155A1 (en) * | 2008-02-14 | 2009-08-20 | Henry Kevin Blane | Swingarm bushing stabilizer for harley-davidson |
-
2019
- 2019-02-26 JP JP2020510461A patent/JPWO2019187885A1/ja active Pending
- 2019-02-26 WO PCT/JP2019/007168 patent/WO2019187885A1/ja unknown
- 2019-02-26 EP EP19776706.4A patent/EP3674196A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815170B2 (ja) | 1977-08-24 | 1983-03-24 | イバ−グ・フエルトリ−プ ゲゼルシヤフト ミト ベシユレンクテル ハフツング | 混合機の駆動歯車装置 |
JPS6073695U (ja) * | 1983-10-27 | 1985-05-23 | 川崎重工業株式会社 | 自動2輪車におけるチエ−ン調整用レベル表示装置 |
JP2004276643A (ja) * | 2003-03-12 | 2004-10-07 | Yamaha Motor Co Ltd | スクータ型自動二輪車 |
JP2009083638A (ja) * | 2007-09-28 | 2009-04-23 | Honda Motor Co Ltd | 自動二輪車のパワーユニット懸架構造 |
JP2011148448A (ja) * | 2010-01-22 | 2011-08-04 | Honda Motor Co Ltd | 鞍乗り型車両 |
JP2011152901A (ja) * | 2010-01-28 | 2011-08-11 | Suzuki Motor Corp | 電動式自動二輪車 |
JP2015000616A (ja) * | 2013-06-14 | 2015-01-05 | 川崎重工業株式会社 | 自動二輪車の後部部品の支持構造 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3674196A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3674196A4 (en) | 2020-12-09 |
EP3674196A1 (en) | 2020-07-01 |
JPWO2019187885A1 (ja) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3360764B1 (en) | Leaning vehicle | |
JP2023027287A (ja) | モータ車両 | |
EP3363724B1 (en) | Leaning vehicle | |
JP2010052666A (ja) | 前二輪自動三輪車の前輪操舵機構及び前二輪自動三輪車 | |
JPS637993B2 (ja) | ||
JP2007055486A (ja) | サスペンション装置 | |
US10987986B2 (en) | Suspension device | |
WO2014129046A1 (ja) | サスペンションアームの構造及びサスペンション装置 | |
JP2018167677A (ja) | 鞍乗り型車両の揺動制御部構造 | |
EP2530006B1 (en) | Straddle-ridden vehicle | |
JP6288647B2 (ja) | 前二輪式鞍乗り型揺動車両 | |
WO2019187885A1 (ja) | リーン車両 | |
US9771119B2 (en) | Stressed fork motorcycle reverse trike conversion apparatus | |
WO2019082566A1 (ja) | 小型車両 | |
JP5665513B2 (ja) | 作業車両 | |
CN112644634B (zh) | 骑乘式车辆 | |
JP3043840B2 (ja) | 自動車車輪用独立懸架装置 | |
WO2011065376A1 (ja) | 車両のサスペンション装置 | |
JP2018069889A (ja) | 車両 | |
JP2009149166A (ja) | ステアリング装置 | |
EP4397582A1 (en) | Tilting control device and vehicle comprising the same | |
WO2022190175A1 (ja) | 傾斜車両 | |
WO2021095756A1 (ja) | 配線支持構造 | |
JP2010089601A (ja) | トーションビーム式サスペンションのアライメント調整機構 | |
JP2012071741A (ja) | サスペンション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776706 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020510461 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019776706 Country of ref document: EP Effective date: 20200325 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |